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Abstract

We examine Bayesian methods for learn�
ing Bayesian networks from a combination
of prior knowledge and statistical data� In
particular� we unify the approaches we pre�
sented at last year
s conference for discrete
and Gaussian domains� We derive a gen�
eral Bayesian scoring metric� appropriate for
both domains� We then use this metric in
combination with well�known statistical facts
about the Dirichlet and normal�Wishart dis�
tributions to derive our metrics for discrete
and Gaussian domains�

� Introduction

At last year
s conference� we presented approaches
for learning Bayesian networks from a combination
of prior knowledge and statistical data� These ap�
proaches were presented in two papers� one address�
ing domains containing only discrete variables �Heck�
erman et al�� ������ and the other addressing domains
containing continuous variables related by an unknown
multivariate�Gaussian distribution �Geiger and Heck�
erman� ������ Unfortunately� these presentations were
substantially di�erent� making the parallels between
the two methods di�cult to appreciate� In this pa�
per� we unify the two approaches� In particular� we
abstract our previous assumptions of likelihood equiv�
alence� parameter modularity� and parameter indepen�
dence such that they are appropriate for discrete and
Gaussian domains �as well as other domains�� Using
these assumptions� we derive a domain�independent
Bayesian scoring metric� We then use this general
metric in combination with well�known statistical facts
about the Dirichlet and normal�Wishart distributions

�Author�s primary a�liation� Computer Science De�
partment� Technion� Haifa ������ Israel�

to derive our metrics for discrete and Gaussian do�
mains� In addition� we provide simple proofs that
these assumptions are consistent for both domains�

Throughout this discussion� we consider a domain
U of n variables x�� � � � � xn� Each variable may
be discrete�having a �nite or countable number of
states�or continuous� We use lower�case letters to re�
fer to variables and upper�case letters to refer to sets of
variables� We write xi � k to denote that variable xi
is in state k� When we observe the state for every vari�
able in set X� we call this set of observations a state of
X� and we write X � kX as a shorthand for the obser�
vations xi � ki� xi � X� The joint space of U is the set
of all states of U � We use p�X � kX jY � kY � �� to de�
note the generalized probability density that X � kX
given Y � kY for a person with current state of in�
formation � �DeGroot� ����� p� ���� We use p�XjY� ��
to denote the generalized probability density function
�gpdf� for X� given all possible observations of Y � The
joint gpdf over U is the gpdf for U �

We use Bs to denote the structure of a Bayesian net�
work� and �i to denote the parents of xi in a given net�
work� We assume the reader is familiar with Bayesian
networks for the case where all variables in U are dis�
crete� Here� we describe a Bayesian�network represen�
tation for continuous variables� In particular� consider
the special case where all the variables in U are con�
tinuous and the joint probability density function for
U is a multivariate �nonsingular� normal distribution�
In this case� to be in line with more standard notation�
we use �x to denote the set of variables U � We have

p��xj�� � n�������� ���

� �����n��j�j����e������x����
������x����

where �� is an n�dimensional mean vector� and � �
��ij� is an n�n covariance matrix� which must be both
symmetric and positive de�nite� Both �� and � are
implicitly functions of �� We shall �nd it convenient to
refer to the precision matrixW � ���� whose elements
are denoted by wij�



This joint density function can be written as a product
of conditional density functions each being a normal
distribution� Namely�

p��xj�� �
nY
i��

p�xijx�� � � � � xi��� �� ���

p�xijx�� � � � � xi��� �� � n��i �
i��X
j��

bji�xj � �j�� ��vi�

�
�
where �i is the unconditional mean of xi �i�e�� the ith
component of ���� vi is the conditional variance of xi
given values for x�� � � � � xi��� and bji is a linear coef�
�cient re�ecting the strength of the relationship be�
tween xj and xi �e�g�� DeGroot� p� ����

Thus� we may interpret a multivariate�normal dis�
tribution as a Bayesian network� where there is no
arc from xj to xi whenever bji � �� j � i� Con�
versely� from a Bayesian network with conditional dis�
tributions satisfying Equation 
� we may construct a
multivariate�normal distribution� We call this special
form of a Bayesian network a Gaussian network� The
name is adopted from Shachter and Kenley ������ who
�rst described Gaussian in�uence diagrams� We note
that� in practice� it is typically easier to assess a Gaus�
sian network than it is to assess directly a symmetric
positive�de�nite precision matrix�

The transformations between �v � fv�� � � � � vng and
B � fbji j j � ig of a given Gaussian network G and
the precision matrixW of the normal distribution rep�
resented by G are well known� In this paper� we need
only the transformation fromW to f�v�Bg� We use the
following recursive form given by Shachter and Kenley
������� Let W �i� denote the i� i upper left submatrix

of W � �bi denote the column vector �b�i� � � � � bi���i�� and
�b�i denote the transposition of �bi� Then� for i 	 �� we
have

W �i � �� �

�
� W �i� �

�bi���b
�
i��

vi��
�
�bi��
vi��

�
�b�i��
vi��

�
vi��

�
A ���

and W ��� � �
v�

�

Although Equation 
 is useful for the assessment of a
Gaussian network� we shall sometimes �nd it conve�
nient to write

p�xijx�� � � � � xi��� �� � n��mi �
i��X
j��

bjixj� ��vi� ���

where mi� i � �� � � � � n is de�ned by

mi � �i �
i��X
j��

bji�j �	�

Note that mi is the mean of xi when all of xi
s parents
are equal to zero�

As an example� given the three�node network struc�
ture x� � x� � x�� we have b�� � �� x� �
n�m�� ��v��� x� � n�m�� ��v��� and x� � n�m� �
b���x� � m�� � b���x� � m��� ��v��� Also� the preci�
sion matrix corresponding to this network structure is
given by

W �

�
B�

�
v�

� b���
v�

b��b��
v�

� b��
v�

b��b��
v�

�
v�

�
b�
��

v�
� b��

v�

� b��
v�

� b��
v�

�
v�

�
CA ���

Finally� it is important to note that two or more
Bayesian�network structures for a given domain can
be equivalent in the sense that the structures repre�
sent the same set of gpdfs for the domain �Verma
and Pearl� ������ For example� for the three vari�
able domain fx� y� zg� each of the network structures
x � y � z� x � y � z� and x � y � z represents
the gpdfs where x and z are conditionally independent
of y� and are therefore equivalent� As another exam�
ple� a complete network structure is one that has no
missing edges� In a domain with n variables� there are
n complete network structures� All complete network
structures for a given domain represent the same set
of gpdfs�namely� all possible gpdfs�and are there�
fore equivalent� In our proofs to follow� we require
the following characterization of equivalent networks�
proved by Chickering �in this proceedings��

Theorem � �Chickering� ����� Let Bs� and Bs�

be two Bayesian�network structures� and RBs��Bs�
be

the set of edges by which Bs� and Bs� di�er in di�
rectionality� Then� Bs� and Bs� are equivalent if and
only if there exists a sequence of jRBs��Bs�

j distinct arc
reversals applied to Bs� with the following properties�

�� After each reversal� the resulting network struc�
ture contains no directed cycles and is equivalent
to Bs�

�� After all reversals� the resulting network structure
is identical to Bs�

�� If x � y is the next arc to be reversed in the
current network structure� then x and y have the
same parents in both network structures� with the
exception that x is also a parent of y in Bs�

� A Bayesian Approach for Learning
Bayesian Networks

Our Bayesian approach for learning Bayesian networks
can be understood as follows� Suppose we have a do�
main of variables fx�� � � � � xng � U � and a set of cases



fC�� � � � � Cmg � D where each case is a state of some
or of all the variables in U � We sometimes refer to D
as a database� We begin with the following random�
sample assumption� the database is a random sample
from some sample distribution with unknown param�
eters !U � and this sample distribution satis�es the
conditional�independence assertions of some network
structure Bs for U � We de�ne Bh

s to be the hypoth�
esis that the sample distribution can be encoded in
Bs�

Now� suppose that we wish to determine the gpdf
p�CjD� ���the generalized probability density func�
tion for a new case C� given the database and our
current state of information �� Rather than reason
about this distribution directly� we assume that the
collection of hypotheses Bh

s corresponding to all net�
work structures for U form a mutually exclusive and
collectively exhaustive set� and compute

p�CjD� �� �
X

all Bh
s

p�CjD�Bh
s � �� � p�B

h
s jD� ��

In practice� it is impossible to sum over all possible net�
work structures� Consequently� we attempt to identify
a small subset H of network�structure hypotheses that
account for a large fraction of the posterior probability
of the hypotheses� Rewriting the previous equation us�
ing the fact that p�Bh

s jD� �� � p�D�Bh
s j���p�Dj��� we

obtain

p�CjD� �� � c
X
Bh
s�H

p�CjD�Bh
s � �� � p�D�B

h
s j��

where c is the
normalization constant ���

P
Bh
s�H

p�D�Bh
s j���� From

this relation� we see that only the relative posterior
probabilities p�D�Bh

s j�� matter� Thus� we compute
this relative posterior probability� or alternatively� a
Bayes� factor�p�Bh

s jD� ���p�B
h
s�jD� ���where Bs� is

some reference structure such as the empty graph� We
call methods for computing these relative posterior
probabilities Bayesian scoring metrics�

Extending the Bayesian analysis� we use !Bs to denote
the parameters of the sample distribution encoded in
the network structure Bs given hypothesis Bh

s � That
is� the parameters !Bs determine the local gpdfs in
Bp� From the rules of probability� we have

p�D�Bh
s j�� � p�Bh

s j�� ���

�

Z
p�!BsjB

h
s � �� p�Dj!Bs� B

h
s � �� d!Bs

The assessment of the network�structure priors
p�Bh

s j�� is treated elsewhere �e�g�� Buntine� �����

�We comment on this assumption in the following
section�

and Heckerman et al�� ������ In the following sec�
tion� we introduce a set of assumptions that simpli�
�es the assessment of the network�parameter priors
p�!BsjBh

s � ��� In the remainder of this section� we
show how to compute p�Dj!Bs� B

h
s � ���

A method for computing this term follows from our
random�sample assumption� Namely� given hypothe�
sis Bh

s � it follows that D can be separated into a set
of random samples� where these random samples are
determined by the structure of Bs� First� let us exam�
ine this decomposition when all the variables in U are
discrete� Let 
X�kX jY�kY denote the parameter cor�
responding to the probability p�X � kX jY � kY � ���
where X and Y are disjoint subsets of U � In addition�
let xil and �il denote the variable xi and the parent
set �i in the lth case� respectively� and let Dl denote
the �rst l � � cases in the database� Then� given Bh

s �
we know that the observations of xi in those cases
where �il � k�i

is a random sample with parameters
!xilj�il�k�i

� That is�

p�xil � kijx�l � k�� � � � � x�i���l � ki��� Dl�!Bs� B
h
s � ��

� 
xil�kij�il�k�i
���

where k�i
is the state of �il consistent with fx�l �

k�� � � � � x�i���l � ki��g� Using Equation �� we can

compute p�Dj!Bs� B
h
s � �� for any database D and net�

work structure Bs for discrete domain U �

Now consider a domain of continuous variables �x �
fx�� � � � � xng� and suppose the database D is a ran�
dom sample from a multivariate�normal distribution
with parameters !U � f���Wg� From our discussion
in Section �� it follows that� given hypothesis Bh

s � each
variable xi is a random sample from a normal distri�
bution with mean mi �

P
xj��i

bjixj and variance vi�

Thus� with !Bs � f�m�B��vg� we have

p�xiljx�l� � � � � x�i���l� Dl�!Bs� B
h
s � ��

� n�mi �
X
xj��i

bjixjl� ��vi� ����

Using Equation ��� we can compute p�Dj!Bs� B
h
s � ��

for any D and Bs in a Gaussian domain�

The generalization of Equations � and �� is straight�
forward� and we state it as our �rst formal assumption�

Assumption � �Random Sample� Let
D � fC�� � � � � Cmg be a database� and Bs be a net�
work structure for U determined by variable ordering
�x�� � � � � xn�� Let !�xi��i� denote the parameters of
the network associated with variable xi� Then� for all
variables xi � U �

p�xiljx�l� � � � � x�i���l� Dl�!Bs� B
h
s � ��

� f�!�xi��i�� xil��il� ����



where f is some function of the parameters !�xi��i�
and the database entries xil and �il�

In the discrete case� we have !�xi��i� � !xij�i
�

and f�!�xi��i�� xil��il� � !xilj�il
� In the Gaus�

sian case� we have !�xi��i� � fmi� vi��big� and
f�!�xi��i�� xil��il� � n�mi �

P
xj��i

bjixjl� ��vi��

� Informative Priors

In this section� we derive a general approach for assess�
ing the network�parameter priors p�!BsjB

h
s � ��� Our

derivation is based on four assumptions that are ab�
stracted from our previous work�

Assumption � �Likelihood Equivalence�
Given two network structures Bs� and Bs� such that
p�Bh

s�j�� 	 � and p�Bh
s�j�� 	 �� if Bs� and Bs� are

equivalent� then p�!U jBh
s�� �� � p�!U jBh

s�� ���

Informally� the assumption states that the observation
of a database does not help to discriminate equivalent
network structures� We note that an equivalent way
to state likelihood equivalence is that p�DjBh

s�� �� �
p�DjBh

s�� �� for all databases D� whenever Bs� and Bs�

are equivalent��

The motivation for this assumption is di�er�
ent for acausal Bayesian networks�Bayesian net�
works that represent only assertions of conditional
independence�and causal Bayesian networks� For
acausal networks� likelihood equivalence is not an as�
sumption� but rather a consequence of our de�nition
of Bh

s � In particular� recall that the hypothesis Bh
s

is true i� the parameters !U satisfy the conditional
independence assertions of Bs� Therefore� by de�ni�
tion of network�structure equivalence� if Bs� and Bs�

are equivalent� then Bh
s� � Bh

s��
� For example� in

the domain fx�� x�� x�g� the equivalent network struc�

�We assume this equivalence is well known� although we
have not found a proof in the literature�

�We note that there is a 	aw with our de
nition of Bh
s

for acausal Bayesian networks� In particular� the de
nition
implies that hypotheses associated with di�erent network�
structure equivalence classes will not be mutually exclu�
sive� For example� in the two�binary�variable domain� the
hypotheses Bh

xy and Bh
x�y �corresponding to the empty

network structure� and the network structure x � y� re�
spectively
 both include the possibility �xy � �x�y� This
	aw is potentially troublesome� because mutual exclusiv�
ity is important for our Bayesian interpretation of network
learning �Equation �
� Nonetheless� because the densities
p��BsjB

h
s � �
 must be integrable and hence bounded� the

overlap of hypotheses will be of measure zero� and we may
use Equation � without modi
cation� For example� in our
two�binary�variable domain� given the hypothesis Bh

x�y�

the probability that Bh
xy is true �i�e�� �y � �yjx
 has mea�

sure zero�

tures x� � x� � x� and x� � x� � x� both corre�
spond to the assertion 
x��x�jx� � 
x�jx�
x�jx� � Con�

sequently� Bh
x��x��x� � Bh

x��x��x� � This property�
which we call hypothesis equivalence� implies likelihood
equivalence� We note that� given hypothesis equiva�
lence� we should score equivalence classes of network
structures�not individual network structures�when
learning acausal Bayesian networks�

For causal Bayesian networks� we must modify the def�
inition of Bh

s to include the assertion that each non�
root node in Bs is a direct causal e�ect of its parents�
Consequently� the property of hypothesis equivalence
is contradicted by the new de�nition� Nonetheless� we
have found that the assumption of likelihood equiv�
alence is reasonable for learning causal networks in
many domains� �For a detailed discussion of this point�
see Heckerman in this proceedings��

The next assumption was adopted implicitly in our
previous work�

Assumption � �Structure Possibility� Given
a domain U � p�Bh

scj�� 	 � for all complete network
structures Bsc�

As we shall see� the assumption allows us to make good
use of the property of likelihood equivalence� Although
it is an assumption of convenience� we have found it
to be reasonable for many real�world network�learning
problems�

The remaining two assumptions are abstractions of
assumptions made either explicitly or implicitly by
all researchers who have considered Bayesian�network
learning �e�g�� Cooper and Herskovits� ����� �����
Buntine� ����� Spiegelhalter et al�� ���
�� These as�
sumptions are made mostly for computational con�
venience� although they are reasonable for many do�
mains�

Assumption � �Global Parameter Independence�
For all network structures Bs�

p�!BsjB
h
s � �� �

nY
i��

p�!�xi��i�jB
h
s � ��

Assumption � says that the parameters associated
with each variable in a network structure are inde�
pendent� This assumption was �rst introduced under
the name of global independence by Spiegelhalter and
Lauritzen �������

Assumption � �Parameter Modularity�
Given two network structures Bs� and Bs� such that
p�Bh

s�j�� 	 � and p�Bh
s�j�� 	 �� if xi has the same

parents in Bs� and Bs�� then

p�!�xi��i�jB
h
s�� �� � p�!�xi��i�jB

h
s�� ��



For example� in our two�binary�variable domain� x
has the same parents �none� in the network structure
x � y and the structure contains no arc� Conse�
quently� the probability density for !�x� �� would be
the same for both of these structures� We call this
property parameter modularity� because it says that
the densities for parameters !�xi��i� depend only on
the structure of the network that is local to variable
xi�namely� on the parents of xi�

Given Assumptions � through �� we can construct
the priors p�!BsjB

h
s � �� for every network structure

Bs in U from the single prior p�!U jB
h
sc� ��� where

Bsc is any complete network structure for U � As an
illustration of this construction� consider again our
two�binary�variable domain� Given the prior den�
sity p�
xy� 
x	y� 
	xyjBh

x�y� ��� we construct the priors

p�!BsjB
h
s � �� for each of the three network structures

in the domain� First� consider the network structure
x � y� The joint�space parameters and parameters
for this structure are related as follows�


xy � 
x
yjx 
	xy � ���
x��
yj	x� 
x	y � 
x���
yjx�

Thus� we may obtain p�
x� 
yjx� 
yj	xjB
h
x�y� �� from the

given density by changing variables�

p�
x� 
yjx� 
yj	xjB
h
x�y� �� � Jx�y�p�
xy� 
	xy� 
x	yjB

h
x�y� ��

����
where Jx�y is the Jacobian of the transformation

Jx�y �

������
�
xy��
x �
	xy��
x �
x	y��
x
�
xy��
yjx �
	xy��
yjx �
x	y��
yjx
�
xy��
yj	x �
	xy��
yj	x �
x	y��
yj	x

������
� 
x��� 
x� ��
�

The Jacobian JBsc
for the transformation from !U

to !Bsc in an arbitrary discrete domain is given in
Section ����

Next� consider the network structure x � y�
By Assumption 
� the hypothesis Bh

x�y is also
possible� and� by likelihood equivalence� we have
p�
xy� 
	xy� 
x	yjBh

x�y� �� � p�
xy� 
	xy� 
x	yjB
h
x�y� ���

Therefore� we can compute the density for the network
structure x� y using the Jacobian Jx�y � 
y���
y��

Finally� consider the empty network structure� Given
the assumption of global parameter independence� we
may obtain the densities p�
xjBh

xy� �� and p�
y jBh
xy� ��

separately� To obtain the density for 
x� we �rst
extract p�
xjB

h
x�y� �� from the density for the net�

work structure x � y� This extraction is straight�
forward� because� by global parameter independence�
the parameters for x � y must be independent�
Then� we use parameter modularity� which says that
p�
xjB

h
xy� �� � p�
xjB

h
x�y� ��� To obtain the density

for 
y � we extract p�
y jBh
x�y� �� from the density for

ρ θ θ θ ξ ρ θ θ θ ξ( , , | , ) ( , , | , )xy x y x y x y
h

xy x y x y x y
hB B→ ←=

� �Bxy:

� �Bx y→ : � �Bx y← :

change of
variable

parameter
modularity

Figure �� A computation of the parameter densities for
the three network structures of the two�binary�variable
domain fx� yg� The approach computes the densities
from p�
xy� 
x	y� 
	xyjB

h
x�y� ��� using likelihood equiva�

lence� global parameter independence� and parameter
modularity�

the network structure x � y� and again apply pa�
rameter modularity� The approach is summarized in
Figure ��

In general� we have the following construction�

Theorem � Given domain U and a probability den�
sity p�!U jBh

sc� �� where Bsc is some complete network
structure for U � Assumptions � through 	 determine
p�!BsjB

h
s � �� for any network structure Bs in U �

We note that our construction assumes that Assump�
tions � through � are consistent� We demonstrate con�
sistency in Section ��

� A General Metric for Complete
Data

In this section� we derive a general metric from As�
sumptions � through � and the following additional
assumption�

Assumption 	 �Complete Data� The database is
complete� That is� it contains no missing data�

We make this assumption only as a computa�
tional convenience� The reader should recognize
that random�sample assumption and the informa�
tive priors developed in Section 
 can be used in
conjunction with well�known statistical techniques
to score incomplete databases as well� Such
techniques include �lling in missing data based
on the data that is present �Titterington� ���	�
Spiegelhalter and Lauritzen� ������ the EM algo�
rithm �Dempster et al�� ������ and Gibbs sampling
�Madigan and Raftery� ������



Given our assumptions� we obtain the following
lemmas�


Lemma � �Posterior Parameter Independence�
Given the random�sample assumption 
Assumption ���
global parameter independence 
Assumption ��� and
the assumption of no missing data 
Assumption 
��
we have

p�!BsjD�B
h
s � �� �

nY
i��

p�!�xi��i�jD�B
h
s � ��

for all network structures Bs 
p�Bh
s j�� 	 �� and

databases D�

Lemma � �Posterior Parameter Modularity�
Given the random�sample assumption 
Assumption ���
global parameter independence 
Assumption ��� pa�
rameter modularity 
Assumption 	�� and the assump�
tion of no missing data 
Assumption 
�� if xi has the
same parents in any two network structures Bs� and
Bs� 
p�Bh

s�j�� 	 �� p�Bh
s�j�� 	 ��� then

p�!�xi��i�jD�B
h
s�� �� � p�!�xi��i�jD�B

h
s�� ��

for all databases D�

In the following lemma and in subsequent discus�
sions� we need the notion of a database D restricted
to X 	 U�that is the projection of database D onto
the subset X�denoted DX � For example� given do�
main U � fx�� x�� x�g and database D � fC� � fx� �
�� x� � �� x� � �g� C� � fx� � �� x� � �� x� � �gg� we
have Dfx��x�g � fC� � fx� � �� x� � �g� C� � fx� �
�� x� � �gg�

Lemma � Let X be a subset of U � and Bsc


p�Bh
scj�� 	 �� be a complete network structure for any

ordering where the variables in X come �rst� Given
the random�sample assumption 
Assumption ��� global
parameter independence 
Assumption ��� and the as�
sumption of no missing data 
Assumption 
��

p�XjD�Bh
sc� �� � p�XjDX � Bh

sc� ��

for all databases D�

Readers familiar with the concept of d�separation will
recognize that Lemmas 
 and � can be readily obtained
from graphical manipulations applied to the Bayesian�
network representation of the random�sample assump�
tion and the assumption of global parameter indepen�
dence�

We can now derive the general metric�

�The proofs are simple and are omitted�

Theorem 	 Given a domain U � let Bs be any net�
work structure for U and Bsc be a some complete net�
work structure for U � Then� given Assumptions �
through 
�

p�D�Bh
s j�� � p�Bh

s j�� �
nY
i��

p�D�i�xi jBh
sc� ��

p�D�i jBh
sc� ��

����

for any database D�

Proof
 From the rules of probability� we obtain

p�DjBh
s � �� �

mY
l��

Z
p�!BsjDl� B

h
s � ��

�
nY
i��

p�xiljx�l� � � � � x�i���l� Dl�!Bs� B
h
s � �� d!Bs

For every xi with parents �i in Bs� let BSC��i�xi be a
complete network structure with variable ordering �i�
xi followed by the remaining variables� By Assump�
tion 
� p�BSC��i�xi j�� 	 �� Using Assumption � and
Lemmas 
 and �� we get

p�DjBh
s � �� �

mY
l��

Z nY
i��

p�!�xi��i�jDl� BSC��i�xi � ��

�p�xilj��l� Dl�!�xi��i�� BSC��i�xi � �� d!Bs

Decomposing the integral over !Bs into integrals over
the individual parameter sets !�xi��i�� and perform�
ing the integrations� we have

p�DjBh
s � �� �

mY
l��

nY
i��

p�xilj��l� Dl� BSC��i�xi � ��

Also� using Lemma �� we obtain

p�DjBh
s � �� �

mY
l��

nY
i��

p�xil���ljDl� BSC��i�xi � ��

p���ljDl� BSC��i�xi � ��

�
mY
l��

nY
i��

p�xil���ljD
�i�xi
l � BSC��i�xi � ��

p���ljD
�i

l � BSC��i�xi � ��

�
nY
i��

p�D�i�xi jBSC��i�xi � ��

p�D�i jBSC��i�xi � ��
����

By likeli�
hood equivalence� we have that p�DjBSC��i�xi � �� �
p�DjBh

sc� ��� Consequently� for any subset X of U �
we obtain p�DX jBSC��i�xi � �� � p�DX jBh

sc� �� by sum�
ming over the variables in DUnX � Applying this result
to Equation ��� we get Equation ��� �

We call Equation �� the Be �Bayesian likelihood
equivlent� metric�



� Special�Case Metrics

Our general metric is powerful� because it tells us that
if we know how to compute p�DX jBh

sc� �� for any sub�
set X of U under the assumption that the domain con�
tains no structure �i�e�� there are no independencies��
then we can compute the probability of any database
when there is structure� Therefore� the Be metric al�
lows us to leverage much of the work in the statistics
literature� as statisticians have long dealt with the for�
mer problem� In this section� we illustrate this claim
by deriving likelihood�equivalent metrics for the dis�
crete and Gaussian cases�

��� The BDe Metric

Suppose all variables in U are discrete� Recall that
we use 
X�kX jY�kY denote the multinomial parameter
corresponding to probability p�X � kX jY � kY � ��� In
addition� we use !XjY denote the collection of param�
eters 
X�kX jY�kY for all states of sets X and Y � If
Y is empty� we simply write !X � Thus� for example�
!U � !x������xn represents the multinomial parameters
of the joint space of U �

Let us assume that the parameter set !U has a Dirich�
let distribution when conditioned on a hypothesis cor�
responding to some complete network structure Bsc�

p�!x������xn jB
h
sc� �

Y
x������xn



N �
Bsc

p�x������xnjB
h
sc�����

x������xn

��	�
where N �

Bsc
is the equivalent sample size of the Dirich�

let distribution associated with a complete network
structure Bsc� DeGroot ������ p� ��� shows that�
for any subset X of U � !X also has a Dirichlet distri�
bution�

p�!X jB
h
sc� �� �

Y
X



N �
Bsc

p�XjBh
sc�����

X ����

Now� it is a well�known statistical result that� if a dis�
crete variable x with r states has a Dirichlet distribu�
tion with exponents N �

� � �� � � � � N �
r � �� then

p�Dj�� �
"�
Pr

k��N
�
k�

"�
Pr

k��N
�
k �Nk�

rY
k��

"�N �
k � Nk�

"�N �
k�

����

where D is a database for variable x and Nk is the
number of times x takes on state k in D� Also� because
U is discrete� any subset X of U can also be thought
of as a single discrete variable with

Q
xi�X

ri states�
Therefore� Equations �� and �� allow us to compute
each term in the Be metric �Equation ���� To express
the resulting metric for a given network structure Bs�
we use qi �

Q
xi��i

ri to denote the number of states
of �i in Bs� and �i � j to denote that �i has assumed
the jth state� j � �� � � � � qi�

Theorem � �BDe Metric� Given domain U � and
network structure Bs and database D for U � let Nijk

denote the number of times that xi � k and �i � j
in the database D� and let Nij �

Pri
k�� denote the

number of times that �i � j in a database D� Then�
if p�!U jBh

sc� �� is Dirichlet with equivalent sample size
N � for some complete network structure Bsc� and if
Assumptions � through 
 hold� then

p�D�Bh
s j�� � p�Bh

s j�� �
nY
i��

qiY
j��

"�N �
ij�

"�N �
ij � Nij�

�

riY
k��

"�N �
ijk �Nijk�

"�N �
ijk�

����

where

N �
ijk � N � � p�xi � k��i � jjBh

sc� ��

N �
ij �

riX
k��

N �
ijk � N � � p��i � jjBh

sc� �� ����

Equations �� and �� are the BDe �Bayesian Dirichlet
likelihood equivalent� metric� originally derived in
Heckerman et al� �������

The assumption that p�!U jBh
sc� �� is Dirichlet is not

as arbitrary as it may seem at �rst glance� In discrete
domains� we can assume not only that the parameters
corresponding to each variable are independent� but
that the parameters corresponding to each state of ev�
ery variable
s parents are independent� Spiegelhalter
and Lauritzen ������ call this added assumption lo�
cal independence� Geiger and Heckerman �in this pro�
ceedings� show that likelihood equivalence� structure
possibility� global and local parameter independence�
and the assumption that p�!U jB

h
sc� �� is positive imply

that p�!U jB
h
sc� �� must be Dirichlet�

��� The BGe Metric

Suppose that all variables in U � �x are continu�
ous� and that the database is a random sample from
a multivariate�normal distribution� Let us assume
that the parameter set f���Wg has a normal�Wishart
distribution when conditioned on Bh

sc for some com�
plete network structure Bsc� Namely� assume that
p���jW�Bh

sc� �� is a multivariate�normal distribution
with mean ��� and precision matrix N �

�W �N �
�� 	 ���

and that p�W jBh
sc� �� is a Wishart distribution with

N �
T degrees of freedom �N �

T 	 n � �� and positive�
de�nite precision matrix T�� That is�

p�W jBh
sc� �� � c jW j�N

�
T�n�����e����trfT�Wg ����

where c is a normalization constant �DeGroot� �����
p� ����



It is well known that the normal�Wishart distribu�
tion is a conjugate family for multivariate�normal sam�
pling �e�g�� DeGroot� ����� p� ����� Given a database
D � f �x�� � � � � �xmg� let �xm and Sm denote its sam�
ple mean and variance� respectively� Then� given the
normal�Wishart prior we have described� the posterior
density p����W jD�Bh

sc� �� is also a normal�Wishart dis�
tribution� In particular� p���jW�D�Bh

sc� �� is multivari�
ate normal with mean vector ��m given by

��m �
N �
����� � m�xm

N �
�� �m

����

and precision matrix �N �
�� �m�W � and p�W jD�Bh

sc� ��

is a Wishart distribution with N �
T �m degrees of free�

dom and precision matrix Tm given by

Tm � T� � Sm �
N �
��m

N �
�� �m

���� � �xm����� � �xm�� ��
�

From these equations� we see that N �
�� and N �

T can be
thought of as equivalent sample sizes for the mean ��
and the precision matrix T�� respectively�

Given domain U � fx�� � � � � xng� subset X of U � and
vector �y � �y�� � � � � yn�� let �yX denote the vector
formed by the components yi of �y such that xi � X�
Similarly� given matrix M � let MX denote the subma�
trix of M containing elements mij such that xi� xj �
X� It is well known that if D is a random sample
from an n�dimensional multivariate�normal distribu�
tion whose parameters f���Wg have a normal�Wishart
distribution with constants ���� N �

��� T� and N �
T � then

DX is a random sample from an jXj�dimensional mul�
tivariate distribution with parameters f��X �WXg� and
these parameters have normal�Wishart distribution
with constants ��X� � N �

��� TX
� and N �

T � Furthermore�

the formula for p�DjBh
sc� �� given the normal�Wishart

prior is known �e�g�� the probability may be obtained
by integrating the left�hand�side of Equation �� De�
Groot� ����� p� ���� over the parameters�� Conse�
quently� the evaluation of p�DX jBh

sc� �� in Equation ��
is straightforward�

Theorem 
 �BGe Metric� Given do�
main �x � fx�� � � � � xng� assume p����W jBh

sc� �� is an
n�dimensional normal�Wishart distribution with con�
stants ���� N

�
��� T�� and N �

T � Given a database D �
fC�� � � � � Cmg and a subset X of �x with l elements�
Assumptions � through 
 imply the Be metric� where
each term is given by

p�DX jBh
sc� �� � ��lm��

�
N �
��

N �
�� � m

�l��

����

�
c�l� N �

T �m�

c�l� N �
T �

jTX
� j

N�
T
� jTX

m j
�
N�
T
�m

�

where

c�l� N �
T � �

lY
i��

"

�
N �
T � �� i

�

�
����

and Tm is the precision matrix of the posterior
normal�Wishart distribution given by Equation ���

The Be metric in combination with Equation ��
de�nes the BGe �Bayesian Gaussian likelihood
equivalent� metric� originally derived in Geiger and
Heckerman ������� We note that assumptions similar
to those used to show the inevitability of the Dirich�
let distribution for discrete domains imply that the
normal�Wishart assumption is inevitable for Gaussian
domains �see Geiger and Heckerman in this proceed�
ings��

The BDe and BGe metrics may be combined to score
domains containing both discrete variables and con�
tinuous variables� Namely� let U � Ud 
 Uc where
all variables in Ud and Uc are discrete and contin�
uous� respectively� Suppose that the observations
of Ud in the database are a random sample from
a multivariate�discrete distribution� and the observa�
tions of the Uc given each state of Ud are a random
sample from a multivariate�normal distribution� Fi�
nally� suppose that !Ud has a Dirichlet distribution�
and that !UcjUd�k has a normal�Wishart distribution
for every state k of Ud� Then� we can apply the Be met�
ric to any network structure Bs where the variables in
Ud precede the variables in Uc� using Equation �� to
evaluate terms for discrete variables� and Equations ��
and �� to evaluate terms for continuous variables�

� Informative Priors from a Prior
Network

Given our assumptions� p�!U jBh
sc� �� determines a

Bayesian scoring metric� In this section� we discuss
the assessment of this distribution�

For discrete domains� we can assess p�!U jBh
sc� �� by

assessing ��� the joint probability distribution for the
�rst cases to be seen in the database p�U jBh

s � �� and ���
the equivalent sample size N � for the domain� Meth�
ods for assessing N � are discussed in �e�g�� Heckerman
et al� ������� To assess p�U jBh

s � ��� we can construct a
Bayesian network for the �rst case to be seen� We call
this Bayesian network a prior network� The unusual
aspect of this assessment is the conditioning hypothe�
sis Bh

sc �see Heckerman et al� ������ for a discussion��

We can assess p�!U jBh
sc� �� in the Gaussian case us�

ing a prior network as well� In this case� however�
we require two equivalent samples sizes �N �

�� 	 �

and N �
T 	 n � ��� The details are discussed in last

year
s proceedings �Geiger and Heckerman� ������ Ex�
amples of the assessment of p�!U jBh

sc� �� for discrete



and Gaussian domains� and examples of the metrics
that result from these assessments are also given in
last year
s proceedings�

� Consistency of the Assumptions

The assumptions of likelihood equivalence� structure
possibility� global parameter independence� and pa�
rameter modularity may not be consistent� In particu�
lar� the assumptions of global parameter independence
and modularity are constraints on parameter densities
among individual network structures� whereas likeli�
hood equivalence is a constraint on parameter densi�
ties among network�structure equivalence classes� Fur�
thermore� our choices p�!U jBh

sc� �� is Dirichlet and
p����W jBh

sc� �� is normal�Wishart may not be consis�
tent with the assumptions of likelihood equivalence
and global parameter independence� In this section�
we demonstrate consistency in each case�

��� Consistency of the Dirichlet Assumption

First� we show that the assumption p�!U jBh
sc� �� is

Dirichlet is consistent with the assumptions of likeli�
hood equivalence and global parameter independence
for complete network structures�

To see the potential for inconsistency� consider again
our approach for constructing priors in the two�binary�
variable domain� Suppose we choose the density

p�
xy� 
	xy� 
x	yjB
h
x�y� �� �

c

�
xy � 
x	y���� �
xy � 
x	y��

�
c


x��� 
x�

where c is a normalization constant� By Equations ��
and �
 we obtain

p�
x� 
yjx� 
yj	xjB
h
x�y� �� � c

for the network structure x� y� This density satis�es
the assumption of global �and local� parameter inde�
pendence� Using likelihood equivalence� however� we
have for the network structure y � x

p�
y � 
xjy� 
xj	yjB
h
x�y� �� �

c � 
y��� 
y�


x��� 
x�
�

c � 
y��� 
y�

�
y
xjy � ��� 
y�
xj	y��� � �
y
xjy � ��� 
y�
xj	y��

This density satis�es neither global �nor local� param�
eter independence�

When p�!U jBh
sc� �� is Dirichlet� however� likelihood

equivalence implies global �and local� parameter in�
dependence for all complete network structures� This
result is proved for the two�variable case in Dawid and

Lauritzen ����
� Lemma ���� and for the general case
in Heckerman et al� ������ Theorem 
�� which we sum�
marize here�

Theorem � Let Bsc be any complete network struc�
ture for domain U � fx�� � � � � xng� The Jacobian for
the transformation from !U to !Bsc is

JBsc
�

n��Y
i��

Y
x������xi

�
xijx������xi�� �
�
Q

n

j�i��
rj ��� ��	�

Theorem �� Given a domain U � fx�� � � � � xng� if
the parameters !U have a Dirichlet distribution with
parameters N �

x� �����xn�that is�

p�!U j�� � c �
Y

x������xn

�
x������xn �N
�
x������xn

�� ����

then� for any complete network structure Bsc in U � the
density p�!Bscj�� satis�es global and local parameter
independence� In particular�

p�!Bscj�� � c �
nY
i��

Y
x������xi

�
xijx������xi�� �
N �
xijx������xi��

��

����
where

N �
xijx������xi��

�
X

xi�������xn

N ��x�� � � � � xn� ����

Proof
 The result follows by multiplying the right�
hand�side of Equation �� by the Jacobian in Theo�
rem �� using the relation 
x������xn �

Qn
i�� 
xijx������xi�� �

and collecting powers of 
xijx������xi�� � �

It is interesting to note that each set of conditional
parameters !xijx������xi�� also has a Dirichlet distribu�
tion�

��� Consistency of the Normal�Wishart
Assumption

Next� we show that the assumption p����W jBh
sc� �� is

normal�Wishart is consistent with the assumptions of
likelihood equivalence and global parameter indepen�
dence for complete network structures�

Theorem �� The Jacobian for the change of vari�
ables from W to f�v�Bg is given by

J�v�B � j�W���vBj �
nY
i��

v
��i
��
i �
��

Proof
 Let J�i� denote the Jacobian for the �rst i
variables in W � Then J�i� has the following form�

J�i� �

������
J�i� �� � �

� � �
vi
Ii���i�� �

� � � �
v�
i

������ �
��



where Ik�k is the identity matrix of size k � k� Thus�
we have

J�i� �
�

vi
�i

� J�i � �� �
��

which gives Equation 
�� �

Theorem �� The Jacobian for the change of vari�
ables from �� to �m is given by J�m � ��

Proof
 From Equation 	� J�m is the determinant of a
triangular matrix whose diagonal elements are �� �

Theorem �� If f���Wg has a normal�Wishart distri�
bution given background information �� then

p��m��v�Bj�� �
nY
i��

p�mi� vi� �bij��

Proof
 To prove the theorem� we factor p��mj�v�B� ��
and p��v�Bj�� separately� By assumption� we know
that p���jW � is a multivariate�normal distribution with
mean �� and precision matrix N �

��W � Transforming
this result to conditional distributions for �i� we ob�
tain

p��ij��� � � � � �i��� �v� B� �� �

�
N �
��

��vi

����

� exp

�	

	�
�
�i � ��i �

Pi��
j�� bji��j � ��j�


�
�vi�N �

��

�	�
	�

for i � �� � � � � n� Letting m�i � ��i �
Pi��

j�� bji��j for
each i� we get

p��ij��� � � � � �i��� �v� B� �� �

�
N �
��

��vi

����

� exp

�
�mi �m�i��

�vi�N �
��

�

Thus� collecting terms for each i and using the Jaco�
bian J�m � �� we have

p��mj�v�B� �� �
nY
i��

n�m�i� N
�
���vi� �

�

In addition� by assumption� we have

p�W j�� � cjW j���n�����e����trfT�Wg �
��

From Equation �� we have

jW �i�j �
�

vi
jW �i� ��j �

nY
i��

v��i

so that the determinant in Equation 
� factors as a
function of i� Also� Equation � implies �by induction�

that each element wij in W is a sum of terms each be�

ing a function of �bi and vi� Consequently� the exponent
in Equation 
� factors as a function of i� Thus� given
the Jacobian J�v�B � which also factors as a function of
i� we obtain

p��v�Bj�� �
nY
i��

p�vi��bij�� �
��

Equations 

 and 
� imply the theorem� �

��� Consistency of Likelihood Equivalence�
Structure Possibility� Parameter
Independence� and Parameter
Modularity

As mentioned� the assumptions of likelihood equiva�
lence� structure possibility� global parameter indepen�
dence� and parameter modularity may not be consis�
tent� To understand the potential for inconsistency�
note that we obtained the Be metric �Equation ���
for all network structures using likelihood equivalence
applied only to complete network structures in com�
bination with the assumptions of structure possibil�
ity� global parameter independence� parameter mod�
ularity� Thus� it could be that the Be metric for in�
complete network structures is not likelihood equiva�
lent� Nonetheless� the following theorem shows that
the Be metric is likelihood equivalent for all network
structures�that is� given structure possibility� global
parameter independence� and parameter modularity�
likelihood equivalence for incomplete structures is im�
plied by likelihood equivalence for complete network
structures� Consequently� the assumptions are consis�
tent�

Theorem �� �Likelihood Equivalence�
If Bs� and Bs� are equivalent network structures for
domain U � then� for all databases D� p�DjBh

s�� �� �
p�DjBh

s�� ��� where each likelihood is computed by the
Be metric 
Equation ����

Proof
 By Theorem �� we know that a network struc�
ture can be transformed into an equivalent structure
by a series of arc reversals� Thus� we can demonstrate
likelihood equivalence in general if we can do so for the
case where two equivalent structures di�er by a single
arc reversal� So� let Bs� and Bs� be two equivalent
network structures that di�er only in the direction of
the arc between xi and xj �say xi � xj in Bs��� Let R
be the set of parents of xi in Bs�� By Theorem �� we
know that R 
 fxig is the set of parents of xj in Bs��
R is the set of parents of xj in Bs�� and R
fxjg is the
set of parents of xi in Bs�� Because the two structures
di�er only in the reversal of a single arc� the only terms
in the product of Equation �� that can di�er are those



involving xi and xj� For Bs�� these terms are

p�DxiRjBh
sc� ��

p�DRjBh
sc� ��

p�DxixjRjBh
sc� ��

p�DxiRjBh
sc� ��

�
p�DxixjRjBh

sc� ��

p�DRjBh
sc� ��

whereas for Bs�� they are

p�DxjRjBh
sc� ��

p�DRjBh
sc� ��

p�DxixjRjBh
sc� ��

p�DxjRjBh
sc� ��

�
p�DxixjRjBh

sc� ��

p�DRjBh
sc� ��

These terms are equal� and consequently� so are the
likelihoods� �
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