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ABSTRACT

Gestural input can greatly improve computing experiences
away from the desktop, and has the potential to provide
always-available access to computing. Specifically, ac-
celerometers and gyroscopes worn on the arm (e.g., in a
wristwatch) can sense arm gestures, enabling natural input
in untethered scenarios. Two core components of any ges-
ture recognition system are detecting when a gesture is oc-
curring and classifying which gesture a person has performed.
In previous work, accurate detection has required significant
computation, and high-accuracy classification has come at the
cost of training the system on a per-user basis. In this note,
we present a gesture detection method whose computational
complexity does not depend on the duration of the gesture,
and describe a novel method for recognizing gestures with
only a single example from a new user.
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INTRODUCTION

Gestural input has the potential to greatly expand scenarios in
which interacting with computing is convenient, feasible, and
fun. Gesture recognition has already been widely deployed
using a variety of sensors including touch screens, pen track-
ers, hand-held motion controllers, and depth-camera-based
skeleton trackers. Another type of gestural input with a wide
variety of applications is arm movement detected by inertial
sensors embedded in wearable devices (e.g., a wristwatch).
This modality has several attractive properties: it can be per-
formed one-handed, worn continuously, leaves the hands free,
and does not require sensors in the environment. In order
for gesture recognition from arm-worn inertial sensors to be
practical, however, systems must be able to efficiently and
accurately recognize gestures with as little training from new
users as possible.
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Two specific problems in gesture recognition are detecting
when a gesture is occurring and classifying which gesture a
person has performed. A key challenge in gesture detection
is duration ambiguity: users naturally perform gestures at dif-
ferent speeds, making it impossible to know how many sensor
measurements compose an instance of a gesture. This ambi-
guity introduces significant computational cost, since the en-
tire range of possible gesture durations must be evaluated.
Another significant challenge in gesture recognition is to re-
duce or eliminate the need for new users to train the system.
Previous approaches [5, 11] suffer from significant drops in
accuracy when presented with a user not in the training set.
Variations in gestures occur among users due to physical
(such as the user’s height or arm length) or stylistic (such as
the the shape of the gesture) differences. These variations,
however, often result in only a linear transformation of the
input space. For example, two users of different heights per-
forming the same gesture will move their arms at different
speeds, resulting in a scaling of the motion derivatives.
In this note, we present an approach to gesture recognition
that addresses these issues of duration ambiguity and new
user training. Our key insights are 1) by representing each
gesture using a hidden Markov model (HMM), we may effi-
ciently evaluate the range of possible durations by exploiting
redundant computations and 2) we can learn a user’s unique
variations from a single example and use it to map their input
space to a known user in the training set. We evaluate our
method through an eight-person experiment where partici-
pants perform gestures while wearing a three-axis accelerom-
eter and three-axis gyroscope on their forearm. Our results
show that our user mapping vastly improves detection accu-
racy and achieves classification accuracy similar to models
trained separately for each user.

RELATED WORK

Other detection methods search the entire range of gesture
durations. Feature similarity search [1, 2, 6] compares a tem-
plated set of features to one computed over all possible ges-
ture durations at each time step. Wilson et al. [10] use HMMs,
as we do, but compute the likelihood of each possible sub-
sequence. The computational complexity of these methods,
however, depends on the range of durations over which a ges-
ture can occur. As such, detection can be computationally un-
reasonable, especially if the sensor has a high sampling rate
or the range of possible gesture durations is large.
Many vision-based methods does not evaluate the range of
possible durations at all. Lee and Kim [4] and Peng and



Qian [7] use non-gesture models in an HMM network to per-
form detection. Deng and Tsui [3] compute the likelihood of
all possible subsequences of observations, not just the ones
within a known range. Such methods perform well for vision-
based detection, but do not retain any notion of the gesture
duration and understandably suffer from false positives.
User-invariant gesture recognition has been largely un-
addressed. Most detection work do not address it at all, and
classification work suffers from a gap in accuracy. Lui et
al. [5] report a drop in classification accuracy (almost 25%)
when evaluating their method on users not in the training set.
They mention that a larger training set should relieve such
limitations, but capturing such a training set requires addi-
tional resources. Wu et al. [11] report a drop from 95% to
89%. This gap, though seemingly small, represents enough
incorrect classifications to make an input system ineffective.
In contrast, our approach matches new users to ones in the
training set using a single example of the gesture. By doing
so, we achieve accurate recognition without the need for a
large training set.

RECOGNITION USING HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are a popular tool for ges-
ture recognition due to their temporal nature. HMMs con-
taining N states are represented by an N × 1 vector π of
initial state probabilities, an N ×N matrix A of transition
probabilities, and a set B of N emission densities. Infer-
ence is efficiently computed with the Forwards-Backwards
algorithm [8]. We represent each gesture with a left-to-right
HMM. In left-to-right HMMs, each hidden state has only two
non-zero transition likelihoods: one to stay in the current
state, and one to transition to the next. (see [8] for details).
A gesture is a subsequence of observations Os:e={os,. . .,oe}
with a duration D=e−s (where s and e indicate the start and
end time, respectively). In our scenario, each observation ot
at time t is a 6 × 1 vector containing 3 accelerometer and 3
gyroscope values. If s and e are known, the HMM that yields
the largest probability is the inferred gesture.
Often, the start and end times are not known, and thus the ges-
ture must be detected. Detection may be achieved by identi-
fying samples with a high likelihood of being in the end state

p(ze = N,Os:e|λg) (1)

where ze is the hidden state at the end time e,N is the number
of hidden states, and λg is the HMM model for gesture g. If
the starting time s is known, then Eq. 1 may be computed in
O(N2D) time using the forward-backward algorithm.
People naturally perform gestures at different speeds, how-
ever, and thus the duration D is not constant. A gesture dura-
tion can vary over a fixed range from Dmin to Dmax. Even
with this assumption, however, the computational complexity
is high since we would need to evaluate all possible sequences
of length Dmin to Dmax at each time instance t. In the worst
case, Dmin = 1 and evaluating all subsequences takes time

O(N2
Dmax∑
j=1

j) = O(N2D2). (2)

Fast Detection Over a Range of Subsequences

To perform detection, we wish to evaluate Eq. 1 for all pos-
sible subsequence lengths from Dmin to Dmax. Let tm =
t−Dmax and tr = t−Dmin. We consider a gesture spotted
if

tm∑
k=tr

p(zt = N,Ok:t|λg) > Tg (3)

where Tg is a threshold selected empirically. Eq. 3 represents
the likelihood that a gesture within the desired range ended at
time t. After the end time is known, we identify the start state
using Viterbi backtracking.
Deng and Tsui [3] compute the sum of all subsequences from
t = 1 to t by assuming that each subsequence is independent:

t−1∑
k=1

p(Otk:t|λg) = p(O1:t ∪ . . . ∪Ot−1:t|λg). (4)

They compute Eq. 4 using a vector
φt(i) = p(zt = i, O1:t ∪ . . . ∪Ot−1:t|λ) (5)

that is defined sequentially by

φ1(i) = πibi(ot) (6)

φt(i) =

πi +

N∑
j=1

φt−1(j)Aji

 bi(ot) , (7)

where Aji is the HMM’s transition likelihood, πi is the initial
probability of state i, and bi(ot) is the probability of observa-
tion ot given hidden state i. They consider a gesture spotted
when the following is greater than some threshold.

φt(N) =

t−1∑
k=1

p(zt = N,Otk:t|λg). (8)

Note the difference between Eq. 8 and Eq. 3: Deng and Tsui
compute the likelihood of all possible subsequences, while
we examine the likelihood of only a range of subsequences.
This is a key difference: Deng and Tsui assume subsequences
that are too short or too long to be real gestures will have low
likelihoods as modeled by the HMM. We show later this can
result in a larger number of errors.
We compute Eq. 3 using two instances from Deng and Tsui’s
method: one that starts at time tm and one that starts at tr +1

r∑
k=m

p(Otk:t|λg) = p(Otm:t∪. . .∪Ot−1:t|λg)

− p(Otr+1:t∪. . .∪Ot−1:t|λg). (9)

The key to efficient computation is to update Eq. 9 at time t+1
without re-running the entire algorithm. We do so according
to:

r+1∑
k=m+1

p(Otk:t+1) = p(Otm:t+1∪. . .∪Ot:t+1)

− p(Otr+1:t+1∪. . .∪Ot:t+1)

+ p(Otr+1:t+1)−p(Otm:t+1) (10)
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Figure 1. An overview of estimating the map between a test user’s cal-
ibration gesture Ou

g (red) and a training user’s canonical example Õb
g

(blue). We temporally align the data (b) using dynamic time warping,
and estimate the map (c) using linear regression. We use the map to
transform inputs between the test user u and the training user b, en-
abling accurate recognition with only a single calibration gesture.

(we have dropped the λg for convenience). Note that the
first two terms on the right hand side of Eq. 10 are com-
puted by applying the update step in Eq. 7 to the values com-
puted at time t, and takes O(N2) time. The last two terms
p(Otr+1:t+1) and p(Otm:t+1) are simply the likelihoods of a
single sequence, and may be computed in O(N2D) using the
forward-backward algorithm.
Under specific numeric conditions we may improve our algo-
rithm to run in O(N3), completely independent of the dura-
tion of the gesture or range of possible subsequences, by ef-
ficiently computing p(Otr+1:t+1) and p(Otm:t+1) using val-
ues at the previous time instance. For the interested reader,
we have included this proof in supplementary material1.

Refining Gesture Candidates

Each time the value of Eq. 3 goes above Tg a gesture is con-
sidered detected. Often, Eq. 3 is greater than the threshold for
several samples near the end of the gesture, resulting in multi-
ple detections. Stack-based approaches [3, 4] keep either the
longest or most likely detected gesture. We use similar logic:
candidates are buffered until Eq. 3 drops below the threshold,
and we return the candidate with the highest likelihood. In
addition, we disregard candidates whose duration is less than
Dmin or greater than Dmax to reduce errors.

USER-INVARIANT GESTURE RECOGNITION

We represent the physical and stylistic differences between
users as a linear transformation of the accelerometer and gy-
roscope measurements. Given a new user u, we assume there
exists a similar user, or “buddy”, b in the training set. For
each gesture g, we map the observations ot from the new user
to the buddy’s input space using a linear transformation f bg

f bg (ot) = Kot +w , (11)

where K is a 6×6 diagonal matrix and w is a 6×1 vector. Note
that K and w are unique to each user-buddy-gesture triple.
If buddy b and map f bg are known, then the new user’s ges-
tures may be recognized by transforming their input before
computing the likelihood. Eq. 1 becomes

p(ze = N, f bg (os), . . . , f
b
g (oe)|λbg) , (12)

where λbg is the HMM trained for gesture g and user b.

Fig. 1 illustrates our method for estimating the map f bg be-
tween a new user and a given buddy. We compute a canonical
example Õb

g of the buddy’s gesture g by temporally aligning
all of their training samples using dynamic time warping [9]
and averaging the results. We align a single calibration ges-
ture Ou

g (red) from the user the buddy’s canonical example
1http://research.microsoft.com/cue/chi12gestures
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Figure 2. Gesture classification accuracy with (red) and without (blue)
our user-specific mapping method. Error bars show standard deviation.

Õb
g (blue) using dynamic time warping. To do so, however,

requires similar amplitudes from both examples, which is ex-
actly the function of f bg . We address this by normalizing the
amplitude of both Õb

g and Ou
g , and using the difference of ab-

solute values as the dynamic time warping distance. We then
use the offset from dynamic time warping to temporally align
the original calibration gesture and the canonical example.
Finally, we use least-squares linear regression to estimate the
parameters to f bg .

Note that the linear transformation f bg is applied to the ampli-
tude alone, and recognition is performed using Eq. 12 without
temporal alignment (i.e., no dynamic time warping is used
during recognition). HMMs are robust to such temporal vari-
ations (such as speed), but not to amplitude differences, and
thus temporally aligning the query samples is unnecessary.

Selecting The Best Buddy

We wish to know which training user will provide the best
recognition for a test user. For classification, we pick b as the
training user whose models provide the highest likelihood.
For detection, however, we achieve better results by selecting
different buddies for each gesture, and do so empirically. We
plan to explore optimal buddy selection as future work.

RESULTS

We evaluate our method on a data set of eight different
gestures collected from eight participants. The gesture set
included circle shapes in the air (clockwise and counter-
clockwise), a wave of the hand, swatting (up, left, and
right), pointing, and touching the head. A three-axis ST Mi-
cro LIS331DLH accelerometer and a three-axis ST Micro
L3G4200D gyroscope (both sampled at 15Hz) were attached
to the participant’s forearm. Data was sent to a PC via Blue-
tooth. Each participant performed ten examples of each ges-
ture for training, then ten more for testing.

Gesture Classification

First, we evaluate our user-invariant method on gesture clas-
sification by performing a leave-one-out test: for each user,
we use the other seven users as a training set. To increase ro-
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Figure 3. Detection accuracy using our (red) and Deng and Tsui’s [3]
(blue) methods with user-trained models (i.e., each user provides their
own training data). Error bars show standard deviation. Our method
achieves a higher accuracy by evaluating gestures within a known range
of possible durations. Models not including training data from the test
user (purple) have poor detection accuracy. Using our mapping (green)
vastly increases the detection accuracy, above even the user-trained
method of Deng and Tsui.

bustness, we map the entire training set to the buddy b before
training the model λbg . This increases the number of training
examples for each model.
Fig. 2 shows the classification accuracy for all eight users
without mapping (blue) and using our method (red). Clas-
sification accuracy is the ratio of correctly classified gestures
to the total number of gestures performed. An average ac-
curacy of 90% (sd 5.29) is achieved with models trained
without mapping. Other methods [5, 11] report similar re-
sults when evaluating on users not in the training set. By
learning the transformation between user spaces, our method
achieves over 98% accuracy for all users and a mean accuracy
of 99.8% (sd 0.4).
To measure the statistical significance of our method, we
compared the distributions of the classification results for the
user-specific mapping and non-mapped results using a two-
sample t-test; the distributions differ with with p < 0.001.

Gesture Detection

We hand-label the start and end of each gesture to qualita-
tively evaluate our method. The detection accuracy is the ra-
tio of correct spots to all detection results (false negatives,
true and false positives).
Fig. 3 shows the detection accuracy of our approach (red) and
that of Deng and Tsui [3] (blue) using models trained on each
user. Since we only consider gestures that occur within a spe-
cific range, our log-likelihood is more responsive and results
in fewer errors. Overall, we achieve an average of 96% ac-
curacy (standard deviation of 3.6), compared to 80% from
Deng and Tsui (standard deviation of 9.5). A two-sample
t-test shows that the detection results are from different dis-
tributions with p < 0.001.
Fig. 3 also shows detection accuracy when the user is not
in the training set (purple) and after applying our mapping
(green). Without mapping, the accuracy is quite poor (aver-

age 43%, sd 14.5). Our approach achieves an average of 84%
accuracy (sd 7.7), higher than even the user-trained models
from Deng and Tsui’s [3] (blue). A two-sample t-test at shows
that the detection results are from different distributions with
p < 0.001. User-specific mapping provides a clear improve-
ment when faced with users not in the training data set.

CONCLUSION

Gesture recognition has been too limited by user-specific
variabilities and computational challenges for use in real-
world systems. We have presented an accurate, efficient
method that improves both gesture detection and gesture clas-
sification by transforming the input space to a user already in
the training set. In addition, our method efficiently searches
the range of possible gesture durations by exploiting redun-
dant computations. Our mapped models classify gestures
with accuracy comparable to those trained by the specific
user, but does so with only a single calibration example. Our
method vastly improves detection accuracy over previous ap-
proaches, especially for users not in the training set.
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