

Learning to Learn:

Algorithmic Inspirations from Human Problem Solving

Ashish Kapoor, Bongshin Lee, Desney Tan and Eric Horvitz

Microsoft Research
{akapoor, bongshin, desney, horvitz}@microsoft.com

Abstract

We harness the ability of people to perceive and

interact with visual patterns in order to enhance the

performance of a machine learning method. We show

how we can collect evidence about how people

optimize the parameters of an ensemble classification

system using a tool that provides a visualization of

misclassification costs. Then, we use these

observations about human attempts to minimize cost

in order to extend the performance of a state-of-the-art

ensemble classification system. The study highlights

opportunities for learning from evidence collected

about human problem solving to refine and extend

automated learning and inference.

 Introduction

The development of machine learning procedures hinges

on design choices such as selection of optimization

methods, definition of evidential features, and the setting

of parameters. Such design decisions rely on expert

knowledge and can be viewed as a form of search through

a space of alternate methods and models. We have been

pursuing opportunities for automating the refinement of

machine learning. Our work comes in the context of

growing interest in interactive, human-in-the-loop learning,

where people iteratively tag, train, and correct

classifications in a tight interactive loop. Examples of work

in this space include online learning against adversaries,

active learning, and contextual bandits.

We examine the prospect of extending machine learning

algorithms with methods that learn from people’s attempts

to optimize the performance of classifiers. Specifically, we

collect and use evidence about the steps that human

subjects take to minimize misclassification via the use of a

tool that provides a visual summary of the performance of

a weighted combination of a set of classifiers, as well as

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

controls for modifying the parameters of the classification.

We collect observations of subjects’ attempts to minimize

the costs of misdiagnosis to train classifiers. Then, we use

the data autonomously to enhance a machine learning

procedure. The methods and results highlight the promise

of learning to learn from people, by leveraging human

skills at perceiving visual patterns with ease, and codifying

evidence about strategies that people formulate to refine

the behavior of a system.

We focus on analyzing and learning within

EnsembleMatrix (Talbot et al. 2008), a system that allows

users to interactively manipulate visualizations of the

output of a multiclass classifier system in order to design a

more ideal combination of multiclass classifiers. We

describe a study we ran to observe human problem solving

behavior with the system, review insights we garnered

from this study, and present algorithms that we developed

with data from human optimization sessions.

Related Work

Recent studies have identified situations in which people

produce better classifiers than automatic techniques. Some

studies provide users with visualizations about the

operation of specific machine learning algorithms along

with controls for modifying parameters of the learning

procedures and classifications (Ware et al. 2001, Talbot et

al. 2008). Related studies have explored the use of people

to provide hints to optimize decision trees (Ankerst et al.

1999), naïve-Bayes (Becker et al. 2001), SVMs (Caragea

et al. 2001), and HMMs (Dai and Cheng 2008).

Our research is also closely aligned with research on

interactive machine learning. Fails and Olsen (Fails and

Olsen 2003) assert the potential value of human

involvement to provide training data and propose an

interactive system that enables users to train, classify, and

correct classifications in a real-time iterative loop. In the

context of unsupervised learning, interactive clustering

using human input has been also proposed (Bilenko, Basu,

Mooney 2004, Bekkerman et al. 2007). Beyond label

elicitation, related research includes interactive feature

discovery for identifying discriminative features

(Raghavan, Madani, Jones 2005) and interactive

optimization that uses human guidance to maximize human

preferences about classification (Kapoor et al. 2010).

The main goal of most of the work mentioned above has

been to achieve high classification accuracy rather than to

learn from human actions. We note that the problem of

reinforcement and imitation learning (Sutton and Barto

1998, Hsiao and Lozano-Perez 2006) are related to our

efforts. However, little effort to date has been focused on

the task of learning to learn from observations about

human efforts to optimize machine classification. In this

work, we explore the prospect of developing better

classification systems by incorporating insights gleaned by

watching people effectively optimize the performance of

classifiers in interactive learning scenarios.

Designing Classifiers with EnsembleMatrix
We harness a prototype named EnsembleMatrix that was

created earlier for studies of interactive machine learning

(Talbot et al. 2008). EnsembleMatrix was designed to

assist developers with optimizing the behavior of machine

classification in applications. Specifically, the prototype

helps developers build an ensemble classifier by

combining multiple component classifiers (see Figure 1).

The EnsembleMatrix interface consists of three basic

sections: the Component Classifier view on the lower right,

which contains an entry for each classifier that the user has

imported, the Linear Combination widget on the upper

right, and the main Ensemble Classifier view on the left.

EnsembleMatrix represents each classifier using a

graphical heat map of its confusion matrix. Confusion

matrices allow human observers to use their perceptual

capabilities to identify patterns of misclassification. The

ordering of any matrix can greatly influence the patterns

visible. EnsembleMatrix reorders the main confusion

matrix at interactive rates to highlight sets of frequently

confused classes (Cuthill and McKee 1969). The prototype

provides two basic mechanisms for exploration: (1) a

partitioning operation, which divides the class space into

multiple partitions, and (2) a linear combination operation

that lets the user select weights for each classifier within

each partition. Partitioning the class space separates the

data instances into two subsets, allowing the user to

develop predictors specialized for each subset. The two

subset classifiers are restricted to only predicting classes

within their partition. The second interaction mechanism

allows the user to quickly manipulate a subspace of the

linear combination of component classifiers using a simple

two-dimensional interpolation control. Partitioning and

linear combination operations can be done recursively an

arbitrary number of times and in any order, leading to a

large number of possible refinement strategies.

Talbot et al. (Talbot et al. 2008) observed that when

asked to find configurations of partitions and weight

parameters users could find reasonable solutions fairly

quickly. We note that the task of finding good parameters

is non-trivial due to the size of the search space. However,

the efficiency with which humans perform this task raises

two questions. First, what are the key properties of the

strategies employed by humans? Second, can we train

machine learning systems to learn aspects of human

strategies in order to build better predictors? We explore

these questions in depth in the rest of the paper.

Studies of Human Optimization Strategies

In the first stage of this research, we conducted an

experiment to explore the different strategies that people

use with EnsembleMatrix to build models.

Datasets and Individual Classifiers: To cover a wide

range of problems in terms of the different types of

datasets, we considered three different multiclass

classification problems. We studied people working with

(1) Newsgroup (3000 examples, 20 classes), (2) Multipie

(Gross et al. 2008) (3000 examples, 150 classes), and (3)

Caltech-101 (Fei-Fei, Fergus, Perona 2006) (3030

examples, 101 classes) datasets. The goal for the

Newsgroup dataset is to categorize documents into 20

different topic classes. The task for the Multipie collection

of face images is to recognize the identities of the faces.

The task for Caltech-101 challenge is to classify images

into 101 categories. For each classification task, we

consider four base-level classifiers that were trained using

different sets of features. In particular, we generate four

different kernels to induce four classifiers. For the

Newsgroup dataset, we consider three polynomial kernels

with degrees 1, 2, 3 and an RBF kernel. Similarly, for the

Multipie data, we first perform PCA to project the images

onto 300 dimensions, and then induce four different RBF

kernels using four successive partitions of the PCA

representation. For the Caltech-101 data, we consider four

different kernel representations based on gray level

intensities, color intensities, and horizontal and vertical

edge orientations.

Figure 1: Snapshot of EnsembleMatrix. Leave-one-fold-out

confusion matrices of component classifiers are shown in thumbnails

on right and their weights in the linear combination are represented

by red dot in diamond. Subjects can interact to change weights as

well as partition the space of classes. Matrix on left shows confusion

matrix of the current ensemble classifier constructed by the user.

For each of the datasets, we perform a 50-50 train and

test split. We then use Gaussian Process regression models

(Rasmussen and Williams 2006) to compute 10-fold cross-

validated mean predictions over the training set. These

cross-validated predictions over the training set are used to

generate the confusion matrices that are used in the

EnsembleMatrix studies. We note that cross validation

ensures that the resulting model will lead to good

generalization performance on the test set.
Participants and Apparatus: We recruited 10 participants

from an industrial research institution. Participants spanned

a wide spectrum of expertise, ranging from machine-

learning researchers to ones that had little exposure to

machine learning. We provided participants with basic

instructions on how to use the EnsembleMatrix system,

mainly on partitioning and controlling linear combinations

within each partition. We told the participants that their

task was to develop a new, more accurate, ensemble

classifier by exploring and combining four different

component classifiers. Each participant worked on the

three datasets which were presented in the same order: the

Caltech-101, Multipie, and then Newsgroup dataset. For

each dataset, we asked participants to try the same task

twice. At the end of each trial, we informed the participants

of the result accuracy with the test dataset so that they

could adjust their strategy in the following trials. We

believed that participants could learn a better strategy not

only from the previous dataset but also from the first trial.

Each task ended when the participant assessed that they

could no longer improve the ensemble classifier. Each

session (which included six EnsembleMatrix tasks) lasted

approximately one hour.

Results and Observations: Table 1 shows the best

recognition accuracy (out of the two trials) achieved by

each participant on the different tasks. We observed that

most of the participants perform this task fairly well

regardless of their familiarity with machine learning. We

also note that resulting models were fairly different from

one another, resulting in a spectrum of accuracies. We

were interested in seeing if the models designed by people

could achieve better classification than a standard

machine-learning baseline. In particular, we compared the

performance of the models built by people with a non-

hierarchical classifier (denoted as Flat Average) that first

computes equally weighted linear combination of the

component classifiers and then performs one-vs-all

classification. The underlined entries in Table 1 depict

instances when a human-designed classifier was better than

a classifier built autonomously using the Flat Average.

We observed that several participants could generate

classifiers with performance boosts over the baseline for

the Caltech-101 (4 participants) and the Newsgroup data (5

participants). Only one participant achieved better

performance than the Flat Average on the Multipie data,

Figure 2: Instance from study that illustrates how good (left) and poor (right) interaction decisions can help and hurt in classifying test

data. Gains on training accuracy over Flat Average models are obtained for both cases. Gains in accuracy for the test set are observed in

the case where the subject has also tried to minimize deviations from the diagonal, in addition to maximizing the on-diagonal elements.

although the rest of the participants created classifiers with

a relatively high accuracy. We pursued insights about why

some participants were able to build better models than

others. Figure 2 illustrates instances of a good and poor

model trained by a human. Although both models show

gains over the Flat Average baseline, per their accuracy on

the training set, the models behave differently on the test

set. We noted several key differences between models that

provide good classifications versus the poor ones. One key

difference is the way that the partitions are formed. For

instance, in the classifier portrayed in Figure 2, the

partitions are of equal size in the poor model whereas the

partitions in the good models are imbalanced. The

imbalanced partitions are cleaner (showing less confusion

among partitions) in the good model. It is straightforward

to prove that if a partition is clean, then the additional steps

taken by the user can only increase the accuracy.

We also observed that, while interacting with

EnsembleMatrix, study participants continued to make

trades between structure and accuracy. Sometimes

participants might choose weights that lead to lower

overall accuracy but that would show better structure in the

confusion matrix, and thus lead to cleaner partitions. When

poor models were constructed, we found that participants

often chose to optimize for maximum accuracy. While

such steps might be locally optimal, overall they could lead

to poorer models in the end.

Finally, we noted that, instead of continuing to partition

the space until the very end of a session, participants

stopped partitioning at some point in the refinement of the

matrix. Such stopping, based on the state of confusion

matrix, can have a regularizing effect and prevent models

from overfitting on training data. As shown as an example

of a good classifier in Figure 2, adept participants appear to

be good at judging when to stop. Although there are

partitions of many different sizes, the participant chooses

to stop at reasonable points leading to good generalization.

Our observations indicate that participants who were

inclined to build good models attempt to balance the

constraints of (1) finding clean partitions, (2) choosing

weights that reveal structure, and (3) determining when to

stop. And at every stage in EnsembleMatrix, people face

decisions in a space of an exponential number of options.

We next describe a methodology where we learn how to

autonomously mimic choices that people who are

successful with use of EnsembleMatrix make, with the

goal of developing better hierarchical ensemble classifiers.

Learning by Observing Good Behaviors

We now describe a methodology to mine the data collected

in the user study described below. Three key decisions are

made at each step in the refinement of EnsembleMatrix:

(1) choice of appropriate partition, (2) choice of weights

for component classifiers, and (3) decision about halting

the partitioning. These steps are interdependent, and

iterative refinements of the misclassification matrix based

on sequences of transitions among these three actions

define a massive space of possibilities. We sought to

encode and embed human expertise to help an automated

system cut through this large search space of

interdependent partitioning, weighting, and stopping.

To acquire the human expertise at guiding the search

through the large parameter space, we build two decision-

making modules that determine (1) quality of a partition

(denoted as)) and (2) whether the system should

stop partitioning (denoted as). Theoretically, we

can enumerate all possible combinations of weights and

partitions of the resulting confusion matrix and apply our

learned decision modules in order to further split the

problem or to halt. However, as such exhaustive

enumeration is infeasible, we formulate a tractable

approximation. First, since the number of component

classifiers is fairly small (four), we can sample the whole

space of weight parameter
1
. Second, instead of considering

all possible partitions of a given set of weights, we use an

existing spectral clustering algorithm (Zelnik-Manor and

Perona 2004) to produce partitions.

Algorithm 1 shows the pseudo-code of the procedure.

We use the methodology described above to generate a

proposal of partitions for each set of weights. These

proposals in turn can be ranked by the trained quality

function (). The highest ranked proposal is

selected by the method and the weights are further tuned

using an optimization criterion. Also, for the best choice of

proposal, we further evaluate if the trained stopping

criterion () returns true. The procedure can either

repeat recursively or end depending on the result of the

stopping function. We next describe how we learn the

 and criterion.

1 In our work, we sample between [0..1] with the step size of 0.1.

Table 1: Best test accuracy obtained by the ten participants on

the three datasets. The bold underlined accuracies indicate

boost over the baseline Flat Average accuracy (mean

baselines: 79.39, 79.63, 91.27 for Caltech-101, Newsgroup,

and Multipie respectively).

Subject Caltech-101 Newsgroup Multipie

1 79.14 79.73 90.4

2 79.47 78.67 91.6

3 76.77 79.6 91.27

4 79.08 80.6 90.73

5 79.74 79.53 90.07

6 81.78 79.4 90.8

7 78.88 79.8 89.93

8 81.3 78.87 91.13

9 80.46 80.33 91.27

10 79.93 80.13 90.87

Learning to Judge Good Partitions: The
function is learned as a one-class classifier from the data

collected during the user study. In particular, we look only

at the partitions generated by the participants that

performed better than the baseline models. We extracted an

eight-dimensional feature vector from each of these

partitions which characterized structural properties of the

confusion matrix under such partitioning. The features

consisted of the proportion of data points that were

grouped correctly within their corresponding split (one

feature for each of the two diagonal regions) and data

points that were grouped incorrectly (one feature for each

of the two off-diagonal regions). The other four features

encoded accuracies within each group and the sizes of each

of the partition.

As we only had access to examples of partitions

provided by participants, we trained a one-class classifier

using a linear Bayes Point Machine (BPM) with probit

noise model (Minka 2001) trained with expectation

propagation. The BPM integrates over the parameter space

of the classifier which in turn makes it capable of handling

a one-class problem. Given a test vector, the BPM returns

the probability that the corresponding proposal of partition

is a good choice. This probability can be used to rank all

proposals being considered. Note that instead of learning

the quality function, we can use other heuristics that

measure various notions of the quality of clusters. For

example, the self-tuning spectral clustering (Zelnik-Manor

and Perona 2004) provides a quality measure based on

spectral properties of the partition. We performed

comparisons against such heuristic (see Section 5) but

found learning from humans with the eight features we

have described to be superior. It is also possible to encode

these algorithm-specific heuristics as features in the

proposed framework.

Learning When to Stop: The function is trained

as a binary classifier via fusing the data observed in the

user study. We consider only the data from the participants

for cases that showed boosts over the baseline classifier.

We generate training sets by considering all the partitions

and then featurizing them as described earlier. We trained a

linear BPM (a linear Gaussian Process classifier) by

considering all vectors except the terminal partitions

labeled as -1. Given a test vector, the function

provides the probability that the corresponding partition is

a terminal one.

Optimizing Weights for Separation of Clusters: Once

the partition is determined, we need to find weights that

maximize separation between these clusters. To this end,

we use the softmax function to approximate probabilities

that a data point is assigned to a cluster. We denote the

vector comprising of outputs of all component classifier for

a class as

. Then, we define probability that the

data point is classified into the correct cluster as follows:

∑

∑

We invoke the principal of maximum likelihood to find

the optimal weights. In particular, we minimize the

following objective to tune the weights:

 ∑

Algorithm 1 Learning Multilevel Ensemble Model

function ModelOut = LearnTree(Classes, Data)

ModelOut.wt = {}, ModelOut.left = {}, ModelOut.right={}

if (length(Classes) > 1)

 for all weight settings
 Compute Confusion Matrix C

 Partition = SpectralPartition(C)

 Qpartition = (Partition)

 end for

 [Classes_left, Classes_right] = argmax Qpartition

 If ==false
 ModelOut.wt =

 argmaxwt Objective(Classes_left, Classes_right, Data)
 ModelOut.left = LearnTree(Classes_left, Data)

 ModelOut.right = LearnTree(Classes_right, Data)

 end if

end if

Return ModelOut

Experiments and Results

We carried out experiments to study if good clustering and

stopping criteria can be learned from human actions and if

the resulting classifier would be able to perform well on

the test data. We also explore how the human-learned

model compares with reasonable ML attempt; that is, we

compare the learned scheme (denoted as Human Learned)

with four methods that rely on existing techniques:

1) Non-hierarchical Average Classifier (Flat Average):

Sum equally weighted component classifiers to do

one-vs.-all classification. This is the simplest case and

serves a baseline.

2) Non-hierarchical Trained Classifier (Flat Trained):

Sum of weighted component classifiers to do 1-vs-all

classification. The weights are trained by maximizing

the objective in Equation (1) assuming each class is a

separate cluster.

3) Hierarchical (Hierarchy Full): Same method as

described in Algorithm 1 with a learned clustering

quality criterion (Zelnik-Manor and Perona 2004) and

without stopping the splitting until the leaf nodes are

completely separable.

4) Hierarchical with Stopping (Hierarchy Stop): Same as

Algorithm 3 with a stopping heuristic that stops

partitioning if the learned quality criterion is less than

a threshold (0.99).

First, we explore if the proposed scheme performs better

on the test examples. We note that all of the human

interaction as well as all of the training steps are limited to

the train-split of the data and neither the human nor the

training procedure has seen these test data points. Further,

in order to train the model for determining cluster quality

and the stopping criterion, we only use data from the

individuals that had showed boost over the baseline.

Figure 3 shows the recognition performance of the

proposed human-learned scheme as well as the four

alternatives on the Caltech-101 and Newsgroup datasets.

We did not perform this test for the Multipie dataset as we

did not have data from humans that showed gain (we tackle

Multipie data with transfer learning later in this section).

We plot the mean accuracy and standard error over 16

different train and test splits; the human-trained scheme

consistently outperforms the Flat Average baseline on all

the datasets and shows considerable gains over the others.

Furthermore, we observe that Hierarchy Full consistently

results in worse performance indicating that knowing when

to stop is important. This hypothesis is further confirmed

by observing that Hierarchy Stop fairs much better. These

results suggest that one of the reasons humans do well in

the task is that they apply expertise about when to stop,

perhaps with the aid of recognizable visual patterns, versus

the poor competencies with analogous “sensing” of state

employed within the learning procedures.

Next, we examine the patterns of partitioning that the

different methods generated. Figure 4 indicates different

instances of resulting training confusion matrices with

inferred partitioning of the Caltech-101 data by the three

hierarchical methods (Human Learned, Hierarchy Full, and

Hierarchy Stop). We note that the partitioning by

Hierarchy Full suffers from over partitioning of the space,

resulting in poor test accuracy (79.41%). We can see that

the human-learned partitioning is similar to the good

partitioning depicted in Figure 2. Although the Hierarchy

Stop works reasonable, it still appears to suffer from over

fitting due to over partitioning. The observed test accuracy

for this instance was 80.01% and less than the one

achieved by Human Learned (80.67%).

Finally, we tackle the Multipie data, where we found

relatively poor performance by participants, perhaps due to

high baseline recognition accuracy. We address the

Multipie challenge in the context of explorations about the

transferability of learning from humans about the partition

and stopping criterion across datasets. In particular, we

train our human-learned model using one dataset but then

use it on unseen test data. Table 2 depicts results where we

show average boost in accuracy (from the Flat Average

baseline) when the human-learned model is trained on

different datasets. The diagonal is the original case where

the two sets match. Surprisingly, we still observe a boost in

the off-diagonal entries, including for the Multipie case.

Such a boost suggests that common features may exist

across different learning algorithms that can be learned by

observing people while they perform classification

optimization for different tasks. We believe that these

results may have far reaching implications in that they

highlight potentially task-independent capabilities derived

from people that can be harnessed by machine learning

algorithms to effectively cut through large parameter

spaces.

Summary and Future Work

We pursued opportunities with extending machine learning

procedures by collecting data and learning about the

strategies of people seeking to optimize the performance of

classifiers. In particular, we observed the activities of

subjects interacting with a visual representation of the

performance of ensemble classifiers. Data was collected

about how people define multi-level hierarchies in a

multiclass classification problem. Our findings suggest that

people frequently can find good solutions without doing

Figure 3: Average classification accuracy over 16 train-tests splits using different methods. Error bars show standard error.

Table 2: Boost over baseline (Flat Average) when Human

Learned is trained on one dataset and applied to another.

Train

Test
Caltech Newsgroup Multipie

Caltech 0.39 0.27 -NA-

Newsgroup 0.23 0.23 -NA-

Multipie 0.27 0.15 -NA-

exhaustive search. We found evidence that participants’

success at this task is linked to the skills they have with

judging the quality of partitions and with determining

when to halt partitioning. We presented and evaluated a

methodology for learning such human competencies by

collecting data about human optimization activities and

then using a machine learning algorithm to construct

classifiers that are used at run time as components of a new

learning procedure. An evaluation demonstrates that we

can enhance machine learning with insights gleaned from

human problem solving. We also showed the potential to

share the learned competencies across classification tasks.

Our work is an initial attempt to design a pipeline that

enables machine-learning systems to learn from humans.

We aim to identify other forms of interaction, as well as

rich features for capturing behaviors, with the goal of

embedding additional human insights into machine-

learning procedures.

References

20 Newsgroups. http://kdd.ics.uci.edu/databases/20newsgroups/
20newsgroups.html.

Ankerst M., Elsen C., Ester M. and Kriegel H. P. (1999). Visual
Classification: An Interactive Approach to Decision Tree
Construction. KDD.

Becker B., Kohavi R. and Sommerfield D. (2001). Visualizing the
Simple Bayesian Classifier. Information Visualization in Data
Mining and Knowledge Discovery. Eds. Fayyad et al.

Bekkerman R., Raghavan H., Allan J. and Eguchi K. (2007).
Interactive Clustering of Text Collections According to a User-
Specified Criterion. IJCAI.

Bilenko M., Basu S. and Mooney R. J. (2004). Integrating
Constraints and Metric Learning in Semi-Supervised Clustering.
ICML

Caragea D., Cook D. and Honavar V.G. (2001). Gaining Insights
into Support Vector Machine Pattern Classifiers using Projection
Based Tour Methods. KDD.

Cuthill E., and McKee J. (1969). Reducing the Band-width of
Sparse Symmetric Matrices. ACM National Conference.

Dai J. and Cheng J. (2008). HMM Editor: a visual editing tool for
profile hidden Markov models. BMC Genomics 9.

Fails J. A. and Olsen D.R.J. (2003). Interactive machine learning.
IUI.

Fei-Fei L., Fergus R. and Perona P. (2006). One-Shot Learning of
Object Categories. PAMI 28(4).

Hsiao K. and Lozano-Perez T. (2006). Imitation Learning of
Whole-Body Grasps. IROS.

Gross R., Matthews I., Cohn J. F., Kanade T. and Baker S.
(2008). Multi-PIE. Int. Conference on Automatic Face and
Gesture Recognition.

Kapoor A., Lee B., Tan D. and Horvitz E. (2010). Interactive
Optimization for Steering Machine Classification. CHI.

Meyer M., Lee H., Barr A. and Desbrun M. (2002). Generalized
Barycentric Coordinates on Irregular Polygons. Journal of
Graphics Tools 7(1).

Minka T. P. (2001). Expectation Propagation for Approximate
Bayesian Inference. UAI.

Raghavan H., Madani O. and Jones R. (2005). InterActive
Feature Selection. IJCAI.

Rasmussen C. E. and Williams C. K. I. (2006). Gaussian
Processes for Machine Learning. The MIT Press.

Sutton R. S. and Barto A. G. (1998). Reinforcement Learning: An
Introduction. The MIT Press.

Talbot J., Lee B., Kapoor A. and Tan D. (2008) EnsembleMatrix:
Interactive Visualization to Support Machine Learning with
Multiple Classifiers. CHI.

Ware M., Frank E., Holmes G. Hall, M. and Witten I. (2001).
Interactive machine learning: letting users build classifiers.
IJHCS 56(3).

Zelnik-Manor L. and Perona P. (2004). Self-Tuning Spectral
Clustering. NIPS.

 (a) Hierarchy Full (c) Hierarchy Stop (a) Human Learned

Figure 4: Training confusion matrices and resulting partitioning for the Caltech-101 dataset, obtained by applying three hierarchical

methods. Test accuracy obtained by the human-learned method is the best of the three methods. We find that the result for the Human-

Learned case is most similar to results obtained when people make good decisions (Figure 2).

