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ABSTRACT
This paper considers the design of agent strategies for decid-
ing whether to help other members of a group with whom an
agent is engaged in a collaborative activity. Three character-
istics of collaborative planning must be addressed by these
decision-making strategies: agents may have only partial in-
formation about their partners’ plans for sub-tasks of the
collaborative activity; the effectiveness of helping may not
be known a priori; and, helping actions have some associated
cost. The paper proposes a novel probabilistic representa-
tion of other agents’ beliefs about the recipes selected for
their own or for the group activity, given partial informa-
tion. This representation is compact, and thus makes rea-
soning about helpful behavior tractable. The paper presents
a decision-theoretic mechanism that uses this representa-
tion to make decisions about two kinds of helpful actions:
communicating information relevant to a partner’s plans for
some sub-action, and adding domain actions that are helpful
to other agent(s) into the collaborative plan. This mecha-
nism includes a set of rules for reasoning about the utility
of helpful actions and the cost incurred by doing them. It
was tested using a multi-agent test-bed with configurations
that varied agents’ uncertainty about the world, their un-
certainty about each others’ capabilities or resources, and
the cost of helpful behavior. In all cases, agents using the
decision-theoretic mechanism to decide whether to help out-
performed agents using purely axiomatic rules.
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1. INTRODUCTION
Collaboration is a special type of group activity in which

agents work together toward a shared goal, typically the
performance of a collective action. The participants in a
collaborative activity form coordinated, mutually support-
ive plans. They make commitments to the group activity, to
doing some of the constituent tasks of that activity, and to
other participants’ ability to accomplish other constituent
actions [6, 10, 9, 5]. As in most multi-agent task settings,
the collaborative activity is carried out in a world that is
constantly changing, the participants’ knowledge about the
world is inherently incomplete, individuals have (sensory)
access to different parts of the world, and their beliefs–
including their beliefs about how best to perform an action–
may differ.

Although the participants in a collaboration have an in-
centive to help others by the nature of their commitments
to the shared goal and to each others’ actions in service of
satisfying that goal, a decision about whether to help still
requires deliberation. Helpful actions result in some cost to
the agent helping, and they may incur costs for the group ac-
tivity as a whole. Usually costs include resources consumed
in communicating, lost opportunities to do other activities,
and the need for group members to adapt their individual
plans to the helpful act or its effects. Thus, even in collabo-
rative settings, agents must weigh the trade-off between the
potential benefit to the group of some helpful behavior and
its associated costs.

This paper addresses the intertwined problems of recog-
nizing when help is needed in a collaboration and deter-
mining whether to help, taking into account the costs of a
helpful action and its possible effects on the beliefs and com-
mitments of group members. It is specifically concerned with
collaborative activities that take place in settings in which
there is uncertainty about agents’ capabilities and about the
state of the world.

Throughout the paper, we will illustrate various aspects
of this helpful-behavior decision-making problem using an
example of two agents, Alice and Bob, who are cooking for
a dinner party. Alice intends to make the entree and Bob
intends to make an appetizer. Following the SharedPlans
formalization of collaborative activity [6], we assume that
only the agents performing some subactivity know the full
details of how they are doing that activity. Thus, Alice may
not know what appetizer Bob is preparing, and Bob may
have limited information about Alice’s entree. Suppose Alice
believes that Bob may be preparing stuffed mushrooms or
some type of salad, and she discovers that one of the guests



is allergic to mushrooms. Alice needs to decide whether to
communicate this information to Bob. Her entree recipe
may be ruined if she takes too long to find Bob and inform
him. She needs to reason not only about this cost, but
also about the likelihood that Bob’s appetizer recipe involves
mushrooms.

We consider two distinct types of helpful behavior: per-
forming a helpful action that is outside the scope of an
agent’s individual responsibility in the collaborative activity
(e.g., Alice’s buying an ingredient for Bob’s appetizer); and,
communicative actions, including two sub-types: informing
actions (e.g., Alice’s telling Bob that one of the guests is
allergic to mushrooms) and asking actions (e.g., Alice’s in-
quiring of Bob whether any of the dinner guests are vegetar-
ian). We provide a general decision-theoretic mechanism for
reasoning about the utility of performing each of these be-
haviors in the context of agents’ commitment to the group
activity. This mechanism was evaluated empirically using
the Colored Trails platform [7] configured to represent sit-
uations in which individual agents perform different tasks,
group success depends on joint performance, and the world
is dynamic. The experiments varied the cost of helpful be-
havior as well as agents’ uncertainty about the world and
about the capabilities of other agents with which they col-
laborated. In all cases, agents performed better using this
mechanism to make helpful-behavior decisions than using
purely axiomatic methods.

The paper makes three major contributions. First, it ex-
pands the SharedPlan formalization by defining a set of rules
that formalize the way that helpful behavior arises from the
commitments and intentions of the participants in a collab-
orative activity. This extension formally integrates decision
theoretic and BDI models. It thus fills a gap in teamwork
theories by incorporating costs and uncertainty into a BDI
model (SharedPlans) in a principled and general way, and
by making decision theoretic reasoning tractable despite in-
complete information. Second, it defines a decision-theoretic
mechanism that deploys these rules to refine agents’ plans,
adding helpful behavior actions when appropriate. Third, it
defines a novel compact representation, Probabilistic Recipe
Trees (PRT), which is used by the mechanism to accom-
modate differences among agents’ beliefs about the possi-
ble recipes that other agents are using. Without this com-
pact representation of uncertainty, integration of BDI and
decision-theoretic models would require intractable compu-
tation of a complete policy for all of the agents in a collab-
oration.

In Section 3, we present basic definitions for constructs
used in our model. Section 4 presents a novel probabilistic
representation of the possible recipes selected by a group.
Section 5 defines a set of rules for engaging in helpful be-
havior that rely on this representation. Section 6 describes
the empirical evaluation of the decision-theoretic model.

2. RELATED WORK
Several formalizations have been proposed to model col-

laboration and teamwork [8, 6, 1, 10, 2, 9], all of which
recognize communication as a major requirement for suc-
cessful and cohesive collaborative activity. The research de-
scribed in this paper differs in considering communication
as a special form of helpful behavior and then examining
the general question of when to help. In addition, it pro-
vides a decision-theoretic rather than axiomatic approach

to modeling helpful-behavior decisions.
Several prior approaches have axiomatized decisions to

communicate or to help in the context of formalizations of
collaboration in terms of the intentions, beliefs and mutual
beliefs of the participants. Cohen and Levesque’s axiomatic
approach stipulates that agents communicate to the group
whenever a goal is discovered impossible to achieve [1, 10].
Fan et al. extend the set of logical axioms to provide for
proactive information exchange (informing and asking for
information) [3]. These approaches do not consider the cost
of communication nor do they provide mechanisms for help-
ful domain actions that improve the utility of plans.

The SharedPlan (SP) formalization includes axioms that
entail adopting intentions for helpful acts, or lead to com-
munication based on certain kinds of intentions in the SP
specification [6]. These axioms represent both the benefit
of a helpful action to the group activity and the costs to
the individual performing the helpful action. However, they
do not handle uncertainty regarding the world or agents’
capabilities. Furthermore, the specification provides no in-
sight on how these axioms can be realized or implemented in
agent design, whereas this paper provides a decision-making
mechanism.

STEAM, which drew on both the joint intensions [1, 10]
and the SharedPlans [6] theories, supported the construc-
tion of agents able to collaborate in complex, real world do-
mains of military training and robot soccer [13]. It included
a decision-theoretic mechanism for communication which
modeled the cost-benefit trade-off associated with commu-
nicating information to the full group. This mechanism con-
structed a decision-tree for each agent every time a commu-
nication action was considered. This had significant com-
plexity costs for agents that needed to consider many such
actions. The mechanism defined in this paper has lower
complexity and is more general.

Work on decentralized approaches to multi-agent planning
have provided models that consider the cost-benefit trade-
offs of communication among agents [4]. As helpful behavior
can emerge between any agents in the collaborative activ-
ity, the helpful behavior needs to be directly embedded in
the joint policy of the whole group of agents, making it ex-
ponential in the size of the history of agents’ observations.
Refining agents’ plans in this setting means updating their
entire policy every time a helpful action is considered, which
is infeasible.

3. BASIC DEFINITIONS
In this section, we briefly describe key aspects of the

SharedPlan formalization of collaborative activity and de-
fine other constructs we will be using through the paper. A
SharedPlan comprises a set of beliefs about the actions to be
performed and intentions of the agents working together in
a collaborative activity. The formalization uses the concept
of a recipe as a set of sub-actions and constraints such that
performing those sub-actions under those constraints consti-
tutes completing the action [11]. The actions in the recipe
may be basic-level actions (executable at will) or complex
actions that decompose into other complex or basic-level ac-
tions.

The SharedPlan formalization deploys two intentional at-
titudes, intending to (do an action) and intending that (a
proposition hold). Intentions-to are used to represent an
agent’s commitments to its own actions, whether for in-



Context(Cα, G1, α, T ) the believed context of action α
cba.basic(G1, β, Cβ) probability that can bring about action β
cost.basic(G1, G2, β, Cβ) cost of action β
V (G1, α, Cα) value of action α

Table 1: Summary of predicates and functions

dividual ends or as part of a group activity. Intentions-
that are used to represent an agent’s commitments toward
the group activity and the actions of its partners in ser-
vice of that activity. Following SharedPlans, we represent
agent G1’s commitment to do an action α in context Cα as
Int.To(G1, α, Cα). Int.Th(G1, prop, Cprop) represents G1’s
intention that proposition prop holds in context Cprop.

For the purposes of this paper, we define the context in
which an action is performed by an agent or a group of agents
as the combination of the information that agents use to
make decisions about that action at a particular time. For
example, Alice’s context for meal-making includes Alice’s
beliefs about the world (e.g., whether there are fresh toma-
toes in the house), and Alice’s beliefs about Bob’s context
for meal-making (e.g., Alice’s beliefs about Bob’s knowledge
about whether there are tomatoes).

Table 1 summarizes several new predicates and functions
used in this paper. The predicate Context is true if Cα

is the context in which agent G1 believes at time T that
action α is being done. The function cba.basic refers to the
probability that agent G1 can bring about (i.e., successfully
complete) a basic-level action β in context Cβ . Similarly,
cost.basic refers to the cost incurred by agent G1 when basic-
level action β is executed by agent G2 in context Cβ (where
G1 and G2 may refer to the same agent).

The function V represents the non-negative utility value
for agent G1 for successful completion of action α in con-
text Cα. If an action is a basic level action, the utility for
performing the action is equal to the V -function value. The
utility for carrying out a complex action based on a given
recipe includes the value of V for the action, as well as the
sum of the utilities for performing each of its sub-actions.
Thus, for a complex action, the utility may be more than
“the sum of its parts”. For example, the utility for making
dinner may be higher than the combined utilities of making
the individual dishes. The valuation of an action may be
zero if accomplishing that alone does not provide any util-
ity. For example, suppose that Alice and Bob fail to make
dinner, because Alice did not prepare an entree. However,
Bob prepared an appetizer. Their utility will be higher than
in the case where neither Alice nor Bob prepared their re-
spective dishes. In contrast, the utility for chopping onions
is zero if the plan for mushroom puffs fails.

We assume that cba.basic, cost.basic and V are intrinsic
properties of actions and that agents either know or have
an estimate of these values in their mental models. We also
assume that agents engaging in a collaboration aim at max-
imizing some agreed upon and commonly known utility of
the group. This utility is a computable value, which is typ-
ically some combination of individual agents’ utilities and
some other costs weighted appropriately. For the purposes
of the paper, we assume that agents are truthful, and they
do not exhibit malicious behavior.

4. PROBABILISTIC RECIPE TREES
Key features of the SharedPlan formalism are that agents’

plans may be partial, agents may have incomplete infor-
mation about the way to accomplish a group activity, and
agents are responsible for different constituent actions. For
example, Alice may not know the appetizer Bob is making,
but they still have a joint commitment to cook dinner. How-
ever, agents cannot reason about the benefit to the group
from engaging in a helpful action when they have no in-
formation about the recipes that other group members are
considering. To bridge this gap, we introduce a novel repre-
sentation, Probabilistic Recipe Trees (PRTs), which enable
agents to represent their beliefs about the recipes that may
be selected by group members to complete a collaborative
activity.

A Probabilistic Recipe Tree (PRT) for an action α is a
structured tree representation that defines a complete prob-
ability distribution over the possible recipes for accomplish-
ing α. Each node in a PRT represents an action and has
several properties associated with the action (e.g., the set of
agents responsible for carrying out the action). Leaf nodes
represent basic-level actions, and intermediate nodes rep-
resent complex actions. Intermediate nodes may be either
AND or OR nodes. Each child of an AND node represents
a constituent sub-action of a recipe for completing the AND
node action. Each child of an OR node represents a pos-
sible choice of a recipe for the OR node action, where the
choice is non-deterministic. Each branch from an OR node
to one of its children nodes has an associated probability
representing the likelihood that the child node is selected as
a recipe for the OR node action. Figure 1 presents a PRT for
preparing a dinner consisting of an appetizer and an entree.
The children of the top node of the tree (making dinner) are
making an appetizer and making an entrée. The children
of the appetizer node represent possible recipes for an ap-
petizer: mushroom puffs, lettuce salad, and tomato salad.
The likelihood of selecting mushroom puffs as the appetizer
in this example is 0.7.

Thus, a PRT defines a probability distribution over pos-
sible recipes for completing the action associated with the
root node. The PRT of Figure 1 includes a probability dis-
tribution over 9 possible recipes for making dinner. An as-
signment of recipes to all of the OR nodes constitutes one
deterministic recipe for achieving this action. For example,
one possible recipe for meal-making is making mushroom
puffs and chicken with tomato sauce. The probability of
choosing this recipe is 0.35.

A PRT is exponentially more compact than an exhaus-
tive representation over a set of recipes. That this is the
case may be seen by considering the space of recipes with
up to n potential recipes for each action, with each recipe
having up to m constituent actions, and d representing the
number of levels of decomposition needed to transform the
top-level action into basic-level actions. The size of an ex-
haustive tree representation for each possible recipe in this
setting is O(md). Because there are n possible recipes for

each action, the number of possible trees is O(nmd

), and a
distribution over recipes will have to assign a separate prob-
ability for each of them. In contrast, the size of the PRT for
this example is O((nm)d), which is exponentially smaller.

A PRT is also a modular representation. The following
three operators may be used to restructure a PRT as agents
refine their recipes with helpful actions.

Addition: The operator PRTα

⋃
PRTβ adds PRTβ as a



Figure 1: A Probabilistic recipe tree for the meal
preparation example. Each node is associated with
an action (e.g., make mushroom puffs), and a set of
agents to perform the action (e.g., {G1,G2}).

child of PRTα. If α is an OR node, then the probabil-
ity distribution over the branches leaving the OR node
is normalized.

Subtraction: The operator PRTα \ PRTβ removes the
sub-tree PRTβ from PRTα, if such a sub-tree exists.
If α is an OR node, then the probability distribution
over the branches leaving the OR node is normalized.

Replacement: The operator PRTα

⊗
PRT ′β removes

PRTβ (the original PRT for β in PRTα) from PRTα,
adds PRT ′β to the parent node of PRTβ . If this par-
ent is an OR node, the probability distribution over the
branches leaving the node is normalized. The PRT re-
placement operation is more than subtraction followed
by addition in that it gets from the subtraction the
node at which the new subtree will be added (elimi-
nating the need for search).

The decision-theoretic analysis of helpful behavior requires
computing the costs and benefits of performing an action
based on the selected recipes. To this end, we utilize the
following set of functions to represent agents’ beliefs for the
recipes selected for an action, and to evaluate the costs and
utilities of these recipes.

The function p-CBA(PRTα, Cα) represents the probabil-
ity of successfully performing action α in context Cα given
the recipes represented in PRTα. For leaf nodes represent-
ing basic actions, the function returns a value that equals
the function cba.basic applied to the leaf. For AND nodes
the function returns the product of the probabilities that
the children nodes will succeed. For OR nodes, the function
returns an average of the likelihood that the child nodes will
succeed, weighted by the probability assigned to the child.

The Cost(Gi, PRTα, Cα) function represents the expected
cost to agent Gi for the group carrying out the recipes repre-
sented in PRTα in context Cα. For leaf nodes, this function
returns the value of the function cost.basic applied to the
leaf. For AND nodes this function is a summation of the
cost of its children nodes. For OR nodes it is an average of
the costs for the children nodes, weighted by the probability

Type Notation Meaning

Actions
α ∈ Ω top level action
β ∈ Ω β ∈ sub-actions(α)
γ ∈ Ω helpful act

Agents
GR ⊂ A agents involved in SharedPlan for α
G1 ∈ GR agent reasoning about helpful behavior
G2 ∈ GR partner(s) of G1

Time
Ti current time
Tα time of execution for α

Contexts

Cα ∈ C Context(Cα, G1, α, Ti)
CTα

α ∈ C Context(CTα
α , G1, α, Tα)

CGR ∈ C Bel(G1, Context(CGR, GR, α, Ti))

CTα
GR ∈ C Bel(G1, Context(CTα

GR, GR, α, Tα))
Cβ ∈ C Context(Cβ , G1, β, Ti)
CBel

β ∈ C Bel(G1, Context(CBel
β , G2, β, Ti))

Cγ ∈ C Context(Cγ , G1, γ, Ti)

PRT
PRTα ∈ PRT PRT selected for action α
PRTβ ∈ PRT PRT selected for action β
PRTγ ∈ PRT PRT selected for action γ

Table 2: Summary of notations

assigned to each child.
The function Eval(GR, PRTα, Cα) represents the expected

utility to the group for carrying out the recipes represented
in PRTα in context Cα. It is the difference between the
expected utility to the group for carrying out α and the
expected cost, given the recipes represented in PRTα. It
combines the expected utility of the parent node with the
expected utilities of its children. The expected utility of a
node is the value of the action that the node represents mul-
tiplied by the success probability (p-CBA) of the node. If
the node is an OR node, the expected utility of each child
node is weighted by its branching probability. Computation
of the Eval function requires traversing the entire PRT, be-
cause a recipe that is selected for one of the subactions in a
PRT may affect the evaluation of a recipe for another sub-
action in the tree.

The Select-PRT (G1, α, Cα) refers to the PRT that repre-
sents G1’s belief about the possible recipes it will select to
perform action α in context Cα. Predict-PRT (G1, G2, α, Cα)
refers to the PRT that represents G1’s belief about the pos-
sible recipes G2 will select to perform action α in context
Cα. The PRT given for the appetizer in Figure 1, represents
Alice’s belief for the recipes that Bob may select for making
the appetizer. In addition, the predicate Selected-PRT (G1,
PRTα, Cα) is true if PRTα is the recipe that is selected by
G1 in context Cα.

5. HELPFUL BEHAVIOR MODELS
In this section we present a decision-theoretic mechanism

containing rules that agents can use to decide whether to
undertake helpful behavior. We consider two types of helpful
behavior: communicating with a partner and performing a
specific domain action to assist a partner. Both types refine
the recipes agents use, but in different ways. An agent that
decides to communicate information to a partner will cause
the partner to update its context to reflect this information,
which may lead this partner to adopt a new recipe that is
more likely to succeed. An agent that performs a helpful
domain action is doing so to increase the likelihood that
the partner’s recipe, and by extension the group activity,
will succeed. Table 2 presents the notation that is used in
specifying the decision-theoretic mechanism.



5.1 Commitment to Helpful Behavior
In this section, we define an agent’s commitment to an

activity in a way that reflects the agent’s intention that a
recipe that is optimal for the group (given the agent’s be-
liefs) is selected. The clause Committed(G1, GR, α) refers
to the commitment of agent G1 to the success of the group
GR for achieving α, when there exists a recipe PRTα that
G1 believes will maximize the group utility, and G1 intends
that all group members intend to carry out PRTα at execu-
tion time. In Definition 1 – the definition of Committed –
SP (GR, α, Cα) is true if GR has a SharedPlan for α in Cα,
Bel is the standard modal operator for representing beliefs,
Selected-PRT (GR, PRTα, CTα

GR) is true if it is believed that

PRTα is selected by GR at time Tα in CTα
GR, PRT−α is the

set of PRTs for α excluding PRTα.

Definition 1 : Committed(G1, GR, α), is true if agent
G1 ∈ GR is committed to GR’s success in doing α

Committed(G1, GR, α) iff
[(G1 ∈ GR) ∧ SP(GR, α, Cα) ∧
(∃PRTα ∈ PRT )

[Bel(G1, (∀PRTi ∈ PRT−α)
[Eval(GR, PRTi, C

Tα
α ) 6Eval(GR, PRTα, CTα

α )]) ∧
Int.Th(G1, Selected-PRT(GR, PRTα, CTα

GR))]]

5.2 Performing a Helpful Action
The process for making the decision whether to perform

a helpful action γ is specified by Algorithm 2. The first
conditional establishes that agent G1 is committed to the
success of the group for achieving α. The second conditional
holds if G1 believes that it can improve the utility of the
action by executing the helpful act γ. To compute the utility
of adding helpful action γ, G1 reasons about the recipes it
will adopt for helpful act γ, and the improvement it can
generate by adding these recipes to the ones selected by GR
for action α. Agent G1 intends to do γ, if it believes that
doing γ will lead to an improvement in the group’s utility
for carrying out α.

Algorithm 2 : Helpful-Act(G1, GR, α, γ), G1 helps
GR in doing α by doing γ if doing so increases the expected
utility of GR for doing action α, and G1 is committed to
GR’s success in doing α

if Committed(G1, GR, α) then
PRTα := Predict-PRT(G1, GR, α, CGR)
PRTγ := Select-PRT(G1, γ, Cγ)
PRT Help

α := PRTα

⋃
PRTγ

utility := Eval(GR,PRT Help
α ,Cα) - Eval(GR,PRTα,Cα)

end if
if utility > 0 then

Int.To(G1, γ, Cγ)
end if

For example, if Bob believes Alice may intend to make
pasta with tomato sauce, but he knows there are no fresh
tomatoes left in the kitchen, he can perform a helpful action
by adopting an intention to go to the market and buy some
tomatoes. He should do so only if the cost related with
going to the market is lower than the potential benefit to
the dinner they are making.

5.3 Deciding to Communicate
The ability to communicate information allows agents to

convey changes in the world or to request information about
the world. We present two rules for deciding whether to
communicate.

5.3.1 Conveying Information
In situations in which two agents G1 and G2 are com-

mitted to the success of a collaborative activity, when G1

makes an observation, it needs to reason about informing
G2 about this observation. The decision to communicate
may improve the utility of the group, but communication
is associated with a cost. Algorithm 3 specifies the process
by which G1 reasons about this trade-off. In particular, G1

reasons about the recipes that G2 would adopt for doing
sub-action β if G1 has communicated observation o. If the
utility gain to the group from the adoption of this recipe is
higher than the cost of communication, then G1 will com-
municate o to G2.

In algorithm 3, Comm(G1, G2, o) refers to the inform ac-
tion, COC(G2) represents the cost of communicating with
G2. Context-Update(CBel

β , o) represents context CBel
β up-

dated with observation o.

Algorithm 3 : Inform(G1, G2, α, β, o), G1 informs
G2 about observation o, if doing so increases the expected
utility of GR for α, and G1 is committed to GR’s success in
doing α, where G2 has intention to do β

if Committed(G1, GR, α) then
PRTα := Predict-PRT(G1, GR, α, CGR)
Co

β := Context-Update(CBel
β , o)

PRT o
β := Predict-PRT(G1, G2, β, Co

β)
PRT o

α := PRTα ⊗ PRT o
β

utility := Eval(GR, α, PRT o
α, Cα) −

Eval(GR, α, PRTα, Cα)
end if
if utility > COC(G2) then

Int.To(G1, Comm(G1, G2, o), Cα)
end if

For example, if Bob sees that there are no tomatoes in
the kitchen, and he thinks that Alice is making a tomato
sauce, he would conclude that their meal-making is likely
to fail. If he informs Alice about this observation, Alice
can update her recipe so that it does not contain tomatoes.
If Bob forecasts that the utility improvement generated by
Alice updating her recipe given the observation is higher
than communication costs, Bob will inform Alice. However,
if Bob believes that Alice is likely not to be using tomatoes
or the communication cost is very high, then he would not
inform Alice.

5.3.2 Asking for Information
Agent G1 may need to reason about asking G2 for ψ, if this

information would beneficially change G1’s recipe for doing
sub-action β. To compute the utility of asking G2 about
ψ, G1 needs to consider how it will adapt its own belief
about the recipes it will select, for each possible answer that
is provided by G2. Agent G1 computes the difference in
expected group utility for α between its initial belief about
recipes to select for α and any refined belief that is a result
of the answer given by G2.



In algorithm 4, Co
α and Co

β are contexts updated by G1

with answer o, Comm(G1, G2, ψ) refers to the ask action,
COC(G2) represents the cost of communicating with G2,
Ψ(ψ) is the set of observations that are answers to ψ,
pr(Bel(G2, o)) is G1’s prediction of the probability of receiv-
ing o from G2 as an answer to ψ. G1 believes there exists
an observation o ∈ Ψ(ψ) that G2 believes to be the correct
answer to question ψ.

Algorithm 4 : Ask(G1, G2, α, β, ψ), G1 committed
to doing β, asks G2 question ψ, if doing so increases the
expected utility of GR’s doing α, and G2 is committed to
GR’s success in doing α

if Committed(G2, GR, α) then
PRTα := Predict-PRT(G1, GR, α, CGR)
for o ∈ Ψ(ψ) do

Co
β := Context-Update(Cβ , o)

Co
α := Context-Update(Cα, o)

PRT o
β := Select-PRT(G1, β, Co

β)
PRT o

α := PRTα ⊗ PRT o
β

utility := utility + pr(Bel(G2, o)) ×
(Eval(GR,α,PRT o

α,Co
α) −

Eval(GR, α, PRTα, Co
α))

end for
end if
if utility > COC(G2) then

Int.To(G2, Comm(G1, G2, Ψ), Cα)
end if

For example, if Alice has a plan for making tomato sauce
but believes that her plan may fail as a result of there being
no good tomatoes, she can ask Bob if he knows the availabil-
ity of tomatoes. For each possible answer Alice may receive
from Bob, she updates her belief about recipes to select that
incorporates that answer. After weighting each possible up-
dated recipe with the probability of receiving that answer,
Alice computes the expected utility for asking. If it is higher
than the communication cost, Alice considers asking. How-
ever, if Alice believes that the answer will not improve the
recipe she selects, or the cost of communication is very high,
then she would not consider communicating with Bob.

The extent to which ask decisions are profitable depends
on how well agents are able to model how the world changes.
If G1 believes the world is uncertain but it is not, it will keep
asking needlessly. If G1 is not expecting any changes but the
world is changing, it fails to ask when needed.

The complexity of Algorithm 4 depends heavily on the
size of Ψ(ψ), the number of observations that are answers
to question ψ. Recent work has provided techniques to fa-
cilitate this computation for situations with large numbers
of possible answers in collaborative settings [12].

6. EMPIRICAL EVALUATION
In this section we provide an empirical evaluation of the

mechanism described in Section 5. The evaluation used the
Colored Trails (CT) system, a publicly available test-bed
developed for investigating decision-making in task settings,
where the key interactions are among goals, tasks required to
accomplish those goals, and resources needed to perform the
tasks 1 [7]. CT is played on a rectangular board of colored

1CT is open source software and can be downloaded at
http://www.eecs.harvard.edu/ai/ct

squares. The players are located randomly on the board.
They are given chips of the same colors used in the game
board. Goal squares are positioned in various locations on
the board, and the object of the game is to reach those goals.
At each turn of the game agents can move to an adjacent
square on the board by surrendering a chip in the color of
the square.

Our experiments used a configuration of CT in which cer-
tain squares on the board may turn into traps and pre-
vent players’ advancement. Players have full visibility of
the board and players’ positions on the board, but cannot
observe the chips the other player has. One of the players
(called the observer) is able to observe the trap locations,
whereas the other player (the partner) cannot. The game
proceeds for a specified number of turns. At the end of the
game, a score is computed for each player that depends on
the number of goals the player was able to achieve, the num-
ber of chips left in its possession, and the score for the other
player.

This CT game is an analogue of a task-setting in which
players have partial knowledge about the world and about
each other. Chips represent agents’ capabilities, and a path
to a goal square on the board represent agents’ plans for
achieving their goals. There may be several paths agents
can take to reach a goal square, like there are several recipes
that agents can use to achieve their goal. Traps represent the
possibility that a plan may fail in a world that may change.
Players have an incentive to collaborate in this game because
their scores depend on each other.

Figure 2: Screen-shot of CT game

A snapshot of the game is presented in Figure 2. The game
board is displayed on the left of the figure; P2 represents
the observer player and P1 represents its partner; δ1 to δ6

represent lower-level goals that are positioned on the board
itself; α, β and γ represent higher level goals. Players’ chips
are shown on the top-right of the figure, and the possible
recipes for α are presented on the bottom-right section of
the figure.

In this game, P1 is committed to accomplishing goal β
because it is closer to the constituents goals of β, and P2 is
committed to γ. P1 is able to achieve goal β by achieving
sub-goals δ1 and δ2, but it cannot achieve δ3 because it lacks
a purple chip. P1 is unable to observe trap positions, and a
trap is located just below its current location.

In this CT game, agents’ context include both their beliefs
about the world (e.g., probability distribution over possible
trap positions), and beliefs about their partner’s contexts
(e.g., probability distribution over the chips the partner pos-
sesses). The success probability (p-CBA value) of a path



towards a goal is obtained by combining these beliefs. A
player successfully moves to an adjacent square if it is not a
trap position. The value of the basic action cba.basic corre-
sponds to the probability that the square the agent moves
onto is not a trap. Players receive 100 points for reaching
the goal (completing task α), and 10 points for reaching any
of δi. Thus the valuation is 100 points for α, 10 for any δi,
and zero for the rest of the goals. The agreed upon utility
function of our formalism corresponds to the joint scoring
function of the game. A sample PRT for a collaborative
plan for the CT game is shown in Figure 3.

Figure 3: A sample PRT for CT SharedPlan game

In the game, the observer can help its partner by giving
away chips so that the partner is able to realize a path to
the goal which was formerly inaccessible. In addition, play-
ers can communicate information about traps in one of two
ways: the observer can inform its partner about trap po-
sitions, or its partner can ask about the location of traps
directly. There is a cost associated with all of these helpful-
behavior actions, and players need to weigh this tradeoff
when they engage in helpful-behavior decisions.

6.1 Experimental Setup and Results
We used the CT game described above as a test-bed for

quantitative analysis of our decision-theoretic helpful behav-
ior models. The helpful behavior rules are evaluated in terms
of the average score they generated across 500 game plays.
The significant differences in average scores of the protocols
are tested with t-test for paired two-samples for means, and
labeled whenever the difference was not in the 95% confi-
dence interval. In all experiments, the chips agents possess
in the game and the board layout are drawn from a uni-
form distribution that is common knowledge between play-
ers. The probability that a trap may appear for a given color
is known to the observer, but not to its partner.

The first set of experiments compared the following three
protocols for deciding whether to perform helpful act: The
Helpful Act protocol uses Algorithm 2 to determine whether
to perform a helpful act; the Random Help protocol gives
away a random colored chip; the No Help protocol never
gives away chips. We varied whether the observer has com-
plete or incomplete information about the chips of its part-
ners. Figure 4 shows the joint scores that players achieve

by using the different protocols. The results show that the

Figure 4: Performance of helpful act protocols by
helpful act cost, observer uncertainty

Helpful Act protocol performs significantly better than the
Random Help and the No Help protocols. Except for cost
30, the performance of Helpful Act with high observer un-
certainty is not significantly different than No Help. The
performance of the Helpful Act protocol improves signifi-
cantly as the observer’s uncertainty decreases.

The second set of experiments compared four different
communication protocols. The Inform protocol uses Algo-
rithm 3 to determine whether the observer should tell its
partner about trap positions. The Ask protocol utilizes Al-
gorithm 4 to determine whether the partner should ask the
observer about trap positions. In the Always Inform proto-
col (AI), the observer always informs its partner, regardless
of the its partner’s need. The Never Communicate proto-
col (NC) does not allow any type of communication. We
varied three factors to assess the performance of these pro-
tocols: the communication cost, observer uncertainty about
the partner’s chips, and the uncertainty in the world about
how frequently traps occur on the board. As the partner
player’s uncertainty about the world increases, we expected
the benefit of communication to increase because the part-
ner cannot observe trap positions.

Figure 5: Performance of communication protocols
by communication cost, observer uncertainty, world
uncertainty

Figure 5 shows the average performance of the different
communication protocols. On each graph, the vertical axis
represents the average score of the game; the horizontal axis



Figure 6: Performance of Inform and Ask protocols
as relative cost of Ask w.r.t Inform varies (high ob-
server and world uncertainty, communication cost is
5).

varies the cost of communication from low to high. The
four graphs cover four possible configurations of world and
observer uncertainties (low-low, low-high, high-low, high-
high). As shown in the figure, the decision-theoretic pro-
tocols (Ask and Inform) outperform or perform as well as
the AI and NC protocols for all communication costs and
uncertainty levels. When the observer has a good model of
its partner (observer uncertainty is low), the Inform protocol
performs better than (or equally as good as) the other com-
munication protocols because the observer gets to see the
(sometimes unexpected) changes in the world and is good at
predicting when its observations are useful for its partner.
Interestingly, when world uncertainty is high, the partner
expects the world to change frequently and benefits from
asking the observer about traps; therefore the Ask protocol
performs better or equivalent to other protocols. However,
when the traps happen to change position and the world un-
certainty is low, the Inform protocol is better. Overall, the
decision-theoretic protocols outperform axiomatic (i.e., non-
decision theoretic models without probabilistic representa-
tion) models. The performance of the two decision-theoretic
models varies with the uncertainty conditions

So far we have assumed that the relative communication
costs of Ask and Inform protocols are identical. However,
the cost of the Ask protocol may be higher than the Inform
protocol because the Ask protocol includes two steps of com-
munication; from the partner to the observer and from the
observer to the partner. Figure 6 shows the average perfor-
mance of Ask and Inform protocols given that the relative
cost of Ask with respect to Inform varies from 1.0 (identical)
to 2.0 (double the communication cost).

7. CONCLUSION AND FUTURE WORK
We have presented a new decision-theoretic mechanism for

managing helpful behavior in collaborative settings. Our
mechanism considers the uncertainty associated with the
domain, beliefs about the recipes selected by other group
members, and the cost entailed by helpful behavior to rea-
son about the utility of helpful behavior and to determine
whether help should be given. We introduced a compact
and efficient representation for modeling agents’ belief about
recipes selected by other agents. This representation is used
to efficiently update and evaluate joint plans. Our work
focused on two distinct types of helpful behavior: communi-
cating and adding a helpful act to the group plan. We con-

ducted empirical evaluation of our helpful behavior mecha-
nism in different collaborative settings that varied the level
of uncertainty and the cost of helpful behavior. Our results
show that our decision-theoretic mechanism performed bet-
ter than axiomatic methods in all of these cases.

In ongoing work, we are exploring: enriching the helpful
behavior mechanism with rules about who, when and how
to help; considering a chain of communication between team
of agents; extending the helpful behavior mechanism to the
collaboration of self-interested agents. This work has rel-
evance to research in multi-agent systems, planning, team
formation and domain modeling for all settings on which
agents can help.
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