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In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised 
classification to build student models for exploratory learning environments. We apply the framework to build 
student models for two different learning environments and using two different data sources (logged interface 
and eye-tracking data). Despite limitations due to the size of our datasets, we provide initial evidence that the 
framework can automatically identify meaningful student interaction behaviors and can be used   to build user 
models for the online classification of new student behaviors online. We also show framework transferability 
across applications and data types. 
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1. INTRODUCTION 

Exploratory learning environments (ELEs from now on) are educational tools designed to 

foster learning by supporting students in freely exploring relevant instructional material 

(often including interactive simulations), as opposed to relying on structured, explicit 

instruction as with more traditional intelligent tutoring systems (ITS) [Shute and Glaser 

1990]. In theory, this type of active learning should enable students to acquire a deeper, 

more structured understanding of concepts in the domain [Piaget 1954; Ben-Ari 1998]. In 

practice, empirical evaluations have shown that ELEs are not always effective for all 

students (e.g. [Shute 1993]) and that some students may benefit from more structured 

support [Kirschner et al. 2006]. 

In light of these results, several researchers have been working on developing 

adaptive support for effective exploration in ELEs (e.g. [Bunt and Conati 2002; Shute 

1994]). Devising this support requires having a student model that monitors the learners’ 

exploratory behavior and detects when they need guidance in the exploration process. 

Many of the ELE models developed so far are knowledge-based, i.e., built by eliciting the 

relevant domain and pedagogical knowledge from experts [Bunt and Conati 2002;  Shute 

1994]. This approach, however, is often difficult and time consuming, especially for 

novel applications such as ELEs, for which there is still limited knowledge on what 

constitutes effective exploratory behavior.  
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Merten and Conati [2007] have also explored an approach based on supervised 

machine learning, where domain experts manually labeled interaction episodes based on 

whether students reflected or not on the outcome of their exploratory actions. The 

resulting data set was then used to train a classifier for student reflection behavior that 

was integrated with a previously developed knowledge-based model of student 

exploratory behavior. While the addition of the classifier significantly improved model 

accuracy, this approach suffers from the same drawbacks of knowledge based-approaches 

described earlier. It is time-consuming and error prone, because humans have to supply 

the labels for the dataset, and it needs a priori definitions of relevant behaviors when 

there is limited knowledge of what these behaviors may be.    

In this paper we explore a more lightweight approach: a user modeling framework 

that addresses the above limitations by relying on data mining to automatically identify 

common interaction behaviors and then using these behaviors to train a user model. The 

key distinction between our modeling approach and knowledge-based or supervised 

approaches with hand-labeled data is that human intervention is delayed until after a data 

mining algorithm has automatically identified behavioral patterns. That is, instead of 

having to observe individual student behaviors in search of meaningful patterns to model 

or to input to a supervised classifier, the developer is automatically presented with a 

picture of common behavioral patterns that can then be analyzed in terms of learning 

effects. Expert effort is potentially reduced further by using supervised learning to build 

the user model from the identified patterns. While these models may not be as fine-

grained as those generated by more laborious approaches based on expert knowledge or 

labeled data (e.g., they recognize classes of behaviors as opposed to more specific 

behaviors), they may still provide enough information to inform soft forms of adaptivity 

in-line with the unstructured nature of the interaction with ELEs.  One potential problem 

of this approach is that it requires a substantial amount of data to work and collecting this 

data can be time-consuming. This is true, for instance, if the data is collected during 

laboratory studies, as was the case for the two experiments that we describe in this paper.  

However, since behavioral patterns also manifest themselves in normal usage of a target 

system, it is possible that data could be obtained from an uncontrolled setting, making 

data availability less of an issue, especially if the system is made available online.  

In recent years, there has been a growing interest in exploring the usage of data 

mining for educational technologies, or educational data mining (EDM).  Much of the 

work on EDM is currently focused on discovering meaningful patterns in educational 

data, but some researchers have started investigating how these patterns can be 
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automatically used in student modeling. The work presented in this paper contributes to 

both these areas. First, most of the work on EDM has focused on traditional intelligent 

tutoring systems that support structured problem solving (e.g., [Sison et al 2000; Zaiane 

2002; Baker et al. 2008]) or drill and practice activities (e.g. [Beck 2005]), where 

students receive feedback and hints based on the correctness of their answers. In contrast, 

our work aims to model students as they interact with environments that support learning 

via exploratory activities like interactive simulations, where there is no clear notion of 

correct or incorrect behavior. We show that by applying unsupervised clustering to log 

data, we identify interaction patterns that are meaningful to discriminate different types 

of learners and that would be hard to detect based on intuition or basic correlation 

analysis. Second, most existing approaches have been tested within a single ITS 

(although Baker et al. [2008] have shown transferability across different lessons within 

the same ITS). In contrast, we show the effectiveness of our approach applied to two 

different ELEs (the AIspace Constraint Satisfaction Problem (CSP) Applet [Amershi et 

al. 2005] and the Adaptive Coach for Exploration (ACE) learning environment [Bunt et 

al. 2001]) and to two different types of data, one involving interface actions only and 

another involving both interface actions and eye-tracking data. We obtained comparable 

results in our experiments, demonstrating that our user modeling framework can be 

applied to different applications and data types.  

It was our initial work with the CSP Applet (described in [Amershi and Conati 2006]) 

that gave us the idea of devising a framework to generalize the approach we used in that 

experiment. The framework and its application to the ACE learning environment has 

been discussed in [Amershi and Conati 2007], along with a brief comparison with the 

work on the CSP Applet. In this paper we present a unified view of this work. In 

particular, we updated the work on the CSP Applet to be in line with the framework 

formalized in [Amershi and Conati 2007].  We also provide an extended comparison of 

our two experiments which is important for demonstrating framework transferability. 

The paper is organized as follows. Section 2 outlines our proposed user-modeling 

framework, and the methodology we use to evaluate the resulting student models. In 

Sections 3 and 4 we apply and evaluate our modeling framework on two different ELEs. 

Then, in Section 5 we compare the results we obtained from our two experiments. In 

Section 6 we discuss the limitations of our work. In Section 7 we present related research. 

And finally, in Section 8 we conclude with a summary and a discussion of future research 

directions. 
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2. USER MODELING FRAMEWORK 

Figure 1 shows the architecture of our proposed user modeling framework, which divides 

the modeling process into two major phases: offline identification and online recognition. 

In the offline phase, raw, unlabelled data from student interaction with the target 

environment is first collected and then preprocessed. The result of preprocessing is a set 

of feature vectors representing individual students in terms of their interaction behavior 

(e.g., frequencies and durations of particular interface actions). These vectors are then 

used as input to an unsupervised clustering algorithm that groups them according to their 

similarity. The resulting clusters represent students who interact similarly with the 

environment. These clusters are then analyzed by the model developer in order to 

determine which interaction behaviors are effective or ineffective for learning. 

Understanding the effectiveness of students’ interaction behaviors with an ELE is useful 

in itself to increase educator awareness of the pedagogical benefits of these 

environments, as well as to reveal to developers how the ELE can be improved. And 

indeed the majority of the work on data mining for educational technologies has been 

done with this goal in mind (e.g., [Hunt and Madhyastha 2005; Merceron and Yacef 

2005; Talavera and Gaudioso 2004]). However, our long-term goal is to use the 

interaction behaviors to guide automatic ELE adaptations while a student is interacting 

with the system. In the online phase, the clusters identified in the offline phase are used 

directly in a classifier user model. The user model’s classifications and the learning 

behaviors identified by cluster analysis can eventually be used to inform an adaptive ELE 

component to encourage effective learning behaviors and discourage detrimental ones. 
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Fig. 1. User modeling framework. The adaptive component based on the model created by the 

framework is itself outside of the framework (and therefore appears grayed out in the figure).  

In the next two sections (Sections 2.1 and 2.2), we detail the two phases supported by 

the framework, including describing the algorithms we chose to complete these phases. 

Then in Section 2.3 we explain how we evaluate the user models that we developed for 

both of our experiments (see Sections 3 and 4). 

 

2.1 Offline Identification 

This phase uses unsupervised machine learning to automatically identify distinct student 

interaction behaviors in unlabeled data. The rest of this section describes the different 

steps of the offline phase, outlined at the top of Figure 1. 

Data Collection. The first step in the offline phase is to log data from students interacting 

with the target learning environment. Here, the developer requires knowledge (or a 
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catalog) of all possible primitive interaction events that can occur in the environment so 

that they can be logged (see the solid arrow from ‘Developer’ to ‘Data Collection’ in 

Figure 1). In addition to interface actions, logged data can include events from any other 

data source that may help reveal meaningful behavioral patterns (e.g., an eye-tracker). 

An additional form of data to collect is tests on student domain knowledge before and 

after using the learning environment (sees the dotted arrow in Figure 1 from ‘Tests’ to 

‘Data Collection’). The purpose of these tests is to measure student learning with the 

system to facilitate the cluster analysis step, as we will see below. 

Preprocessing. Clustering operates on data points in a feature space, where features can 

be any measurable property of the data [Jain et al. 1999]. Therefore, in order to find 

clusters of students who interact with a learning environment in similar ways, each 

student must be represented by a multidimensional data point or ‘feature vector’. The 

second step in the offline phase is to generate these feature vectors by computing low 

level features from the data collected. We suggest features including (a) the frequency of 

each interface action, and (b) the mean and standard deviation of the latency between 

actions. The latency dimensions are intended to measure the average time a student 

spends reflecting on action results, as well as the general tendency for reflection (e.g., 

consistently rushing through actions vs. selectively attending to the results of  actions). 

We use these features in both of our experiments (see Sections 3 and 4). In our second 

experiment, we also include features extracted from eye-tracking data (i.e., eye gaze 

movements) to demonstrate that our approach works with a variety of input sources.   

In high-dimensional feature spaces, like the one in our second experiment, natural 

groupings of the data are often obscured by irrelevant features. Furthermore, as the 

number of dimensions increases data becomes sparser, requiring exponentially larger 

datasets for acceptable pattern recognition (a problem also known as “curse of 

dimensionality” [Bellmann 1961]). A solution is to perform feature selection, i.e., 

determining the most salient features and removing noisy or irrelevant ones.  Prior 

domain or application knowledge can help guide manual feature selection, but estimates 

of feature utility are often unavailable or inaccurate, leading to laborious trial-and-error 

evaluations of the features [Jain et al. 1999]. While there are a number of feature 

selection algorithms for supervised learning (e.g. [Kira and Rendell 1992; Kohavi and 

John 1997]), only recently have researchers started investigating principled ways of 

selecting features in an unsupervised setting (e.g., [Carbonetto et al. 2003; Dash et al. 

2002; Friedman and Meulman 2004]). To avoid the effort and potential inaccuracies of 
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manual feature selection, in our second experiment we employ an entropy-based 

unsupervised feature selection algorithm presented in [Dash and Liu 2000].  

Unsupervised Clustering. After forming feature vector representations of the data, the 

next step in the offline phase is to perform clustering on the feature vectors to discover 

patterns in the students’ interaction behaviors. Clustering works by grouping feature 

vectors by their similarity, where here we define similarity to be the Euclidean distance 

between feature vectors in the normalized feature space.  

We chose the well-known partition-based k-means [Duda et al. 2001] clustering 

algorithm for this step in both of our experiments. While there exists numerous clustering 

algorithms (see [Jain et al. 1999] for a survey) each with its own 

advantages/disadvantages, we chose k-means as proof-of-concept because of its 

simplicity. Furthermore, the k-means algorithm scales up well because its time 

complexity is linear in the number of feature vectors. 

K-means converges to different local optima depending on the selection of the initial 

cluster centroids and so in this research we execute 20 trials (with randomly selected 

initial cluster centroids) and use the highest quality clusters as the final cluster set. We 

measure quality based on Fisher’s criterion [Fisher 1936] in discriminant analysis which 

reflects the ratio of between to within-cluster scatter. That is, high quality clusters are 

defined as having maximum between-cluster variance and minimum within-cluster 

variance. 

Cluster Analysis. In this phase, clusters are first analyzed to determine which ones 

represent students showing effective vs. ineffective interaction behaviors. This is best 

done by using objective information about learning gains from application use (e.g., 

improvements from pre to post-tests) to determine which clusters of students were 

successful learners and which were not (see arrow marked ‘Test Results’ between ‘Data 

Collection’ and ‘Cluster Analysis’ in Figure 1). It should be noted that the approach may 

still be used if learning gains are unknown, but in this case the intuition or expert 

evaluation is required to analyze and label the clusters in terms of learning outcomes. In 

this situation, developer or expert workload may still be reduced because they avoid the 

time-consuming process of having to observe individual student interactions and then 

look for meaningful patterns. Instead, they are automatically presented with a picture of 

common behavioral patterns (the clusters) from which they can make inferences about 

potential learning effects. In this research, we use the objective-measures approach for 

cluster analysis because we had pre and post-test results for both experiments.  
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The second step in cluster analysis is to explicitly characterize the interaction 

behaviors in the different clusters by evaluating cluster similarities and dissimilarities 

along each of the feature dimensions. While this step is not strictly necessary for online 

user recognition based on supervised classification (see Section 2.2), it is useful to help 

educators and developers gain insights on the different learning behaviors and devise 

appropriate adaptive interventions targeting them.  

In this research, we use formal statistical tests to compare clusters in terms of learning 

and feature similarity. For measuring statistical significance, we use Welch’s t-test for 

unequal sample variances when comparing two clusters, and  one-way analysis of 

variances (ANOVAs) with Tukey HSD adjustments (pHSD) for post-hoc pair-wise 

comparison [Faraway 2002] to compare multiple clusters. To compute effect size (a 

measure of the practical significance of a difference) with use Cohens’s d [Cohen 1988] 

for two clusters (where d > .8 is considered a large effect, and d between .5 and .8 is a 

medium effect). For multiple clusters, we use  partial eta-squared (partial η2) [Cohen 

1988; Olejnik and Algina 2000], (where partial  η2  > .14 is considered a large effect, and 

a value between .06 and .14 is a medium effect).  

 

2.2 Online Recognition 

Supervised Classification. The second component of our modeling framework (lower left 

of Figure 1) uses the clusters identified in the offline phase to train a supervised classifier 

user model for online classification of users into successful/unsuccessful learner groups.  

As a proof-of-concept for this phase, we devised an online k-means classifier that 

incrementally updates the classification of a new student into one of the clusters from the 

offline phase, as the student interacts with the target ELE. As an action occurs, the feature 

vector representing the student’s behavior thus far is updated to reflect the new 

observation. That is, all feature dimensions related to the current action (e.g., action 

frequency and the various latency dimensions) are recomputed to take into account the 

current action. After updating the feature vector, the student is (re)classified by simply 

recalculating the distances between the updated vector and each cluster’s centroid, and 

then assigning the feature vector to the cluster with the nearest centroid. In practice, a 

minimal threshold distance could also be used in order to ensure that behaviors are only 

classified if they are within some threshold of similarity to recognized behaviors.   
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2.3 Model Evaluation 

In both of our experiments (see Sections 3 and 4) we performed an N fold leave-one-out 

cross validation (LOOCV) to evaluate the corresponding user models.  Here we describe 

this evaluation method.  

In each fold, we removed one student’s data from the set of N available feature 

vectors, and used k-means to re-cluster the reduced feature vector set (Section 2.1). Next, 

the removed student’s data (the test data) was fed into a classifier user model trained on 

the reduced set (Section 2.2), and online predictions were made for the incoming actions 

as described in Section 2.2. Model accuracy is evaluated by checking after every action 

whether the current student is correctly classified into the cluster to which he/she was 

assigned in the offline phase. Aggregate model accuracy is reported as the percentage of 

students correctly classified as a function of the number of actions seen by the classifier. 

It should be noted, however, that by using a LOOCV strategy, we run the risk of 

altering the original clusters detected in the offline phase (offline clusters from now on) 

by using the entire feature vector set. Therefore, we should not expect to achieve 100% 

accuracy even after seeing all the actions because the user models are classifying 

incoming test data given the clusters found by LOOCV using the reduced set of feature 

vectors. In supervised machine learning, this issue is known as hypothesis stability 

[Kearns and Ron 1997]. In [Lange et al. 2003] the authors extend this notion to the 

unsupervised setting by defining a stability cost (SC), or expected empirical risk, which 

essentially quantifies the inconsistency between the original clusters and those produced 

by LOOCV. Perfect stability (SC=0) occurs when the offline clusters are unchanged by 

LOOCV. Conversely, maximum instability (SC=1) occurs when none of the original data 

labels (as defined by the original offline clusters) are maintained by LOOCV. In other 

words, a low SC helps to ensure that the offline clusters are relatively resistant to 

distortions caused by the removal of one feature vector. We compute the stability cost 

prior to assessing predictive accuracy to ensure that the models are essentially predicting 

what we would like them to predict, i.e., the membership of the removed student’s 

behavioral patterns in one of the offline clusters. 

A second potential shortcoming of our evaluation method is that we compute 

predictive accuracy by measuring the correspondence between the students’ online 

classifications, based on partial sequences of interface actions, and their final offline 

classifications, based on complete sequences. Nevertheless, while this evaluation is 

imperfect, it still provides a lower bound of our model’s predictive power. A more 

accurate evaluation should look at the correspondence between the predicted 
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classification after a given number of actions and the student’s actual learning 

performance up to that point. One way to determine the latter is to manually label every 

partial sequence of student action as pedagogically effective or ineffective. However, 

such manual labeling is precisely what we are trying to avoid with our modeling 

framework.  

 

3. TESTING THE FRAMEWORK ON THE AISPACE CSP APPLET LEARNING 

ENVIRONMENT 

Our first attempt at applying our user modeling framework is with an exploratory 

learning environment called the AIspace Constraint Satisfaction Problem (CSP) Applet. 

The CSP Applet is part of AIspace, a collection of interactive tools that use algorithm 

visualization (AV) to help students explore the dynamics common Artificial Intelligence 

(AI) algorithms (including algorithms for search, machine learning, and reasoning under 

uncertainty) [Amershi et al. 2005]. As for exploratory learning environments in general, 

there is evidence that the pedagogical impact of AVs depends upon how students use the 

tool, which in turns is influenced by distinguishing characteristics such as learning 

abilities and styles [Hundhausen et al. 2002; Stern et al. 2005]. Such reports emphasize 

the need for environments that use interactive AVs to provide adaptive support for 

individual students. 

Here, we first describe the CSP Applet interface (Section 3.1). In Section 3.2 we 

describe how we applied the offline component of our framework to identity meaningful 

clusters of students. In Section 3.3 we apply the online component of our framework to 

build classifier user models for the CSP Applet and then evaluate them. 

 

3.1 The AIspace CSP Applet Learning Environment 

A CSP consists of a set of variables, variable domains and a set of constraints on legal 

variable-value assignments. The goal is to find an assignment of values to variables that 

satisfies all constraints. A CSP can be naturally represented as a graph where nodes are 

the variables of interest and constraints are defined by arcs between the corresponding 

nodes.   

The CSP Applet demonstrates the Arc Consistency 3 (AC-3) algorithm for solving 

CSPs on graphs [Poole et al. 1998]. AC-3 defines an arc as consistent if it represents a 

satisfied constraint. The algorithm iteratively makes individual arcs consistent by 

removing variable domain values inconsistent with corresponding constraints. The 

process continues until all arcs have been considered and the network is consistent. If 
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there are variables left with more than one domain value, a procedure called domain 

splitting can be applied to any of these variables to split the CSP into disjoint cases, so 

that AC-3 can recursively solve each resulting case.  

Figure 2 shows a sample CSP as it is graphically represented in the CSP Applet. 

Initially, all the arcs in the network are colored blue indicating that they need to be tested 

for consistency. As the AC-3 algorithm runs, state changes in the graph are represented 

via the use of color and highlighting. The CSP Applet provides several mechanisms for 

the interactive execution of the AC-3 algorithm, accessible through the button toolbar 

shown at the top of Figure 2, or through direct manipulation of graph elements. Note that 

the applet also provides functionalities for creating CSP networks, but in this research we 

limit our analysis to only those relevant to solving a predefined CSP. Here we provide a 

brief description of these functionalities necessary to understand the results of applying 

our user modeling framework to this environment. 

• Fine Step. Allows the student to manually advance through the AC-3 algorithm at a 

fine scale. Fine Step cycles through three stages, triggered by consecutive clicks of 

the Fine Step button. First, the CSP Applet selects one of the existing blue (untested) 

arcs and highlights it. Second, the arc is tested for consistency. If the arc is 

consistent, its color will change to green and the Fine Step cycle terminates. 

Otherwise, its color changes to red and a third Fine Step is needed. In this final stage, 

the CSP Applet removes the inconsistency by reducing the domain of one of the 

variables involved in the constraint, and turns the arc green. Because other arcs 

connected to the reduced variable may have become inconsistent as a result of this 

step, they must be retested and thus are turned back to blue. The effect of each Fine 

Step is reinforced explicitly in text through a panel above the graph (see message 

above the CSP in Figure 2).  

• Step. Executes the AC-3 algorithm in coarser detail. One Step performs all three 

stages of Fine Step at once, on a blue arc chosen by the algorithm. 

• Direct Arc Click. Allows the student to choose which arc to Step on by clicking 

directly on it.  
• Domain Split. Allows a student to divide the network into smaller sub-problems by 

splitting a variable’s domain. This is done by clicking directly on a node in the 

network and then selecting values to keep in the dialog box that appears (see dialog 

box at the lower right corner of the CSP Applet in Figure 2). The choice of variables 

to split on and values to keep affects the algorithm’s efficiency in finding a solution. 
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Fig. 2. AIspace CSP Applet interface 

• Backtrack. Recovers the alternate sub-problem set aside by Domain Splitting 

allowing for recursive application of AC-3.  

• Auto Arc Consistency (Auto AC). Automatically Fine Steps through the CSP 

network, at a user specified speed, until it is consistent.  

• Auto Solve. Iterates between Fine Stepping to reach graph consistency and 

automatically Domain Splitting until a solution is found.  

• Stop. Lets the student stop execution of Auto AC or Auto Solve at any time.  

• Reset. Restores the CSP to its initial state so that the student can re-examine the 

initial problem and restart the algorithm.  

 

3.2 Offline Identification for the CSP Applet 

In this section, we describe how we applied the offline steps of our proposed framework 

to generate user models for the AIspace Applet. 

 

3.2.1 From Data Collection to Unsupervised Clustering for the CSP Applet 

Data Collection. The data we use for this experiment was obtained from a previous user 

study investigating user attitudes for the CSP Applet [Amershi et al. 2008]. A total of 24 
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undergraduate computer science and engineering students participated in the user study. 

These students had sufficient background knowledge to learn about CSPs, but had no 

previous exposure to AI algorithms.   

The study typified a scenario in which a student learns about a set of target concepts 

from text-based materials, studies relevant sample problems, and finally is tested on the 

target concepts. First, students had one hour to read a textbook chapter on CSP problems 

[Poole et al., 1998]. Next, they took a 20 minute pre-test on the material. After the pre-

test, students studied sample problems using the CSP Applet and finally they were given 

a post-test almost identical to the pre-test except for a few different domain values or 

arcs.   

For the current experiment, we used the time-stamped logged data of user interactions 

with the CSP Applet, and results from the pre and post tests. From the logged data we 

obtained 1931 user actions over 205.3 minutes. It should be noted that we had disabled 

the Step and Auto Solve mechanisms for this previous user study, because we observed 

students misusing them during pilot studies (e.g., hastily Stepping through the problem or 

inattentively Auto Solving the problem). Thus, the actions included in the log files were 

limited to Fine Step, Direct Arc Click, Auto Arc Consistency (Auto AC), Stop Reset, 

Domain Split and Backtrack. While it would have been useful to see if our modeling 

approach could capture the misuse of Step and Auto Solve, remarkably it was still able to 

identify several other behaviors potentially detrimental for learning (as we discuss 

below). The fact that our approach discovered suboptimal learning behaviors that we 

could not catch by observing the interactions highlights how difficult it can be to 

recognize distinct learning behaviors in this type of environment. 

Preprocessing. From the logged user study data, we computed 24 feature vectors 

corresponding to the 24 study participants. The feature vectors had 21 dimensions, 

resulting from deriving three features for each of the seven actions described in the 

previous sections: (1) action frequency, (2) the average latency after the action, and (3) 

the standard deviation of the latency after the action. Recall from Section 2.1 that we use 

the second dimension as a possible indicator of student reflection, and the third 

dimension as a possible indicator of selectiveness since varied latency may indicate 

planned rather than impulsive or inattentive behavior (as found, for instance, by Shih, 

Koedinger and Scheines [2008]).  

As a general rule of thumb, it is recommended to have 5 to 10 times as many feature 

vectors as feature dimensions to prevent model overfitting [Jain et al. 2000]. However, 
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we decided not to perform the feature selection step (Section 2.1) for this experiment 

because the number of feature dimensions was still lower than the number of feature 

vectors. We will see below that our framework was still able to find several meaningful 

behavioral patterns from the CSP Applet data.   

Unsupervised Clustering. We applied k-means clustering to the study data with k set to 2, 

3 and 4 because we only expected to find a few distinct clusters with our small sample 

size. As described in Section 2.1, for each trial we executed k-means 20 times and used 

the highest quality clusters as the final cluster set. The clusters found by k set to 4 were 

the same as those with k set to 3 with the exception of one data point forming a singleton 

cluster. This essentially corresponds to an outlier in the data, and so we report only the 

results for k set to 2 and k set to 3. We now discuss cluster analysis for k set to 2 and k set 

to 3, in turn. 

3.2.2 Cluster Analysis for the CSP Applet (k=2) 

When we compared average learning gains between the clusters found by k-means with k 

set to 2 (k-2 clusters from now on), we found that one cluster (4 students) had 

(statistically and practically) significantly (p<.05 and d>.8, respectively) higher learning 

gains (average=7 points, SD=2.68) than the other cluster (20 students, average=3.08 

points gain, SD=2.62). Hereafter, we will refer to these clusters as ‘HL’ (high learning) 

cluster, and ‘LL’ (low learning) cluster respectively.  

In order to characterize the HL and LL clusters in terms of distinguishing student 

interaction behaviors, we did a pair-wise analysis of the differences between the clusters 

along each of the 21 dimensions. Table I summarizes the results of this analysis, where 

features highlighted in bold are those for which we found statistically or practically 

significant differences. Here, we interpret the differences along the individual feature 

dimensions that were either significant or marginally significant (p<.1), or discuss 

combinations of dimensions that yielded sensible results. 
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Table I. Pair-wise feature comparisons between HL and LL clusters for k = 2 

Feature Description HL 
average 

LL 
average p Cohen’s d 

Fine Step frequency .025 .118 6e-4* 1.34* 
Fine Step latency average 10.2 3.08 .013* 1.90* 
Fine Step latency SD 12.2 4.06 .005* 2.04* 
Direct Arc Click  frequency .050 .036 .299 .267 
Direct Arc Click  latency average 4.18 5.71 .233 .331 
Direct Arc Click  latency SD 3.63 5.74 .177 .362 
Auto AC  frequency .007 .003 .118 .700 
Auto AC latency average 23.7 36.9 .175 .316 
Auto AC latency SD 20.4 12.8 .276 .294 
Stop frequency .003 7e-4 .058 .935* 
Stop latency average 1.75 1.60 .448 .047 
Stop latency SD 1.06 0 .051 1.16* 
Reset frequency .010 .008 .329 .221 
Reset latency average 46.6 11.4 .086 .866* 
Reset latency SD 24.4 9.56 .003* 1.51* 
Domain Split frequency .003 .009 .012* .783 
Domain Split latency average 6.75 4.61 .156 .465 
Domain Split latency SD 1.37 3.04 .059 .596 
Backtrack frequency 8e-4 .002 .113 .413 
Backtrack latency average 1.75 3.68 .211 .281 
Backtrack latency SD 0 3.27 .057 .524 

* Significant at p<.05 or d>.8 (feature description and values in bold) 

The results on the use of the Fine Step feature are quite intuitive. From the first 

boxplot in Figure 3, we can see that the LL students used this feature significantly more 

frequently than the HL students. In addition, both the latency averages and standard 

deviations after a Fine Step were significantly shorter for the LL students,  indicating that 

they Fine Stepped frequently and consistently too quickly. These results plausibly 

indicate that LL students may be using this feature mechanically, without pausing long 

enough to consider the effects of each Fine Step, a behavior that may contribute to the 

low learning gains achieved by these students. 
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Fig. 3.  Fine Step boxplots between HL (white) and LL (gray) clusters. From left to right: 

frequency, latency average, and latency standard deviation 

The HL students used the Auto AC feature more frequently than the LL students (see 

‘Auto AC frequency’ in Table I), although the difference is not statistically significant. In 

isolation, this result appears unintuitive considering that simply watching the AC-3 

algorithm in execution is an inactive form of learner engagement [Naps et al. 2003]. 

However, in combination with the significantly higher frequency of Stopping (see ‘Stop 

frequency’ in Table I), this behavior suggests that the HL students could be using these 

features to forward through the AC-3 algorithm in larger steps to analyze it at a coarser 

scale, rather than just passively watching the algorithm progress. Figure 4 shows boxplots 

of the Auto AC and Stop frequencies between the HL and LL clusters. 
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Fig. 4.  Auto AC frequency boxplot (left) and Stop frequency boxplot (right) between HL (white) 

and LL (gray) clusters 
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The HL students also paused longer and more selectively after Resetting than the LL 

students (see ‘Reset latency average’ and ‘Reset latency SD’ entries in Table I). With the 

hindsight that these students were successful learners, we can interpret this behavior as an 

indication that they were reflecting on each problem more that the LL students. However, 

without the prescience of learning outcomes, it is likely that an application expert or 

educator observing the students would overlook this less obvious behavior.  

There was also a significant difference in the frequency of Domain Splitting between 

the HL and LL clusters of students, with the LL cluster frequency being higher (see 

‘Domain Split frequency’ in Table I). As it is, it is hard to find an intuitive explanation 

for this result in terms of learning. However, analysis of the clusters found with k=3 in 

the following section shows finer distinctions along this dimension, as well as along the 

latency dimensions after a Domain Split action. These latter findings are more revealing, 

indicating that there are likely more than two learning patterns.  

 

3.2.3 Cluster Analysis for the CSP Applet (k=3) 

As for the k-2 clusters, we found significant differences in learning outcomes with the 

clusters found with k set to 3 (k-3 clusters from now on). One of these clusters coincides 

with the HL cluster found with k=2. A post-hoc pairwise analysis showed that students in 

this cluster have significantly higher learning gains (pHSD<.05 and d >.8) than students in 

the other two clusters. We found no significant learning difference between the two low 

learning clusters, which we will label as LL1 (8 students, average=2.94 points, SD=2.56) 

and LL2 (12 students, average=3.17 points gain, SD=2.77). 

Table II summarizes the three-way comparisons amongst the three clusters along each 

of the 21 dimensions. Table III summarizes the post-hoc pair-wise comparisons between 

the clusters (i.e., HL compared to LL1, HL compared to LL2, and LL1 compared to LL2) 

along each of the dimensions. In both tables, features in bold are those yielding 

significant differences. 
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Table II.  Three-way comparisons between HL, LL1, and LL2 clusters (found when k was set to 3) 

along each of the 21 feature dimensions 

Feature Description HL 
average

LL1 
average

LL2 
average F p partial 

η2 
Fine Step frequency .025 .111 .122 1.98 .162 .159* 
Fine Step latency 
average 10.2 3.07 3.08 20.4 1e-5* .660* 

Fine Step latency SD 12.2 4.82 3.55 12.1 3e-4* .536* 
Direct Arc Click  
frequency .050 .018 .046 1.55 .237 .128 

Direct Arc Click  
latency average 4.18 6.66 5.07 .512 .606 .047 

Direct Arc Click  
latency SD 3.63 5.06 6.18 .227 .799 .021 

Auto AC  frequency .007 .003 .004 2.66 .093 .202* 
Auto AC latency 
average 23.7 16.8 50.4 1.11 .347 .096 

Auto AC latency SD 20.4 8.95 15.4 .481 .625 .044 
Stop frequency .003 3e-4 9e-4 3.00 .071 .222* 
Stop latency average 1.75 .375 2.42 .676 .519 .060 
Stop latency SD 1.06 0 0 15.8 6e-4* .600* 
Reset frequency .010 .008 .008 .160 .853 .015 
Reset latency average 46.6 18.7 6.52 6.94 .005* .398* 
Reset latency SD 24.4 14.2 6.43 5.09 .016* .327* 
Domain Split 
frequency .003 .018 .003 12.0 3e-4* .532* 

Domain Split latency 
average 6.75 8.68 1.89 12.0 3e-4* .533* 

Domain Split latency 
SD 1.37 6.66 .622 27.7 1e-6* .725* 

Backtrack frequency 8e-4 .004 .002 .701 .508 .063 
Backtrack latency 
average 1.75 8.90 .202 3.21 .061 .234* 

Backtrack latency SD 0 7.96 .138 2.92 .076 .218* 
* Significant at p<.05 or partial η2>.14 (feature description and values in bold) 
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Table III.  Post-hoc pair-wise comparisons between HL, LL1, and LL2 clusters (found when k was 

set to 3) along each of the 21 feature dimensions 

HL vs. LL1 HL vs. LL2 LL1 vs. LL2 Feature Description 
pHSD d pHSD d pHSD d 

Fine Step frequency .142 1.10* .078 1.48* .691 .106 
Fine Step latency 
average 1e-5* 1.98* 1e-5* 1.85* .818 .007 

Fine Step latency SD .001* 1.68* 1e-4* 2.33* .395 .356 
Direct Arc Click  
frequency .216 .618 .751 .065 .147 .616 

Direct Arc Click  latency 
average .389 .454 .667 .221 .449 .295 

Direct Arc Click  latency 
SD .670 .254 .516 .420 .661 .126 

Auto AC  frequency .046* .745 .076 .666 .595 .228 
Auto AC latency average .72 .476 .403 .522 .198 .471 
Auto AC latency SD .386 .466 .631 .187 .491 .262 
Stop frequency .031* 1.21* .081 .783 .449 .296 
Stop latency average .552 .966* .692 .169 .287 .387 
Stop latency SD 5e-5* 1.16* 3e-5* 1.16* .823 0 
Reset frequency .562 .276 .620 .187 .744 .070 
Reset latency average .031* .673 .002* 1.01* .194 .867 
Reset latency SD .136 1.08* .007* 1.84* .125 .601 
Domain Split frequency .003* 1.91* .820 .011 2e-4* 1.69* 
Domain Split latency 
average .350 .483 .019* 1.24* 1e-4* 1.79* 

Domain Split latency SD 1e-4* 2.83* .488 .527 0* 2.73* 
Backtrack frequency .358 .611 .721 .220 .342 .365 
Backtrack latency 
average .167 .745 .667 .648 .028* .934* 

Backtrack latency SD .118 .867* .811 .556 .042* .851* 
* Significant at pHSD<.05 or d>.8 (feature description and values in bold) 

As before, here we discuss the results in Tables II and III for individual or 

combinations of dimensions in order to characterize the interaction behaviors of students 

in each cluster.  

We found distinguishing Fine Step behaviors between the HL students and students in 

both LL clusters, similar to what we had found for the k-2 clusters. First, there was a non-

significant trend of both the LL1 and LL2 students having a higher frequency of Fine 

Stepping than the HL students (see left box plot in Figure 5). Both the average and the 

standard deviation of the latency after a Fine Step were significantly higher for the HL 

students than for both the LL1 and LL2 students (see middle and right plot in Figure 5), 
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suggesting that LL students consistently pause less than HL students after a Fine Step, 

and that this reduced attention may have negatively affected their learning. 
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Fig. 5. Fine Step boxplots between HL (white), LL1 (light gray), and LL2 (gray) clusters. From left 

to right: frequency, latency average, and latency standard deviation 

The patterns of usage for the Auto AC, Stop and Reset functionalities were also similar 

to those we found with the k-2 clusters. That is, the HL students used the Auto AC feature 

more frequently than students in both LL clusters (the difference is statistically 

significant between the HL and LL1 clusters), suggesting that the HL students were using 

these features to selectively forward through the AC-3 algorithm to learn. The HL 

students also paused longer and more selectively after Resetting than both the LL1 and 

LL2 students, suggesting that the HL students may be reflecting more on each problem. 

 The k-3 clustering also reveals several additional patterns, not only between the HL 

and LL clusters, but also between the two LL clusters, indicating that k=3 was better at 

discriminating relevant student behaviors. For example, the k-2 clusters showed that the 

LL students used the Domain Split feature more frequently than the HL students, 

however, the k-3 clustering reveals a more complex pattern (visualized in the boxplots in 

Figure 6). This pattern is summarized by the following combination of findings: 

• LL1 students used the Domain Split feature significantly more than the HL students. 

• HL and LL2 students used the Domain Split feature comparably frequently. 

• HL and LL1 students had similar pausing averages after a domain split, and paused 

significantly longer than the LL2 students.  

• LL1 students paused significantly more selectively (had higher standard deviation 

for pause latency) than both HL and LL2 students. 

• LL1 had longer pauses after Backtracking than both the HL and LL2 clusters. 
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Effective domain splitting is intended to require thought about efficiency in solving a 

CSP given different possible splits, and so the HL students’ longer pauses may have 

contributed to their better learning as compared to LL2 students. However, it is 

interesting that the LL1 students paused for just as long after Domain Splitting as the HL 

students, and more selectively than both the HL and LL2 students, yet still had low 

learning gains. The fact that LL1 cluster is also characterized by longer pauses after 

Backtracking may indicate that long pauses for LL1 students indicated confusion about 

these applet features or the concepts of domain splitting and backtracking, rather than 

effective reflection. This is indeed a complex behavior that may have been difficult to 

identify through mere observation. 
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Fig. 6  Domain Split and Backtrack boxplots between HL (white), LL1 (light gray), and LL2 (gray) 

clusters. From left to right: Domain Split frequency, Domain Split latency average, Domain Split 

latency standard deviation, Backtrack latency average, and Backtrack latency standard deviation. 

3.3 Online Recognition and Model Evaluation for the CSP Applet 

The final step in our user modeling framework (see Section 2.2) is to use the offline 

clusters to train classifier user models. Therefore, we built and evaluated both a two and 

three-class k-means classifier. These classifier user models can then take online data on a 

new student’s interaction with the CSP Applet (represented as a sequence of feature 

vectors), and classify that student into one of the offline clusters. 

To evaluate the models, we followed the model evaluation process described in 

Section 2.3. That is, we performed a 24-fold leave one out cross validation (LOOCV), 

after testing the stability of the offline clusters against distortions caused by the removal 

of one data point during LOOCV. We then evaluated the predictive accuracies of the 

models, reporting the percentage of students correctly classified into the original offline 

clusters as a function of the number of actions seen by the online classifier. 
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3.3.1 Model Evaluation for the CSP Applet (k=2) 

The estimated stability cost of using the LOOCV strategy to evaluate the classifier user 

model trained with the k-2 clusters (two-class k-means classifier from now on) is 0.05 

(averaging over the 24-folds). As discussed in Section 2.3, this is considered a very low 

cost, indicating that our k-2 clusters are relatively stable during the LOOCV evaluation. 

Therefore, a classification by the two-class k-means classifier means that a new student’s 

learning behaviors are similar to those of either the HL or LL clusters identified in the 

offline phase (Section 3.2.2).  

Figure 7 shows the average accuracy of the two-class k-means classifier in predicting 

the correct classifications of each of our 24 students (using the LOOCV strategy) as they 

interact with the CSP Applet.  

 

Fig. 7.  Performance of the CSP Applet user models (k=2) over time  

The percentage of correct classifications is shown as a function of the percentage of 

student actions the model has seen (solid line labeled ‘Overall’ in the figure’s legend). 

The figure also shows the model’s performance in classifying HL students into the HL 

cluster (dashed line) and LL students into the LL cluster (dotted line). For comparison 

purposes, the figure also shows the performance of a baseline model using a most-likely 

class classification method where new student actions are always classified into the most-

likely or largest, class, i.e. the LL cluster in our case (20 students). This is shown in 

Figure 7 by the dashed line straight across at the 83.3% (20 out of 24) classification 
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accuracy level. The trends in Figure 7 show that the overall accuracy of this classifier 

improves as more evidence is accumulated, converging to 87.5% after seeing all of the 

student’s actions. Initially, the classifier performs slightly worse than the baseline model, 

but then it starts outperforming the baseline model after seeing about 30% of the 

student’s actions. The accuracy of the classifier model in recognizing LL students 

remains relatively consistent over time, converging to approximately 90%. In contrast, 

the accuracy of the model in recognizing HL students begins very low, reaches relatively 

acceptable performance after seeing approximately 40% of the student’s actions, and 

eventually converges to approximately 75% after seeing all of the student’s actions 

(although at the very end it dips to 65% after being at 75% for over 50% of the students’ 

actions). It should be noted that the baseline approach would consistently misclassify HL 

students and thus interfere with the unconstrained nature of ELE interaction for these 

students. While the performance of the classifier in detecting HL students is better than 

the baseline, it may still cause a system based on this model to interfere with an HL 

student’s natural learning behavior, thus hindering student control, one of the key aspects 

of ELEs. The imbalance between accuracy in classifying LL and HL students is likely 

due to the distribution of the sample data [Weiss and Provost 2001] as the HL cluster has 

fewer data points than the LL cluster (4 compared to 20). This is a common phenomenon 

observed in classifier learning. Collecting more training data to correct for this 

imbalance, even if the cluster sizes are representative of the natural population 

distributions, may help to increase the classifier user model’s accuracy on HL students 

[Weiss and Provost 2001].  

 

3.3.2 Model Evaluation for the CSP Applet (k=3) 

The stability cost for using the LOOCV strategy to evaluate the three-class classifier user 

model is estimated at 0.09. The stability cost for this classifier is still low, although 

slightly higher than for the two-class classifier. This likely reflects the fact that the k-3 

clusters are smaller than the k-2 clusters and thus less stable (i.e., removing a data point is 

more likely to produce different clusterings during LOOCV).  

Figure 8 shows the overall prediction accuracy as a function of the number of 

observed student actions for this classifier user model (solid line). For comparison 

purposes, the figure also shows the performance of a most-likely class baseline user 

model (dashed line) which always classifies student actions into the largest class (LL2, 

with 12 students). Again, the classifier ‘s  accuracy improves with more observations, 

starting off at about 50% accuracy, but then reaching approximately 83.3% after seeing 
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all of the actions. After seeing approximately 30% of the student actions, the classifier 

user model outperforms the baseline model which has a consistent, 50% (12 out of 24) 

accuracy rate.  

 

Fig. 8.  Performance of the CSP Applet user 

models (k=3) over time 

 

Fig. 9.  Performance of the CSP Applet user 

models (k=3) over time for the individual clusters 

Figure 9 shows the prediction accuracy trends for the individual clusters. For the HL 

cluster, the classification accuracy (dashed line) again begins very low, but reaches 75% 

after seeing about 40% of the actions, and then eventually reaches 100% after seeing all 

of the actions. The accuracy of the model at classifying LL1 students (dotted line), also 

begins low, but then reaches approximately 75% after seeing about 60% of the actions, 

and converges to approximately 85%. The accuracy for the LL2 students (solid line), 

remains relatively consistent as actions are observed, eventually reaching approximately 

75%. 

As with the increase in the stability cost, the lower accuracy of this classifier user 

model is likely an artifact of the fewer data points within each cluster. Further supporting 

this hypothesis is the fact that the LL2 cluster, which had 12 members, had the highest 

classification accuracy (80.3% averaged over time) whereas the HL and LL1 clusters, 

which had only 4 and 8 members respectively, had visibly lower classification accuracies 

(66.3% and 44.9% averaged over time, respectively). Therefore, more training data 

should be collected and used, particularly as the number of clusters increases, when 

applying our user modeling framework. 

 

 

 

4. TESTING THE FRAMEWORK ON THE ACE LEARNING ENVIRONMENT 
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The second application we use to test our proposed user modeling framework is the 

Adaptive Coach for Exploration (ACE) [Bunt et al. 2001], an ELE  for the domain of 

mathematical functions. ACE’s interface provides tools to support student-led exploration 

of the target domain while an adaptive Coach guided by a knowledge-based user model 

provides tailored suggestions on how to improve exploration. 

The ACE environment is comprised of three units, each designed to present concepts 

pertaining to mathematical functions in a distinct manner. In this research we focus on 

the Plot Unit because it offers the widest range of exploratory activities of all the units by 

enabling students to experiment with textual as well as graphical function representations. 

Here, we first describe ACE’s Plot Unit and the interface actions that make up 

possible student interaction behaviors (Section 4.1). In Section 4.2 we present the results 

of applying the offline component of our framework to automatically identify clusters of 

students who interact similarly with ACE. In Section 4.3 we apply the online component 

to build a user model for ACE, and then evaluate the model.  

 

4.1 The ACE Plot Unit 

ACE’s Plot Unit interface (see main window in Figure 10) is divided into the following 

three components. The function exploration component (top-left panel) visually 

demonstrates the relationship between mathematical equations and their corresponding 

plots in a Cartesian coordinate plane. The Coach component (bottom-left panel) is where 

tailored, on-demand hints are presented to guide student exploration. And finally, the 

help component (right panel) contains hypertext help pages about ACE’s interface and 

mathematical functions.  

The ACE Plot Unit provides three types of functions, or exercises, for the student to 

explore: constant, linear and power functions. Each function type has an associated set of 

‘exploration cases’ that together illustrate the full range of function attributes. For 

example, constant functions are defined by a single parameter that specifies the y-

intercept attribute of the function. Therefore, in order to gain a broad understanding of 

constant functions, the student should study the two relevant exploration cases: positive 

intercepts and negative intercepts. In another example, linear functions are defined by 

two parameters specifying the function slope and the y-intercept. Here, the student should 

study the following relevant exploration cases: positive and negative intercepts, and 

positive, negative and zero slopes. A standard curriculum is pre-defined for the Plot Unit 

and contains several exercises for students to explore. 
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Fig. 10.  Main ACE interface window, Lesson Browser window (top right), Exploration Assistant 

window (bottom right), and Coach intervention window (top left) 

ACE includes a knowledge-based user model of student exploration behavior that 

guides the Coach’s hints and interventions to improve those behaviors that are deemed to 

be suboptimal [Bunt and Conati 2003]. The model is a hand-constructed Dynamic 

Bayesian Network (DBN) that assesses the effectiveness of students’ exploration 

behavior based on coverage of their actions and latency.  The latter is used as an estimate 

of a student’s active reasoning on each exploration case.  

In the rest of this section, we briefly describe all of the functionalities provided by the 

ACE Plot Unit that form the underlying feature set on which we apply our user modeling 

framework to. 

• Plot Move (PM). Allows the student to directly manipulate a given function by 

dragging the function’s plot around the coordinate plane. The parameters of the 

function’s equation are automatically adjusted to reflect the transformations.   

• Equation Change (EC). Allows students to edit a function’s equation (at the bottom 

of the function exploration panel) and analyze the effects of the corresponding 

changes to the plot.  

• Reset. Lets the student reset the current function to its initial parameter values (i.e., 

before any plot moves or equation changes) at any time. The reset functionality is 

accessible by clicking on the middle magnifying glass button on the toolbar next to 
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the function equation (see the magnifying glass icons at the bottom of the function 

exploration panel). 

• Next Exercise (NE). Steps sequentially forward to the next exercise in ACE’s pre-

defined curriculum. This functionality is accessible by clicking on the next exercise 

button at the top right of the coordinate plane. 

• Step Forward (SF). Performs the same functionality as the next exercise button. The 

step forward arrow button is on the button toolbar at the top left of the coordinate 

plane. 

• Step Back (SB). Steps backwards to the previous exercise in the curriculum (see 

backwards arrow on the button toolbar). 

• Lesson Browser (LB). Outlines ACE’s pre-defined curriculum (accessible by 

clicking the scroll icon on the toolbar). The LB tool (see top right window in Figure 

10) allows students to freely explore exercises within the curriculum in any order by 

letting students choose which exercise to examine next.  

• Exploration Assistant (EA). Helps students monitor and strategically plan their 

exploration within each exercise which is an important meta-cognitive activity 

believed to benefit learning [Gama 2004]. The EA tool (accessible by clicking on the 

street-sign icon on the toolbar) displays the relevant exploration cases for the current 

function type, and marks the cases already examined by the student. For example, 

the bottom right window in Figure 10 shows that the student has explored the 

positive intercept and negative intercept cases of a linear function, but has not yet 

experimented with the zero, positive or negative slope cases. 

• Get Hint (GH). Requests a hint from the Coach which is displayed in the Coach 

panel. Each click of the GH button (at the top of the Coach panel) displays 

increasingly detailed hints on what cases to explore next based on the DBM model’s 

current assessment of the student’s progress (see text in the Coach panel in Figure 

10). 

• Stay. In addition to providing on-demand hints, ACE’s Coach intervenes through a 

dialog window (see top left window in Figure 10) if the student tries to move to a 

new exercise before sufficiently exploring the current one. In this situation the Coach 

tries to encourage the student to continue exploring the current exercise by offering 

them a hint if they stay. However, in keeping with the theme of student-controlled 

exploration, the student ultimately decides whether or not to move on by selecting 

the corresponding button in the dialog window. The Stay button lets the student 

adhere to the Coach’s advice to continue exploring the current exercise. 
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• Move On (MO). Lets the student ignore the Coach’s advice to stay on the current 

exercise and moves on to another one. 

• Help. Lets the student explore the hypertext help pages available through the help 

component. 

• Zoom. Zooms into, or out of the graph region allowing students to inspect the plot at 

different scales. Accessible through the toolbar next the function equation (see the 

zoom-in, ‘+’, and zoom-out, ‘-‘, magnifying glass icons at the lower left of the 

exploration panel in Figure 10). 

 

4.2 Offline Identification for ACE 

In this section, we describe how we applied the offline steps outlined by our user 

modeling framework to the ACE learning environment. 

Data Collection. The data we use for the current research was obtained from a previous 

user study investigating how to model meta-cognitive behaviors of students using the 

ACE Plot Unit [Conati et al. 2005; Merten and Conati 2006]. The particular meta-

cognitive behavior studied is known as self-explanation [Chi et al. 1989], the domain-

independent skill of self-generating interpretations and reasoning about instructional 

material. This behavior has been shown to improve learning [Chi et al. 1989; Conati and 

VanLehn 2000; Ferguson-Hessler and Jong 1990] and so is modeled in ACE’s DBN 

(discussed above in Section 4.1) as one of the factors that determine the effectiveness of a 

student’s exploration.  

The original ACE DBN user model used only latency (after plot moves or equation 

changes) as implicit evidence of self-explanation. However, latency alone does not assure 

that the student is even attending to the material. For this reason, eye-tracking data was 

obtained during the user study to see whether the addition of specific eye-gaze patterns 

would better estimate self-explanation. The eye-gaze patterns explored were direct and 

indirect gaze shifts between the plot and equation areas, because, intuitively, shifting 

attention between the plot and equation areas is a good indication of self-explanation of 

the current exploration case. Figure 11 shows an example of a direct gaze shift after an 

equation change. The student’s gaze starts from the function equation and shifts directly 

to the plot region, suggesting that the student was trying to understand the connection 

between the equation and plot. An indirect gaze shift is defined as moving from one of 

these regions, to a non-salient region and then to the other salient region. 
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Fig. 11.  Example gaze shift 

A total of 36 university students participated in the user study. These students that had 

not taken high school calculus or college level math. Before using ACE, each student 

took a 15 minute pre-test on mathematical functions. Then the students interacted with 

ACE for as much time as needed to explore all of the exercises in each unit, with the Plot 

Unit providing three exercises (one constant function exercise, one linear function, and 

one power function). While using ACE, students were asked to follow a think-aloud 

protocol in which they should try to verbalize all of their thoughts. The student’s gaze 

was tracked by a head-mounted, Eyelink I eye-tracker developed by SR Research Ltd., 

Canada. Finally, the students took another 15 minute post-test that differed from the pre-

test only on parameter values and question ordering.  

The data from this user study was used to build a new version of the ACE user model 

[Conati and Merten 2007] using a supervised data-based approach with hand-labeled 

data. This new model used gaze information, in addition to latency between actions, to 

assess effectiveness of student exploration for learning. Two researchers (to assure 

coding reliability) labeled each student’s verbalizations after every equation change and 

plot move as an instance of reflection or speech not conducive to learning. These labels 

were mapped onto presence/absence of gaze shifts and latency until the next action, and 

the resulting dataset was used to train a classifier that used action latency and gaze 

information to assess self-explanation behavior during exploration.  This new model 

showed better performance in assessing effectiveness of student exploration than models 

using only action occurrences or action occurrences plus latency information, showing 

the value of eye-tracking data for this type of assessment. However, several potentially 

useful behaviors are not captured by this model, because of the effort required to generate 

the hand labeled data necessary to train it. For instance, the use of the gaze information 



30 Journal of Educational Data Mining, Article 2, Vol 1, No 1, Fall 2009 
 

was limited to direct and indirect gaze shifts only after an equation change or plot move 

action, although gaze shifts may also be relevant after other interface actions. For 

instance, after a next exercise action, a new function appears on the screen requiring 

attention to both the plot and equation regions in order to understand the connection 

between the new function equation and its plot). We will see that our framework can 

detect additional patterns with limited additional work. 

For our current experiment we used time-stamped and logged user interactions 

(corresponding to all of the 13 Plot Unit interface functionalities described in Section 4.1) 

and synchronized eye-tracking data from ACE’s Plot Unit. From this we obtained 3783 

interface actions (recorded over 673.7 minutes) along with the accompanying gaze-shift 

data. The pre and post-tests used in the study were devised in such a way as to evaluate 

relevant knowledge gained from each ACE unit separately. This allowed us to extract the 

test results for only the Plot Unit for the current experiment.  

Preprocessing and Unsupervised Clustering. We extracted two different sets of features 

from the ACE study data. The first set (FeatureSet1) consisted of 39 features 

corresponding to the frequency of each of the 13 possible interface actions (see Section 

4.1), and the average and standard deviation of the latency between each of these actions. 

This feature set is analogous to the one used in our first experiment (Section 3.2). We 

chose this feature set in order to evaluate how our modeling framework transfers across 

different applications using the same type of input data. 

The second feature set (FeatureSet2) included features distilled from the eye-tracking 

data in addition to the above interface features. Since, contrary to the supervised data-

based approach in [Conati and Merten 2007] considering more actions in our approach 

does not involve much extra work, we included gaze shift information for all of the 13 

interface actions in FeatureSet2 by computing the mean and the standard deviation of the 

number of indirect and direct gaze shifts as additional features. Therefore, this feature set 

consisted of 91 possibly influential features. We chose this set for two reasons. First, we 

wanted to evaluate how our approach works on a range of different data sources. Second, 

we wanted to see if we could reproduce results in [Conati and Merten 2007], showing 

that eye-tracking information improves assessment of the effectiveness of student 

exploration. In particular, we hypothesized that eye-tracking data would improve the 

performance of clustering in identifying groups of students with distinct learning 

proficiency.  
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With only 36 feature vectors corresponding to the 36 study participants, the high-

dimensional feature spaces of both FeatureSet1 and FeatureSet2 can result in data 

sparseness and may degrade the performance of clustering. Therefore, as outlined in our 

modeling framework in Section 2.1, we performed entropy-based feature selection [Dash 

and Liu 2000] on each set in order to isolate the most discriminatory features. This 

feature selection algorithm performs clustering on feature subsets in order to assess the 

quality of the features in distinguishing clusters. Therefore, by using this feature selection 

algorithm, we obtain both a set of relevant features, as well as the resulting clusters (the 

Unsupervised Clustering step of our user modeling framework, see Section 2.1) using 

that feature set. As for our first experiment, we used k set to 2, 3 and 4 for the k-means 

clustering executed during forward selection. Again, we chose these values because our 

data set was relatively small and so we only expected to find a few distinct clusters.  

Most of the interface related features (between 34 and 37 features) were retained by 

feature selection on FeatureSet1. The features that were removed were all related to the 

standard deviations of the latency after some of the interface actions (e.g., after Lesson 

Browser, Exploration Assistant, Get Hint, and Stay actions).  

Approximately one third of the features from FeatureSet2 (also between 33 and 37 

features) were found to be relevant by feature selection. In this case, all action 

frequencies were deemed important for cluster formation by feature selection, except in 

the case of a Stay action. Also, gaze shift dimensions are only identified as important in 

the presence of the corresponding latency dimensions after an action. For example, 

indirect gaze shifts were found to be relevant in addition to the latency dimensions after 

an equation change, next exercise, step back, stay, and zoom action. Conversely, latency 

was found to be relevant independently of gaze shift features after some actions (namely 

after reset, step forward, Exploration Assistant, move on, and help actions). This agrees 

with the findings in [Conati and Merten 2007] that gaze shifts may be important mostly 

in discriminating between time spent self-explaining the results of an action and idle 

time. Interestingly, neither latency nor gaze shifts were found to be relevant after a 

function plot move. Given that both plot moves and equation changes are exploratory 

actions requiring equivalent self-explanations, this result is unintuitive especially 

considering that latency and gaze shifts were found to be important after equation 

changes. This could be an artifact of the feature selection algorithm that we use [Dash 

and Liu 2000]. To test our hypothesis that the plot move latency and gaze shift features 

were indeed important, we attempted clustering on the same set of features returned by 

feature selection on FeatureSet2 with the addition of these features, however no 
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significant differences in learning gains were found between any of the clusters. 

Therefore, these findings could challenge our prior beliefs about the utility of plot move 

exploratory actions for learning.  

As discussed in our first experiment, the general rule of thumb would suggest using 

between 3 to 7 features for model learning given our 36 feature vectors [Jain et al. 2000]. 

However, because we are trying to reduce the time and effort required of application and 

domain experts with our user modeling framework, we decided against the time-

consuming and potentially inaccurate manual analysis of the features that would have 

been required to reduce the dimensionality of these feature spaces further (see Section 

2.1).  

Cluster Analysis. When we compared average learning gains between the clusters found 

by k-means on each of the feature sets (described in the previous section), we found no 

significant differences in learning gains amongst the clusters found using FeatureSet1. 

Therefore we cannot use these clusters as the basis for the online modeling phase. 

Interestingly, in our first experiment (see Section 3), we were able to find distinct clusters 

of learners using only interface actions on a data set comparable in size to the data set we 

are using here. We hypothesize that this discrepancy is due to the differences in the 

nature of the domains and the interfaces of the two learning environments. This is 

discussed further in our comparison of our two experiments in Section 5. 
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Table VI.  Pair-wise comparisons between HL and LL clusters along each of the 36 feature 

dimensions 

Feature Description HL 
average 

LL 
average DF t p Cohen’s d 

PM  frequency .024 .034 25.6 1.23 .116 .418 
EC frequency .015 .019 19.8 .850 .203 .305 
EC latency average 21.8 16.1 15.3 1.78 .047* .677 
EC latency SD 10.4 6.08 11.5 1.56 .073 .636 
EC indirect average 1.21 .440 12.6 2.57 .012* 1.02* 
EC indirect SD 1.12 .556 13.0 2.24 .022* .886* 
Reset frequency 0 .001 24.0 2.60 .008* .735 
Reset latency SD 0 .051 24.0 1.44 .082 .406 
NE frequency .005 .009 33.2 2.73 .005* .827* 
NE latency average 18.7 13.2 21.3 3.01 .003* 1.07* 
NE latency SD 10.3 7.44 18.8 1.64 .059 .594 
NE indirect average 1.74 .625 16.0 5.79 1e-5* 2.18* 
NE indirect SD 2.09 .715 13.5 5.03 1e-4* 1.97* 
NE direct average 1.30 .201 10.6 3.36 .003* 1.41* 
NE direct SD 1.79 .362 10.8 3.01 .006* 1.25* 
SF frequency .008 .011 30.3 1.90 .034* .621 
SF latency average 7.65 4.65 15.4 2.71 .008* 1.03* 
SF latency SD 9.96 5.83 19.3 2.37 .014* .858* 
SB frequency 0 2e-4 24.0 1.20 .122 .338 
SB latency average 0 .400 24.0 1.68 .053 .475 
SB indirect average 0 .040 24.0 1.00 .164 .283 
LB frequency 0 6e-4 24.0 1.87 .037* .528 
EA frequency 1e-4 .001 27.6 2.22 .018* .640 
EA latency average 5.27 5.65 16.7 .072 .472 .027 
GH frequency 3e-4 4e-4 34.0 .311 .312 .155 
Stay latency average 6.55 2.54 14.5 2.01 .032* .775 
Stay indirect average .152 .100 22.5 .389 .350 .136 
MO frequency .003 .005 32.1 2.31 .014* .744 
MO latency average 2.23 232 24.0 1.00 .163 .283 
MO latency SD 2.76 400 24.0 1.00 .163 .283 
Help frequency .002 .001 14.3 .745 .234 .288 
Help latency 
average 2.45 7.28 33.1 1.94 .030* .587 

Zoom frequency 4e-4 .021 24.1 2.62 .008* .741 
Zoom latency 
average .374 1.98 29.9 2.92 .009* .961* 

Zoom latency SD .700 2.70 22.6 2.24 .017* .785 
Zoom direct SD 0 .101 24.0 2.41 .012* .683 

* Significant at p<.05 or d>.8 (feature description and values in bold) 

We did find a marginally significant (statistically and practically) difference (p<.07, 

and d>.5, respectively) in learning gains between the two clusters returned by k-means 
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with k set to 2 on FeatureSet2 (k-2 clusters from now on). In this case, one cluster (of 11 

students) had higher learning gains (average=2.91 points, SD=3.11) than the other cluster 

(25 students, average=1.20 points, SD=2.87). Therefore, in the rest of this section, we 

proceed to characterize only these two clusters in terms of the interaction behaviors they 

represent (i.e., by doing a pair-wise analysis of the differences between the two clusters 

along each of the 36 feature dimensions remaining after feature selection in this case). 

Hereafter, we refer to the cluster with high and low average learning gains as the ‘HL’ 

and ‘LL’ clusters, respectively. Table VI presents the results of the pair-wise analysis 

between the HL and LL clusters. Significant values and the corresponding feature 

dimensions are highlighted in bold. 

Some of our findings are consistent with results in [Conati and Merten, To Appear], 

as we were hoping. First, there were no statistically significant differences in the 

frequency of plot move or equation changes between the HL and LL clusters (see ‘PM 

frequency’ and ‘EC frequency’ entries in Table VI), consistent with finding in [Conati 

and Merten, To Appear] that sheer number of exploratory actions is not a good predictor 

of learning in this environment. Second, after an equation change, the LL students would 

pause for a significantly shorter duration than the HL students on average (see ‘EC 

latency average’ in Table VI). In [Conati and Merten, To Appear], the authors determined 

16 seconds to be an optimal threshold between occurrences of effective reflection on 

exploration cases and other verbalizations not conducive to learning. Consistent with this 

result, the second boxplot in Figure 12 shows that the average latency by the students in 

the HL cluster were mostly above this threshold, whereas with the LL cluster the latency 

averages were centered about the threshold.  
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Fig. 12.  Equation Change boxplots between HL (gray) and LL (white) clusters. From left to right: 

frequency, latency average, latency standard deviation, indirect average, and indirect standard 

deviation  
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Because with clustering we are able to incorporate all interface actions and associated 

gaze data simply by including them in the multi-dimensional feature vectors, we also 

found patterns additional to the ones found in [Conati and Merten, To Appear]. For 

example, the students in the HL cluster were more varied in how often they would 

indirectly gaze shift after an equation change (see the last boxplot in Figure 12). This 

selective behavior suggests that students need not reflect on the results of every 

exploratory action in order to learn well so long as they do not consistently refrain from 

reflection. In addition, the LL students paused less and made significantly fewer indirect 

gaze shifts after an equation change than the HL students (see the second and fourth 

boxplots in Figure 12). These results are consistent with less reflection by the LL students 

compared to the HL students and may account for some of the difference in learning 

gains. We found similar differences between the two clusters when a new function 

appeared on the screen after a next exercise action (see NE latency and gaze entries in 

Table VI). 

When the Coach suggested that a student spend more time exploring the current 

exercise, LL students chose to ignore the suggestion and move on to another exercise 

significantly more frequently than HL students (see ‘MO frequency’ in Table VI). The 

Coach’s suggestions are intended to promote effective learning [Bunt and Conati 2003] 

and so it is reasonable that ignoring them would adversely affect students. Furthermore, 

when Stay actions occurred, HL students paused for significantly longer than LL students 

(see ‘Stay latency average’ in Table VI), suggesting that the HL students followed the 

Coach’s advice more carefully by spending additional time pondering over the current 

exercise before taking additional actions. 

While the above patterns are quite intuitive, our approach was also able to identify 

additional patterns that do not have an obvious relation to learning. For example, the LL 

students advanced sequentially through the curriculum using the next exercise and step 

forward buttons significantly more frequently than the HL group (see ‘NE frequency’ and 

‘SF frequency’ in Table VI). Considering that every student examined all three available 

exercises, one would not expect differences between the clusters along these dimensions. 

However, further examination reveals that the LL students made use of the step back 

feature and the Lesson Browser tool to navigate through the curriculum, whereas none of 

the HL students did. Since the LL students showed lower learning gains after interacting 

with ACE, it is probable that these students were moving impulsively back and forth 

through the curriculum. As this pattern involved several interface features (i.e., next 
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exercise, step forward, step back, Lesson Browser, move on and stay) it may have been 

difficult to observe, even by application experts. 

Similarly, there were unintuitive differences in the use of the zooming features 

between the two clusters (see ‘Zoom’ features in Table VI). The LL students zoomed into 

or out of the plot region significantly more frequently than the HL students. The HL 

group students paused for a consistently shorter duration after zooming than the LL 

students on average. Although zooming may not have clear pedagogical benefits, this 

behavior may suggest confusion on the part of the LL students resulting in the need for 

more detailed inspection of the plot. LL students also paused for significantly longer after 

navigating to a help page then HL students (see ‘Help latency average’ in Table VI). This 

is also unintuitive as the help pages are intended to instruct students about how to use 

ACE or about relevant domain concepts and therefore would be expected to help students 

learn. However, considering that LL students showed low learning gains, this behavior 

could also be interpreted as indicating confusion. 

Also detected were patterns that may reveal the inadequacy of some of ACE’s 

interface tools. First, there were no differences between the groups in their use of the get 

hint feature. And in fact, very few students in either group used this feature. This could 

suggest that students prefer to explore independently, or that they have little confidence 

in the Coach’s hints, or that they were simply not aware of this feature. This implies that 

further investigation is necessary to evaluate the benefits of the Coach’s get hint feature. 

Also, the LL students used the Exploration Assistant tool significantly more frequently 

than the HL students (see ‘EA frequency’ in Table VI), but still had lower learning gains. 

This suggests that the Exploration Assistant had little impact on overall learning contrary 

to its intended purpose of helping students better plan their exploration. 

 

4.3 Online Recognition and Model Evaluation for ACE 

As in our first experiment (Section 3), and as dictated by our user modeling framework 

(see Section 2.2), we can use the clusters found in the offline phase (described in Section 

4.2) directly to train a k-means-based online classifier user model. We constructed such a 

model to recognize students belonging to either the HL or LL clusters found by k-means 

clustering (with k=2) and characterized in the previous section.  

To evaluate the model, we performed a 36-fold leave one out cross validation 

(LOOCV) as described in Section 2.3. Because we are using an LOOCV strategy, we 

also estimate the stability cost with respect to the clusters detected in the offline phase 
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(see Section 2.3) before we draw conclusions about the predictive accuracy of the user 

model  

The estimated stability cost for the k-means classifier user model constructed in this 

experiment was 0.062 after averaging the costs calculated over the 36 folds of the 

LOOCV evaluation (recall that 0 is considered perfect stability and 1 is considered 

maximum instability [Lange et al. 2003]). This means that the characteristic behaviors of 

the two clusters identified in the offline phase are reasonably preserved during our 

LOOCV evaluation. 

Figure 13 shows the average percentage of correct predictions as a function of the 

percentage of actions seen by the k-means online classifier model (solid line). The 

accuracy of the model (averaged over all of the students) converges to 97.2% after seeing 

all of the students’ actions. For comparison, the figure also shows the performance of a 

most-likely class baseline model that always classifies new student actions into the most-

likely (or largest) class (i.e., the LL cluster of 25 students in this case), and therefore the 

baseline model accuracy is shown by the dashed line straight across the figure at the 

69.4% (25/36) accuracy level. The figure shows that the k-means classifier model 

outperforms the baseline model after seeing only 2% of the student actions. The figure 

also shows the k-means classifier model’s performance over both the HL and LL clusters 

(dashed and dotted lines, respectively). The accuracy for the LL group remains relatively 

stable over time, whereas the performance for the HL group is initially poor but increases 

to over 80% after seeing about 45% of the actions. 

 
Fig. 13.  Performance of the ACE user model over time 
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As in our first experiment, the imbalance in accuracy between the classification of HL 

and LL learners is likely the result of the smaller sample of data from the HL cluster 

compared to the LL cluster.  

 

5. COMPARISON OF EXPERIMENTS 

One of the goals of this work is to show that our proposed modeling framework works on 

different domains and data sets, therefore, in this section, we compare and contrast the 

experimental results we obtained by applying the framework to two different learning 

environments, the AIspace CSP Applet and ACE and using two different types of input 

data. Both of these environments provide various interaction mechanisms that allow for 

uninhibited student exploration of the target domain, and may benefit from the inclusion 

of adaptive guidance that can help students gain the most from their exploration process. 

 

5.1 Comparison of Results from the Offline Identification Phase  

In both of our experiments, cluster analysis demonstrated that unsupervised clustering in 

the framework’s offline component was able to identify distinct clusters of students (i.e., 

clusters of students showing differences in learning outcomes from pre to post-tests). In 

addition, the analysis revealed several characteristic learning behaviors of the distinct 

clusters. Some of these characteristic behaviors were intuitive and thus reasonably 

explained either the effective or ineffective learning outcomes. However, as expected, 

some of the behaviors did not have obvious learning implications, requiring consideration 

of combinations of dimensions (as k-means does to determine its clusters), or knowledge 

of the student learning outcomes to be explained. These latter behaviors would have been 

difficult to recognize and label by hand, even by application experts. 

There are, however, two discrepancies in our results that need to be examined: 

1. Clustering found distinct clusters when k was set to 2 and 3 in our first experiment 

with the CSP applet, but only found distinct clusters for k set to 2 in our second 

experiment with ACE.   

2. Clustering was able to find clusters within the CSP applet data using interface 

actions alone, whereas it only found distinct clusters for ACE when we used a 

dataset that included both interface actions and eye-tracking data. 

Both of these discrepancies could be due to differences in the domains targeted by the 

two learning environments, and their consequent interfaces. The AI algorithm that the 

CSP Applet is designed to demonstrate is more complex compared to the relationship 

between mathematical functions and their graphs targeted by ACE. As a result, the CSP 
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Applet interface includes several mechanisms that allow the student to visualize and 

reflect on the workings of the AI algorithm on a CSP, whereas ACE only provides two 

such mechanisms per equation type: plot moves and equation changes. Therefore, the 

CSP Applet interface supports a larger variety of interaction behaviors per problem than 

the ACE’s interface, which may explain why we could only identify two distinct clusters 

for the latter. That is, considering the variety of possible interaction behaviors with the 

CSP Applet, interface actions alone may be better able to capture student learning and 

reflection during exploration than interface actions alone in ACE. This hypothesis is 

consistent with the results in [Conati and Merten, To Appear] showing that gaze patterns, 

together with action latency, predict student reflection and learning in ACE better than 

sheer number of actions or action latency alone. Additional data may be necessary [Jain 

et al. 2000] to detect distinct clusters of learners with ACE using only this first feature 

set.  

 

5.2 Comparison of Results from the Online Recognition Phase  

To facilitate the comparison of the classifier student models used in the on-line 

recognition phase for the CSP Applet and ACE, Table VIII reports accuracy in 

classifying HL and LL students, averaged over time. The table also shows the accuracies 

of the corresponding baseline models that used most-likely-class classification strategies. 

In all cases, the k-means based user models outperformed the corresponding baseline 

models on predicting the correct class for new student behaviors.  

Table VIII.  Summary of classification accuracies averaged over time 

 CSP 
(k=2) 

CSP 
(k=3) ACE 

Overall Accuracy 88.3% 66.2% 86.3% 
Accuracy on LL students 93.5% 66.1% 94.2% 
Accuracy on HL students 62.4% 63.3% 68.3% 
Baseline Accuracy 83.3% 50.0% 69.4% 

In addition, our evaluations show that both of the two-class (k=2) k-means based 

classifiers we developed achieved comparably good overall predictive accuracy on new 

student behaviors (88.3% in the first experiment with the CSP Applet, and 86.3% in the 

second experiment with ACE). In both cases, the accuracies were higher for predicting 

ineffective learning behaviors than for predicting effective ones (i.e., the rates for LL 

students were higher than for HL students). Therefore, the two-class classifiers would be 

useful in providing adaptive help for students who show ineffective learning behaviors, 
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but may also sometimes interfere with those students who show these behaviors 

sporadically but eventually learn well. This is likely due to the imbalance in the 

distribution of the sample data [Weiss and Provost 2001] as the number of students 

clustered in the effective learner groups were fewer than those in the ineffective learner 

groups in both experiments.  

In contrast to the two-class classifiers, the overall predictive accuracy of the three-

class (k=3) k-means based classifier we built for the CSP applet was only 66.2% despite 

the stability of the clusters. This is likely attributable to the smaller cluster sizes resulting 

from the larger k value. In this case, the accuracy for LL students reported in Table VIII 

was computed by combining the accuracy results for the two groups that showed 

ineffective learning behaviors. The individual accuracies for these two groups were 

80.9% and 44.9% averaged over time. Therefore, this classifier user model would be 

most useful for recognizing students behaving in the ineffective ways characterized by 

the first (larger) group, but not by the second (smaller) group. 

 

6. LIMITATIONS 

In this section we discuss some of the limitations of our research, including the 

limitations of our experiments, modeling framework and evaluation method.  

Of the Data Collected and Used for Our Experiments. The main limitation of the 

research presented in this work is that both of the data sets we collected and used in our 

two experiments were small. According to the general rule of thumb for model learning, 

which suggests between 5 to 10 times as many data samples as feature dimensions [Jain 

et al. 2000], the number of feature dimensions we used in each experiment was relatively 

high in comparison to the number of samples in both of our data sets, even after 

automatic feature selection in our second experiment. We initially tried to collect 

additional data for the AIspace CSP Applet experiment, but we had difficulty finding 

subjects with the appropriate background to participate. Time constraints also prevented 

us from collecting additional sample data as both of the user studies in our experiments 

were quite time-consuming (three hours for the AIspace CSP Applet user study and 80 

minutes for the ACE user study). The ACE user study would have been especially time-

consuming as only one subject could participate in the study at a time due to the use of 

the eye-tracker. Although in both of our experiments k-means clustering was still able to 

detect clusters of users distinguished by characteristic interaction behaviors and 

significant differences in learning outcomes, even with our small sample sizes, more data 
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is necessary to better evaluate our framework and substantiate our results. Experimenting 

with more data would also help verify our hypothesis that more data would indeed 

improve the performance of the classifier user models, particularly for the smaller 

clusters such as those corresponding to the students with high learning gains (as in both 

of our experiments, see Sections 3 and 4), and those resulting from clustering with a k 

value greater than 2 (as in our first experiment, see Section 3). 

Of K-means. While the k-means algorithm that we chose to use for the unsupervised 

clustering and supervised classification steps of our user modeling framework is intuitive 

to understand and easy to implement, it also has some limitations. First, k-means 

clustering makes the assumption that feature dimensions are independent. However, in 

practice, violation of this assumption will usually not affect the quality of the clusters 

resulting from unsupervised machine learning [Law et al. 2004]. This is also evident in 

the experiments presented in this work as k-means clustering was able to discover 

meaningful interaction behaviors in both cases even though some of the feature 

dimensions we used (e.g., the action frequency and latency dimensions in both of our 

experiments) may not have been independent. Feature independence is therefore a 

common assumption made, especially in high-dimensional data [Law et al. 2004; 

Talavera and Gaudioso 2004]. Nevertheless, when the independence assumption is 

violated, principal component analysis (PCA) [Duda et al. 2001] could be used to 

generate independent features (i.e., the principal components) and reduce the 

dimensionality of the feature space before performing k-means clustering. A drawback of 

this is that in the Cluster Analysis section of our user modeling framework (see Section 

2.1), we interpret the clusters produced by k-means by analyzing them along each of the 

feature dimensions, but the independent features that PCA produces may not correspond 

to meaningful quantities [Dash et al. 1997] making this task difficult. Even if we project 

the data back to the original feature space before Cluster Analysis, we may not see 

differences along the original feature dimensions as clustering was done in the reduced 

feature space.  Another limitation is that k-means will find the number of groups 

specified by k, no matter what. However, if interaction patterns conducive to learning (or 

lack of it) are not very repetitive (because, for instance, students find very unique, 

creative approaches to exploring the target domain), it may mean that behaviors not very 

similar are clustered together. Measuring the spread of data in each cluster during the 

cluster analysis phase can help determine the occurrence of this situation.  If the spread is 
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large, increasing the k value (i.e., the number of clusters to find) may help recognize 

more specific patterns (with fewer data points within each pattern).   

Another limitation of k-means is that a k-means-based classifier user model can only 

make hard classifications, whereas when making decisions about how to provide adaptive 

support we may like to take into account the certainty of our predictions. To do this we 

could use a probabilistic variant of k-means called Expectation Maximization (EM) 

[Duda et al. 2001] to determine the membership of every data point in each cluster.  

Of Our Cluster Analysis Method. The main bottleneck in our user modeling framework 

is the Cluster Analysis step (Section 2.2), as this step requires manual analysis of the 

different clusters on each feature dimension. An alternative approach would be to 

automatically mine for characteristic cluster behaviors in the form of association rules 

[Robardet et al. 2002] using an unsupervised rule learning algorithm such as the popular 

Apriori algorithm [Agrawal et al. 1993]. Association rules are of the form [x1, x2,…, 

xn]=> xm, where the xi’s in the body of the rule (left hand side) and the head of the rule 

(right hand side) are feature dimensions. Intuitively, association rules are ‘if-then’ 

correlations in the data. An example association rule for the high learning (HL) cluster 

found by k-means with k set to 2 in our first experiment with the AIspace CSP applet (see 

Section 3.2.2) would be “if a student is observed using the Auto AC feature very 

frequently, then the student is likely to use the Stop feature frequently.” Automatically 

learning association rules such as this could help reduce the time and effort required to 

manually analyze and characterize the clusters in the Cluster Analysis step of our 

modeling framework. Furthermore, the algorithms for automatically learning these rules 

were designed for sparse data sets (i.e., that have high-dimensional spaces and few data 

points), such as the data sets that we used in both of our experiments.  

One drawback of using rule learning algorithms is that most of them require that 

continuous feature dimensions, such as the ones that we use in our experiments (e.g., 

action frequencies), be manually discretized before rules can be discovered. Discretizing 

continuous attributes can result in information loss [Aumann and Lindell 2005]. Our 

approach of manually analyzing the clusters returned by k-means clustering does not 

require discretization of the data. Another, more major, drawback to rule learning is that 

association rules are descriptive in nature [Mutter 2004] (i.e., they try to summarize 

information and extract patterns), whereas we are trying to do a predictive task (i.e., we 

are trying to build user models for online predictions of student learning outcomes). Still, 
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the use of association rules is one of the future research paths that can be explored to 

further improve our approach. 

Of Any Classifier User Model. One of the drawbacks of developing any user model for 

classifying students as either effective or ineffective learners, is that it does not allow 

isolation of the specific suboptimal behaviors that are causing the student to be classified 

in a specific class of learners at any given time. Thus, an adaptive ELE informed by a 

classifier user model would not be able to generate precise interventions targeting the 

suboptimal behavior that the student is currently showing. However, an adaptive ELE 

could use the classifier’s results for general hints and interface adaptations to promote 

more effective learning behavior. Such adaptations are discussed further in the section on 

Future Work (see Section 8). 

Of Our Model Evaluation Method. A caveat discussed prior to describing our model 

evaluation method in Section 2.3 is that we cannot ensure the effectiveness of the models 

built via our framework in a real world setting without performing live adaptations based 

on those models for new students interacting with the ELEs. This would require 

developing an adaptive support facility that uses the classification information derived 

from our models in a meaningful way. This is indeed the long term goal of this research. 

However, we took efforts to validate the results of our evaluation strategy by measuring 

the stability of the clusters used to train the online classifiers prior to assessing each user 

model’s predictive accuracy. 

7. RELATED WORK 

Common approaches to student modeling range from knowledge-based approaches 

where models are hand-constructed by experts, to supervised data-based approaches 

using machine learning along with system or expert provided labeled data, to 

unsupervised data-based approaches using machine learning with unlabeled data. 

Knowledge-based models generally have the advantage that they provide a principled, 

detailed representation of the relevant learner’s skills and properties, allowing them to 

support very precise adaptive interventions within an ITS. They also tend to be more 

understandable by humans and better lead to explanations automatically produced by the 

system.  Thus, they can be worth the effort, as is demonstrated by the success obtained by 

some existing knowledge-based ITS (e.g. [Conati and VanLehn 2002; Corbett et al. 

2000]. Unfortunately, these types of models are especially ill suited for environments 

such as those promoting learning through exploration, where there is no notion of 
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correctness or well-developed learning theories to help guide experts in defining correct 

or faulty knowledge and behaviors. In these environments, a knowledge-based approach 

to user modeling must involve iteration of design and evaluation to test intuitive 

definitions of effective exploration, as was the case for the knowledge-based user model 

originally developed for the ACE learning environment [Bunt and Conati 2003]. To 

avoid what is sometimes called the ‘knowledge bottleneck problem’ [Zukerman and 

Albrecht 2001] of knowledge-based approaches to user modeling, researchers have 

started investigating ‘data-based’ approaches for automatically learning user models from 

example user data. In this literature review, we focus on these approaches, divided into 

supervised and unsupervised.  

7.1 Supervised Data-based Approaches 

Much on the research on data-based approaches to student modeling have employed 

supervised machine learning techniques that require labeled example data for training the 

model.  One general method to obtain labeled training data is to derive data labels 

directly from the system. For instance, in AnimalWatch (an ITS for teaching arithmetic 

[Beck and Woolf 2000]), input data was obtained from data logs of system use in the 

form of snap shots of the current state of the interface which included the type and 

complexity of the current problem being solved. The authors developed two different 

user models using this data. For one model, the label for each snap shot was the 

correctness of the student’s answer to the current problem. It should be noted that the 

system could generate these labels because it had a previously developed knowledge-

based overlay user model to define answer correctness [Arroyo et al. 2001]. For the other 

user model, the label was the time taken to solve the problem. The data was then used to 

train supervised linear regression user models that could predict either the correctness of 

a new student’s response or recognize when the student is having difficulty (i.e., if their 

predicted response time is over a predefined threshold indicating potential confusion). 

The Reading Tutor [Beck 2005] also uses system-labeled data to build a non-linear 

regression model of student engagement level during reading comprehension activities. 

The input data consisted of logged response times, question difficulties and student 

performance histories. The data labels were the correctness of student answers, which the 

system can determine because reading questions and their corresponding answers were 

generated automatically by randomly removing words from sentences and then asking 

students to determine the removed word. In the CAPIT system for teaching punctuation 

and capitalization rules [Mayo and Mitrovic 2001], system-labeled data is used to learn 
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the parameters of a Bayesian network. In this case, the input data was logged behavioral 

data and the labels were again the correctness of student responses to canned punctuation 

and capitalization questions. The work closest to ours in this pool is that of Gorniak and 

Poole [2000] who also use a data-based approach to automatically learn a user model for 

the AIspace CSP Applet (Section 3). Their goal, however, was to predict future user 

actions, with no concern over if and how these actions related to learning. Their approach 

relies on training a stochastic state space user model on sequences of interface actions, 

and therefore can be considered a supervised approach with system-provided labels 

where the labels are future user interface actions.  

Although supervised data-based approaches with system-labeled data can 

significantly reduce the time required to build user models, when output labels are not 

readily available from the system, then data labels must be provided by hand. An 

example is the work of Baker et al. [2008]. Here the authors observed students using an 

ITS for problems in various topics of a high-school mathematics curriculum (including 

lessons on scatterplot analysis, percents, geometry and probability). They looked for the 

occurrence of specific types of behaviors detrimental for learning that they named 

“gaming-the-system” behaviors. The gaming observations corresponded to labels of the 

input data (logged interface events, such as user actions and latency between actions). 

The labeled data was then used to train a regression model that could predict instances of 

gaming with relatively high accuracy, and that could transfer across lessons. Positive 

results have also been obtained by researchers that developed similar detectors for 

gaming behaviors for others ITS, such as the Reading tutor  [Beck 2005],  the Wayang 

Outpost math tutoring system [John and Wolf 2006] and the ASSIST math tutoring 

[Walowki and Heffernan 2006].  Shi et al [2008] have also extended this approach to 

distinguish detrimental gaming behaviors from gaming behaviors conducive to effective 

meta-cognitive processes and then to learning.  It should be noted that in all the ITSs 

discussed above, it was possible to predefine which behaviors were instances of gaming 

the system because the ITSs in question supported a structured, well studied, problem-

solving or drill-and-practice type of pedagogical interaction. Soller [2004] applies a 

similar approach to recognize different types of interactions in collaborative learning 

tasks and provide adequate support when necessary. This approach uses hand-labeled 

interaction episodes to train a Hidden Markov Model classifier to distinguish effective vs. 

ineffective interaction episodes. 

Several data-based models for capturing student affective states have been developed 

by asking experienced tutors/researchers to manually label recorded data (video and 
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screen capture footage) in terms of pre-defined affective variables, in order to produce 

mappings from observable interface actions to the affective states of students (see 

[D’Mello et al. 2008] for an overview).  

While approaches based on hand-labeled data are quite resource-intensive, they can 

generate fine-grain models that support precise adaptive interventions to target specific 

behaviors, and there is already evidence that the adaptive interventions thus generated 

can improve an ITS’s effectiveness (e.g. [Arroyo et al. 2007; Baker et al. 2007; Beal et al. 

2007]). Thus, researchers have started looking into ways to facilitate the labeling process, 

for instance via tools that allow labeling a text-based representation of interaction data 

instead of having to rely on life observations [Baker and Carvhalo 2008].  Miksatko and 

McLaren [2008], on the other hand, propose a case-based approach that allows detecting 

relevant conversation patters during collaborative tasks by relying on an individual hand-

labeled example.  

Outside the educational domain, a very common variation of the supervised approach 

with expert-provided labeled data is to rely on user-generated labels, usually to obtain 

information on user preferences over specific items such as web pages, movies or 

commercial goods (see [Shafer et al. 2007] and [Pazzani and Billsus 2007], for an 

overview).  This approach can be costly for users, as they may have to spend a 

considerable amount of time labeling items in order to get accurate recommendations.  It 

is also difficult to apply in educational settings, both because of the danger of disrupting 

learning when asking students to generate the labels, and because the labels needed often 

relate to constructs (e.g., learning behaviors, meta-cognitive states, affective states) that 

students may not always be capable to identify precisely. For examples of this approach 

in the context of developing models of student affect see de Vicente and Pain [2002] and 

Conati and Maclaren [2008]. 

7.2 Unsupervised Data-based Approaches 

Unsupervised machine learning techniques sidestep the problem of obtaining labeled data 

altogether. These methods have been applied quite extensively in user-modeling for non-

educational applications, for instance to  recommending web pages based on user access 

logs using clustering algorithms [Perkowitz and Etzioni 2000], to recommending web 

pages based on user navigation histories using association rule learning algorithms 

[Mobasher et al. 2000] and to automatically manage emails based on unsupervised 

learning on words in a document [Kushmerick and Lau 2005]. While the application of 



47 Journal of Educational Data Mining, Article 2, Vol 1, No 1, Fall 2009 
 

these techniques for student modeling is not as widespread, there have been several 

attempts in this direction.  

The work by Zaiane and Luo [Zaiane 2002; Zaiane and Luo 2001] proposes the 

automatic recommendation of web-pages and activities to students using distance or e-

learning environments. The authors outline the steps for building such a recommender in 

the context of e-learning, although they do not actually apply these steps to an e-learning 

environment or evaluate such a system. The steps of their approach includes processing 

of web logs, learning association rules between user actions and web-pages and manually 

filtering through the large number of resulting rules so that only the most useful rules are 

kept. The interactions of a new student using the e-learning environment must fully 

match the antecedents of one of the learned rules in order for a recommendation to be 

made. Note that the need to find matching rules can lead to low coverage (i.e., the set of 

items/actions that the model can make recommendations for) [Nakagawa and Mobasher 

2003], a problem that is much alleviated in our k-means based user models, where 

classifications are based on cluster similarity rather than on exact matches between users 

behaviors.  

More similar to what we do, several researchers have used clustering on interface 

action to detect meaningful behavioral patterns in an environment for collaborative 

learning (e.g., [Soller 2004; Talavera and Gaudioso 2004; Perera et al., In Press]). 

Rodrigo et al. [2008] present preliminary work on using unsupervised clustering on 

action frequencies to identify groups of students with common learning behaviors (e.g. 

working with others vs. in isolation, on-task vs off-task conversation), and affective 

behaviors (e.g. boredom, confusion and frustration) while using a tutoring system for 

algebra. Their results provide initial evidence that it may be possible to detect states such 

as flow and engaged work from basic action frequency information. Our work differs 

from these research efforts because we use higher dimensional data including action 

latency, measures of variance and gaze information, as well as because we take the data 

mining process one step further to automatically build a user model that can be used to 

provide automatic, on-line adaptive support. In addition, our research is broader because 

we show transfer of our user modeling approach across applications and data types.    

Tang and Mccalla [2007] propose an architecture to dynamically recommend relevant 

literature from the web to students based on their interests. Students’ interests are 

identified via a pre-clustering step based on predefined definitions of stereotypical users, 

and then refined via collaborative filtering on existing information on the specific 

interests of students within each cluster. The paper outlines the general components of the 
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frameworks but does not include details on how to obtain the predefined definitions of 

stereotypical users or the actual student interests.  

A class of applications of educational data mining relates to discover useful patterns by 

clustering student test scores or students’ solutions labelled based on their correctness. Ayers 

et al. [2008], for instance, apply clustering algorithms to capability matrices describing 

students test performance on a set of target skills to find clusters of students with similar 

knowledge patterns and help predict student knowledge on untested skills. Romero et al. 

[2008] propose a system to facilitate using different data mining techniques on log data 

capturing student performance in on-line quizzes and assignments to predict student final 

scores in a course. DIAGNOSER [Hunt and Madhyastha 2005] uses unsupervised 

machine learning to discover and present instructors with common errors in static student 

solutions to physics questions.  Similarly to  DIAGNOSER, the  MEDD system [Sison et 

al. 2000] uses unsupervised clustering to discover novel classes of student errors in 

solving Prolog programming problems, but it goes a step forward. It uses the discovered 

error classes to automatically build bug libraries that can then be used to direct system 

interventions.  Suarez and Sison [2008] have successfully transferred this approach to 

create bug libraries and detect programming errors in Java. Our approach to user 

modeling differs from these in that we are modeling student interaction behaviors in 

unstructured environments with no clear definition of correct behavior instead of static 

student solutions and errors.  

8. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a data-based framework for user modeling that uses both 

unsupervised and supervised classification to discover and capture effective or ineffective 

student behaviors while interacting with exploratory learning environments. Building 

models for these educational systems is especially challenging because the unconstrained 

nature of the interaction that they support and the lack of a clear definition of correctness 

for student behaviors makes it hard to foresee how the many possible user behaviors may 

relate to learning. The few existing approaches to this problem have been very knowledge 

intensive, relying on time-consuming, detailed analysis of the target system, instructional 

domain and learning processes. Since these approaches are so domain/application 

specific, they are difficult to generalize to other domains and applications. 

We experimented with applying our framework to build user models for two such 

exploratory environments: the CSP Applet for helping students understand an algorithm 

for constraint satisfaction, and the ACE environment for the exploration of mathematical 

functions. We presented results showing that, despite limitations due to the availability of 
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data, our approach is capable of detecting meaningful clusters of student behaviors, and 

can achieve reasonable accuracy for the online categorization of new students in terms of 

the effectiveness of their learning behaviors. 

The next step of this research is to address some of the limitations discussed in 

Section 6.  In particular, we would like to collect more data to strengthen the results of 

our experiments, and we would like to explore alternative methods for offline clustering, 

such as hierarchical clustering [Jain et al. 1999] or expectation maximization [Duda et al. 

2001]. We also want to experiment with other features to represent student interaction 

behaviors, such as action sequences [Perera et al., To Appear].  

Our long term goal is to use the classifier user models developed with our framework 

to design adaptive support facilities. For example, an adaptive environment for learning 

through exploration could employ a multi-layered interface design [Schneiderman 2003], 

where each layer’s mechanisms and help resources are tailored to facilitate learning for a 

given learner group. Then, based on a new learner’s classification, the environment could 

select the most appropriate interface layer for that learner. For instance, the AIspace CSP 

Applet (Section 3) may select a layer with Fine Step disabled or with a subsequent delay 

to encourage careful thought for those students classified as ineffective learners by the 

two-class classifier user model described in Section 3.2.2. Similarly, for the three-class 

case, the CSP Applet could disable or introduce a delay after Fine Step for students 

classified into either of the ineffective learner groups. Additionally in this case, the CSP 

Applet could also include a delay after Domain Splitting for students classified into the 

LL2 (low learning 2) group as these students were consistently hasty in using this feature 

(see Section 3.2.3). The other ineffective learner group, LL1 (low learning 1), discovered 

by our framework in this experiment was characterized by lengthy pauses after Domain 

Splitting as well as Backtracking indicating confusion about these CSP Applet 

mechanisms or concepts (see Section 3.2.2). Therefore, general tips about Domain 

Splitting and Backtracking could be made more prominent for these particular students 

for clarification purposes. 

While this example generates a very high-level form of guidance, we may be able to 

obtain more precise adaptations by clustering with larger values of k to reveal finer-level 

classifications of users. Ultimately, however, how much benefit can be generated by 

coarser forms of adaptation is an open research question that we, as other researchers 

(e.g. [Murray and Vanlehn 2005; Mavrikis 2008]) are very keen to investigate. After 

developing adaptive systems based on our user modeling framework, we plan to 

empirically evaluate the effectiveness of the models in a real world setting. In particular, 
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to give credence to our approach we would like to compare the performance of models 

constructed via our framework against those built by traditional knowledge-based or 

supervised methods with hand-labeled data, to see if the additional precision of 

intervention usually supported by these models is worth the extra cost of developing 

them, in terms of supporting more effective adaptive interventions  
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