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Abstract

We examine Bayesian methods for learn-
ing Bayesian networks from a combination
of prior knowledge and statistical data. In
particular, we unify the approaches we pre-
sented at last year’s conference for discrete
and Gaussian domains. We derive a gen-
eral Bayesian scoring metric, appropriate for
both domains. We then use this metric in
combination with well-known statistical facts
about the Dirichlet and normal-Wishart dis-
tributions to derive our metrics for discrete
and Gaussian domains.

1 Introduction

At last year’s conference, we presented approaches
for learning Bayesian networks from a combination
of prior knowledge and statistical data. These ap-
proaches were presented in two papers: one address-
ing domains containing only discrete variables (Heck-
erman et al., 1994), and the other addressing domains
containing continuous variables related by an unknown
multivariate-Gaussian distribution (Geiger and Heck-
erman, 1994). Unfortunately, these presentations were
substantially different, making the parallels between
the two methods difficult to appreciate. In this pa-
per, we unify the two approaches. In particular, we
abstract our previous assumptions of likelihood equiv-
alence, parameter modularity, and parameter indepen-
dence such that they are appropriate for discrete and
Gaussian domains (as well as other domains). Using
these assumptions, we derive a domain-independent
Bayesian scoring metric. We then use this general
metric in combination with well-known statistical facts
about the Dirichlet and normal-Wishart distributions
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to derive our metrics for discrete and Gaussian do-
mains. In addition, we provide simple proofs that
these assumptions are consistent for both domains.

Throughout this discussion, we consider a domain
U of n variables z1,...,2,. FEach variable may
be discrete—having a finite or countable number of
states—or continuous. We use lower-case letters to re-
fer to variables and upper-case letters to refer to sets of
variables. We write x; = k to denote that variable x;
is in state k. When we observe the state for every vari-
able in set X, we call this set of observations a state of
X; and we write X = kx as a shorthand for the obser-
vations @; = k;, z; € X. The joint space of U is the set
of all states of U. We use p(X = kx|Y = kv, &) to de-
note the generalized probability density that X = kx
given Y = ky for a person with current state of in-
formation & [DeGroot, 1970, p. 19]. We use p(X|Y,¢)
to denote the generalized probability density function
(gpdf) for X, given all possible observations of Y. The
joint gpdf over U is the gpdf for U.

We use B; to denote the structure of a Bayesian net-
work, and II; to denote the parents of z; in a given net-
work. We assume the reader is familiar with Bayesian
networks for the case where all variables in U are dis-
crete. Here, we describe a Bayesian-network represen-
tation for continuous variables. In particular, consider
the special case where all the variables in U are con-
tinuous and the joint probability density function for
U is a multivariate (nonsingular) normal distribution.
In this case, to be in line with more standard notation,
we use ¥ to denote the set of variables U. We have

p(E[€) n(i, 27 W
= (27) /2 |E|—1/26—1/2(f—ﬁ)’2—1(5_ﬁ)

where ji is an n-dimensional mean vector, and X =
(0i;) is an n X n covariance matrix, which must be both
symmetric and positive definite. Both ji and ¥ are
implicitly functions of £. We shall find it convenient to
refer to the precision matriz W = £, whose elements
are denoted by w;;.



This joint density function can be written as a product
of conditional density functions each being a normal
distribution. Namely,

n

p(#l6) = [T plaler.....aie,€) (2)

i=1

i—1
plailer, w1, &) = nlw + Y bji(a; — ), 1/vi)
=1

(3)
where p; is the unconditional mean of #; (i.e., the ¢th
component of fI), v; is the conditional variance of #;
given values for x1,...,2;_1, and b;; is a linear coef-
ficient reflecting the strength of the relationship be-
tween #; and x; (e.g., DeGroot, p. 55).

Thus, we may interpret a multivariate-normal dis-
tribution as a Bayesian network, where there is no
arc from z; to xz; whenever b;; = 0, 7 < 7. Con-
versely, from a Bayesian network with conditional dis-
tributions satisfying Equation 3, we may construct a
multivariate-normal distribution. We call this special
form of a Bayesian network a Gaussian network. The
name is adopted from Shachter and Kenley (1989) who
first described Gaussian influence diagrams. We note
that, in practice, it is typically easier to assess a Gaus-
sian network than it is to assess directly a symmetric
positive-definite precision matrix.

The transformations between ¢ = {vy,...,v,} and
B = {b;; | j < i} of a given Gaussian network G and
the precision matrix W of the normal distribution rep-
resented by G are well known. In this paper, we need
only the transformation from W to {#, B}. We use the
following recursive form given by Shachter and Kenley
(1989). Let W (i) denote the ¢ x i upper left submatrix

b ~~,bi—1,i), and
l_)z denote the transposition of EZ Then, for ¢ > 1, we
have

of W, b; denote the column vector (by;, .

W(i) 4 bl B

W(i+1) = e (4)
e v

and W(l) = %

Although Equation 3 is useful for the assessment of a
Gaussian network, we shall sometimes find it conve-
nient to write

i—1

plailer, .. zis1, &) = n(mi + > bxg, 1/v)  (5)

j=1

where m;,7 = 1,...,n is defined by

i—1
mg = p — Z biipg (6)
i=1

Note that m; is the mean of z; when all of z;’s parents
are equal to zero.

As an example, given the three-node network struc-
ture xy — x3 9, we have b, = 0, xy =
n(my, 1/v1), 22 = n(mae, 1/ve), and z3 = n(mz +
bis(x1 — my) + bag(xa — ma), 1/v3). Also, the preci-
sion matrix corresponding to this network structure is
given by

1 4 bis b1abos __bis
V1 Vs Vs 5 Vs
W = b13bas 14 035 _bas (7)
V3 Va2 Vs Vs
__bis _ bos 1
Vs Vs Vs

Finally, it is important to note that two or more
Bayesian-network structures for a given domain can
be equivalent in the sense that the structures repre-
sent the same set of gpdfs for the domain (Verma
and Pearl, 1990). For example, for the three vari-
able domain {«,y, z}, each of the network structures
T —=y— 2z x4y — 2z and ¢ & y < z represents
the gpdfs where « and z are conditionally independent
of y, and are therefore equivalent. As another exam-
ple, a complete network structure is one that has no
missing edges. In a domain with n variables, there are
n! complete network structures. All complete network
structures for a given domain represent the same set
of gpdfs—namely, all possible gpdfs—and are there-
fore equivalent. In our proofs to follow, we require
the following characterization of equivalent networks,
proved by Chickering (in this proceedings).

Theorem 1 (Chickering, 1995) Let By, and By
be two Bayesian-network structures, and Rp_, ., be
the set of edges by which Bs1 and Bgso differ in di-
rectionality. Then, Bs1 and Bso are equivalent if and
only if there exists a sequence of |Rp,, B.,| distinct arc
reversals applied to Bgy with the following properties:

1. After each reversal, the resulting network struc-
ture contains no directed cycles and is equivalent
to Bsz

2. After all reversals, the resulting network structure
15 identical to Bys

3. If x — y 1is the next arc to be reversed in the
current network structure, then x and y have the
same parents in both network structures, with the
exception that x is also a parent of y in By

2 A Bayesian Approach for Learning
Bayesian Networks

Our Bayesian approach for learning Bayesian networks
can be understood as follows. Suppose we have a do-
main of variables {#1,...,2,} = U, and a set of cases



{C1,...,Cpn} = D where each case is a state of some
or of all the variables in U. We sometimes refer to D
as a database. We begin with the following random-
sample assumption: the database is a random sample
from some sample distribution with unknown param-
eters O, and this sample distribution satisfies the
conditional-independence assertions of some network
structure B, for U. We define B” to be the hypoth-
esis that the sample distribution can be encoded in
Bs.

Now, suppose that we wish to determine the gpdf
p(C|D,&)—the generalized probability density func-
tion for a new case C', given the database and our
current state of information ¢. Rather than reason
about this distribution directly, we assume that the
collection of hypotheses B! corresponding to all net-
work structures for U form a mutually exclusive and
collectively exhaustive set! and compute

p(CID,&) = Y p(C|D, B!,&) - p(B|D,¢)

all Bh

In practice, 1t is impossible to sum over all possible net-
work structures. Consequently, we attempt to identify
a small subset H of network-structure hypotheses that
account for a large fraction of the posterior probability
of the hypotheses. Rewriting the previous equation us-
ing the fact that p(B?|D, &) = p(D, B*|€)/p(D|€), we
obtain

p(CID, &)~ ¢ Y p(CID, BL,€) - p(D, BLE)

BreH

where ¢ is the
normalization constant 1/[3 gue g p(D, BE[¢)]. From
this relation, we see that onlys the relative posterior
probabilities p(D, B?|¢) matter. Thus, we compute
this relative posterior probability, or alternatively, a
Bayes’ factor—p(B?|D, €)/p(B5|D, €)—where By is
some reference structure such as the empty graph. We
call methods for computing these relative posterior
probabilities Bayesian scoring metrics.

Extending the Bayesian analysis, we use @p; to denote
the parameters of the sample distribution encoded in
the network structure B, given hypothesis B". That
18, the parameters ©p; determine the local gpdfs in
Bp. From the rules of probability, we have

p(D, B€) = p(BLI€) (8)
~ / p(O5:|B",€) p(D|Os., B! ,€) dOp,

The assessment of the network-structure priors
p(B")¢) is treated elsewhere (e.g., Buntine, 1991,

"We comment on this assumption in the following
section.

and Heckerman et al., 1995). In the following sec-
tion, we introduce a set of assumptions that simpli-
fies the assessment of the network-parameter priors
p(Ops| B, €). In the remainder of this section, we
show how to compute p(D|Og,, B £).

A method for computing this term follows from our
random-sample assumption. Namely, given hypothe-
sis B%, it follows that D can be separated into a set
of random samples, where these random samples are
determined by the structure of B;. First, let us exam-
ine this decomposition when all the variables in U are
discrete. Let 0x—p[y=k, denote the parameter cor-
responding to the probability p(X = kx|Y = ky,§),
where X and Y are disjoint subsets of U. In addition,
let x;; and II; denote the variable x; and the parent
set II; in the [th case, respectively; and let D; denote
the first [ — 1 cases in the database. Then, given B",
we know that the observations of z; in those cases
where II;; = kp, is a random sample with parameters
exzzlﬂzzzkn,' That is,

p(ei = kilew = k1, ..., z_1y = ki—1, Dy, O, Bl €)
= gle:kzlnzl:knl (9)
where kyy, is the state of II;; consistent with {zqy; =
ki,...,®x¢4-1y = ki—1}. Using Equation 9, we can
compute p(D|Op;, B, ) for any database D and net-
work structure B, for discrete domain U'.

Now consider a domain of continuous variables ¥ =
{@1,...,2,}, and suppose the database D is a ran-
dom sample from a multivariate-normal distribution
with parameters Oy = {fi, W}. From our discussion
in Section 1, it follows that, given hypothesis B? each
variable z; is a random sample from a normal distri-
bution with mean m; + ijel'[, bj;z; and variance v;.
Thus, with ©g, = {m, B, ¥}, we have

plealey, ... xi-1y, Dy, OBy, Bl €)
= n(m; + Z bjixji, 1/vi) (10)

z;€Il;

Using Equation 10, we can compute p(D|O@g,, B2, €)
for any D and B, in a Gaussian domain.

The generalization of Equations 9 and 10 is straight-
forward, and we state it as our first formal assumption.

Assumption 1 (Random Sample) Let

D = {Cy,...,Cpn} be a database, and By be a nel-
work structure for U determined by variable ordering
(Z1,...,2n). Let O(z;,11;) denote the parameters of
the network associated with variable x;. Then, for all
variables x; € U,

plealey, ..., xvi-1y, Dy, Ops, BE€)
= f(O(x;, 11;), 2, 11y) (11)



where [ is some function of the parameters O(x;,II;)
and the database entries x;; and 11;;.

In the discrete case, we have O(x;,I;) = O,,m,,
and f(O(x;,1;), 24, 11) = Oy m,. In the Gaus-
sian case, we have O(wz;,II;) = {mi,vi,gi}, and

SO, 1), @i, Wyg) = n(mi + 32, ey, bjizji, 1/vi).-
3 Informative Priors

In this section, we derive a general approach for assess-
ing the network-parameter priors p(©pgs|B? €). Our
derivation is based on four assumptions that are ab-
stracted from our previous work.

Assumption 2 (Likelihood Equivalence)
Given two network structures By, and Bgs such that
p(BYH1E) > 0 and p(B]€) > 0, if By and By are
equivalent, then p(Oy|Bh &) = p(©y|BL,, €).

Informally, the assumption states that the observation
of a database does not help to discriminate equivalent
network structures. We note that an equivalent way
to state likelihood equivalence is that p(D|BY &) =
p(D|B%, £) for all databases D, whenever By and Bys
are equivalent.?

The motivation for this assumption 1is differ-
ent for acausal Bayesian networks—Bayesian net-
works that represent only assertions of conditional
independence—and causal Bayesian networks. For
acausal networks, likelihood equivalence 1s not an as-
sumption, but rather a consequence of our definition
of B!. In particular, recall that the hypothesis B?
is true iff the parameters @y satisfy the conditional
independence assertions of B;. Therefore, by defini-
tion of network-structure equivalence, if Bs; and Bjgs
are equivalent, then B% = B3 For example, in
the domain {z1, 29, 23}, the equivalent network struc-

2We assume this equivalence is well known, although we
have not found a proof in the literature.

3We note that there is a flaw with our definition of B”
for acausal Bayesian networks. In particular, the definition
implies that hypotheses associated with different network-
structure equivalence classes will not be mutually exclu-
sive. For example, in the two-binary-variable domain, the
hypotheses Bﬁy and Bﬁ_)y (corresponding to the empty
network structure, and the network structure x — y, re-
spectively) both include the possibility 8., = 6.6,. This
flaw is potentially troublesome, because mutual exclusiv-
ity 1s important for our Bayesian interpretation of network
learning (Equation 2). Nonetheless, because the densities
p(©p:|B ¢) must be integrable and hence bounded, the
overlap of hypotheses will be of measure zero, and we may
use Equation 2 without modification. For example, in our
two-binary-variable domain, given the hypothesis Bﬁ_)y,
the probability that Bﬁy is true (i.e., 8, = 8,|,) has mea-
sure zero.

tures #1 — ¥ — x3 and ¥ < x5 + x3 both corre-
spond to the assertion 0;, o v, = 0p,|2.0r,)z,- Con-
sequently, Bgl—wQ—wa = Bﬁ1<_x2<_x3. This property,
which we call hypothesis equivalence, implies likelihood
equivalence. We note that, given hypothesis equiva-
lence, we should score equivalence classes of network
structures—not individual network structures—when

learning acausal Bayesian networks.

For causal Bayesian networks, we must modify the def-
inition of B” to include the assertion that each non-
root node in B; is a direct causal effect of its parents.
Consequently, the property of hypothesis equivalence
is contradicted by the new definition. Nonetheless, we
have found that the assumption of likelihood equiv-
alence is reasonable for learning causal networks in
many domains. (For a detailed discussion of this point,
see Heckerman in this proceedings.)

The next assumption was adopted implicitly in our
previous work.

Assumption 3 (Structure Possibility) Given
a domain U, p(B%|&) > 0 for all complete network
structures By..

As we shall see, the assumption allows us to make good
use of the property of likelihood equivalence. Although
it 1s an assumption of convenience, we have found it
to be reasonable for many real-world network-learning
problems.

The remaining two assumptions are abstractions of
assumptions made either explicitly or implicitly by
all researchers who have considered Bayesian-network
learning (e.g., Cooper and Herskovits, 1991, 1992;
Buntine, 1991; Spiegelhalter et al., 1993). These as-
sumptions are made mostly for computational con-
venience, although they are reasonable for many do-
mains.

Assumption 4 (Global Parameter Independence)
For all network structures By,

n

p(©n,|BL,€) = ] p(©(x:, )| BE, €)

i=1

Assumption 4 says that the parameters associated
with each variable in a network structure are inde-
pendent. This assumption was first introduced under
the name of global independence by Spiegelhalter and
Lauritzen (1990).

Assumption 5 (Parameter Modularity)

Given two network structures By, and Bgs such that
p(BY%|€) > 0 and p(BY%|€) > 0, if ; has the same
parents in Bs1 and Bgs, then



For example, in our two-binary-variable domain, z
has the same parents (none) in the network structure
z — y and the structure contains no arc. Conse-
quently, the probability density for ©(z, ) would be
the same for both of these structures. We call this
property parameter modularity, because it says that
the densities for parameters ©(xz;,II;) depend only on
the structure of the network that is local to variable
x;—namely, on the parents of ;.

Given Assumptions 2 through 5, we can construct
the priors p(©ps|B., &) for every network structure
Bs in U from the single prior p(©y|B2,¢), where
Bs. 1s any complete network structure for U. As an
illustration of this construction, consider again our
two-binary-variable domain. Given the prior den-
sity p(Oy, Org, 05y | B2 —y>&), we construct the priors

p(Ops| B, &) for each of the three network structures
in the domain. First, consider the network structure
z — y. The joint-space parameters and parameters
for this structure are related as follows:

0oy = 6)xgylx O0zy = (1_9x)(9y|f) 0oy = Hx(l_gylx)
Thus, we may obtain p(0y, 0y|«, 9y|f|B£L_>y, &) from the
given density by changing variables:

(Hx’ﬁ | y|x|Bx—>ya€) x—>y p(gxy,gxy, xy|B —(>1g/2’)€)

where J_,y is the Jacobian of the transformation

000y /06, 003y/06:  0b.5/00,
Jomy = 0y [00y)y 002y /00y OO0g/0y),
0y /00y 1z 00zy /00y 1z  00s5/00y5

= 0,(1—106,) (13)

The Jacobian Jpg,, for the transformation from Oy
to ©ps. 1n an arbitrary discrete domain is given in
Section 5.1.

Next, consider the network structure = <+ y.
By Assumption 3, the hypothesis Bm_y 1s also
possible, and, by likelihood equivalence, we have

p(gxy’ gfy’ 9x37|B£L<—ya f) = p(gxy, gfy’ 9x37|B£L—>ya f)
Therefore, we can compute the density for the network
structure z + y using the Jacobian J,, = 6,(1—0,).

Finally, consider the empty network structure. Given
the assumption of global parameter independence, we
may obtain the densities p(6,|B" y»§) and p(0, |Bxy,€)
separately. To obtain the density for 6., we first
extract p(f,|B" —y,&) from the density for the net-
work structure @ — y. This extraction is straight-
forward, because, by global parameter independence,
the parameters for # — y must be independent.
Then, we use parameter modularity, which says that

(05 |B v &) = p(Os | B2 —y>&). To obtain the density

for 6, we extract p(f, |Bx<_y,€) from the density for

p(exy1exy; xyl X—y!? é):p(exy’exy! xyl Xy é)

/ N

Bx—> B)«—y: M

parameter
modularity

By @ W

change of
variable

Figure 1: A computation of the parameter densities for
the three network structures of the two-binary-variable
domain {z,y}. The approach computes the densities
from p(foy, 0oy, 95y|B£_>y,€), using likelihood equiva-
lence, global parameter independence, and parameter
modularity.

the network structure z + y, and again apply pa-
rameter modularity. The approach is summarized in
Figure 1.

In general, we have the following construction.

Theorem 2 Given domain U and a probability den-
sity p(Oy | Bl &) where By, is some complete network
structure for U, Assumptions 2 through 5 determine
p(Ops| B, &) for any network structure By in U.

We note that our construction assumes that Assump-
tions 2 through 5 are consistent. We demonstrate con-
sistency in Section 7.

4 A General Metric for Complete
Data

In this section, we derive a general metric from As-
sumptions 1 through 5 and the following additional
assumption:

Assumption 6 (Complete Data) The database is
complete. That is, it contains no missing data.

We make this assumption only as a computa-
tional convenience.  The reader should recognize
that random-sample assumption and the informa-
tive priors developed in Section 3 can be used in
conjunction with well-known statistical techniques
to score incomplete databases as well. Such
techniques include filling in missing data based
on the data that is present [Titterington, 1976,
Spiegelhalter and Lauritzen, 1990], the EM algo-
rithm [Dempster et al., 1977], and Gibbs sampling
[Madigan and Raftery, 1994].



Given our assumptions, we obtain the following

lemmas.*

Lemma 3 (Posterior Parameter Independence)
Given the random-sample assumption (Assumption 1),
global parameter independence (Assumption {), and
the assumption of no missing data (Assumption 6),
we have

n

[I»(©(: )| D, B2 ¢)

i=1

p(eBs |D, Bgag) =

for all network structures Bs (p(B!|¢) > 0) and
databases D.

Lemma 4 (Posterior Parameter Modularity)

Given the random-sample assumption (Assumption 1),
global parameter independence (Assumption {), pa-
rameter modularity (Assumption 5), and the assump-
tion of no missing data (Assumption 6), if x; has the
same parents in any two network structures Bgy and

Byo (p(BY€) > 0,p(B%]€) > 0), then
p(@(l‘l, )|D B 1a€) —p(e(%’

for all databases D.

DID, By, €)

In the following lemma and in subsequent discus-
sions, we need the notion of a database D restricted
to X C U—that is the projection of database D onto
the subset X—denoted DX . For example, given do-
main U = {1, x5, 23} and database D = {C] = {&1 =
Lag=2,23=1},Co ={a1 = 2,20 = 2,23 = 1}}, we
have D{xl’x2} = {Cl = {1‘1 = l,l‘z = 2},02 = {1‘1 =
2, o — 2}}

Lemma 5 Let X be a subset of U, and Bs.
(p(B2|€) > 0) be a complete network structure for any
ordering where the variables in X come first. Given
the random-sample assumption (Assumption 1), global
parameter independence (Assumption 4), and the as-
sumption of no missing data (Assumption 6),

SC’ )

p(X|D, B, €) = p(X|D*, B

sco

for all databases D.

Readers familiar with the concept of d-separation will
recognize that Lemmas 3 and 5 can be readily obtained
from graphical manipulations applied to the Bayesian-
network representation of the random-sample assump-
tion and the assumption of global parameter indepen-
dence.

We can now derive the general metric.

“The proofs are simple and are omitted.

Theorem 6 Given a domain U, let Bs; be any net-
work structure for U and B, be a some complete net-
work structure for U. Then, given Assumptions 2
through 6,

n

DH,,@', Bh
w0810 =il TT s (9

i=1

for any database D.

Proof: From the rules of probability, we obtain

H/ (©ps| Dy, B ¢)

'Hp(l‘iﬂl‘u, o 2i-1y, D1, Ops, Bl €) dO g,
i=1

p(D|B",

For every z; with parents II; in B;, let Bsc 1, «, be a
complete network structure with variable ordering I1;,
z; followed by the remaining variables. By Assump-
tion 3, p(Bsc,m, .« |€) > 0. Using Assumption 1 and
Lemmas 3 and 4, we get

H/HP (2, 11;)| Dy, Bsem, o, €)

-plxa|Ily, Dy, ©(x, 1), Bsen, e, &) dOpBs

p(D|B",

Decomposing the integral over ©p; into integrals over
the individual parameter sets ©(x;,11;), and perform-
ing the integrations, we have

p(D|B?€) = H Hp(l‘umu, Dy, Bscn, e, €)
=1i=1

Also, using Lemma 5, we obtain

p(D|Bh &) = ﬁ 7 e Ml D Bsen, o, €)
B i—1i=1 P (Il | Dy, Bsem, e, €)
_ ﬁﬁp(l‘u,HUIDlH“x’,BSC’HM”g)
I=1i=1 p(Hll|DlHlaBSC,H,,x,,€)
n DH,,x, B -
_ HP( - SC e ) (15)
=1 p(D ! 5 z’g)
By likeli-

hood equivalence, we have that p(D|Bscm, »;,&) =

p(D|B%.,€). Consequently, for any subset X of U,
we obtain p(DX|Bsc m, x,,f) = p(DX|B%,, &) by sum-
ming over the variables in DUNX | Applying this result
to Equation 15, we get Equation 14. O

We call Equation 14 the Be (Bayesian likelihood
equivlent) metric.



5 Special-Case Metrics

Our general metric is powerful, because it tells us that
if we know how to compute p(DX|B%,, ¢) for any sub-
set X of U under the assumption that the domain con-
tains no structure (i.e., there are no independencies),
then we can compute the probability of any database
when there is structure. Therefore, the Be metric al-
lows us to leverage much of the work in the statistics
literature, as statisticians have long dealt with the for-
mer problem. In this section, we illustrate this claim
by deriving likelihood-equivalent metrics for the dis-
crete and (Gaussian cases.

5.1 The BDe Metric

Suppose all variables in U are discrete. Recall that
we use 0x =g |y =k, denote the multinomial parameter
corresponding to probability p(X = kx|Y = ky,€). In
addition, we use O x|y denote the collection of param-
eters Ox—p|v=ky for all states of sets X and V. If
Y is empty, we simply write @x. Thus, for example,
Oy = O, ...z, represents the multinomial parameters
of the joint space of U.

Let us assume that the parameter set @y has a Dirich-
let distribution when conditioned on a hypothesis cor-
responding to some complete network structure Bi,:

IS nlB?cvg -1
p(®x1,~~,xn|B H 61?1]7386 pr )
(16)
where NJ/BSC 1s the equivalent sample size of the Dirich-

let distribution associated with a complete network
structure B;.. DeGroot (1970, p. 50) shows that,
for any subset X of U, ©x also has a Dirichlet distri-
bution:

7 h _
(®X|Bsc, :HggBSCP()qumg) 1 )
X

Now, it is a well-known statistical result that, if a dis-
crete variable x with r states has a Dirichlet distribu-

tion with exponents N{ —1,..., N/ — 1, then
(> N (N, + N
p(Dle) = st T TP HEEE ) (g
(Zk:l i+ Ni) ( k)

k=1

where D 1s a database for variable £ and N, 1s the
number of times x takes on state k in D. Also, because
U 1s discrete, any subset X of U can also be thought
of as a single discrete variable with Hx,eX r; states.
Therefore, Equations 17 and 18 allow us to compute
each term in the Be metric (Equation 14). To express
the resulting metric for a given network structure By,
we use ¢; = Hx,el'[, r; to denote the number of states
of I; in By, and II; = j to denote that II; has assumed
the jth state, 7 =1,...,¢;.

Theorem 7 (BDe Metric) Given domain U, and
network structure By and database D for U, let Nijp
denote the number of times that x; = k and 1I; = j
in the database D; and let Ny = 22’:1 denote the
number of times that Il; = j wn a database D. Then,
if p(Ou | B, €) is Dirichlet with equivalent sample size
N’ for some complete network structure Bs., and if
Assumptions 2 through 6 hold, then

D, B! p(B" 1
p(D, BL[€) -1 v 25— N, +Nm)
i=1j= 1
N+ Ns
H ]k ]k) (19)
k=1 zyk)
where

z'/jk_N p(l‘l—k’ H —.7|Bsca )
Ny =3 Ny =N p(ll; = j|BE, €) (20)
k=1

Equations 19 and 20 are the BDe (Bayesian Dirichlet
likelihood equivalent) metric, originally derived in
Heckerman et al. (1994).

The assumption that p(©y|B~,, ) is Dirichlet is not
as arbitrary as it may seem at first glance. In discrete
domains, we can assume not only that the parameters
corresponding to each variable are independent, but
that the parameters corresponding to each state of ev-
ery variable’s parents are independent. Spiegelhalter
and Lauritzen (1990) call this added assumption lo-
cal independence. Geiger and Heckerman (in this pro-
ceedings) show that likelihood equivalence, structure
possibility, global and local parameter independence,
and the assumption that p(©¢ | B2, €) is positive imply
that p(©¢|B%,,£) must be Dirichlet.

5.2 The BGe Metric

Suppose that all variables in U = # are continu-
ous, and that the database is a random sample from
a multivariate-normal distribution. Let us assume
that the parameter set {f, W} has a normal-Wishart
distribution when conditioned on B!, for some com-
plete network structure B,.. Namely, assume that

p(f|W, B, €) is a multivariate-normal distribution

with mean fiy and precision matrix N, W (Nj; > 0);
and that p(W|B% ¢) is a Wishart distribution with
N degrees of freedom (N, > n — 1) and positive-
deﬁnite precision matrix 7y. That is,

r—n=1)/2, —1/2lr{ToW} (21)

p(W|B, &) = c [W|F

s¢?

where ¢ is a normalization constant [DeGroot, 1970,

p. b7].



It 18 well known that the normal-Wishart distribu-
tion is a conjugate family for multivariate-normal sam-
pling (e.g., DeGroot, 1970, p. 178). Given a database
D = {&1,...,25}, let Z, and S,, denote its sam-
ple mean and variance, respectively. Then, given the
normal-Wishart prior we have described, the posterior
density p(@i, W|D, B%  £) is also a normal-Wishart dis-
tribution. In particular, p(F|W, D, B2 ¢) is multivari-
ate normal with mean vector i, given by

= i+ (22

N ;/i +m

=

and precision matrix (N;j +m)W; and p(W|D, B2 ¢)

is a Wishart distribution with Nt 4+ m degrees of free-
dom and precision matrix 7,, given by

T =Tyt St B F Ve — F) (23
m =40+ m+w(ﬂo—xm)(ﬂ0_l’m) ( )

From these equations, we see that N% and N7 can be
thought of as equivalent sample sizes for the mean pg
and the precision matrix Tj, respectively.

Given domain U = {&1,...,4,}, subset X of U, and
vector § = (y1,..-,Yn), let % denote the vector
formed by the components y; of i such that z; € X.
Similarly, given matrix M, let A% denote the subma-
trix of M containing elements m;; such that z;,z; €
X. It is well known that if D is a random sample
from an n-dimensional multivariate-normal distribu-
tion whose parameters {fi, W} have a normal-Wishart
distribution with constants fiy, N;/i’ Ty and Ni., then

DX is a random sample from an | X |-dimensional mul-
tivariate distribution with parameters {i* WX}, and
these parameters have normal-Wishart distribution
with constants i}, N;/i’ T and N. Furthermore,

the formula for p(D|B%,, £) given the normal-Wishart
prior is known (e.g., the probability may be obtained
by integrating the left-hand-side of Equation 8, De-
Groot, 1970, p. 179, over the parameters). Conse-
quently, the evaluation of p(D* |B%, ) in Equation 14

1s straightforward.

Theorem 8 (BGe Metric) Given do-
main ¥ = {xy,...,2,}, assume p(ji, W|B.. €) is an
n-dimensional normal-Wishart distribution with con-
stants fig, N5, Ty, and Ni.. Given a database D =
{C4,...,Cn} and a subsel X of & with | elements,
Assumptions 2 through 6 imply the Be metric, where
each term is given by

N\

p(DX|BL, &) = n="/? (/7“) (24)
Nz+m

o(l, Ny +m) |T0X|N2_’T|Tn)§|_N’T2+m

c(l, N})

where l
Ny +1—1
LNy =1 —+t——— 25
wnp =IIr (=) e
and T,, s the preciston matriz of the posterior

normal-Wishart distribution given by Equation 23.

The Be metric in combination with Equation 24
defines the BGe (Bayesian Gaussian likelihood
equivalent) metric, originally derived in Geiger and
Heckerman (1994). We note that assumptions similar
to those used to show the inevitability of the Dirich-
let distribution for discrete domains imply that the
normal-Wishart assumption is inevitable for Gaussian
domains (see Geiger and Heckerman in this proceed-
ings).

The BDe and BGe metrics may be combined to score
domains containing both discrete variables and con-
tinuous variables. Namely, let U = Uy U U, where
all variables in Uy and U, are discrete and contin-
uous, respectively. Suppose that the observations
of Uy in the database are a random sample from
a multivariate-discrete distribution, and the observa-
tions of the U, given each state of Uy are a random
sample from a multivariate-normal distribution. Fi-
nally, suppose that O, has a Dirichlet distribution,
and that Oy 7,z has a normal-Wishart distribution
for every state k of Ug. Then, we can apply the Be met-
ric to any network structure B; where the variables in
Uy precede the variables in U, using Equation 18 to
evaluate terms for discrete variables, and Equations 24
and 25 to evaluate terms for continuous variables.

6 Informative Priors from a Prior
Network

Given our assumptions, p(Op|B2, ¢) determines a
Bayesian scoring metric. In this section, we discuss
the assessment of this distribution.

For discrete domains, we can assess p(Oy|B2, &) by
assessing (1) the joint probability distribution for the
first cases to be seen in the database p(U|B%, ¢) and (2)
the equivalent sample size N’ for the domain. Meth-
ods for assessing N’ are discussed in (e.g.) Heckerman
et al. (1995). To assess p(U|B% £), we can construct a
Bayesian network for the first case to be seen. We call
this Bayesian network a prior network. The unusual
aspect of this assessment is the conditioning hypothe-
sis B (see Heckerman et al. [1995] for a discussion).

We can assess p(Oy|B% €) in the Gaussian case us-

ing a prior network as well. In this case, however,
we require two equivalent samples sizes (N;’j > 0
and N7 > n —1). The details are discussed in last
year’s proceedings [Geiger and Heckerman, 1994]. Ex-
amples of the assessment of p(@y|B.., €) for discrete



and Gaussian domains, and examples of the metrics
that result from these assessments are also given in
last year’s proceedings.

7 Consistency of the Assumptions

The assumptions of likelihood equivalence, structure
possibility, global parameter independence, and pa-
rameter modularity may not be consistent. In particu-
lar, the assumptions of global parameter independence
and modularity are constraints on parameter densities
among individual network structures, whereas likeli-
hood equivalence is a constraint on parameter densi-
ties among network-structure equivalence classes. Fur-
thermore, our choices p(Oy|B%,¢) is Dirichlet and

(A, W|Bsc, ) is normal-Wishart may not be consis-
tent with the assumptions of likelihood equivalence
and global parameter independence. In this section,
we demonstrate consistency in each case.

7.1 Consistency of the Dirichlet Assumption

First, we show that the assumption p(©y|B2,¢) is
Dlrlchlet 1s consistent with the assumptions of likeli-
hood equivalence and global parameter independence
for complete network structures.

To see the potential for inconsistency, consider again
our approach for constructing priors in the two-binary-
variable domain. Suppose we choose the density

C

C

= 0.(1—0,)

where ¢ is a normalization constant. By Equations 12
and 13 we obtain

= (0ey + 0ug))

p(gxa 9y|xa 9y|f|B£L—>ya€) =cC

for the network structure x — y. This density satisfies
the assumption of global (and local) parameter inde-
pendence. Using likelihood equivalence, however, we
have for the network structure y — «

p(fy, Ozly, x|y|B <—y’€) H =
c-0 ( _gy)
(Oy0s1y + (1 = 0y)0r15) (1 — (0y 01y + (1 = 0y)0s15))

This density satisfies neither global (nor local) param-
eter independence.

When p(©y|B%,€) is Dirichlet, however, likelihood
equivalence implies global (and local) parameter in-
dependence for all complete network structures. This
result is proved for the two-variable case in Dawid and

Lauritzen (1993, Lemma 7.2) and for the general case
in Heckerman et al. (1995, Theorem 3), which we sum-
marize here.

Theorem 9 Let Bs. be any complete network struc-
ture for domain U = {x1,...,2,}. The Jacobian for
the transformation from Opy to Op,. 1s

n—1 "
B,. — H H [glexl,...,x,_l][nj:""l ril-t (26)

i=1o1,...,2;

Theorem 10 Given a domain U = {x1,...,2,}, tf
the parameters Oy have a Dirichlet distribution with

) ,
parameters Ny . —that is,

p(Oulé) =c-

then, for any complete network structure By, in U, the
density p(Op;c|€) satisfies global and local parameter
independence. In particular,

p(eBsc|€) :C'H H [gxllth,

i=1xy,...,7;

1‘1—1]

where

/ _
Nx,|x1,...,x,_1 - Z

Tit1,-Tn

Proof: The result follows by multiplying the right-

hand-side of Equation 27 by the Jacobian in Theo-

rem 9, using the relation 0, . ». = [[72; Ooijer,. o
. O

and collecting powers of 0y |0, 2.,

It is interesting to note that each set of conditional

parameters O [, also has a Dirichlet distribu-
tion.

Ti—1

7.2 Consistency of the Normal-Wishart
Assumption

Next, we show that the assumption p(i, W|B2, ¢) is
normal-Wishart is consistent with the assumptions of
likelihood equivalence and global parameter indepen-
dence for complete network structures.

Theorem 11 The Jacobian for the change of vari-
ables from W to {¥, B} is given by

n

H ey (30)

Jop = |0W/07B| =

Proof: Let J(i) denote the Jacobian for the first ¢
variables in W. Then J(7) has the following form:

J(i—1) 0 0
J(z) = 0 _UL i—1,4—1 01 (31)
0 0 -



where [}, ;. is the identity matrix of size k£ x k. Thus,
we have

1
i1
v;

J(i) =

~J(E=1) (32)
which gives Equation 30. O

Theorem 12 The Jacobian for the change of vari-
ables from [i to m s given by Jz = 1.

Proof: From Equation 6, J is the determinant of a
triangular matrix whose diagonal elements are 1. O

Theorem 13 If {{i, W} has a normal-Wishart distri-
bution giwen background information &, then

n

p(m, 7, BI¢) = T[] p(mi, vi, Bil€)

i=1

Proof: To prove the theorem, we factor p(m|v, B, &)
and p(¥, B|f) separately. By assumption, we know
that p(f|W) is a multivariate-normal distribution with
mean po and precision matrix N,W. Transforming
this result to conditional distributions for u;, we ob-
tain

1/2

N
puilps, ..o pic1, 0, B E) = ( - )

2mv;

. 2
i—1
(ﬂz’ — Hoi = iy byi(py — ﬂoj))
- 7
2v0; [N}

- exp

fori=1,...,n. Letting mo; = po; — 23;11 bjipo; for
each i, we get

1/2

NL
p(/'tl|/'tla .. 'a/'Li—laUaBag) = (_N)

2mv;
Cexp 4 (mi = moi)®
Pl 20/,

Thus, collecting terms for each ¢ and using the Jaco-
bian Jz = 1, we have

n

p(TTl|U,B,€) :Hn(mOi’Né/vi) (33)

i=1

In addition, by assumption, we have
p(W|€) — C|W|(a—n—1)/26—1/2tT{T0W} (34)

From Equation 4, we have

n

W= wi- 1= ]!

i=1

so that the determinant in Equation 34 factors as a
function of i. Also, Equation 4 implies (by induction)

that each element w;; in W is a sum of terms each be-
ing a function of b_;' and v;. Consequently, the exponent
in Equation 34 factors as a function of i. Thus, given
the Jacobian Jy g, which also factors as a function of
1, we obtain

n

p(U,BE) = Hp(vl’l_)”g) (35)

i=1

Equations 33 and 35 imply the theorem. O

7.3 Consistency of Likelihood Equivalence,
Structure Possibility, Parameter
Independence, and Parameter
Modularity

As mentioned, the assumptions of likelihood equiva-
lence, structure possibility, global parameter indepen-
dence, and parameter modularity may not be consis-
tent. To understand the potential for inconsistency,
note that we obtained the Be metric (Equation 14)
for all network structures using likelihood equivalence
applied only to complete network structures in com-
bination with the assumptions of structure possibil-
ity, global parameter independence, parameter mod-
ularity. Thus, it could be that the Be metric for in-
complete network structures is not likelihood equiva-
lent. Nonetheless, the following theorem shows that
the Be metric is likelihood equivalent for all network
structures—that 1is, given structure possibility, global
parameter independence, and parameter modularity,
likelihood equivalence for incomplete structures is im-
plied by likelihood equivalence for complete network
structures. Consequently, the assumptions are consis-
tent.

Theorem 14 (Likelihood Equivalence)

If Bs1 and Bgs are equivalent network structures for
domain U, then, for all databases D, p(D|B% &) =
p(D|Bh, £), where each likelihood is computed by the
Be metric (Equation 14).

Proof: By Theorem 1, we know that a network struc-
ture can be transformed into an equivalent structure
by a series of arc reversals. Thus, we can demonstrate
likelihood equivalence in general if we can do so for the
case where two equivalent structures differ by a single
arc reversal. So, let Bs; and Bso be two equivalent
network structures that differ only in the direction of
the arc between z; and #; (say ; — «; in B,1). Let R
be the set of parents of z; in Bs;. By Theorem 1, we
know that R U {x;} is the set of parents of z; in B,
R is the set of parents of z; in B,s, and RU{x;} is the
set of parents of x; in B,s. Because the two structures
differ only in the reversal of a single arc, the only terms
in the product of Equation 14 that can differ are those



involving z; and x;. For By, these terms are

p(D”"| By,

sC)

p(DE|BL.,€)

sco

) p(D* | By

s5c)

p(D* B, €)

sco

) _ p(Dx,ij|Bh )

sC)

p(DE|BL.,€)

sco

whereas for B;s, they are

p(D"+7| B!

s¢)

p(DE|BL.,€)

sco

) (D" 7| B

s¢?

p(D"i 8Bk, €)

sc)

s¢)

p(DE|BL.,€)

sco

) _ p(D77 B, 6)

These terms are equal, and consequently, so are the

likelithoods. O
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