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Abstract

We consider group-covariant positive operator valued measures (POVMs) on a finite
dimensional quantum system. Following Neumark’s theorem a POVM can be imple-
mented by an orthogonal measurement on a larger system. Accordingly, our goal is to
find an implementation of a given group-covariant POVM by a quantum circuit using
its symmetry. Based on representation theory of the symmetry group we develop a
general approach for the implementation of group-covariant POVMs which consist of
rank-one operators. The construction relies on a method to decompose matrices that
intertwine two representations of a finite group. We give several examples for which
the resulting quantum circuits are efficient. In particular, we obtain efficient quantum
circuits for a class of POVMs generated by Weyl-Heisenberg groups. These circuits
allow to implement an approximative simultaneous measurement of the position and
crystal momentum of a particle moving on a cyclic chain.

1 Introduction

General measurements of quantum systems are described by positive operator-valued mea-
sures (POVMs) [1,2]. For several optimality criteria the use of POVMs can be advantageous
as compared to projector valued measurements. This is true, e. g., for the mean square er-
ror, the minimum probability of error [3], and the mutual information [4]. POVMs are more
flexible than orthogonal von Neumann measurements and can consist of finite as well as of
an infinite number of elements. An example for the latter is given in [5] where a POVM for
measuring the spin direction is proposed. Here we restrict our attention to the finite case
where a POVM is described by a set of positive operators which sum up to the identity.
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Such a POVM is called group-covariant if the set is invariant under the action of a group.
The example of POVMs for the Weyl-Heisenberg groups as well as the example in [5] show
that POVMs are needed to describe phenomenologically the mesoscopic scale of quantum
systems. They allow approximatively simultaneous measurements of quantum observables
which are actually incompatible. For instance, the classical phase space of a particle can
be approximatively reproduced by simultaneous measurements of momentum and position.
Descriptions of quantum particles which have strong analogy to the classical phase space are
helpful to understand the relations between the classical and the quantum world [6]. Also
for several other tasks in quantum information processing the implementation of POVMs
is of interest [7–9].

Neumark’s theorem [10, 11] states that in principle every POVM can be implemented
by an orthogonal measurement of the joint system consisting of the system and an ancilla
system. However, the orthogonal measurement required by this construction may not be a
“natural” observable of the joint system. One may need an additional unitary transform
to obtain a reduction to a more natural observable which henceforth will be called the
measurement in the computational basis of the quantum system.

Therefore, the question arises how to actually implement a POVM in terms of a quantum
circuit which itself is composed of a sequence of elementary quantum gates [12]. So far,
only little is known about the implementation of POVMs even in quantum systems with
a small number of dimensions. While some rather specific single-qubit measurements have
been studied [4,13,14], not much is known about the general problem of how to implement
a POVM by a unitary transform on the quantum register of a possibly larger space followed
by an orthogonal measurement in the computational basis.

When studying quantum circuits for families of POVMs questions about the complexity
of the required unitary transforms arise. In some cases we can exploit the fact that they
admit some additional symmetry. This leads to the study of group-covariant POVMs which
has been studied extensively in the literature [4, 15–17]. As a recent example we mention
the construction of symmetric informationally complete POVMs by means of suitable finite
symmetry groups [18].

The main contribution of this paper is a general method which computes an embedding
of group-covariant POVMs into orthogonal measurements on a larger Hilbert space. A
particular feature of the computed embedding is that it uses the symmetry. This in turn
allows to apply known techniques for decomposing matrices with symmetry to the unitary
matrices obtained by this embedding. For several cases this leads to families of efficient
quantum circuits implementing the given POVMs.

Outline. In Section 2 we briefly recall the definition of POVMs. In Section 3 we con-
sider the decomposition of matrices that have a symmetry with respect to a group. This
type of decomposition is a basic tool for our constructions. We also define group-covariance
of POVMs with respect to a symmetry group and a group representation. Furthermore,
we explain how POVMs with this group-covariance are related to so-called monomial rep-
resentations of the symmetry group. In Section 4 we explain the general scheme for the
construction of a unitary transform that implements a group-covariant POVM. The basis for
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this construction is the analysis of the intertwining space between the group representation
that is given by the group-covariance of the POVM and the monomial representation. This
is the starting point for methods using fast quantum Fourier transforms as described in Sec-
tion 5. Finally, in Section 6 we give several examples of implementations of group-covariant
POVMs.

Notations. We denote the field of complex numbers by C. The group of invertible n×n
matrices is denoted by GLn(C) and the subgroup consisting the unitary n × n matrices is
denoted by U(n). We denote the identity matrix in U(n) by 1n. If not denoted otherwise
all matrices are matrices over the complex numbers. The cyclic group of order n is denoted
by Zn. Representations are denoted by small Greek letters, e. g., ϕ, ψ etc. By abuse of
notation we also denote the trivial representation of degree n (i.e. dimension n) by 1n. The
base change of a matrix A with respect to a matrix B is denoted by AB = BAB†. The
direct sum of matrices and representations is denoted by A⊕B and ϕ⊕ ψ and the tensor
product is denoted by A ⊗ B and ϕ ⊗ ψ, respectively. We make frequent use of the Pauli
matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

A diagonal matrix with diagonal entries λ1, . . . , λn is abbreviated by diag(λ1, . . . , λn). We
denote the symmetric group on n symbols by Sn. To each permutation σ ∈ Sn naturally
corresponds the permutation matrix

∑

i |σ(i)〉〈i|. By abuse of notation we identify σ with
the corresponding permutation matrix. We often use the permutation matrix Sm which
corresponds to the m-cycle (1, 2, . . . ,m) and the matrix Tm = diag(1, ωm, . . . ω

m−1
m ) which

contains the eigenvalues of Sm. The basis states of an n-qubit system correspond to binary
strings of length n. Quantum circuits are written from the left to the right, and the qubits
are arranged such that the most significant qubit (characterizing the left-most symbol of a
binary string) is on top. Throughout the paper a matrix entry “·” stands for zero.

2 POVMs and orthogonal measurements

A POVM for a quantum system with Hilbert space C
d is a set P = {A1, . . . , An} ⊆ C

d×d of
non-negative operators, where

∑

k Ak = 1d. For a more general definition for POVMs with
an infinite number of operators we refer to [19]. For example, the set of matrices

P2 =

{

1

3

(

1 1
1 1

)

,
1

3

(

1 ω
ω2 1

)

,
1

3

(

1 ω2

ω 1

)}

⊆ C
2×2,

where ω = exp(2πi/3) is a third root of unity, defines a POVM on a system with corre-
sponding Hilbert space C

2. Suppose that the state of the system is described by the density
matrix ρ ∈ C

d×d. Then for a general POVM the probability pk for the result k is given by
pk = tr(ρAk). An orthogonal measurement is a POVM with mutually orthogonal operators
Ak, i. e., we have that AkAl = AlAk = 0 for k 6= l.
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In the following we restrict ourselves to rank-one operators Ak = |Ψk〉〈Ψk|. Note
that the POVM vectors |Ψk〉 need not be normalized and that the restriction to opera-
tors of rank one is for some applications justified by Davies’ theorem [15]. It states that
we can always find a POVM with rank-one operators that maximizes the mutual infor-
mation. The example P2, which consists of three rank-one operators, can be written as
P2 = {|Ψ1〉〈Ψ1|, |Ψ2〉〈Ψ2|, |Ψ3〉〈Ψ3|}, where

|Ψ1〉 =
1√
3

(

1
1

)

, |Ψ2〉 =
1√
3

(

1
ω2

)

, and |Ψ3〉 =
1√
3

(

1
ω

)

are the corresponding POVM vectors in C
2. Neumark’s theorem [11] states that it is

possible to implement a POVM by reducing it to an orthogonal measurement on a larger
system. We briefly recall this construction. Let P = {Ak} = {|Ψk〉〈Ψk|} be a POVM
with n operators that acts on the Hilbert space C

d. For n > d the vectors |Ψk〉 cannot
be mutually orthogonal. Consequently, we have to extend the system by at least n − d
dimensions in order to define an orthogonal measurement with n different measurement
outcomes. We want to implement an orthogonal measurement P̃ = {Ãk} = {|Ψ̃k〉〈Ψ̃k|} on
the system with n dimensions such that P̃ corresponds to the POVM P on the subsystem
with d dimensions, i. e., pk = tr(ρAk) = tr(ρ̃Ãk). Here ρ̃ = ρ ⊕ 0n−d ∈ C

n×n where 0n−d

denotes the zero matrix of size n− d is the embedding of the state into the larger system.
We write the POVM vectors |Ψk〉 as columns of the matrix M = (|Ψ1〉 . . . |Ψn〉) ∈ C

d×n.
In the following we refer to M as the defining matrix for the POVM P . Now, the operators
Ãk = |Ψ̃k〉〈Ψ̃k| ∈ C

n×n with |Ψ̃k〉 = |Ψk〉 ⊕ |Φk〉 are the columns of the matrix

M̃ =

(

|Ψ1〉 . . . |Ψn〉
|Φ1〉 . . . |Φn〉

)

∈ U(n).

Note that M̃ can be an arbitrary unitary matrix which contains M as upper part of size
d × n. Since P is a POVM we have MM † =

∑

k |Ψk〉〈Ψk| =
∑

k Ak = 1d, i. e., finding a
suitable M̃ is always possible. For example in case of P2 we obtain the defining matrix

M =
1√
3

(

1 1 1
1 ω2 ω

)

∈ C
2×3

and one possible choice for M̃ is to add the row given by (1/
√

3)(1, ω, ω2). Hence the
rank-one projectors corresponding to the orthogonal measurement M̃ are

|Ψ̃1〉 =
1√
3





1
1
1



 , |Ψ̃2〉 =
1√
3





1
ω2

ω



 , and |Ψ̃3〉 =
1√
3





1
ω
ω2



 .

The probability distribution p̃k = tr(ρ̃Ãk) of the constructed orthogonal measurement
equals the distribution pk of the original POVM since

p̃k = tr
(

ρ̃Ãk

)

= tr

(

(ρ⊕ 0n−d)

(

|Ψk〉〈Ψk| |Ψk〉〈Φk|
|Φk〉〈Ψk| |Φk〉〈Φk|

))

= tr (ρAk) = pk.
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The embedding into a larger system can be realized by using an ancilla register of a quantum
computer. It consists of l qubits such that 2l ≥ n−d. They are initially in the state |0 . . . 0〉.
Then the space C

d ⊗ |0 . . . 0〉 is the subspace where the POVM acts on and C
d ⊗ (C2)⊗l

is the extension. The density operator ρ̃ acts on an n dimensional subspace of the joint
system consisting of the original system and the ancilla register. In the following we will
assume that also the system space C

d is embedded into the state space of some qubits.
As explained above, we can implement the POVM with corresponding matrix M by

applying the unitary transform M̃ † to the initial state ρ̃ of the joint system followed by a
measurement in the computational basis. Note that for the special case where the columns of
M are already orthogonal we have that M̃ = M . In this case by implementing the matrix
M † followed by a measurement in the computational basis we can perfectly distinguish
between the columns of M .

In principle, the construction of an appropriate matrix M̃ is simple since we just have
to find mutually orthogonal rows that lead to a unitary matrix. However, k qubits allow
POVMs with n = 2k operators. Hence the size of M̃ is exponential in k. The complexity to
implement a unitary matrix on k qubits can be upper bounded by O(4k) [20] and a generic
element of U(2k) will indeed require an exponential number of elementary transforms (e.g.
one- and two-qubit-gates). Therefore we are interested in the construction of a matrix M̃
that can be implemented efficiently, if such a construction exists at all. While finding effi-
cient factorizations is a hard problem in general, the situation becomes easier in some cases
where we are given the additional structure of a group-covariant POVM. In the following
sections we will give a definition of group-covariance and the related notion of symmetry.
Later, we exploit the symmetry of the matrix M and give several examples of POVMs that
have efficient quantum circuit implementations.

3 Group-covariant POVMs and matrices with symmetry

In the following we give a precise mathematical definition of the notion of symmetry of a
matrix M ∈ C

m×n. Later we define group-covariance of a POVM and show that the group-
covariance in a natural way leads to matrices with symmetry. For the necessary background
on finite groups and representations we refer to standard textbooks such as [21,22].

We start with a finite group G and a pair (ϕ,ψ) of matrix representations of G which
are compatible with the size of M , i. e., ϕ : G→ GLm(C) and ψ : G→ GLn(C). Following,
[23,24] we call the triple (G,ϕ,ψ) a symmetry of M if the identity ϕ(g)M = Mψ(g) holds
for all g ∈ G. Sometimes we abbreviate this by using the shorthand notation ϕM = Mψ.
Note that if M is not a square matrix the representations ϕ and ψ have different degrees.

To give an example we let ω = exp(2πi/3) and let α, β, γ ∈ C. Then for all j ∈ {0, 1, 2}
we have that





1 · ·
· ω ·
· · ω2





j 



α α α
β βω βω2

γ γω2 γω



 =





α α α
β βω βω2

γ γω2 γω









· · 1
1 · ·
· 1 ·





j

.
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Hence we obtain a symmetry which is given by the cyclic group Z3 = {0, 1, 2} together with
the two representations ϕ, σ : Z3 → U(3) given by ϕ(1) = diag(1, ω, ω2) and σ(1) = (1, 3, 2).

Note that given two representations ϕ, ψ of a group G the set of all matrices M which
fulfill ϕ(g)M = Mψ(g) for all g ∈ G is a vector space. It turns out that the matrices in
this vector space have a special form. Hence we explore its structure in more detail in the
following.

Definition 1 (Intertwining space) Let G be a group and let ϕ, ψ be representations of
G of degrees n and m, respectively. Then

Int(ϕ,ψ) := {M : ϕ(g)M = Mψ(g), for all g ∈ G}

with M ∈ C
n×m is called the intertwining space of ϕ and ψ.

In the following we denote by ϕ1, . . . , ϕk a list of all pairwise inequivalent irreducible
representations of G. Recall that for any representation of a finite group it is always
possible to find a base change such that the corresponding representation is a direct sum of
irreducible representations [22]. For representations which are completely decomposed into
a direct sum of irreducibles the structure of the intertwining space is known. This is the
content of the following theorem which follows directly from Schur’s Lemma (see [25, Section
§29]).

Theorem 2 Let G be a finite group and ϕ =
⊕k

i=1(1ni
⊗ ϕi) and ψ =

⊕k
i=1(1mi

⊗ ϕi)
two representations of G which have been completely decomposed into pairwise inequivalent
representations ϕi, i = 1, . . . , k. Then the intertwining space of ϕ and ψ has the following
structure:

Int(ϕ,ψ) = (Cn1×m1 ⊗ 1deg(ϕ1)) ⊕ . . . ⊕ (Cnk×mk ⊗ 1deg(ϕk)).

A matrix A is called block permuted if there are permutation matrices P and Q such
that PAQ = B1⊕ . . .⊕Bk, where B1, . . . , Bk are (rectangular) matrices. For all n,m, k ∈ N

there exist permutation matrices Pn,m,k and Qn,m,k such that for all A ∈ C
n×m we have

Pn,m,k(A⊗1k)Qn,m,k = 1k ⊗A. Hence we have shown that the elements of the intertwining
space of completely reduced representations are block permuted.

We continue with an easy observation which turns out to be essential for the approach
of extending the symmetry of a given group-covariant POVM to a measurement on a larger
space. Suppose that M ∈ Int(ϕ,ψ) and that the matrices U and W decompose the represen-
tations ϕ and ψ into the direct sums, i. e., UϕU † = ϕ1⊕. . .⊕ϕn and V ψV † = ψ1,⊕ . . .⊕ψm.
Then we can rewrite ϕM = Mσ as

U †(ϕ1 ⊕ . . . ⊕ ϕn)UM = MW †(ψ1 ⊕ . . .⊕ ψm)W.

Multiplying this from the left by U and from the right by W † shows that C := UMW † is
an element of the intertwining space Int(ϕ1 ⊕ . . . ⊕ ϕn, ψ1 ⊕ . . . ⊕ ψm) of two completely
reduced representations. In particular, we can apply Theorem 2 to determine the structure
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of C. In particular we obtain that C is block permuted and the size of the blocks depend
on the multiplicities and degrees of the irreducible representations contained in ϕ and ψ.

Matrices with symmetry arise naturally in context of group-covariant POVMs. We first
give a definition of these POVMs and then establish a connection between the notions of
group-covariance and symmetry.

Definition 3 (Group-covariant POVMs) A POVM P = {A1, . . . , An} ⊆ C
d×d with

Ak 6= Al for k 6= l is group-covariant with respect to the group G if there exists a projective
unitary representation ϕ : G→ U(d) with ϕ(g)Ak ϕ(g)† ∈ P for all g ∈ G and all k.

Note that a group-covariant POVM is also group-covariant for all subgroups H ≤ G and
the restriction of the representation ϕ to H. As a special case, the choice of the trivial
subgroup H = {1} means that we do not use the symmetry of the POVM at all.

A minor complication arises due to the fact that while the notion of symmetry of matri-
ces relies on ordinary, i. e., non-projective representations, the definition of group-covariant
POVMs relies on projective representations. Therefore, we need a construction which al-
lows to transform the projective representation of the symmetry group of a group-covariant
POVM into a non-projective representation. This connection is established using so-called
central extensions which is a method going back to I. Schur. We briefly recall this construc-
tion (see also [22, Lemma (11.16)]). Let ϕ : G → GLd(C) be a projective representation
of the group G. More precisely, we have ϕ(gh) = γghϕ(g)ϕ(h) for g, h ∈ G, where γgh is a
factor system. Let H = 〈γgh : g, h ∈ G〉 be the group generated by the γgh. We consider

the group Ĝ consisting of the elements (g, h) with g ∈ G and h ∈ H. The multiplication
of two elements (g, h) and (g′, h′) of Ĝ is defined by (g, h)(g′, h′) = (gg′, γgg′hh

′). Then the
map ϕ̃((g, h)) = hϕ(g) is a representation with ϕ̃((g, 1)) = ϕ(g), i. e., the representation ϕ̃
equals ϕ on the elements (g, 1) and the group Ĝ is a central extension of the group G.

In the following we always assume ϕ to be a non-projective representation of the sym-
metry group G by this construction. This is justified since the set of POVM operators does
not change by switching from G to a central extension Ĝ because scalar multiples of the
identity operate trivial under conjugation.

We now analyze the structure of the matrix M corresponding to the group-covariant
POVM P = {|Ψk〉〈Ψk|} with rank-one operators. Note that the phases of the vectors
|Ψk〉 can be chosen arbitrarily without changing the POVM. Let ϕ : G → U(d) be the
representation corresponding to the symmetry of P . We then have the equation

ϕ(g)|Ψk〉〈Ψk|ϕ(g)† = |Ψπ(g)k〉〈Ψπ(g)k|

where π : G → Sn denotes a permutation representation of the group G. Indeed, the
equation |Ψπ(g)j〉〈Ψπ(g)j | = |Ψπ(g)k〉〈Ψπ(g)k| implies |Ψj〉〈Ψj | = |Ψk〉〈Ψk| by conjugation

with ϕ(g)† since Aj 6= Ak for j 6= k. Therefore, the map π(g) is injective for all g ∈ G.
Since an injective map on a finite set is also surjective the map π(g) defines a permutation.

Next, we consider the action of ϕ on the columns of the matrix M . As stated above the
columns |Ψk〉 of M can have arbitrary phase factors. The action of ϕ(g) on the columns
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of M can be described by the equation ϕ(g)|Ψk〉 = eiφ(g,k)|Ψπ(g)k〉 where φ(g, k) depends
on k, g and the fixed phase factors of the vectors |Ψk〉. We identify the columns |Ψk〉 with
a basis bk of the vector space C

n in order to construct a representation that describes the
action of ϕ on the columns of M . With this identification the action of ϕ(g) corresponds
to the map bk 7→ eiφ(g,k)bπ(g)k.

By writing down the matrix corresponding to this map, we see that in each row and
each column there is precisely one entry different from zero. Matrices having a structure
like this are called monomial matrices1 [25, Section §43]. Whenever the images under a
representation consist entirely of monomial matrices, we denote this with an underscript,
i. e., we write ϕmon(g). Now, the two representations ϕ and ϕmon define the symmetry
ϕM = Mϕmon of the matrix M . The monomial representation ϕmon acts on the columns
of M . For each g ∈ G it permutes the columns of M and multiplies each column with a
phase factor.

Example 4 As an example in two dimensions we consider the following POVM:

P =

{(

|α|2 αβ
αβ |β|2

)

,

(

|α|2 −αβ
−αβ |β|2

)

,

(

|β|2 αβ

αβ |α|2
)

,

(

|β|2 −αβ
−αβ |α|2

)}

⊆ C
2×2

with α, β ∈ C and |α|2 + |β|2 = 1/2. Then P is covariant with respect to Z2 × Z2. The
corresponding projective representation ϕ : Z2 × Z2 → U(2) is defined by the equations

ϕ(0, 0) = 12, ϕ(0, 1) = σz, ϕ(1, 0) = σx, ϕ(1, 1) = σzσx

where (0, 0), (0, 1), (1, 0) and (1, 1) denote the elements of the group Z2 × Z2.
For this projective representation of Z2 × Z2 a simple computation shows that the

central extension Ĝ of Z2 × Z2 is isomorphic to the dihedral group with eight elements. In
the following it is sufficient to consider the definition of the representation on the elements
((0, 1), 1) and ((1, 0), 1) since these elements generate Ĝ = {(g, h) : g ∈ Z2 ×Z2, h ∈ {±1}}.
We can choose

M =

(

α α β β
β −β α −α

)

∈ C
2×4

or a matrix with the same columns (up to an arbitrary phase factor for each column). This
leads to a symmetry group given by the monomial representation

ϕmon((0, 1), 1) =









· 1 · ·
1 · · ·
· · · 1
· · 1 ·









and ϕmon((1, 0), 1) =









· · 1 ·
· · · −1
1 · · ·
· −1 · ·









.

For a different choice of phase factors we obtain another representation ϕmon. The modified
pair of representations ϕ,ϕmon also defines a symmetry of M .

1Note that this terminology is somewhat unfortunate since it has nothing to do with the monomials of

which a polynomial is comprised of. Still it is the standard terminology used in representation theory.
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An important special case of group-covariant POVMs are group-generated POVMs which
we describe next. Let G be a group and ϕ : G→ C

d×d an (ordinary) unitary representation.
A group-generated POVM is described by the POVM vectors ϕ(g)|Ψ〉 for g ∈ G and an
initial vector |Ψ〉 ∈ C

d. The corresponding operators of the POVM are given by Ag =
ϕ(g)|Ψ〉〈Ψ|ϕ(g)† for g ∈ G. In other words, all POVM vectors are obtained by the initial
vector |Ψ〉 under the operation of the group G, i. e., they form an orbit. Obviously, a
group-generated POVM is a group-covariant POVM with a single orbit under the action
of the group. With this construction, the phase factors of the POVM vectors ϕ(g)|Ψ〉
are fixed by the phase factor of the initial vector |Ψ〉. The phase factors eiφ(g,k) of the
monomial representation ϕmon corresponding to ϕ equal 1. As a consequence, the monomial
representation ϕmon equals the regular representation of G where we have to consider a fixed
order of the elements of G.

Note that the operators {ϕ(g)|Ψ〉〈Ψ|ϕ(g)†} in general do not define a POVM for arbi-
trary representations ϕ and initial vectors |Ψ〉. However, if ϕ acts irreducibly one has (after
appropriate normalization) for every vector |Ψ〉 the equation

∑

g∈G ϕ(g)|Ψ〉〈Ψ|ϕ(g)† = 1d.

4 Construction of the orthogonal measurement

Following the previous section we can arrange the vectors which correspond to the elements
of a POVM with rank one projectors into the columns of a matrix M . We have seen
that in case of a group-covariant POVM the matrix M ∈ C

d×n always has the symmetry
ϕM = Mϕmon where ϕ is the given representation and ϕmon is a monomial representation.
Both representations are representations of the symmetry group of the group-covariant
POVM. We know that both representations are equivalent to direct sums of irreducible
representations. Hence we can find unitary matrices U and W such that UϕU † = ϕ1⊕ . . .⊕
ϕn andWϕmonW

† = σ1⊕. . .⊕σm where the ϕk and the σl denote irreducible representations
of the group G. In general, we can write the equation ϕM = Mϕmon as

U †(ϕ1 ⊕ . . .⊕ ϕn)UM = MW †(σ1 ⊕ . . .⊕ σm)W.

This is equivalent to C = UMW † ∈ T := Int(ϕ1 ⊕ . . . ⊕ ϕn, σ1 ⊕ . . . ⊕ σm). Conversely,
a matrix C which is contained in this intertwining space and has orthogonal rows defines
(up to an appropriate normalization) a group-covariant POVM with corresponding matrix
M = U †CW .

For a given matrix M ∈ C
d×n we now consider the construction of a unitary matrix

M̃ ∈ U(n) such that M̃ contains M as upper part, i. e., we are looking for a matrix M̃ such
that

M̃ =

(

M

N

)

,

whereN ∈ C
(n−d)×n. In addition to this we intend to get the symmetry (ϕ⊕ϕ′)M̃ = M̃ϕmon

with an appropriate representation ϕ′ : G → U(n − d). If we succeed in constructing an
appropriate representation ϕ′ and matrix M̃ then we have the equation ϕ⊕ϕ′ = M̃ϕmonM̃

†,

9



i. e., the representation ϕ⊕ϕ′ has to be equivalent to ϕmon. In other words, each irreducible
representation of G is contained the same number of times in ϕ⊕ϕ′ and in ϕmon. Further-
more, from the decompositions (U ⊕ 1n−d)(ϕ ⊕ ϕ′)(U † ⊕ 1n−d) = στ(1) ⊕ . . . ⊕ στ(m) and

WϕmonW
† = σ1 ⊕ . . .⊕ σm we obtain that

(U ⊕ 1)M̃W † ∈ T̃ := Int(στ(1) ⊕ . . .⊕ στ(m), σ1 ⊕ . . .⊕ σm) ⊆ C
n×n. (1)

The permutation τ used in eq. (1) is a suitable reordering of the irreducible representations.
The structure of the intertwining space T̃ is known from Theorem 2 since we can compute
the irreducible representations σj from ϕmon.

In the following discussion we consider the construction of ϕ′ and M̃ . Our goal is to show
that the construction of ϕ′ that makes UϕU † ⊕ϕ′ equal to WϕmonW

† up to a permutation
τ of the irreducible components is always possible.

Important for the extension of M to M̃ will be the following theorem which characterizes
the relations of two representations in case there is an intertwiner of maximal possible rank.
Recall that ψ1 is a constituent of ψ2 if and only if there is a base change U such that
U−1ψ2(g)U = ψ1(g) ⊕ ψ′

1(g) where ψ′
1 is a representation of G.

Theorem 5 Let G be a finite group and let ψ1, ψ2 be representations of G of degrees d1 =
deg(ψ1) and d2 = deg(ψ2), respectively. Let M ∈ C

d1×d2 be a matrix with ψ1(g)M =
Mψ2(g) for all g ∈ G and rk(M) = deg(ψ1). Then ψ1 is a constituent of ψ2.

Proof: Let M be such that ψ1(g)M = Mψ2(g) and let ϕ1, . . . , ϕk be a complete set of
pairwise inequivalent irreducible representations of G. Since ψ1, ψ2 are representations of
a finite group over the field of complex numbers we find unitary matrices U,W such that
Uψ1U

† =
⊕k

i=1miϕi and Wψ2W
† =

⊕k
i=1 niϕi, where the multiplicities mi and ni are

non-negative integers. We have to show that actually mi ≤ ni for all i = 1, . . . , k.
From ψ1M = Mψ2 and by the choice of U and W we obtain that (

⊕

miϕi)(UMW †) =
(UMW †)(

⊕

niϕi), i. e., we have that UMW † ∈ Int(
⊕k

i=1miϕi,
⊕k

i=1 niϕi). By the re-
marks following Theorem 2 we know that there are permutation matrices P and Q such that
M0 := P (UMW †)Q = (1deg(ϕ1) ⊗B1)⊕ . . .⊕ (1deg(ϕk) ⊗Bk) where each Bi ∈ Cmi×ni . Mul-
tiplication with invertible matrices preserves the property that M and hence also M0 have
full rank (given by deg(ψ1)). On the other hand we know that the rank of a block diagonal
matrix is given by the sum of the ranks of the blocks. Hence rk(M0) =

∑k
i=1 deg(ϕi) ·rk(Bi)

which shows that each Bi must have full rank. Since Bi is an mi×ni matrix this in particular
implies that mi ≤ ni. This shows that ψ1 is a constituent of ψ2. 2

We now use Equation (1) to construct the matrix M̃ for the implementation of a
group-covariant POVM. Having determined U and W we can compute the matrix C =
UMW † ∈ Int(UϕU †,WϕmonW

†). The number of times each irreducible representation
has to occur in ϕ′ can be computed. Since the structure of the intertwining space T̃ =
Int(UϕU † ⊕ ϕ′,WϕmonW

†) is known we can extend C to an arbitrary unitary matrix C̃
of the intertwining space T̃ . This extension is always possible since both representations
UϕU † ⊕ ϕ′ and WϕmonW

† contain each irreducible representation the same number of

10



times. The matrix C defines some of the rows of A. Since M defines a POVM the rows
are mutually orthogonal. Consequently, the matrix components of C̃ corresponding to an
irreducible representation can be chosen under the constraint that they are orthogonal. We
now have that for any V ∈ U(n − d) the matrix M̃ = (U † ⊕ V †)C̃W yields a unitary that
extends the matrix M and has the symmetry we wanted to construct.

Hence, we obtain the following algorithm to construct an orthogonal measurement which
realizes the given POVM and preserves the symmetry.

Algorithm 6 Let P = {A1, . . . , An} ⊆ C
d×d be a POVM. Then the following steps imple-

ment P by a von Neumann measurement on a larger space.

1. Write the rank-one operators Ak = |Ψk〉〈Ψk| of the POVM as columns of the matrix
M ∈ C

d×n.

2. Determine an appropriate symmetry group with corresponding representation ϕ :
G→ U(d).

3. Compute the monomial representation ϕmon : G→ U(n).

4. Find a matrix U ∈ U(d) that decomposes ϕ into irreducible representations where
equivalent ones are equal.

5. Find a matrix W ∈ U(n) that decomposes ϕmon into irreducible representations where
equivalent ones are equal.

6. Construct the representation ϕ′ such that UϕU † ⊕ ϕ′ is equal to WϕmonW
† up to a

permutation τ of the irreducibles.

7. Construct C̃ ∈ U(n) that contains C = UMW † ∈ C
d×n as upper part and is in the

intertwining space T̃ of UϕU † ⊕ ϕ′ and WϕmonW
†.

8. Choose an arbitrary unitary matrix V ∈ U(n− d).

9. Compute M̃ = (U † ⊕ V †)C̃W ∈ U(n).

Then M̃ † implements the POVM P by a von Neumann measurement on a larger space, i. e.,
for any state ρ on the original d-dimensional system we have that pk = tr(ρ̃Ãk) = 〈Ψ̃k|ρ̃|Ψ̃k〉.
Here |Ψ̃k〉 denote the rows of M̃ and ρ̃ = ρ ⊕ 0n−d is the embedding of ρ to a state of an
n-dimensional system.

Example 7 We consider the example of the previous section with the matrix

M =

(

α α β β
β −β α −α

)

∈ C
2×4

and the group G = {(g, h) : g ∈ Z2 × Z2, h ∈ {±1}} which is isomorphic to the dihedral
group of order eight. The representation ϕ : G → U(2) is given by ϕ((0, 1), 1) = σz

11



and ϕ((1, 0), 1) = σx. We have U = 12 and UϕU † = ϕ since the representation ϕ is
already irreducible. An elementary computation shows that the corresponding monomial
representation ϕmon is given by

Wϕmon((0, 1), 1)W
† =









1 · · ·
· −1 · ·
· · 1 ·
· · · −1









and Wϕmon((1, 0), 1)W
† =









· 1 · ·
1 · · ·
· · · 1
· · 1 ·









with the unitary matrix

W =
1√
2









1 1 · ·
· · 1 −1
· · 1 1
1 −1 · ·









∈ U(4).

Therefore, ϕmon contains the irreducible representation ϕ twice, i. e., WϕmonW
† = ϕ⊕ ϕ.

With the matrices M ∈ C
2×4, U ∈ U(2), and W ∈ U(4) as above we find that C =

UMW † =
√

2
(

α β
)

⊗ 12 ∈ C
2×4, which is an element of the intertwining space

Int(ϕ,WϕmonW
†) = Int(ϕ,ϕ ⊕ ϕ) .

Since we have WϕmonW
† = ϕ⊕ ϕ, we have to choose ϕ′ = ϕ. The intertwining space T̃ is

given by

T̃ = Int(ϕ⊕ ϕ,ϕ ⊕ ϕ) =























λ11 · λ12 ·
· λ11 · λ12

λ21 · λ22 ·
· λ21 · λ22









: λij ∈ C















⊆ C
4×4.

In our example, the matrix C = UMW † defines the first two rows of the matrix C̃ ∈ T̃ =
Int(ϕ⊕ ϕ,ϕ ⊕ ϕ).

In particular, we have the equations λ11 =
√

2α and λ12 =
√

2β. For example, it is
possible to choose λ21 =

√
2 β and λ22 = −

√
2α for α, β ∈ C to obtain the unitary matrix

C̃ =
√

2









α · β ·
· α · β

β · −α ·
· β · −α









∈ U(4)

which has the symmetry (ϕ ⊕ ϕ)C̃ = C̃(ϕ ⊕ ϕ). With M̃ = (U † ⊕ V †)C̃W and V = 12 we
compute the matrix

M̃ =









α α β β
β −β α −α
β β −α −α

−α α β −β









∈ U(4)

that contains M as upper part and has the symmetry (ϕ ⊕ ϕ)M̃ = M̃ϕmon. Note that all
unitary matrices V ∈ U(2) give rise to possible extensions M̃ .
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5 Efficient implementations of group-covariant POVMs

From the general construction of a von Neumann measurement which realizes a given POVM
using the symmetry of the POVM we now turn to the question of decomposing the unitary
M̃ into gates. This can be seen as a first step towards the more general question of how
POVMs can be implemented efficiently on a quantum computer.

When speaking about the efficiency, we mean the cost of implementing the POVM as a
von Neumann measurement on a larger Hilbert space, i. e., the number of elementary gates
we need to actually implement the necessary unitary operation on this bigger space. First
note that the discussed construction of M̃ has several degrees of freedom:

• The matrix C̃ that contains C as upper part can be chosen arbitrarily. The matrix C̃
has to be a unitary matrix in the intertwining space T̃ .

• The matrix V ∈ U(n− d) can be an arbitrary unitary matrix.

• The order and phase factors of the POVM vectors in the matrix M can be chosen
arbitrarily. However, it must be possible to deduce the applied POVM operator from
the result of the orthogonal measurement efficiently.

• The permutation τ of the irreducible representations in UϕU † ⊕ ϕ′ can be chosen
arbitrarily.

• The symmetry group G can be restricted to subgroups H ≤ G which might lead to
different realizations of the POVM.

The constructions depend on the symmetry group G we consider for the POVM. Some-
times, we can obtain simple implementations by restricting the symmetry group to a sub-
group H ≤ G. If we consider a subgroup H of G and construct the POVM with respect
to H we have several changes in the construction compared to the construction with the
group G. On the one hand, the number of occurrences of the irreducible representations in
ϕmon increase. On the other hand the number of inequivalent irreducible representations
of the symmetry group decreases. Consequently, the matrices of the intertwining spaces
are more complex since there are more irreducible representations in ϕ and ϕmon that are
equivalent. As a tradeoff we have that the complexity of the transform W decreases. The
circuits constructed in [14] show that the restriction of the symmetry group to a cyclic
subgroup can lead to efficient algorithms in some cases.

Let G be a finite group and {ϕ1, . . . , ϕk} a system of representatives for the irreducible
representations of G. Let the coefficients of these representation be indexed by the list
L′ := [(m; i, j), 1 ≤ m ≤ k, 1 ≤ i, j ≤ deg(ϕm)]. Furthermore, let the elements of G be
indexed by the list L. Then the matrix 1/

√

|G|(
√

deg(ϕm)ϕm(g)ij)(m;i,j),g is unitary and
is called a Fourier transform (or DFT for short) for G [26, 27] (with respect to L and L′).

For several groups it is known how to realize a DFT efficiently on a quantum com-
puter [28–30]. In these cases the symmetry ϕmon can be decomposed efficiently whenever
we have that (i) ϕmon is a regular representation of G and that (ii) the DFT for G can
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be computed efficiently. Note that the computational complexity of this von Neumann
measurement depends essentially on the complexity of implementing DFTG in terms of
elementary quantum gates. Hence we obtain several families of POVMs for which the
monomial representation ϕmon can be decomposed efficiently. The complexity of the corre-
sponding POVM then depends on the remaining matrices C, U , and W used in Algorithm
6.

6 Examples

In this section we apply the methods discussed in the preceding sections to some examples
of group-covariant POVMs. We exploit the symmetry of group-covariant POVMs with re-
spect to cyclic groups, dihedral groups, and Weyl-Heisenberg groups in order to construct
quantum circuits for the implementation of these POVMs. Quantum circuits for the im-
plementation of group-covariant POVMs on a single qubit with respect to the cyclic and
dihedral groups are also discussed in [14].

6.1 Cyclic groups

Let Zn = {0, 1, . . . , n − 1} be a cyclic group with n elements and let ω = exp(2πi/n)
be a primitive nth root of unity. On a d-dimensional Hilbert space we consider a group-
generated POVM with respect to the representation ϕ : Zn → U(d) that is defined on the
generator by ϕ(1) = diag(1, ω, ω2, . . . , ωd−1). With an appropriate initial vector |Ψ〉 ∈ C

d

the elements ϕ(g)|Ψ〉 for g ∈ Zn define a POVM. In the following, we only consider the
vector |Ψ〉 = 1/

√
n(1, . . . , 1)T ∈ C

d. This vector leads to the POVM with the defining
matrix

M =
1√
n











1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...

1 ωd−1 ω2(d−1) . . . ω(n−1)(d−1)











∈ C
d×n. (2)

The matrix M ∈ C
d×n has the symmetry ϕM = Mϕmon where ϕmon(1) = (1, 2, . . . , n).

The representation ϕmon is the regular representation of the cyclic group where the elements
are ordered as [0, 1, . . . , (n − 1)]. With the Fourier matrix

Fn =
1√
n

(

ωjk
)n−1

j,k=0
∈ U(n)

we can write Fn ϕmon(1)F †
n = diag(1, ω, ω2, . . . , ωn−1). This shows that the Fourier trans-

form decomposes the regular representation of Zn into a direct sum of irreducible represen-
tations.

According to the preceding discussion (and notation) we have that U = 1d and W = Fn.

As a consequence we have the equation C = UMW † = MF †
n. More precisely, we have

C = MF †
n = diag(1, 1, . . . , 1) ∈ C

d×n.
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We now consider the construction of the matrices C̃ and M̃ . The representation ϕ :
Zn → U(d) with ϕ(1) = diag(1, ω, ω2, . . . , ωd−1) contains the irreducible representations

1 7→ (ωk) for all k ∈ {0, . . . d − 1}. The representation FnϕmonF
†
n : Zn → U(n) with

Fnϕmon(1)F †
n = diag(1, ω, ω2, . . . , ωn−1) contains the irreducible representations 1 7→ (ωk)

for all k ∈ {0, 1, . . . , n − 1}. Following Algorithm 6 from Section 4, we choose ϕ′ with

ϕ′(1) = diag(ωd, . . . , ωn−1) in order to obtain ϕ ⊕ ϕ′ = FnϕmonF
†
n. Since each irreducible

representation 1 7→ (ωk) with k ∈ {0, 1, . . . , n − 1} has dimension one and the irreducible
representations defined by 1 7→ (ωk) are inequivalent for different k we have the intertwining
space

T̃ = Int(ϕ⊕ ϕ′, FnϕmonF
†
n) = {diag(λ1, . . . , λn) : λj ∈ C} ⊆ C

n×n.

We have to find a matrix C̃ ∈ U(n) in the intertwining space T̃ that has the matrix C ∈ C
d×n

as upper part. As stated above, the matrix M ∈ C
d×n defines λj = 1 for j ∈ {0, 1, . . . , d−1}.

Since C̃ has to be a unitary matrix we have to choose λj with the absolute value |λj | = 1
for j ∈ {d, . . . , n− 1}.

In order to simplify the matrices we set λj = 1 for all j ∈ {d, . . . , n − 1}. With these
elements λj we have the equation C̃ = 1n. Furthermore, we choose V = 1n−d in Algorithm
6 from Section 4 leading to U ⊕ V = 1n. Consequently, we obtain the equation

M̃ † = W †C̃†(U ⊕ V ) = F †
n1n1n = F †

n.

This equation shows that the inverse Fourier transform M̃ † = F †
n is a unitary transform that

implements the group-covariant POVM with defining matrix (2). Recall that for n = 2k

where k ∈ N the Fourier transform can be implemented efficiently on a qubit register [31,32].

6.2 Dihedral groups

Let D2m = 〈r, s : rm = 1, s2 = 1, srs−1 = r−1〉 be the dihedral group [33] with n =
2m = 2k+1 elements for a fixed m = 2k ≥ 4. The element r denotes the rotation and s the
reflection of the dihedral group. We consider the irreducible representation ϕ : D2m → U(2)
that is defined by

ϕ(r) =

(

ω 0
0 ω−1

)

and ϕ(s) =

(

0 1
1 0

)

.

The element ω = exp(2πi/m) is an mth root of unity. For α, β ∈ C with |α|2 + |β|2 = 1/m
we consider the POVM with the corresponding matrix

M =

(

α . . . α β . . . β
β . . . βωm−1 α . . . αωm−1

)

∈ C
2×n.

The matrix M ∈ C
2×n has the symmetry ϕM = Mϕmon where ϕmon is defined by the

equations ϕmon(r) = 12 ⊗ ωS−2
m and ϕmon(s) = σx ⊗ F 2

mTm. The matrices Sm, Tm ∈ C
m×m

are defined by the equations (indices are taken modulo m)

Sm =

m−1
∑

i=0

|i+ 1〉〈i|, Tm =

m−1
∑

i=0

ωi|i〉〈i|
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and Fm denotes the discrete Fourier transform defined in the previous section. In order to
decompose ϕmon into irreducibles the following permutation Qk is useful. Denoting by x
the binary complement of the binary vector x of length k we define Qk : |x, 0〉 7→ |x, 0〉 and
Qk : |x, 1〉 7→ |x, 1〉. Furthermore, we introduce the representations ϕl defined by

ϕl(r) =

(

ωl 0
0 ω−l

)

and ϕl(s) =

(

0 1
1 0

)

.

With this notation we have ϕ = ϕ1. The two-dimensional representations ϕl are irreducible
and inequivalent [33] for different l ∈ {1, . . . ,m/2}. Now, using the base change W :=

Qm(12 ⊗ F †
m) ∈ C

n×n we obtain that

WϕmonW
† = ψ ⊕ ψ ⊕ ψ ⊕ ψ ,

where ψ is a direct sum of all representations ϕj with odd j. The first component of ψ is
ϕ1, the other components ϕj appear in a specific order which is irrelevant in the sequel. We
choose the representation

ϕ′ = ψ′ ⊕ ψ ⊕ ψ ⊕ ψ ,

where ψ′ is obtained from ψ by dropping ϕ1. This leads to ϕ ⊕ ϕ′ = WϕmonW
†. The

matrix C = MW † = (
√
mα 0 . . . 0|√mβ 0 . . . 0) ⊗ 12 ∈ C

2×n defines the first two rows of
the intertwining matrix C̃ we want to construct according to Algorithm 6 from Section 4.
A possible extension of the intertwining matrix C ∈ C

2×n to a unitary matrix C̃ ∈ U(n) is
C̃ = A⊗ 1m/2 with the matrix

A =
√
m

(

α β

β −α

)

∈ U(2).

According to Algorithm 6 from Section 4 we have to define the matrices U ∈ U(2) and
V ∈ U(n − 2). The equations ϕ = ϕ1 and WϕmonW

† = (ϕ1 ⊕ ψ′) ⊕ ψ ⊕ ψ ⊕ ψ show that
U = 12. Furthermore, we choose V = 1n−2. Then we have the matrix U ⊕ V = 1n. To
summarize, we have to implement the matrix

M̃ † = W †C̃† = (12 ⊗ Fm)Qk(A
† ⊗ 14) ∈ U(n)

in order to measure the POVM corresponding to the dihedral group Dm. The scheme of
the circuit corresponding to M̃ † is shown in Figure 1.

6.3 Weyl-Heisenberg groups

In the following we introduce the finite Weyl-Heisenberg groups which are matrix groups
acting on a finite dimensional vector space. For our purposes we consider vector spaces of
dimension m = 2k only, where k ≥ 2. Then the Weyl-Heisenberg group Gm is the group
generated by the matrices Sm = (1, 2, . . . ,m) and Tm = diag(1, ω, ω2, . . . , ωm−1) where
ω = exp(2πi/m) ∈ C is a primitive mth root of unity. It is known that Gm contains m3
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Figure 1: Quantum circuit for the implementation of the dihedral POVM.

elements [34]. POVMs that are covariant with respect to the Weyl-Heisenberg groups have
a physical motivation. Since the position and momentum of a particle cannot be measured
simultaneously by any projection-valued measurement one has to construct POVMs which
measure both observables with a certain inaccuracy. This idea has already been described
in [19]: starting from a wave packet, i.e., a unit vector |ψ〉 ∈ L2(R) we define a set {Ms,t}
of operators by

Ms,t :=
1

2π
eisP+tQ|ψ〉〈ψ|e−isP−tQ .

where s, t ∈ R and P and Q are the position and momentum operators, respectively. Ex-
plicitly, they are defined by (Pψ)(x) := −i(d/dx)ψ(x) and (Qψ)(x) := xψ(x). We then
have that

∫

s,t
Ms,t dsdt = 1.

The POVM {Ms,t} provides an approximative realization of the classical phase space since
the measurement outcome (s, t) can be interpreted as the point (s, t) in the phase space. In
the following we are interested in finite dimensional approximations of this. Assume that we
want to measure the position and crystal momentum of a particle on a lattice with m points
for m = 2k [35]. Furthermore, we assume that it is possible to transfer the state of such a
system into k qubits of a quantum register. That means that we can implement a bijection
of the basis states with Hamming weight one to the basis states of the Hilbert space C

m

of the k qubits. The canonical basis states |j〉 of C
m denote the position eigenstates. The

states corresponding to the state vectors
∑m−1

j=0 e2πilj/m|j〉 with l = 0, . . . ,m − 1 are the
eigenstates of the crystal momentum. Explicitly, the crystal momentum p can be defined by
p := 2πl/m−π. With this definition the values of p are in the interval [−π, π] that meets the
usual physical intuition of the one-dimensional Brillouin zone of an infinite one-dimensional
crystal. Here we characterize the position and momentum simply by the integer values
j, l = 0, . . . ,m − 1. The cyclic translation of the position is given by the action of Sm and
a change of crystal momentum by the action of Tm. Consider a rank-one positive operator
|ψ〉〈ψ| with the property that neither the position nor the momentum of the corresponding
state is completely undefined. Set

Mj,l :=
1

m
Sj

mT
l
m|ψ〉〈ψ|T−l

m S−j
m .
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Due to irreducible group action the equation
∑

j,lMj,l = 1m holds and the operators
Mj,l define a POVM. For large m we can find states with corresponding state vectors
|ψ〉 such that both values j and l are approximately defined. Here the word “approxi-
mately” is understood with respect to the cyclic topology, i. e., m − 1 and 0 are “almost”
the same value. A good choice for the POVM will be the following. Set |ψ〉 :=

∑

j cj |j〉
where the coefficients cj are chosen such that the function j 7→ |cj |2 has a unique max-
imum at j0 and the modulus of the values cj decrease with increasing distance from j0
in the cyclic topology. If all values cj are real and they decrease not too quickly the
momentum l of the state is around j0, too. Then the measurement values j, l can di-
rectly be interpreted as a good estimation for the position and momentum values. We
will show that an efficient implementation of the POVM can be found in the case where
|Ψ〉 = 1/

√
κ(1, α, α2, . . . , αm/2−2, αm/2−1, αm/2−1, αm/2−2, . . . , α2, α, 1)T ∈ C

m with α ∈ C

and an appropriate normalization factor 1/
√
κ.

In the following we consider the group-generated POVMs with respect to Gm and the
natural representation ϕ defined by ϕ(g) = g for all g ∈ Gm. This representation is irre-
ducible. Therefore, following Algorithm 6 from Section 4 we can set U = 1m since 1m decom-
poses ϕ into a direct sum of irreducible representations. The vector |Ψ〉 = (v1, . . . , vm)T ∈
C

m with the normalization |v1|2 + . . .+ |vm|2 = 1/m leads to the POVM where the defining
matrix M ∈ C

m×n is given by











v1 v1 . . . v1 vm . . . vm . . . v2 . . . v2
v2 v2ω . . . v2ω

m−1 v1 . . . v1ω
m−1 . . . v3 . . . v3ω

m−1

...
. . .

. . .
. . .

. . .

vm vmω
m−1 . . . vmω vm−1 . . . vm−1ω . . . v1 . . . v1ω











.

Note that we identify vectors g|Ψ〉 and h|Ψ〉 for different g, h ∈ Gm that are equal up
to a global phase factor. Consequently, the POVM consists of at most n = m2 different
operators. For example when m = 4 the vector |Ψ〉 = (v1, v2, v3, v4)

T ∈ C
4 with |v1|2 +

|v2|2 + |v3|2 + |v4|2 = 1/4 leads to the POVM with n = 16 operators and the corresponding
matrix M ∈ C

4×16 where M is defined by









v1 v1 v1 v1 v4 v4 v4 v4 . . . v2 v2 v2 v2
v2 v2i −v2 −v2i v1 v1i −v1 −v1i . . . v3 v3i −v3 −v3i
v3 −v3 v3 −v3 v2 −v2 v2 −v2 . . . v4 −v4 v4 −v4
v4 −v4i −v4 v4i v3 −v3i −v3 v3i . . . v1 −v1i −v1 v1i









.

The symmetry of M ∈ C
m×n can be described on the generators by the equations TmM =

M(1m ⊗ Sm) and SmM = M(Sm ⊗ T †
m). Therefore the representation ϕmon : Gm → U(n)

is defined by ϕmon(Tm) = 1m ⊗ Sm and ϕmon(Sm) = Sm ⊗ T †
m. The symmetry of M can

also be written as

TmM = M(1m ⊗ Tm)Fm⊗F †
m and SmM = M(T †

m ⊗ Sm)Fm⊗F †
m
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where we use the notation AX = XAX† and the Fourier transform Fm as defined in Section
6.1. We can write (1m ⊗ Tm) and (T †

m ⊗ Sm) as direct sums

(1m ⊗ Tm) = Tm ⊕ Tm ⊕ . . . ⊕ Tm and (T †
m ⊗ Sm) = Sm ⊕ ωm−1Sm ⊕ . . .⊕ ωSm.

By using the equations TmSmT
†
m = ωSm and (1m ⊗ Sm)Z = (T †

m ⊗ Sm) we can conjugate
these matrices with the diagonal matrix Z = 1m ⊕ Tm−1

m ⊕ Tm−2
m ⊕ . . .⊕ T 2

m ⊕ Tm in order
to obtain the equations

TmM = M(1m ⊗ Tm)(Fm⊗F †
m)Z and SmM = M(1m ⊗ Sm)(Fm⊗F †

m)Z .

These equations show that we have the decomposition WϕmonW
† = ϕ ⊕ . . . ⊕ ϕ with

the matrix W = Z†(F †
m ⊗ Fm). The representation WϕmonW

† contains m components
ϕ. Following Algorithm 6 from Section 4 we have to find a representation ϕ′ that leads
to the direct sum ϕ ⊕ ϕ′ = ϕ ⊕ . . . ⊕ ϕ with m components ϕ. Consequently, we choose
ϕ′ = ϕ ⊕ . . . ⊕ ϕ with m− 1 components ϕ. We now consider the extension of the matrix
C = MW † = M(Fm ⊗ F †

m)Z ∈ C
m×n to a unitary matrix C̃ ∈ U(n). The matrix C is an

element of the intertwining space

Int(ϕ,ϕ ⊕ . . . ⊕ ϕ) = {(α1, . . . , αn) ⊗ 1m : αj ∈ C} ⊆ C
m×n.

More precisely, we have C = ((
√
mv1, . . . ,

√
mvm)F †

m) ⊗ 1m ∈ C
m×n. For example, with

m = 4 we have the group G4 = 〈S4, T4〉 with S4 = (1, 2, 3, 4) and T4 = diag(1, i,−1,−i)
that contains 64 elements. In this example we have the equation

C =









(v1, v2, v3, v4)









1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

















⊗









1 · · ·
· 1 · ·
· · 1 ·
· · · 1









∈ C
4×16.

The matrix C ∈ C
m×n determines the first m rows of the matrix C̃ we want to construct.

The matrix C̃ is a unitary matrix of the intertwining space

Int(ϕ ⊕ . . . ⊕ ϕ,ϕ⊕ . . .⊕ ϕ) = {A⊗ 1m : A ∈ C
m×m} ⊆ C

n×n.

When we write C̃ = A ⊗ 1m then the matrix C determines the first row of A. Explicitly,
the first row of A is

(√
mv1, . . . ,

√
mvm

)

F †
m. (3)

The operation M̃ † for the implementation of the POVM is defined by

M̃ † = W †C̃†(U ⊕ V ) = (Fm ⊗ F †
m)Z(A† ⊗ 1m) ∈ U(n).

In this equation we have V = 1n−m leading to U ⊕ V = 1m ⊕ 1n−m = 1n. The general
scheme for the implementation of the matrix M̃ † is shown in Figure 2. For m = 2k the
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Figure 2: Circuit for the implementation of the POVM with respect to the Weyl-Heisenberg
group and the vector |Ψ〉 = (v1, . . . , vm)T . The vector |Ψ〉 determines the matrix A†.

circuit contains the k controlled operations

T−1
m , T−2

m , . . . , T−m/4
m , T−m/2

m

for the implementation of the matrix Z. The matrix Tm = diag(1, ω, ω2, . . . , ωm−1) can be
written as Kronecker product

Tm =

(

1 0

0 ωm/2

)

⊗
(

1 0

0 ωm/4

)

⊗ . . . ⊗
(

1 0
0 ω

)

∈ U(m).

Therefore, the matrices T j
m of the circuit in Figure 2 can be implemented efficiently on a

register of qubits.
The circuit in Figure 2 is efficient if the matrix A that contains the vector (3) as first

row can be implemented efficiently. We can find such a matrix for the POVM with the
vector

|Ψ〉 =
1√
κ

(1, α, α2, . . . , αm/2−2, αm/2−1, αm/2−1, αm/2−2, . . . , α2, α, 1)T ∈ C
m (4)

where we have α ∈ C and the normalization κ = 2m(1 + |α|2 + |α|4 + . . . + |α|m−2). A
matrix A ∈ U(m) that contains the vector (3) as first row is given by

A = J†

m/2

(

Bm/4 ⊗Bm/8 ⊗ . . . ⊗B4 ⊗B2 ⊗B1 ⊗B0

)

Jm/2F
†
m
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Figure 3: Implementation of the matrix A† where A is a matrix that contains the vector
(3) as first row. This matrix is part of the circuit in Figure 2 for the vectors (4).

where we use the unitary matrices

Bj =
1

√

1 + |α|2j

(

1 αj

αj −1

)

∈ U(2) .

Here Jk is defined to be the permutation matrix which maps 2i 7→ i and (2i − 1) 7→ −i for
i = 0, . . . , k. In our example with m = 4 we have the matrix

J†
2 (B1 ⊗B0) J2 =

1
√

2 + 2|α|2









1 α α 1
α −1 −1 α
α −1 1 −α
1 α −α −1









.

The circuit scheme for the implementation of the matrix

A† = FmJ
†

m/2

(

B†

m/4 ⊗B†

m/8 ⊗ . . .⊗B†
4 ⊗B†

2 ⊗B†
1 ⊗B†

0

)

Jm/2

is shown in Figure 3.

7 Conclusions and outlook

We have shown that a group-covariant POVM can be reduced to an orthogonal measure-
ments by a unitary transform which is symmetric in the sense that it intertwines two dif-
ferent group representations. The symmetry of the unitary transform can be used to derive
decompositions which in several cases of interest (as the Heisenberg-Weyl group) leads to
an efficient quantum circuit for the implementation of the POVM.
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We have argued that POVMs are often necessary in order to understand why large
quantum systems show typically classical behavior on the phenomenological level. The
POVM with Heisenberg-Weyl symmetry as well as the example in [5] show that the POVMs
which appear in this context are often covariant with respect to some group.

Besides the physical motivation to study implementations of POVMs by means of or-
thogonal measurements in terms of quantum circuits there is also a motivation from com-
puter science. The so-called hidden subgroup problem [36] is an attractive generalization of
the quantum algorithms for discrete logarithms and factoring [37]. The standard approach
for the hidden subgroup problem consists in a Fourier transform for the respective group
followed by a suitable post-processing on the Fourier coefficients [38]. For abelian groups
this post-processing consists simply in an orthogonal measurement in the computational
basis. However, for non-abelian group measurements which are in fact POVMs are often
more advantageous, see e. g. [39]. The POVMs which appear to be useful to solve hidden
subgroup problems for non-abelian groups are naturally group-covariant. The methods pre-
sented in this paper might be useful to find quantum algorithms for the hidden subgroup
problem for new classes of non-abelian groups.
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