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Abstract 

We harness the ability of people to perceive and 

interact with visual patterns in order to enhance the 

performance of a machine learning method. We show 

how we can collect evidence about how people 

optimize the parameters of an ensemble classification 

system using a tool that provides a visualization of 

misclassification costs. Then, we use these 

observations about human attempts to minimize cost 

in order to extend the performance of a state-of-the-art 

ensemble classification system. The study highlights 

opportunities for learning from evidence collected 

about human problem solving to refine and extend 

automated learning and inference. 

 Introduction   

The development of machine learning procedures hinges 

on design choices such as selection of optimization 

methods, definition of evidential features, and the setting 

of parameters. Such design decisions rely on expert 

knowledge and can be viewed as a form of search through 

a space of alternate methods and models. We have been 

pursuing opportunities for automating the refinement of 

machine learning. Our work comes in the context of 

growing interest in interactive, human-in-the-loop learning, 

where people iteratively tag, train, and correct 

classifications in a tight interactive loop. Examples of work 

in this space include online learning against adversaries, 

active learning, and contextual bandits. 

We examine the prospect of extending machine learning 

algorithms with methods that learn from people’s attempts 

to optimize the performance of classifiers. Specifically, we 

collect and use evidence about the steps that human 

subjects take to minimize misclassification via the use of a 

tool that provides a visual summary of the performance of 

a weighted combination of a set of classifiers, as well as 
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controls for modifying the parameters of the classification. 

We collect observations of subjects’ attempts to minimize 

the costs of misdiagnosis to train classifiers. Then, we use 

the data autonomously to enhance a machine learning 

procedure. The methods and results highlight the promise 

of learning to learn from people, by leveraging human 

skills at perceiving visual patterns with ease, and codifying 

evidence about strategies that people formulate to refine 

the behavior of a system.   

We focus on analyzing and learning within 

EnsembleMatrix (Talbot et al. 2008), a system that allows 

users to interactively manipulate visualizations of the 

output of a multiclass classifier system in order to design a 

more ideal combination of multiclass classifiers. We 

describe a study we ran to observe human problem solving 

behavior with the system, review insights we garnered 

from this study, and present algorithms that we developed 

with data from human optimization sessions. 

Related Work 

Recent studies have identified situations in which people 

produce better classifiers than automatic techniques. Some 

studies provide users with visualizations about the 

operation of specific machine learning algorithms along 

with controls for modifying parameters of the learning 

procedures and classifications (Ware et al. 2001, Talbot et 

al. 2008). Related studies have explored the use of people 

to provide hints to optimize decision trees (Ankerst et al. 

1999), naïve-Bayes (Becker et al. 2001), SVMs (Caragea 

et al. 2001), and HMMs (Dai and Cheng 2008).  

Our research is also closely aligned with research on 

interactive machine learning. Fails and Olsen (Fails and 

Olsen 2003) assert the potential value of human 

involvement to provide training data and propose an 

interactive system that enables users to train, classify, and 

correct classifications in a real-time iterative loop. In the 

context of unsupervised learning, interactive clustering 

using human input has been also proposed (Bilenko, Basu, 

Mooney 2004, Bekkerman et al. 2007). Beyond label 

elicitation, related research includes interactive feature 

discovery for identifying discriminative features 



(Raghavan, Madani, Jones 2005) and interactive 

optimization that uses human guidance to maximize human 

preferences about classification (Kapoor et al. 2010). 

The main goal of most of the work mentioned above has 

been to achieve high classification accuracy rather than to 

learn from human actions. We note that the problem of 

reinforcement and imitation learning (Sutton and Barto 

1998, Hsiao and Lozano-Perez 2006) are related to our 

efforts. However, little effort to date has been focused on 

the task of learning to learn from observations about 

human efforts to optimize machine classification. In this 

work, we explore the prospect of developing better 

classification systems by incorporating insights gleaned by 

watching people effectively optimize the performance of 

classifiers in interactive learning scenarios. 
 

Designing Classifiers with EnsembleMatrix 
We harness a prototype named EnsembleMatrix that was 

created earlier for studies of interactive machine learning 

(Talbot et al. 2008). EnsembleMatrix was designed to 

assist developers with optimizing the behavior of machine 

classification in applications. Specifically, the prototype 

helps developers build an ensemble classifier by 

combining multiple component classifiers (see Figure 1). 

The EnsembleMatrix interface consists of three basic 

sections: the Component Classifier view on the lower right, 

which contains an entry for each classifier that the user has 

imported, the Linear Combination widget on the upper 

right, and the main Ensemble Classifier view on the left. 

EnsembleMatrix represents each classifier using a 

graphical heat map of its confusion matrix. Confusion 

matrices allow human observers to use their perceptual 

capabilities to identify patterns of misclassification. The 

ordering of any matrix can greatly influence the patterns 

visible. EnsembleMatrix reorders the main confusion 

matrix at interactive rates to highlight sets of frequently 

confused classes (Cuthill and McKee 1969). The prototype 

provides two basic mechanisms for exploration: (1) a 

partitioning operation, which divides the class space into 

multiple partitions, and (2) a linear combination operation 

that lets the user select weights for each classifier within 

each partition. Partitioning the class space separates the 

data instances into two subsets, allowing the user to 

develop predictors specialized for each subset. The two 

subset classifiers are restricted to only predicting classes 

within their partition. The second interaction mechanism 

allows the user to quickly manipulate a subspace of the 

linear combination of component classifiers using a simple 

two-dimensional interpolation control. Partitioning and 

linear combination operations can be done recursively an 

arbitrary number of times and in any order, leading to a 

large number of possible refinement strategies. 

Talbot et al. (Talbot et al. 2008) observed that when 

asked to find configurations of partitions and weight 

parameters users could find reasonable solutions fairly 

quickly. We note that the task of finding good parameters 

is non-trivial due to the size of the search space. However, 

the efficiency with which humans perform this task raises 

two questions. First, what are the key properties of the 

strategies employed by humans? Second, can we train 

machine learning systems to learn aspects of human 

strategies in order to build better predictors? We explore 

these questions in depth in the rest of the paper. 
 

Studies of Human Optimization Strategies 

In the first stage of this research, we conducted an 

experiment to explore the different strategies that people 

use with EnsembleMatrix to build models. 

Datasets and Individual Classifiers: To cover a wide 

range of problems in terms of the different types of 

datasets, we considered three different multiclass 

classification problems. We studied people working with 

(1) Newsgroup (3000 examples, 20 classes), (2) Multipie 

(Gross et al. 2008) (3000 examples, 150 classes), and (3) 

Caltech-101 (Fei-Fei, Fergus, Perona 2006) (3030 

examples, 101 classes) datasets. The goal for the 

Newsgroup dataset is to categorize documents into 20 

different topic classes. The task for the Multipie collection 

of face images is to recognize the identities of the faces. 

The task for Caltech-101 challenge is to classify images 

into 101 categories. For each classification task, we 

consider four base-level classifiers that were trained using 

different sets of features. In particular, we generate four 

different kernels to induce four classifiers. For the 

Newsgroup dataset, we consider three polynomial kernels 

with degrees 1, 2, 3 and an RBF kernel. Similarly, for the 

Multipie data, we first perform PCA to project the images 

onto 300 dimensions, and then induce four different RBF 

kernels using four successive partitions of the PCA 

representation. For the Caltech-101 data, we consider four 

different kernel representations based on gray level 

intensities, color intensities, and horizontal and vertical 

edge orientations. 

 
 

Figure 1: Snapshot of EnsembleMatrix. Leave-one-fold-out 

confusion matrices of component classifiers are shown in thumbnails 

on right and their weights in the linear combination are represented 

by red dot in diamond. Subjects can interact to change weights as 

well as partition the space of classes. Matrix on left shows confusion 

matrix of the current ensemble classifier constructed by the user. 



For each of the datasets, we perform a 50-50 train and 

test split. We then use Gaussian Process regression models 

(Rasmussen and Williams 2006) to compute 10-fold cross-

validated mean predictions over the training set. These 

cross-validated predictions over the training set are used to 

generate the confusion matrices that are used in the 

EnsembleMatrix studies. We note that cross validation 

ensures that the resulting model will lead to good 

generalization performance on the test set.  
Participants and Apparatus: We recruited 10 participants 

from an industrial research institution. Participants spanned 

a wide spectrum of expertise, ranging from machine-

learning researchers to ones that had little exposure to 

machine learning. We provided participants with basic 

instructions on how to use the EnsembleMatrix system, 

mainly on partitioning and controlling linear combinations 

within each partition. We told the participants that their 

task was to develop a new, more accurate, ensemble 

classifier by exploring and combining four different 

component classifiers. Each participant worked on the 

three datasets which were presented in the same order: the 

Caltech-101, Multipie, and then Newsgroup dataset. For 

each dataset, we asked participants to try the same task 

twice. At the end of each trial, we informed the participants 

of the result accuracy with the test dataset so that they 

could adjust their strategy in the following trials. We 

believed that participants could learn a better strategy not 

only from the previous dataset but also from the first trial. 

Each task ended when the participant assessed that they 

could no longer improve the ensemble classifier. Each 

session (which included six EnsembleMatrix tasks) lasted 

approximately one hour. 

Results and Observations: Table 1 shows the best 

recognition accuracy (out of the two trials) achieved by 

each participant on the different tasks. We observed that 

most of the participants perform this task fairly well 

regardless of their familiarity with machine learning. We 

also note that resulting models were fairly different from 

one another, resulting in a spectrum of accuracies. We 

were interested in seeing if the models designed by people 

could achieve better classification than a standard 

machine-learning baseline. In particular, we compared the 

performance of the models built by people with a non-

hierarchical classifier (denoted as Flat Average) that first 

computes equally weighted linear combination of the 

component classifiers and then performs one-vs-all 

classification. The underlined entries in Table 1 depict 

instances when a human-designed classifier was better than 

a classifier built autonomously using the Flat Average. 

We observed that several participants could generate 

classifiers with performance boosts over the baseline for 

the Caltech-101 (4 participants) and the Newsgroup data (5 

participants). Only one participant achieved better 

performance than the Flat Average on the Multipie data, 

 
Figure 2: Instance from study that illustrates how good (left) and poor (right) interaction decisions can help and hurt in classifying test 

data. Gains on training accuracy over Flat Average models are obtained for both cases. Gains in accuracy for the test set are observed in 

the case where the subject has also tried to minimize deviations from the diagonal, in addition to maximizing the on-diagonal elements. 



although the rest of the participants created classifiers with 

a relatively high accuracy. We pursued insights about why 

some participants were able to build better models than 

others. Figure 2 illustrates instances of a good and poor 

model trained by a human. Although both models show 

gains over the Flat Average baseline, per their accuracy on 

the training set, the models behave differently on the test 

set. We noted several key differences between models that 

provide good classifications versus the poor ones. One key 

difference is the way that the partitions are formed. For 

instance, in the classifier portrayed in Figure 2, the 

partitions are of equal size in the poor model whereas the 

partitions in the good models are imbalanced. The 

imbalanced partitions are cleaner (showing less confusion 

among partitions) in the good model. It is straightforward 

to prove that if a partition is clean, then the additional steps 

taken by the user can only increase the accuracy.  

We also observed that, while interacting with  

EnsembleMatrix, study participants continued to make 

trades between structure and accuracy. Sometimes 

participants might choose weights that lead to lower 

overall accuracy but that would show better structure in the 

confusion matrix, and thus lead to cleaner partitions. When 

poor models were constructed, we found that participants 

often chose to optimize for maximum accuracy. While 

such steps might be locally optimal, overall they could lead 

to poorer models in the end.  

Finally, we noted that, instead of continuing to partition 

the space until the very end of a session, participants 

stopped partitioning at some point in the refinement of the 

matrix. Such stopping, based on the state of confusion 

matrix, can have a regularizing effect and prevent models 

from overfitting on training data. As shown as an example 

of a good classifier in Figure 2, adept participants appear to 

be good at judging when to stop. Although there are 

partitions of many different sizes, the participant chooses 

to stop at reasonable points leading to good generalization. 

Our observations indicate that participants who were 

inclined to build good models attempt to balance the 

constraints of (1) finding clean partitions, (2) choosing 

weights that reveal structure, and (3) determining when to 

stop. And at every stage in EnsembleMatrix, people face 

decisions in a space of an exponential number of options. 

We next describe a methodology where we learn how to 

autonomously mimic choices that people who are 

successful with use of EnsembleMatrix make, with the 

goal of developing better hierarchical ensemble classifiers. 
 

Learning by Observing Good Behaviors 

We now describe a methodology to mine the data collected 

in the user study described below. Three key decisions are 

made at each step in the refinement of EnsembleMatrix:  

(1) choice of appropriate partition, (2) choice of weights 

for component classifiers, and (3) decision about halting 

the partitioning. These steps are interdependent, and 

iterative refinements of the misclassification matrix based 

on sequences of transitions among these three actions 

define a massive space of possibilities. We sought to 

encode and embed human expertise to help an automated 

system cut through this large search space of 

interdependent partitioning, weighting, and stopping. 

To acquire the human expertise at guiding the search 

through the large parameter space, we build two decision-

making modules that determine (1) quality of a partition 

(denoted as          )) and (2) whether the system should 

stop partitioning (denoted as        ). Theoretically, we 

can enumerate all possible combinations of weights and 

partitions of the resulting confusion matrix and apply our 

learned decision modules in order to further split the 

problem or to halt. However, as such exhaustive 

enumeration is infeasible, we formulate a tractable 

approximation. First, since the number of component 

classifiers is fairly small (four), we can sample the whole 

space of weight parameter
1
. Second, instead of considering 

all possible partitions of a given set of weights, we use an 

existing spectral clustering algorithm (Zelnik-Manor and 

Perona 2004) to produce partitions. 

Algorithm 1 shows the pseudo-code of the procedure. 

We use the methodology described above to generate a 

proposal of partitions for each set of weights. These 

proposals in turn can be ranked by the trained quality 

function (          ). The highest ranked proposal is 

selected by the method and the weights are further tuned 

using an optimization criterion. Also, for the best choice of 

proposal, we further evaluate if the trained stopping 

criterion (       ) returns true. The procedure can either 

repeat recursively or end depending on the result of the 

stopping function. We next describe how we learn the 

           and         criterion. 

                                                 
1 In our work, we sample between [0..1] with the step size of 0.1. 

Table 1: Best test accuracy obtained by the ten participants on 

the three datasets. The bold underlined accuracies indicate 

boost over the baseline Flat Average accuracy (mean 

baselines: 79.39, 79.63, 91.27 for Caltech-101, Newsgroup, 

and Multipie respectively). 

Subject Caltech-101 Newsgroup Multipie 

1 79.14 79.73 90.4 

2 79.47 78.67 91.6 

3 76.77 79.6 91.27 

4 79.08 80.6 90.73 

5 79.74 79.53 90.07 

6 81.78 79.4 90.8 

7 78.88 79.8 89.93 

8 81.3 78.87 91.13 

9 80.46 80.33 91.27 

10 79.93 80.13 90.87 

 



Learning to Judge Good Partitions: The            
function is learned as a one-class classifier from the data 

collected during the user study. In particular, we look only 

at the partitions generated by the participants that 

performed better than the baseline models. We extracted an 

eight-dimensional feature vector from each of these 

partitions which characterized structural properties of the 

confusion matrix under such partitioning. The features 

consisted of the proportion of data points that were 

grouped correctly within their corresponding split (one 

feature for each of the two diagonal regions) and data 

points that were grouped incorrectly (one feature for each 

of the two off-diagonal regions). The other four features 

encoded accuracies within each group and the sizes of each 

of the partition.  

As we only had access to examples of partitions 

provided by participants, we trained a one-class classifier 

using a linear Bayes Point Machine (BPM) with probit 

noise model (Minka 2001) trained with expectation 

propagation. The BPM integrates over the parameter space 

of the classifier which in turn makes it capable of handling 

a one-class problem. Given a test vector, the BPM returns 

the probability that the corresponding proposal of partition 

is a good choice. This probability can be used to rank all 

proposals being considered. Note that instead of learning 

the quality function, we can use other heuristics that 

measure various notions of the quality of clusters. For 

example, the self-tuning spectral clustering (Zelnik-Manor 

and Perona 2004) provides a quality measure based on 

spectral properties of the partition. We performed 

comparisons against such heuristic (see Section 5) but 

found learning from humans with the eight features we 

have described to be superior. It is also possible to encode 

these algorithm-specific heuristics as features in the 

proposed framework. 

Learning When to Stop: The         function is trained 

as a binary classifier via fusing the data observed in the 

user study. We consider only the data from the participants 

for cases that showed boosts over the baseline classifier. 

We generate training sets by considering all the partitions 

and then featurizing them as described earlier. We trained a 

linear BPM (a linear Gaussian Process classifier) by 

considering all vectors except the terminal partitions 

labeled as -1. Given a test vector, the          function 

provides the probability that the corresponding partition is 

a terminal one. 

Optimizing Weights for Separation of Clusters: Once 

the partition is determined, we need to find weights that 

maximize separation between these clusters. To this end, 

we use the softmax function to approximate probabilities 

that a data point is assigned to a cluster. We denote the 

vector comprising of outputs of all component classifier for 

a class   as   
   

. Then, we define probability that the     

data point is classified into the correct cluster as follows: 

   
∑      

   

           

∑     
 
   

              

 

We invoke the principal of maximum likelihood to find 

the optimal weights. In particular, we minimize the 

following objective to tune the weights: 

                                  ∑        

      

                     

  

Algorithm 1 Learning Multilevel Ensemble Model 

function ModelOut = LearnTree(Classes, Data) 
 

ModelOut.wt = {}, ModelOut.left = {}, ModelOut.right={} 
 

if (length(Classes) > 1) 
 

        for all weight settings 
               Compute Confusion Matrix C 

               Partition = SpectralPartition(C)  

               Qpartition =        (Partition) 

        end for 
         
        [Classes_left, Classes_right] = argmax Qpartition 
         

        If                ==false 
             ModelOut.wt = 

                 argmaxwt Objective(Classes_left, Classes_right, Data) 
             ModelOut.left = LearnTree(Classes_left, Data) 

             ModelOut.right = LearnTree(Classes_right, Data) 
 

        end if 

end if 
 

Return ModelOut 

Experiments and Results 

We carried out experiments to study if good clustering and 

stopping criteria can be learned from human actions and if 

the resulting classifier would be able to perform well on 

the test data. We also explore how the human-learned 

model compares with reasonable ML attempt; that is, we 

compare the learned scheme (denoted as Human Learned) 

with four methods that rely on existing techniques: 

1) Non-hierarchical Average Classifier (Flat Average): 

Sum equally weighted component classifiers to do 

one-vs.-all classification. This is the simplest case and 

serves a baseline. 

2)  Non-hierarchical Trained Classifier (Flat Trained): 

Sum of weighted component classifiers to do 1-vs-all 

classification. The weights are trained by maximizing 

the objective in Equation (1) assuming each class is a 

separate cluster. 

3) Hierarchical (Hierarchy Full): Same method as 

described in Algorithm 1 with a learned clustering 

quality criterion (Zelnik-Manor and Perona 2004) and 

without stopping the splitting until the leaf nodes are 

completely separable.   

4) Hierarchical with Stopping (Hierarchy Stop): Same as 

Algorithm 3 with a stopping heuristic that stops 

partitioning if the learned quality criterion is less than 

a threshold (0.99). 



First, we explore if the proposed scheme performs better 

on the test examples. We note that all of the human 

interaction as well as all of the training steps are limited to 

the train-split of the data and neither the human nor the 

training procedure has seen these test data points. Further, 

in order to train the model for determining cluster quality 

and the stopping criterion, we only use data from the 

individuals that had showed boost over the baseline.  

Figure 3 shows the recognition performance of the 

proposed human-learned scheme as well as the four 

alternatives on the Caltech-101 and Newsgroup datasets. 

We did not perform this test for the Multipie dataset as we 

did not have data from humans that showed gain (we tackle 

Multipie data with transfer learning later in this section).   

We plot the mean accuracy and standard error over 16 

different train and test splits; the human-trained scheme 

consistently outperforms the Flat Average baseline on all 

the datasets and shows considerable gains over the others. 

Furthermore, we observe that Hierarchy Full consistently 

results in worse performance indicating that knowing when 

to stop is important. This hypothesis is further confirmed 

by observing that Hierarchy Stop fairs much better. These 

results suggest that one of the reasons humans do well in 

the task is that they apply expertise about when to stop, 

perhaps with the aid of recognizable visual patterns, versus 

the poor competencies with analogous “sensing” of state 

employed within the learning procedures. 

Next, we examine the patterns of partitioning that the 

different methods generated. Figure 4 indicates different 

instances of resulting training confusion matrices with 

inferred partitioning of the Caltech-101 data by the three 

hierarchical methods (Human Learned, Hierarchy Full, and 

Hierarchy Stop). We note that the partitioning by 

Hierarchy Full suffers from over partitioning of the space, 

resulting in poor test accuracy (79.41%). We can see that 

the human-learned partitioning is similar to the good 

partitioning depicted in Figure 2. Although the Hierarchy 

Stop works reasonable, it still appears to suffer from over 

fitting due to over partitioning. The observed test accuracy 

for this instance was 80.01% and less than the one 

achieved by Human Learned (80.67%). 

Finally, we tackle the Multipie data, where we found 

relatively poor performance by participants, perhaps due to 

high baseline recognition accuracy. We address the 

Multipie challenge in the context of explorations about the 

transferability of learning from humans about the partition 

and stopping criterion across datasets. In particular, we 

train our human-learned model using one dataset but then 

use it on unseen test data. Table 2 depicts results where we 

show average boost in accuracy (from the Flat Average 

baseline) when the human-learned model is trained on 

different datasets. The diagonal is the original case where 

the two sets match. Surprisingly, we still observe a boost in 

the off-diagonal entries, including for the Multipie case.  

Such a boost suggests that common features may exist 

across different learning algorithms that can be learned by 

observing people while they perform classification 

optimization for different tasks. We believe that these 

results may have far reaching implications in that they 

highlight potentially task-independent capabilities derived 

from people that can be harnessed by machine learning 

algorithms to effectively cut through large parameter 

spaces.  

Summary and Future Work 

We pursued opportunities with extending machine learning 

procedures by collecting data and learning about the 

strategies of people seeking to optimize the performance of 

classifiers. In particular, we observed the activities of 

subjects interacting with a visual representation of the 

performance of ensemble classifiers. Data was collected 

about how people define multi-level hierarchies in a 

multiclass classification problem. Our findings suggest that 

people frequently can find good solutions without doing 

 
Figure 3: Average classification accuracy over 16 train-tests splits using different methods. Error bars show standard error. 

Table 2: Boost over baseline (Flat Average) when Human 

Learned is trained on one dataset and applied to another. 

Train 

Test 
Caltech Newsgroup Multipie 

Caltech 0.39 0.27 -NA- 

Newsgroup 0.23 0.23 -NA- 

Multipie 0.27 0.15 -NA- 

 



exhaustive search. We found evidence that participants’ 

success at this task is linked to the skills they have with 

judging the quality of partitions and with determining 

when to halt partitioning. We presented and evaluated a 

methodology for learning such human competencies by 

collecting data about human optimization activities and 

then using a machine learning algorithm to construct 

classifiers that are used at run time as components of a new 

learning procedure. An evaluation demonstrates that we 

can enhance machine learning with insights gleaned from 

human problem solving. We also showed the potential to 

share the learned competencies across classification tasks. 

Our work is an initial attempt to design a pipeline that 

enables machine-learning systems to learn from humans. 

We aim to identify other forms of interaction, as well as 

rich features for capturing behaviors, with the goal of 

embedding additional human insights into machine-

learning procedures.  
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               (a) Hierarchy Full                                      (c) Hierarchy Stop                                        (a) Human Learned 

Figure 4: Training confusion matrices and resulting partitioning for the Caltech-101 dataset, obtained by applying three hierarchical 

methods. Test accuracy obtained by the human-learned method is the best of the three methods. We find that the result for the Human-

Learned case is most similar to results obtained when people make good decisions (Figure 2).  


