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Abstract

We define a notion of local overlaps in polyhedron
unfoldings. We use this concept to construct convex
polyhedra for which certain classes of edge unfold-
ings contain overlaps, thereby negatively resolving
some open conjectures. In particular, we construct
a convex polyhedron for which every shortest path
unfolding contains an overlap. We also present a con-
vex polyhedron for which every steepest edge unfold-
ing contains an overlap. We conclude by analyzing
a broad class of unfoldings and again find a convex
polyhedron for which they all contain overlaps.

1 Introduction

Polyhedron unfolding is a well-studied operation in
computational geometry. In an edge unfolding, one
unfolds a polyhedron by cutting its surface along
edges and flattening it into the plane. A common
problem is determining whether or not the resulting
surface is simple, meaning that it lies in the plane
without overlap. Additionally, one may ask whether
any unfolding of a given polyhedron is simple.

Shephard conjectured that every convex polyhe-
dron has a simple edge unfolding [7]. It is generally
believed that this conjecture is true, but a resolution
has proved elusive despite many decades of research.
In attempts to resolve Shephard’s Conjecture, some
researchers have defined classes of unfoldings that are
proposed to be simple for convex polyhedra [3, 6].
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In this paper we consider a particular type of over-
lap, which we call a 2-local overlap. This class of
overlaps is designed for simplicity of analysis, as their
occurrence depends on a local configuration of cuts
in a polyhedron. We exploit this property to develop
conditions on a convex polyhedron and cut tree that
guarantee that a 2-local overlap will occur in the cor-
responding unfolding. We then use this result to con-
struct convex polyhedra for which every unfolding in
given classes contains an overlap, negatively resolving
some open conjectures.

In Section 2 we provide formal definitions used
throughout the paper. Section 3 contains our analy-
sis of 2-local overlaps and the conditions under which
a 2-local overlap will occur. The subsequent sections
apply these results to different classes of cut trees:
shortest path cut trees in Section 4, steepest edge
cut trees in Section 5, and normal order cut trees
in Section 6. In Section 7 we provide some conclud-
ing remarks and discuss possible avenues of future
research.

2 Definitions

The exterior angle of a polygon at vertex w is the an-
gle formed externally by the two edges incident with
w. The interior angle at w is the angle facing the
interior. An interior angle of a face of a polyhedron
is also called a face angle. If v is a vertex of a poly-
hedron, the total face angle at v is the sum of all face
angles at v and the curvature at v is 2π minus the
total face angle at v.

An edge unfolding of a polyhedron is obtained by
cutting a subset of its edges and unfolding the result-
ing surface into a connected planar piece. The edges
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Figure 1: Examples of k-local overlaps for (a) k = 3, 4
and (b) k = 2.

that are cut in this process will form a spanning tree
of the vertices called a cut tree. The dual of the cut
tree is the adjacency tree, in which two faces are con-
nected if their common edge is not cut. Note that a
polyhedron can have multiple unfoldings, depending
on which edges are cut. We say that the edge un-
folding resulting from cutting along cut tree C is the

unfolding associated with C. A simple edge unfolding
is one that lies in the plane without overlap.

Suppose a polyhedron unfolding has an overlap be-
tween two faces, f1 and f2. This overlap is called
k-local if there are at most k vertices in the shortest
path of the unfolding that starts with a vertex inci-
dent with f1 and ends with a vertex incident to f2.
In Figure 1(a) the overlap between faces A and B is
3-local, corresponding to points p, q, and r. The over-
lap between faces A and C is 4-local, as it involves
point s as well. Figure 1(b) shows an example of a
2-local overlap. Note that a 2-local overlap occurs
precisely when there is an edge (v, w) in the unfold-
ing such that the overlapping faces are incident with
vertices v and w, respectively.

Let C be a cut tree and consider the faces incident
with a vertex v. Let the images of v in the unfolding
be v1, . . . , vk. Then all of the faces incident with a
given vi in the unfolding form an unfolding group or
component of v. No face can belong to more than
one unfolding group of v; such a face would have to
be incident with v at two points along its boundary.

There is a relationship between unfolding groups
and the cut tree C. Two faces f1 and f2 are in the
same unfolding group precisely when one can traverse
faces incident with v from f1 to f2 around v (either
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Figure 2: Unfolding angles at vertex v. The unfolding
groups at v are ABC, DE, FG, and H. The unfold-
ing angle bounded by (v, w) and (v, w′) is θ1+θ2+θ3.
The unfolding angle bounded by (v, w) and (v, w′′) is
θ4 + θ5.

clockwise or counterclockwise) without crossing an
edge in C. In other words, the edges in C split the
faces incident with v into the unfolding groups. This
implies that the number of unfolding groups at v is
precisely the degree of v in C. See Figure 2.

The sum of the face angles at v over all faces in
an unfolding group is called an unfolding angle at v.
The unfolding angles at v are precisely the interior
angles of v1, . . . , vk in the unfolding. This is because
the interior angle at some vi is simply the sum of all
face angles at vi, which is the same as the face angles
at v for all faces in the unfolding group corresponding
to vi.

Finally, if e is a cut edge incident with v, we say
that an unfolding group is bounded by e if a face in
the group is incident with e. The unfolding angle
of such a group is referred to as an unfolding angle

bounded by e. See Figure 2.

3 Characterizing 2-Local Over-

laps

We shall now develop conditions for cut trees on con-
vex polyhedra that will result in 2-local overlaps. The
core idea is illustrated in Figure 4. In that figure, the
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face incident with w fits tightly into the space around
vertex v. Thus, if the curvature at w is small, the
face incident with w cannot “swing out” enough to
clear the faces incident with v. Note that this unfold-
ing pattern is similar to Schlickenrieder’s unfolding of
hanging facets [6] and to the unfolding of polyhedral
bands studied by Aloupis et al. [1].

We begin the formal proof by providing a set of
conditions on an unfolding that implies the presence
of a 2-local overlap.

Lemma 1 Suppose P ′ is an unfolding of a convex

polyhedron. Let e1, e2, and e3 be incident edges on

the boundary of P ′, where e1 and e2 have common

vertex v and e2 and e3 have common vertex w. Fur-

ther suppose that |e3| = |e2|. Let φ be the exterior

angle at v, and let θ be the exterior angle at w. If

1. θ + 2φ < π, and

2. |e1| ≥ |e2|
sin θ

sin(π−θ−φ)

then P ′ will contain a 2-local overlap.

Proof. See Figure 3 for an illustration of the state-
ment of this lemma.
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Figure 3: Unfoldings in Lemma 1. Shaded areas rep-
resent interiors of faces. (a) The configuration of
edges, vertices, and angles in the statement. (b) A
2-local overlap, showing derivation of the edge length
condition. Note that the line drawn from v to v′ is
not an edge; it is meant to illustrate angle ψ.

Note first that θ ≤ π and φ ≤ π
2 by the first condi-

tion in the claim.

Let v′ be the vertex besides w incident with e3.
Consider the isosceles triangle formed by v, v′, and
w. This triangle has angle θ at w, and angle ψ := π−θ

2
at v and v′. But we know that θ + 2φ ≤ π, so φ ≤
π−θ

2 = ψ. Thus edge e1 will intersect e3, assuming e1
is sufficiently long.

We now determine the required length of e1. Ex-
tend edge e1 from v until it intersects e3. Call that
point of intersection q. Consider now the triangle
formed by v, w, and q. The angle at q will be π−θ−φ.
See Figure 3(b). Then, by the sine rule (and since
|e2| = |e3|), we have that

|q − v|

sin θ
=

|e3|

sin(π − θ − φ)
.

We conclude that e1 will contain point q, and hence
intersect e3, if

|e1| ≥ |q − v| = |e3|
sin θ

sin(π − θ − φ)

as required. �

We are now ready to prove the main result of this
section. The following Lemma presents conditions on
a cut tree and convex polyhedron that imply a 2-local
overlap will occur in the corresponding unfolding.

Lemma 2 Let P be a convex polyhedron with cut tree

C. Suppose the following conditions hold:

1. w ∈ V (P ) has degree 1 in C, and is adjacent to

v ∈ V (P ) in C.

2. There is an unfolding angle φ0 at v bounded by

(v, w) with φ0 >
3π
2 .

3. There is a value γ > 0 such that
|e1|
|e2| > γ for any

two edges e1 and e2 incident with v.

Then there exists an angle θ0 that depends on γ and

φ0 such that the unfolding implied by C will contain

a 2-local overlap if the curvature at w is less than θ0.

Proof. See Figure 4 for an illustration of the state-
ment of this lemma.

Let P ′ be the unfolding of P associated with cut
tree C, illustrated in Figure 4(b). We shall show that
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P ′ satisfies the conditions of Lemma 1. Note that the
two edges incident with w have equal length, as they
are both images of the same edge in C. Let φ be the
exterior angle at v. Then φ = 2π − φ0, as φ0 is the
interior angle at v. Let θ be the exterior angle at w
in the unfolding P ′. Then θ is also the curvature of
w in P , and hence θ < θ0. Let the two edges on the
boundary of P ′ incident with v be e1 and e2, where
e2 is incident with w.

Then for all 0 < θ < π − 2φ we have that

θ + 2φ < π. (1)

Further, if sin θ < γ sin(π − θ − φ), then

|e′| > |e1|
sin θ

sin(π − θ − φ)
.

But as θ → 0, we have sin θ → 0 and sin(π−θ−φ) →
sin(π − θ) > 0. We conclude that there exists some
θ1 > 0 such that, for all 0 < θ < θ1,

sin θ < γ sin(π − θ − φ) <
|e1|

|e2|
sin(π − θ − φ). (2)

Take θ0 = min{π − 2φ, θ1}. If the curvature at
w is less than θ0 then the conditions of Lemma 1
are satisfied by Equations 1 and 2, so P ′ will indeed
contain a 2-local overlap.

�
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Figure 4: The conditions of Lemma 2. (a) Part of the
surface of a polyhedron with cut edges in bold and
φ0 >

3π
2 . (b) The resulting 2-local overlap.

3.1 Discussion

An important feature of the conditions in Lemma 2
is that they are all local. That is, Lemma 2 does
not depend on any features of the polyhedron or the
cut tree beyond the faces and edges incident with
vertices v and w. Indeed, this locality is the primary
motivation for our definition of k-local unfoldings.

One application of Lemma 2 is the construction of
particular convex polyhedra and cut trees with non-
simple unfoldings. Informally speaking, if a polyhe-
dron and cut tree can be formed in such a way that
some portion of the configuration looks like Figure
4(a), then we can conclude that a 2-local overlap will
occur given that curvatures can be made arbitrarily
small. The remainder of this paper explores examples
of this process.

4 Shortest Path Unfoldings

Lemma 2 provides a tool for constructing convex
polyhedra and cut trees that will generate overlaps.
We apply Lemma 2 to a particular class of unfoldings.
Given a polyhedron P and a vertex v ∈ V (P ), the
shortest path tree at v, SPT (v), is the tree formed
by taking the union of the shortest paths from each
vertex w ∈ V (P ) to v along the edges of P .

Fukuda made the following conjecture [3]:

Conjecture 1 (Fukuda) For every convex polyhe-

dron P and every vertex v ∈ V (P ), the cut tree

SPT (v) forms a simple unfolding of P .

It should be noted that Schlickenrieder has al-
ready found an example of a convex polyhedron that
disproves this conjecture [6]. We shall construct a
different counterexample as an introduction to the
methodology used in subsequent sections.

Theorem 3 There exists a convex polyhedron P with

vertex v ∈ V (P ) such that the unfolding correspond-

ing to cut tree SPT (v) contains a 2-local overlap.

Proof. Consider the graph shown in Figure 5(b).
The tree SPT (b) is illustrated in that figure. Place
the graph in the plane, taking |(a, b)| = 1. We can

4



135

135 90

90

150

150

150

150
60

a b

c

de

f

g

(a) (b)

Figure 5: The planar figure used to disprove Con-
jecture 1. (a) The underlying structure. All line seg-
ments are of length 1 and angles are shown in degrees.
(b) The completed figure. The bold line segments
form SPT (b).

turn this graph into a convex polyhedron by raising
vertices c, d, and e off the plane, say by a maximum
distance α. This forms a convex terrain, to which we
add a bottom face to form a convex polyhedron. Call
this polyhedron P (α).

Note that if α is sufficiently small, then the re-
sulting polyhedron has edge lengths and face angles
arbitrarily close to that of the planar figure. In par-
ticular, there exists some ǫ1 > 0 such that for all
0 < α < ǫ1, SPT (b) is as shown in Figure 5(b), and
faces (b, c, g) and (c, d, g) together form a component
with angle greater than 3π

2 at c. Let γ be the mini-

mum value of |e1|
|e2|

for any two edges e1 and e2 incident

with b in any P (α), 0 < α < ǫ1. Note γ > 0.

Then by Lemma 2, there exists some θ0 > 0 such
that the unfolding of P (α) by cutting along SPT (b)
will contain a 2-local overlap if the curvature at d
is less than θ0. This same value of θ0 applies to all
P (α), 0 < α < ǫ1. But note that the curvature at
d approaches 0 as α → 0. Thus there exists some
ǫ2 > 0 such that α < ǫ2 implies that the curvature at
d is less than θ0 in P (α).

We conclude that if 0 < α < min{ǫ1, ǫ2} then
P (α) contains a 2-local overlap when it is cut along
SPT (b). �

5 Steepest Edge Unfoldings

We now consider a more complex class of unfoldings,
the steepest edge unfoldings. This class of unfoldings

Figure 6: Illustration of steepest edges, where ζ is
directed toward the top of the page.

was proposed by Schlickenrieder [6]. As in the previ-
ous section, we shall construct a convex polyhedron
for which every such unfolding contains an overlap.

5.1 Definition

Let P be a convex polyhedron. Choose a direction
vector ζ. Without loss of generality ζ = (0, 0, 1) by
reorienting space. Then for every vertex v in P , let
the steepest edge for v be (v, w) such that w−v

|w−v| has

maximal z-coordinate. That is, the steepest edge is
the edge directed most toward ζ from v. The steepest

edge cut tree contains the steepest edges of all ver-
tices, except the vertex with maximal z-coordinate.
A steepest edge unfolding is formed by cutting along
a steepest edge cut tree. See Figure 6.

Conjecture 2 (Schlickenrieder) Every convex

polyhedron P has a simple steepest edge unfolding.

This conjecture was motivated by empirical tests,
where Schlickenrieder found that a convex polyhe-
dron would unfold without overlap with probability
0.93 when ζ was chosen at random [6]. Neverthe-
less, we shall construct a polyhedron for which every
steepest edge cut tree generates an unfolding with a
2-local overlap.
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5.2 Outline

We begin by constructing a convex terrain for which
the steepest edge cut tree generates an overlap when
ζ lies in some open set. Furthermore, the size of
this set is independent of scaling, translation, and
rotation of the terrain. We then construct a convex
polyhedron by gluing together many copies of this
terrain in various orientations. The result will be that
for every possible choice of ζ, there is a copy of our
terrain that contains an overlap in the corresponding
steepest edge unfolding.

5.3 The Terrain

Consider the planar graph M1 illustrated in Figure
7(a). As with the graph in Section 4, we can convert
M1 into a convex terrain by raising the interior ver-
tices a and b. Given parameter α ≥ 0, we denote by
M1(α) the convex terrain formed by raising the ver-
tices a and b to a height of at most α in such a way
that the resulting terrain remains convex. In partic-
ular, raising a to a height of α

2 and b to a height of
α will result in a convex terrain for all α > 0. Also,
note that as α→ 0, the curvatures at a and b become
arbitrarily small.

b = (4,0,2)

a = (2,0,3)

c = (8,0,2)

d = (2.4,0,3.4)

e = (0,0,3)

f g = (8,0,0) = (0,0,0)

a

b

f g

e

a

d d

c

(a) (b)

Figure 7: (a) The planar graph M1. (b) The steepest
edge unfolding of M1(α) for small α and direction
vector ζ = (0, 0, 1).

Lemma 4 There exists φ > 0 such that, for any suf-

ficiently small α > 0, if M1(α) forms part of convex

polyhedron P and ζ is a unit vector within an angle

of φ from vector e−f
|e−f | , the steepest edge unfolding of

P with direction ζ will contain a 2-local overlap.

Proof. See Figure 7(b) for an illustration of the
steepest edge unfolding of M1(α) when ζ = e−f

|e−f | =

(0, 0, 1). Note that vertex b has degree 1 in the un-
folding. Also, since ∠dab < π

2 in M1, there is an un-
folding angle bounded by (a, b) that is greater than
3π
2 for sufficiently small α. The overlap illustrated is

implied by Lemma 2 when α is sufficiently small.
Note that the steepest edge cut tree of M1(0) re-

mains the same given small perturbations of the ter-
rain. In particular, there exists φ > 0 and α > 0
such that, for all 0 < α0 < α and 0 ≤ φ0 < φ, the
steepest edge unfolding of M1(α0) will be as illus-
trated in Figure 7(b) when ζ is adjusted by an angle
of φ0. Thus, for any sufficiently small α, the 2-local
overlap described above will occur for M1(α) if ζ is
within an angle of φ from e−f

|e−f | . Note that our choice

of α is independent of our choice of φ, provided α is
sufficiently small.

Suppose polyhedron P contains an embedded copy
of the terrain M1(α). Consider the vector e−f

|e−f | in

this embedded copy of M1(α). Suppose ζ is within
angle φ of e−f

|e−f | , and consider the steepest edge cut

tree of P with direction ζ. Then the unfolding of P
restricted to M1(α) is precisely the unfolding shown
in Figure 7(b), as the cut tree over M1(α) remains
the same. Thus the unfolding of P contains a 2-local
overlap.

Note that we described ζ with respect to e and f ,
rather than (0, 0, 1), to make clear the independence
of φ from any rotation and scale of the terrain that
may occur in the course of embedding it into a convex
polyhedron. �

5.4 The Polyhedron

We now construct our final polyhedron. We begin
with the following technical lemma.

Lemma 5 Given φ > 0, there exists a convex

polyhedron P and a finite set of direction vectors

{ζ1, ζ2, . . . , ζn} such that

1. for any direction vector ζ, there is a ζi such that

the angle between ζ and ζi is less than φ, and

2. for each ζi there is a distinct face fi of P such

that the normal at fi is perpendicular to ζi.
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Proof. Note that a direction vector is equivalent to
a point on the unit sphere S. Given direction vector
ζ, let D(ζ) be the set of all direction vectors within
an angle of φ from ζ. Then D(ζ) is an open set, and

⋃

ζ∈S

D(ζ) = S.

Since S is a compact set, it follows that there is some
finite number of sets {D(ζi)}

n
i=1 such that

n⋃

i=1

D(ζi) = S.

Then for any ζ ∈ S, ζ must lie in some D(ζi), and
hence ζ is within angle φ of ζi. Thus {ζ1, ζ2, . . . , ζn}
is our desired set of direction vectors.

We shall now construct our polyhedron P using
the well-known Minkowski Existence Theorem [2].
Choose direction vectors γ1, . . . , γn such that γi is
perpendicular to ζi and no two γi and γj are parallel.
Let A = {γ1, . . . , γn} ∪ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} be
a set of direction vectors. Note that A spans R3.
Define vector Γ by

Γ = −
∑

γ∈A

γ.

Then A ∪ {Γ} is a sequence of direction vectors that
sums to 0 and spans R3. It follows by the Minkowski
Existence Theorem there exists a convex polyhedron
P such that the outward facing normal vectors of P
are precisely parallel to the vectors in A ∪ {Γ}. In
particular, P contains faces f1, . . . , fn such that the
normal at face fi is γi, which is perpendicular to ζi
as required.

�

Theorem 6 There exists a convex polyhedron for

which every steepest edge unfolding of contains a 2-
local overlap.

Proof. Let φ be the value from the statement of
Lemma 4. By Lemma 5 there is a polyhedron P and
set {ζ1, . . . , ζn} of direction vectors such that every ζ
is within angle φ of some ζi and for each ζi there is a
face fi of P such that ζi lies in the plane of fi.

p

qr

Figure 8: Embedding M1 into a face (p, q, r) of a
polyhedron.

We shall create a new convex polyhedron P1 by
embedding a copy of M1 into face f1. We perform
this operation in the following steps.

1. Scale a copy of M1 so that it fits in the interior
of face f1. Say this scaling is by a factor of λ1.
We can assume without loss of generality that
λ1 < 1.

2. Rotate M1 in the plane of f1 so that e−f
|e−f | = ζ1

(recall that e and f are vertices in M1). This is
always possible since ζ1 lies in the plane of f1.

3. Triangulate the space between the boundary of
f1 and the boundary of M1. See Figure 8 for an
illustration of such an embedding.

4. Raise all vertices of M1 by a height of β > 0
above the plane of f1, with β chosen small
enough that the resulting polyhedron remains
convex.

5. Raise vertices a and b by an additional height of
λ1α1 above the plane of f1, where α1 is chosen
small enough that the resulting polyhedron re-
mains convex. We also choose α1 small enough
to satisfy Lemma 4. This transforms the embed-
ded copy of M1 into a copy of M1(α1), scaled by
a factor of λ1 (recall that our copy of M1 was
already scaled by λ1).

Call the resulting polyhedron P1. Then P1 is con-
vex and contains a scaled copy of M1(α1) where
e−f
|e−f | = ζ1.

7



Repeat the above steps for faces f2, . . . , fn, embed-
ding a scaled copy of M1(αi) into each face. Call the
resulting convex polyhedron Pn. We claim that Pn is
the desired polyhedron. Well, for any direction vec-
tor ζ, there is a ζi such that the angle between ζ and
ζi is less than φ. Consider the copy of M1(αi) embed-
ded in face fi. For this embedded terrain, the angle
between ζ and e−f

|e−f | is less than φ and αi satisfies

Lemma 4. Therefore, by Lemma 4, Pn will contain a
2-local overlap when cut along the steepest edge cut
tree with direction ζ. We conclude that every steep-
est edge unfolding of Pn will contain an overlap. �

6 Normal Order Unfoldings

We now consider a broad class of unfoldings: the nor-

mal order unfoldings. This class was motivated as a
generalization of steepest edge unfoldings. We shall
construct a polyhedron for which every normal order
unfolding contains an overlap.

6.1 Definition

Let P be a convex polyhedron and choose a unit di-
rection vector ζ. Given f ∈ F (P ), let nf be the
outward-facing unit normal for f . Let z(f) = nf · ζ.
Given f, g ∈ F (P ), we say g is lower than f if
z(g) ≤ z(f). Informally, g is lower than f if ng does
not point more toward ζ than nf does. Let L(f) be
the set of faces that are both adjacent to and lower
than f .

Now consider a cut tree C of P , with corresponding
adjacency tree A and unfolding P ′. We say that the
unfolding P ′ is a normal order unfolding if, for every
f ∈ F (P ) with L(f) 6= ∅, there exists g ∈ L(f) that
is adjacent to f in P ′. In other words, every face
that is a adjacent to at least one lower face in the
polyhedron P must be adjacent to a lower face in the
unfolding P ′.

We first show that this is a reasonable class of un-
foldings by demonstrating that a normal order un-
folding exists for any choice of P and ζ.

Proposition 7 A convex polyhedron P has a normal

order unfolding for any choice of direction vector ζ.

Proof. We shall build an adjacency tree A that pro-
duces a normal order unfolding for P and ζ. For
each f with L(f) 6= ∅, choose some gf ∈ L(f).
Let A1 be the graph with vertices F (P ) and edges
{(f, gf ) : L(f) 6= ∅}. Then A1 satisfies the property
that every face f with L(f) 6= ∅ is adjacent to a lower
face in A1, but A1 is not necessarily a spanning tree.

Suppose A1 contains a cycle f1, f2, . . . , fk, f1.
Then each face in the cycle is lower than one of its
adjacent faces, so we conclude z(fi) = z(fj) for all
1 ≤ i, j ≤ k. We can thus remove edge (f1, f2) from
the graph and both f1 and f2 will still be adjacent
to lower faces (via (fk, f1) and (f2, f3)). This process
can be repeated to remove all cycles in A1; call the
resulting forest A2. We then extend A2 to a spanning
tree A of F (P ) by adding any necessary edges. Then
A retains the property that every face adjacent to at
least one lower face in P is adjacent to a lower face in
A, so A is an adjacency tree that produces a normal
order unfolding. �

6.2 Motivation

Our definition of normal order unfoldings is moti-
vated by the steepest edge unfoldings. In Schlicken-
rieder’s paper, there are examples of complex con-
vex polyhedra with simple steepest edge unfoldings
[6]. As an informal intuition, the success of these
unfoldings appears to derive from their tendency to
“expand outward” from a central point. It seems
natural that a given convex polyhedron could be un-
folded by expanding monotonically outward, and that
such unfoldings would have a high probability of be-
ing simple. The definition of normal order unfoldings
attempts to capture this notion of monotonicity.

A motivating question for the research presented
in this paper was whether a simple normal order un-
folding exists for every convex polyhedron. Unfortu-
nately, despite our intuition, we shall now prove that
this is not the case.

6.3 Construction

We shall construct a polyhedron for which every nor-
mal order unfolding contains an overlap. The method
of construction is very similar to that for steepest
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edge unfoldings in Section 5. We simply modify the
terrain M1 to generate overlaps for all normal order
unfoldings.

Consider the planar graph M2 illustrated in Figure
9(a). An important thing to notice about this graph
is that certain angles, illustrated in the figure, are all
less than π

2 .
Consider raising the interior vertices of M2 by at

most α in such a way that each face of M2 remains
planar. Call the resulting convex terrain M2(α). See
Table 1 for a particular instance of M2(α).

Suppose that vector (0, 0, 1) points toward the top
of the page in Figure 9(a). Then all normal order un-
foldings of M2(α) with direction vector within some
range of (0, 0, 1) contain overlaps, as proved by the
following lemma.

Lemma 8 There exists a value of φ > 0 such that if

α > 0 is sufficiently small and ζ is within an angle

of φ from (0, 0, 1) then any normal order unfolding of

M2(α) with respect to direction vector ζ contains an

overlap.

Proof. First suppose that ζ = (0, 0, 1). See Table 1
for a particular instance of M2(α) with α = 0.03, and
the value of z(f) for each face of M2(α).

Consider a normal order unfolding of M2(α). Note
that what constitutes a valid normal order unfolding
depends on the order of the faces according to face
heights. Specifically, in Figure 9(a), the bold edges
will not be cut in a normal order unfolding. These
are the situations in which a face F is incident to only
one other face G with z(G) ≤ z(F ), and thus must be
adjacent to that face in any normal order unfolding.

Let F denote the face (c, d, f, h). Note that there
is a choice regarding which edges incident with F to
cut. In a Normal Order unfolding, one of edges (d, f)
or (c, d) must not be cut, since F must be adjacent
to one of its adjacent lower faces; either (d, e, f) or
(a, b, c, d, e).

Case 1: edge (c, d) is cut. Then a portion of
the unfolding is as illustrated in Figure 9(b). Recall
that angle ∠icd is less than π

2 in M2. Thus, if α
is sufficiently small, the sum of the angles of faces
(i, c, b) and (a, b, c, d, e) at vertex c will be greater
than 3π

2 . Also, vertex d has degree 1 in the cut tree.

a b
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a b

e

d

c
c

i
h
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ba

c
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a b

c

d

e

f
f

e

h

(c) (d)

Figure 9: (a) The planar graph M2. The marked
edges are not cut in a normal order unfolding, and
the marked angles are less than π

2 . (b,c,d) Portions
of the normal order unfoldings of M2(α)

But then, by Lemma 2, a 2-local overlap will occur
in this unfolding of M2(α) for sufficiently small α.

Case 2: edge (d, f) is cut. We now have two
subcases.

Case 2.1: edge (f, h) is cut. Then the angles
at f in faces (d, e, f) and (e, f, h) sum to more than
3π
2 when α is sufficiently small. Also, vertex d has

degree 1 in the cut tree. So, by Lemma 2, a 2-local
overlap will occur in this unfolding when α is suffi-
ciently small. See Figure 9(c).

Case 2.2: edge (f, h) is not cut. Then edge
(f, e) must be cut. But then, taking curvatures suffi-
ciently small, there will be an overlap between faces
(a, e, g) and (e, f, h). See Figure 9(d).

This situation requires particular attention, since
the occurrence of an overlap does not follow immedi-
ately from Lemma 2. In particular, the overlap is a
4-local overlap. However, the situation is quite simi-
lar to the conditions of Lemma 2, and the same form
of argument can be applied to show that a 4-local
overlap will occur for sufficiently small α. One can
also consider a particular instance of M2 and demon-
strate numerically that an overlap occurs for suffi-
ciently small α [4].

We conclude that there is no way to unfold terrain
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Table 1: A particular instance of M2(α), with vertex
coordinates and face heights given ζ = (0, 0, 1).

vertex coordinates face F z(F )
a (0, 0, 0) (a, b, c, d, e) −0.010
b (10, 0, 0) (d, e, f) −0.003
c (9, 0.02, 2) (c, d, f, h) 0.020
d (6, 0.03, 3) (b, c, i) 0.022
e (1, 0.02, 2) (c, h, i) 0.030
f (4, 0.03, 4) (e, f, h) 0.099
g (0.99, 0, 2.1) (a, e, g) 0.154
h (5, 0, 5) (e, g, h) 0.182
i (9.1, 0, 2.6)

M2(α) while respecting the normal order induced by
ζ = (0, 0, 1). Note that the ordering of heights of
faces in M2(α) will remain the same given minute
perturbations of the terrain. Fix some sufficiently
small α0; then there exists some φ > 0 such that the
relative order of face heights of M2(α0) remains the
same when ζ is perturbed by an angle of at most φ.
In addition, φ can be chosen small enough that the
ordering with this perturbed ζ remains the same for
M2(α) for all 0 < α < α0. But then the normal or-
der unfoldings of M2(α) are precisely those described
above, which all contain overlaps.

This implies that if ζ is within φ of (0, 0, 1), then
any normal order unfolding of M2(α) with direction
ζ will contain an overlap. Further, our choice of α is
independent of our choice of φ as long as α is suffi-
ciently small. �

Theorem 9 There exists a convex polyhedron P

such that every normal order unfolding of P contains

an overlap.

Proof. This proof is very similar to that of Theorem
6, so the argument will be made briefly.

Choose α and φ to satisfy the conditions of Lemma
8. Let P be the polyhedron from Lemma 5 given an-
gle φ. Embed a copy of M2 into each of the faces
f1, . . . , fn of P in the statement of Lemma 5, such
that the top of M2 (as in Figure 9(a)) faces toward ζi
for each i. Raise the vertices of each copy of M2 by
a sufficiently small amount that the resulting polyhe-

dron remains convex and the corresponding convex
terrains are of the form M2(α

′) where α′ < α. Call
the resulting convex polyhedron P ′. Then for any
direction vector ζ there is a corresponding copy of
M2(α

′) for which Lemma 8 applies, and hence any
normal order unfolding with direction ζ will contain
an overlap. Thus all normal order unfoldings of P ′

contain overlaps, as required. �

7 Conclusion

We have developed a methodology for constructing
convex polyhedra for which a given class of unfold-
ings contains no simple unfoldings. This was used to
negatively resolve conjectures by Fukuda and Schlick-
enrieder. We also applied this method to show that
not every convex polyhedron has a simple normal or-
der unfolding. This last counterexample serves to
break the intuition that one can always construct a
simple unfolding that “expands outwards” monoton-
ically from a point.

This work leaves open a number of questions for
future research. First, one might consider a class of
unfoldings other than normal order unfoldings as a
candidate for positively resolving Shephard’s Conjec-
ture. It is possible that a slightly different class of
unfoldings could preserve the informal notion of cre-
ating starlike unfoldings, yet not fall to the type of
counterexample presented in this paper.

Also, Lemma 2 gives only a set of sufficient con-
ditions for a limited type of overlap. We could
strengthen our ability to construct counterexamples
by considering the more general notion of k-local
overlaps. One could imagine generalizing Lemma
2 to a full characterization of necessary and suffi-
cient conditions leading to k-local overlaps. Such a
characterization would be a powerful tool and sig-
nificant progress toward resolving Shephard’s conjec-
ture. However, even extending Lemma 2 to 3-local
overlaps could prove enlightening in the study of con-
vex polyhedra unfoldings.

Another question to pursue is whether or not it
is true that every convex polyhedron has an unfold-
ing that avoids 2-local overlaps. If no, the conclusion
would be that Shephard’s conjecture is false. If yes,
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then one might attempt to extend the result to k-
local overlaps, which would positively resolve Shep-
hard’s conjecture. A possible first step in this line of
research would be to determine a full characterization
of the necessary and sufficient conditions in which a
2-local overlap occurs, expanding upon the results of
Lemma 2.
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