
 1

Unsupervised and Supervised Machine Learning in User
Modeling for Intelligent Learning Environments

Saleema Amershi1 and Cristina Conati1,2
 1Dept. of Computer Science, 2Dept. of Information and Communication Technology
 University of British Columbia University of Trento,
 2366 Main Mall, Vancouver, BC, Povo, Trento, Italy
 V6T 1Z4, Canada
 {samershi,conati}@cs.ubc.ca

ABSTRACT
In this research, we outline a user modeling framework
that uses both unsupervised and supervised machine
learning in order to reduce development costs of building
user models, and facilitate transferability. We apply the
framework to model student learning during interaction
with the Adaptive Coach for Exploration (ACE) learning
environment (using both interface and eye-tracking data).
In addition to demonstrating framework effectiveness, we
also compare results from previous research on applying
the framework to a different learning environment and
data type. Our results also confirm previous research on
the value of using eye-tracking data to assess student
learning.

ACM Classification: I5.5 [Pattern Recognition]:
Implementation.-Interactive systems.
I6.5 [Simulation and Modeling]: Model Development.-
Modeling methodologies
K3.1 [Computers and Education]: Computer Uses in
Education.-Computer-assisted instruction

General terms: Human Factors, Experimentation

Keywords: User modeling, unsupervised and supervised
machine learning, intelligent learning environments, eye-
tracking

INTRODUCTION
In this research, we propose a user modeling framework
that uses both unsupervised and supervised machine
learning to address two of the most cited difficulties of
developing user models for computer-based learning
environments (e.g., [3, 11, 19]): laborious effort required
by application designers to construct models, and limited

model transferability across applications. The user model
is a fundamental component of an intelligent learning
environment (ILE), i.e., a computer-based system that can
provides adaptive support for students. The user model
guides the adaptation process by providing the ILE with
an abstract representation of the learner in terms of
relevant traits such as knowledge, meta-cognitive ability,
and learning behaviors [3, 19].

Unfortunately, although the benefits of individualized
computer-based instruction are well-recognized, so are
the development costs, of which a considerable part is
devoted to the user model [3]. This is especially true for
knowledge-based user models, because they require
eliciting the relevant domain and pedagogical knowledge
from experts, a process that is often hard and time
consuming. Furthermore, pure knowledge-based
approaches can typically recognize and interpret only
expected student behaviors, and are unable to handle
unanticipated ones. Thus, they tend to be suboptimal for
novel applications for which real experts do not exist yet.

To circumvent the drawbacks of knowledge-based student
models, some researchers have turned to the field of
machine learning (e.g., [2, 9]) to approximate functions
that map observable student behaviors to classes such as
the correctness of student answers. These functions can
then predict the outcome of future student behaviors and
inform adaptive facilities. However, this approach
typically necessitates labeled data. When labels (e.g.,
student answers) are not readily available from the
system, domain experts must resort back to manual
labeling to supply them, which is again time-consuming
and error prone.

The user modeling framework we propose addresses the
issue of cost-intensiveness by integrating supervised and
unsupervised machine learning. The framework is a
generalization of the statistical pattern recognition
approach [13] we used in [1] to automatically create a
user model for an intelligent learning environment to
teach AI algorithms. The general procedure for statistical
pattern recognition is: data acquisition, processing,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’07, January 28–31, 2007, Honolulu, Hawaii, USA.
Copyright 2007 ACM 1-59593-481-2/07/0001...$5.00.

learning, and then testing [13]. Our framework defines
this process specifically in the context of user modeling. It
uses unsupervised learning to automatically identify
common learning behaviors and then applies supervised
machine learning to these behaviors to train a classifier
user model that can inform an adaptive ILE component.

A key distinction between our modeling approach and
knowledge-based or supervised approaches with hand-
labeled data is that human intervention is delayed until
after unsupervised machine learning automatically
identifies behavioral patterns. That is, instead of having to
observe individual student interactions in search of
meaningful patterns to model (e.g., student errors or
misconceptions as in [5]) or to input to a supervised
classifier (e.g., actions indicating motivation [9], instances
of student’s misusing an existing ILE [2]) the developer is
presented with an unbiased picture of common behavioral
patterns that can then be analyzed in terms of learning
effects. Expert effort is further reduced by using
supervised learning to actually build the user model from
the identified patterns.

In addition to reducing developer workload, our approach
also facilitates transfer across different applications and
data types. In [1], we showed the effectiveness of the
approach applied to logged student interface actions in an
environment for teaching an AI algorithm, the CIspace
CSP (Constraint Satisfaction Problem) Applet. Here, we
demonstrate transferability by applying it to (i) a different
learning environment, the Adaptive Coach for
Exploration (ACE) for mathematical functions; (ii) data
beyond interface actions, namely eye-tracking data. This
data is higher dimensional than what we experimented
with in [1] and so we extend our framework to include
automatic feature selection to reduce data dimensionality.

Both the CIspace CSP applet and ACE are exploratory
learning environments (ELEs), i.e. are designed to support
learning via free, student-led exploration of the target
domain. We chose ELEs as testbeds for our framework
because previous research has shown the value of
providing adaptive support for student exploration [18],
but these environments are especially hard for traditional
user modeling approaches. Because ELEs are a relatively
novel learning paradigm, little practical knowledge exists
about optimal learning strategies within these systems,
increasing the difficulties of applying knowledge-based
modeling approaches. Furthermore, because the space of
possible interaction behaviors within ELEs can be very
large, observing distinct behaviors and interpreting them
in terms of learning effects is especially difficult. This
makes supervised machine learning techniques that
require manually labeled data also unappealing.

For instance, ACE’s original student model [4], built via a
fairly laborious knowledge-based approach, specified
which components of the target domain (mathematical
functions) should be explored for effective learning.

However, due to lack of knowledge, it did not model how
these components should be explored, leading to
suboptimal model performance. A later version of the
model [7] partially addressed this problem by using
supervised learning to recognize effective exploration
patterns from both interface actions and eye tracking data.
But the relevant patterns had to be hand-labeled using an
extremely laborious protocol analysis [7] and for this
reason were limited to a subset of the available data. In
this paper, we show that when applied to ACE, our
framework can automatically identify more complex
behavioral patterns than those identified by experts in [7].
An additional contribution is that fwe extend the results
presented in [7] on the value of using eye-tracking data in
modeling user reasoning processes.

In the rest of the paper, we first discuss related work.
Next, we outline our user modeling framework. Then, we
review previous results on applying our framework to the
CSP Applet. Finally, we describe ACE and present the
results of applying our framework to it. We conclude with
a summary and suggestions for future work.

RELATED WORK
Unsupervised machine learning for user modeling has
been mostly used in non-educational applications. For
example, collaborative filtering (CF) systems employ
unsupervised learning techniques to model user
preferences and make item recommendations based on
user similarities (e.g., [16]). Other research has
demonstrated the use of unsupervised learning on (i)
words in a document to model and automatically manage
email activities [14]; (ii) frequencies of web pages access
to automatically adapt web sites [17]. In contrast, research
in using unsupervised machine learning for user modeling
in educational systems remains rare [19]. A notable
exception is MEDD [20] which uses unsupervised
learning to discover novel classes of student errors and
automatically build error libraries (for Prolog
programming). Our approach differs from this in that we
are modeling student interaction behaviors in unstructured
learning environments instead of static student solutions
and errors. [12] and [21] are also related to our work
because, although they do not actually build user models,
they also use pattern recognition approaches to discover
patterns of student behaviors. DIAGNOSER [12], like
MEDD, uses unsupervised learning to discover errors in
static student solutions to physics questions. More similar
to what we do, [21] uses clustering on interface action
frequencies, to detect behavioral patterns in an
environment for collaborative learning. Our work differs
in that we use higher dimensional data including action
latency, measures of variance and gaze information. In
both [12] and [21] the resulting patterns are given to
instructors who can then use them to tailor instruction,
whereas we take this process one step further to
automatically build a user model. Our research is also
broader because we show transfer of our approach across
applications and data types.

 3

MODELING FRAMEWORK
Figure 1 shows the architecture of our proposed modeling
framework, which divides the user modeling process in
two main phases: Offline Identification and Online
Recognition. In the offline phase, raw, unlabelled data
from student interaction with the target environment is
first collected and then preprocessed. The result of
preprocessing is a set of feature vectors representing
individual students in terms of their interaction behavior.
These vectors are used as input to an unsupervised
learning (clustering) algorithm that groups them
according to their similarity. These groups (clusters)
represent students who interact similarly with the
environment and are analyzed by the model developer to
identify interaction behaviors as effective or detrimental
for learning. In the online phase, the clusters identified in
the offline phase are used directly in a classifier user
model for learner classification. The online classifications
and the learning behaviors identified by cluster analysis
can then be used to inform an adaptive component that
can encourage effective learning behaviors and prevent
detrimental ones. In the rest of this section we describe
the steps in each of the two phases, along with the
algorithms we chose to complete these steps in the work
presented here.

Offline Identification

Figure 1: User modeling framework. Dotted lines
represent optional input. Grayed out elements are
outside of the framework.

Data Collection. The first step in the offline phase is to log
data from students interacting with the target learning
environment. Here, the developer requires knowledge (or
a catalog) of all possible primitive interaction events that
can occur in the environment so that they can be logged
(see in Figure 1 the solid arrow from ‘Developer’ to ‘Data
Collection’). In addition to interface actions, logged data
can include events from any other data source that may
help reveal meaningful behavioral patterns (e.g., an eye-
tracker).

An optional, but highly desirable additional form of data
are tests on student domain knowledge before and after
using the learning environment, to measure student
learning with the system (see the dotted arrow in Figure 1
from ‘Tests’ to ‘Data Collection’). These can then be used
in cluster analysis, as we will see below.

Preprocessing. Clustering operates on data points in a
feature space, where features can be any measurable
property of the data. So in order to find clusters of
students who interact with a learning environment in
similar ways, each student must be represented by a
(multidimensional) feature vector. The second step in the
offline phase is to generate these vectors by computing
low level features from the data collected. We suggest
features including (a) the frequency of each interface
action, and (b) the mean and standard deviation of the
latency between actions. The latency dimensions are
intended to measure the average time a student spends
reflecting on action results, as well as the general
tendency for reflection (e.g., consistently rushing through
actions vs. showing selective attention). In the current
research we also include features extracted from eye-
tracking data (i.e., eye gaze movements).

In high-dimensional feature spaces, natural groupings of
the data are often obscured by irrelevant features.
Therefore, determining the most salient features and
removing irrelevant ones (called feature selection) can
significantly improve results of the subsequent machine
learning algorithm. We suggest using an entropy-based
unsupervised algorithm [8] for feature selection. First, we
rank each of the candidate features according to the
entropy (disorder) induced by the removal of that feature
from the entire set of data points. Next, we run forward
selection on the ranked features. This evaluates
incrementally larger feature subsets in terms of their
performance in clustering and chooses the subset that
maximizes cluster quality, defined as having maximum
between-cluster variance and minimum within-cluster
variance. Note that feature selection must execute
clustering on each candidate subset in order to assess
cluster quality, and returns both a reduced feature set and
the resultant clusters. Thus, clustering need not be
performed again when using this automatic feature
selection technique. When no feature selection is
performed then clustering must still be carried out to
determine behavioral patterns, as described next.

Clustering. Clustering works by grouping feature vectors
by their similarity, where here we define similarity as the
Euclidean distance between data points in the normalized
feature space [10]. For both the work presented in this
paper and that reported in [1], we chose a popular
partition-based algorithm for clustering called k-means
[10]. K-means takes as input feature vectors and a user-
specified k value specifying the number of clusters that
should be returned. Initially, k data points are randomly
selected to be the cluster centroids. The remaining data
points are then assigned to the cluster whose current
centroid minimizes the Euclidean point-to-centroid
distance. After all data points are assigned to a cluster,
new cluster centroids are computed from these groupings.
The process then repeats for a given number of iterations
or until there are little or no changes in the clusters. K-
means can often converge at local optima depending on
the selection of the initial cluster centroids. Thus, several
trials are typically executed to find high quality clusters.

While k-means is efficient for large data sets, and so may
be favorable for online educational technologies that have
the potential to log large amounts of data, it does have
limitations. First, k-means assumes the clusters are
elliptical, and would be unsuccessful at identifying more
complex cluster shapes. In this case, a more
computationally expensive hierarchical algorithm may be
best [10]. K-means also produces hard assignments of
data points to clusters, whereas it may be beneficial for an
adaptive ELE to know the uncertainty in the assignments.
Here, a probabilistic version of k-means called
Expectation Maximization [10] may be more appropriate.
So the choice of clustering algorithm should be informed
by properties of the data or the application being studied.
Although we use k-means as proof of concept throughout
this research, we expect that other clustering algorithms
can be substituted for k-means in our framework.

Cluster Analysis. If the clusters detected by clustering are
to be used in a user model for an ILE, the clusters must be
analyzed and interpreted to determine which patterns of
behaviors are effective or ineffective for learning. This is
best done by using objective information about learning
gains from application use, e.g., improvements from pre
to post tests, to identify which clusters of students were
successful learners and which were not (see dotted arrow
marked ‘Test Results’ between ‘Data Collection’ and
‘Cluster Analysis’ in Figure 1). If learning gains are
unknown, then expert evaluation is required to interpret
the cluster characteristics in terms of learning (illustrated
in Figure 1 by the dotted arrow from ‘Developer’ to
‘Cluster Analysis’). In this case, human workload is still
reduced because they avoid the time-consuming process
of having to observe individual student interactions and
then look for meaningful patterns.

An additional step in cluster analysis is to evaluate
clusters for similarities and dissimilarities along each of
the feature dimensions in order to characterize the

different learning behaviors. While this step is not strictly
necessary for on-line recognition based on supervised
learner classification, it can be useful to help developers
gain insights on the relevant learning behaviors and
devise accurate adaptive interventions targeting them.

In this research, we use formal tests to compare clusters in
terms of learning and distinctive interaction behaviors. To
compare the clusters obtained with k=2, we use Welch’s t-
tests (Student’s t-test corrected for unequal sample
variances) to determine the statistical significance of the
differences (throughout the paper, we use .05 for
significance and .1 for marginal significance). We also
measure effect sizes (the magnitude of the differences),
using Cohen’s d [6], to determine the practical
significance of the differences. We consider a large effect
(d > .8) to be significant and a medium effect (.8 > d > .5)
to be marginally significant as per Cohen’s standard.
When k>2, we use one-way analysis of variances
(ANOVAs) with Tukey HSD adjustments for post-hoc
pairwise comparisons to determine statistical significance.

Online Recognition
Supervised Classification. The second phase supported by
our modeling framework (lower left of Figure 1) uses an
online supervised classification algorithm to recognize
effective and ineffective learners by classifying a new
student into the distinct learner groups found by offline
clustering. This is done via an online k-means classifier
that incrementally updates the classification of a new
student into one of these groups as the student interacts
with the learning environment. As actions occur, the
feature vector representing the student’s behavior thus far
is updated to reflect the new observation. Next, the
student’s classification is computed by simply
recalculating the distances between the updated vector
and each cluster centroid and then assigning the feature
vector to the cluster with the nearest centroid.

PREVIOUS RESULTS ON USING THE FRAMEWORK
WITH THE CSP APPLET
In [1], we applied our framework to model student
interactions with the CIspace CSP Applet, an ELE to
support learning of an AI algorithm for constraint
satisfaction problems (CSP). The CSP applet uses
visualizations to dynamically demonstrate the workings of
the algorithm. Students are free to explore these
visualizations using any of seven different functions
embedded in the interface. Thus, our data set consisted of
21-dimentional feature vectors representing action
frequencies of these seven functions as well as the means
and standard deviations of the latency between actions. In
that work we showed how the unsupervised component of
our modeling framework was able to identify student
clusters (for k=2 and k=3) characterized by significantly
different interaction behaviors (as well as significantly
different learning outcomes), and several of these
behaviors would have been difficult to recognize and
label by hand. The model developed, with k=2, through

 5

the supervised learning component achieved a good
overall predictive accuracy of 88.3% on new student
behaviors, although the accuracy was higher for
ineffective behaviors than for effective behaviors because
of the limited data available for the latter. In contrast, the
overall predictive accuracy of the model developed with
k=3 was only 66.2%. This is likely attributable to the
smaller cluster sizes resulting from the larger k value in
this case. Like with the model built with k=2, the accuracy
for the model developed with k=3 was highest for the
largest cluster which was again characterized by
ineffective learning behaviors. We now discuss the results
of applying the framework to a different system, the ACE
ELE for mathematical functions, and to a broader set of
data types including both interface actions and eye-
tracking information.

ADAPTIVE COACH FOR EXPLORATION (ACE)
ACE [4] is an intelligent ELE that provides tools to
support student-led exploration of mathematical functions
while an adaptive Coach provides tailored suggestions on
how to improve student exploration. ACE is comprised of
three units, each designed to present concepts pertaining
to mathematical functions in a distinct manner. In this
research we focus on the Plot Unit (Figure 2) because it
offers the widest range of exploratory activities, making it
an ideal candidate to evaluate our modeling framework.

Figure 2: The ACE Plot Unit.

ACE’s Plot Unit provides three types of functions, or
exercises for the student to explore: constant, linear and
power functions. Each function has an associated set of
exploration cases that together illustrate the full range of
function attributes. For example, linear functions are
defined by two parameters specifying the function slope
and the y-intercept. In order to gain a broad understanding
of linear functions, the student should study the relevant
exploration cases, including positive and negative
intercepts, and positive, negative and zero slopes.

The Plot Unit interface (Figure 2) is divided into three
components. Function exploration occurs within the top-
left panel, which visually demonstrates the relationship
between mathematical equations and their corresponding
plots in a Cartesian plane. The component at the right
contains hypertext help pages about ACE’s interface and
the functions that can be explored. The lower left panel is
where ACE’s Coach displays tailored, on-demand hints to
guide the student’s exploration. In addition, the Coach
intervenes (via a dialog box) if the student tries to move
to a new exercise before sufficiently exploring the current
one. In this situation the Coach tries to encourage the
student to continue exploring the current exercise by
offering them a hint if they stay. However, in keeping
with the theme of student-controlled exploration, the
student ultimately decides whether or not to move on.

To explore mathematical functions, ACE allows students
to take the following 13 interface actions:

• Plot Move (PM) – Dragging the function plot around
the screen. The parameters of the function’s equation
(directly below the Cartesian plane in Figure 2) are
automatically adjusted to reflect the transformation.

• Equation Change (EC) – Editing the function equation.
ACE transforms the function plot accordingly.

• Reset – Resetting the function to its initial parameters.
• Next Exercise (NE) – Stepping sequentially forward to

the next exercise in the pre-defined curriculum by
clicking on the NE button (top right of plot).

• Step Forward (SF) – Same as NE action, but done by
clicking on the forward arrow on the toolbar at the top
right of the plot.

• Step Back (SB) – Stepping backwards to the previous
exercise.

• Lesson Browser (LB) – Opening the LB tool which
outlines the curriculum and allows the student to jump
to any exercise within the curriculum.

• Exploration Assistant (EA) – Opening the EA tool
which displays the exploration cases already examined
by the student and remaining to be examined.

• Get Hint – Requesting a hint from the Coach.
• Stay - Adhering to the Coach’s advice to continue

exploring the current exercise.
• Move On (MO) – Ignoring the Coach’s advice to stay

on the current exercise and moving on to another one.
• Help – Using the hypertext help pages.
• Zoom – Zooming into or out of the graph region.

The Coach’s interventions are guided by a knowledge-
based user model [4]. The model is a hand-constructed
Dynamic Bayesian Network that includes nodes to
represent all possible exploration cases, nodes to represent
student’s understanding of related mathematical concepts

and links representing how exploration of relevant cases
relate to concept understanding. To assess whether a case
has been explored effectively, the network includes
information on both student actions (only the PM and EC
actions described above) and time elapsed between these
actions. The latter is used as an estimate of student’s
active reasoning on each exploration case. The network
parameters (i.e., multi-valued conditional probability
tables for each node) were manually defined using prior
knowledge or estimations.

USING THE FRAMEWORK WITH ACE
Data Collection
The data we apply our modeling framework to was
obtained from a previous user study involving the ACE
Plot Unit [7]. The goal of the study was to analyze if and
how eye-tracking data on gaze patterns helps assess
student reasoning on individual exploration cases and
consequent effectiveness of student exploration (student
reasoning was assessed solely from latency between
actions in the original ACE model). 36 students
participated in the user study. They first took a pre-test on
mathematical functions, and then interacted with ACE for
as long as they needed. While using ACE, the students
were asked to verbalize all of their thoughts. Student gaze
was tracked by a head-mounted eye-tracker. In addition,
all student interactions with ACE were logged and
synchronized with data from the eye tracker. Finally, the
students took a post-test similar to the pre-test. For the
research presented here, we obtained 3783 interface
actions over 673.7 minutes from the study log files, along
with the accompanying gaze data from the eye-tracker.

Data from this study was also used in [7] to build a new
version of ACE student model using supervised machine
learning. This new model uses gaze information, in
addition to latency between actions, to assess
effectiveness of student exploration. The use of gaze
information is limited to gaze shifts between the plot and
equation area after a plot move or equation change, which
intuitively should indicate student’s reflection after these
actions. Although gaze pattern information may also be
relevant in relation to other interface actions, this work
was limited to equation and plot changes because of the
effort required to generate the hand labeled data necessary
to train the model. Two researchers (to assure coding
reliability) categorized student verbalizations after
equation and plot changes as instances of student
reflection vs. speech not conducive to learning. Then,
they mapped them onto presence/absence of gaze shifts
and latency until the next action. This new model showed
better performance in assessing effectiveness of student
exploration than models using only action occurrences or
action occurrences plus latency information, showing the
value of eye-tracking data for this type of assessment. In
the following two sections, we compare the results of
applying our framework to the data described above, with
the results obtained by the supervised approach in [7].

Preprocessing and Unsupervised Clustering
We extracted two different sets of features from the ACE
study data. The first set (FeatureSet1) consisted only of
interface features, i.e. frequencies of each of the 13
possible interface actions and the mean and standard
deviation of the latency between actions. This feature set
is analogous to the one used in [1], so as to evaluate how
our modeling framework transfers across different
applications using the same type of input data.

The second set (FeatureSet2) included features distilled
from the eye-tracking data in addition to the above
interface features. We chose this set for two reasons. First,
we wanted to evaluate how our approach works on a
range of different data sources. Second, we wanted to see
if we could reproduce results in [7], showing that eye-
tracking information improves assessment of the
effectiveness of student exploration. In particular, we
hypothesized that eye-tracking data would improve the
performance of clustering in identifying groups of
students with distinct learning proficiency. We focused on
the two gaze shift patterns used in [7]: direct and indirect
gaze shifts. A direct gaze shift happens when a student’s
gaze moves directly between the function equation and its
plot, while in an indirect gaze shift, gaze moves to non-
salient regions in between. Although in [7] the authors
only considered these gaze shifts after plot moves and
equation changes, they may be relevant after most ACE
interface actions. For example, after a next exercise action
a new function appears on the screen requiring attention
to both the plot and equation regions in order to
understand the connection between the new function
equation and its plot. Since, contrary to the supervised
approach in [7], considering more actions in our approach
does not involve much extra work, we included gaze shift
information for all the 13 interface actions in FeatureSet2,
by computing the mean and the standard deviation of the
number of indirect and direct gaze shifts as additional
features.

FeatureSet1 and FeatureSet2 included respectively 39 and
91 possibly influential features. With only 36 feature
vectors corresponding to the 36 study participants, these
high-dimensional feature spaces can result in data
sparseness and may degrade the performance of
clustering. Therefore, as outlined in our modeling
framework, we performed entropy-based feature selection
on each set. We used k set to 2, 3 and 4 for the k-means
clustering executed during forward selection. We chose
these values because our data set was relatively small and
so we only expected to find a few clear groups with
distinct learning outcomes.

Because of space limitation, here we only discuss results
from feature selection on FeatureSet2 with k=2, the only
case in which we found significant differences in student
learning outcomes of the obtained clusters. 36 of the 91
original features in FeatureSet2 were selected as
important (listed in Table 1). All action frequencies are

 7

selected as important, except in the case of a Stay action.
Gaze shift dimensions are only identified as important in
the presence of the corresponding latency dimensions (see
EC and NE entries in Table 1 for example). Conversely,
latency was found to be relevant independently of gaze
shift features, for instance in relation to using the ACE
help pages (see help entries in Table 1). This agrees with
the findings in [7] that gaze shifts may be important
mostly in discriminating between time spent reflecting on
an action’s results and idle time.

Feature Description HL
average

LL
average p D

PM freq. .024 .034 .116 .418
EC freq. .015 .019 .203 .305
EC latency avg. 21.8 16.1 .047* .677
EC latency sd. 10.4 6.08 .073 .636
EC indirect avg. 1.21 .440 .012* 1.02*
EC indirect sd. 1.12 .556 .022* .886*
Reset freq. 0 .001 .008* .735
Reset latency sd. 0 .051 .082 .406
NE freq. .005 .009 .005* .827*
NE latency avg. 18.7 13.2 .003* 1.07*
NE latency sd. 10.3 7.44 .059 .594
NE indirect avg. 1.74 .625 1e-5* 2.18*
NE indirect sd. 2.09 .715 1e-4* 1.97*
NE direct avg. 1.30 .201 .003* 1.41*
NE direct sd. 1.79 .362 .006* 1.25*
SF freq. .008 .011 .034* .621
SF latency avg. 7.65 4.65 .008* 1.03*
SF latency sd. 9.96 5.83 .014* .858*
SB freq. 0 2e-4 .122 .338
SB latency avg. 0 .400 .053 .475
SB indirect avg. 0 .040 .164 .283
LB freq. 0 6e-4 .037* .528
EA freq. 2e-4 .001 .018* .640
EA latency avg. 5.27 5.65 .472 .027
Get hint freq. 3e-4 5e-4 .312 .155
Stay latency avg. 6.55 2.54 .032* .775
Stay indirect avg. .152 .100 .350 .136
MO freq. .003 .005 .014* .744
MO latency avg. 2.23 232 .163 .283
MO latency sd. 2.76 400 .163 .283
Help freq. .002 .001 .234 .288
Help latency avg. 2.45 7.28 .030* .587
Zoom freq. 4e-4 .021 .008* .741
Zoom latency avg. .374 1.98 .003* .961*
Zoom latency sd. .700 2.70 .017* .785
Zoom direct sd. 0 .101 .012* .683

* Significant at p<.05 or d>.8 (feature description in bold)

Table 1. Pairwise comparisons between HL
and LL clusters along the features selected
from FeatuteSet2

Interestingly, neither latency nor gaze shifts were found to
be relevant after a plot move (see PM table entry). Given
that both plot moves and equation changes are
exploratory actions requiring student reflection, this result
appears unintuitive, especially considering that latency
and gaze shifts were found to be important after equation
changes. This could be an artifact of forward selection,
which may prematurely rule out certain features that are
important only in combination with features not yet
included in the subset (i.e. lower ranked features).
However, since clustering was in fact able to find distinct
learner groups using only the features returned by feature
selection, these findings could challenge our previous
beliefs about the utility of plot move actions for learning.

Cluster Analysis
As dictated by our framework, in this phase we first
compare the clusters returned by feature selection on
FeatureSet1 and FeatureSet2 in terms of student learning
gains (derived from the pre and post-test scores available
from the user study described earlier). When significantly
different learning gains were found, we then compared
the clusters in terms of differences in behavioral patterns.

Cluster Analysis for FeatureSet1. With FeatureSet1,
for all values of k we found no significant differences in
learning gains amongst clusters and so we cannot use the
clusters as the basis for the on-line modeling phase.
Interestingly, in [1] we were able to find distinct learner
groups by using only interface actions on a data set
comparable in size to the data set we are using here. We
hypothesize that this discrepancy is due to differences in
the nature of the domains and interfaces of the two
learning environments. The AI algorithm that the CSP
Applet is designed to demonstrate is more complex
compared to the relationship between mathematical
functions and their graphs that the ACE Plot Unit
demonstrates. As a result, the CSP Applet interface
includes several functions that allow the student to
visualize and reflect on the workings of the AI algorithm,
whereas ACE only provides two such functions: plot
moves and equation changes. Thus with the CSP Applet,
interface actions alone may capture student reflection
during exploration better than interface actions alone in
ACE. This hypothesis is consistent with the results in [7]
showing that gaze patterns, together with action latency,
predict student reflection and learning better than sheer
number of actions or action latency alone. Additional data
may be necessary [13] to detect distinct learner groups
using only this feature set.

Cluster Analysis for FeatureSet2. With FeatureSet2
and k=2 we found a marginally significant difference in
learning gains between the two clusters returned
(t(17.85)=1.55, p=.069, d=.571). Furthermore, several of
the clusters’ distinctive behaviors involved gaze patterns,
as we discuss next. This shows that incorporating eye-
tracking data into feature vectors improves the
performance of clustering in identifying groups of

students with distinct learning proficiency, as compared to
using interface actions and latency information alone.

Hereafter we refer to the group with high and low average
learning gains as the ‘HL’ and ‘LL’ groups respectively.
In order to characterize these two learner groups in terms
of interaction behaviors, we did a pair-wise analysis
between the clusters on each of the 36 feature dimensions.
Table 1 presents the results of this analysis. Here we
discuss some of the most interesting findings.

Some of these findings are consistent with results in [7],
as we were hoping. First, there were no statistically
significant differences in the frequency of plot moves or
equation changes between the HL and LL groups,
consistent with finding in [7] that sheer number of
exploratory actions is not a good predictor of learning in
this environment. Second, after an equation change, the
LL group would pause for a significantly shorter duration
than the HL group on average (see ‘EC pause avg.’ in
Table 1). In [7], the authors determined 16 seconds to be
an optimal threshold between occurrences of effective
reflection on exploration cases and other verbalizations
not conducive to learning. Consistent with this result,
Figure 3 shows that the average latency by the students in
the HL group were mostly above this threshold, whereas
with the LL group the latency averages were centered
about the threshold.

HL

LL

0 5 10 15 20 25 30
Figure 3: Boxplot of avg. latency after Equation
changes between HL (gray) and LL (white)
clusters.

Because with clustering we are able to incorporate all
interface actions and associated gaze data simply by
including them in the multi-dimensional feature vectors,
we also found patterns additional to the ones found in [7].
For example, the students in the HL group were more
varied in how often they would indirectly gaze shift after
an equation change (see ‘EC indirect sd.’ in Table 1).
This selective behavior suggests that students need not
reflect on the results of every exploratory action in order
to learn well so long as they do not consistently refrain
from reflection. In addition, the LL group paused less and
made significantly fewer indirect gaze shifts after an
equation change than the HL group (see ‘EC indirect
avg.’ in Table 1). These results are consistent with less
reflection by the LL group compared to the HL group and
may account for some of the difference in learning gains.
It should be noted that in [7], individual gaze shifts, not
multiple gaze shifts, were found to predict student
reasoning. In that research, gaze behavior was studied
only in the context of plot moves and equation changes
because of the effort of labeling data. The fact that we are
using all interface actions and accompanying gaze data

may account for this discrepancy in using multiple gaze
shifts. We found similar differences in the latency and
gaze shifting behaviors of the two groups when a new
function appeared on the screen after a next exercise
action (see NE latency and gaze entries in Table 1).

When the Coach suggested that the student spend more
time exploring the current exercise, LL students chose to
ignore the suggestion and move on to another exercise
significantly more frequently than HL students (see ‘MO
freq.’ in Table 1). This result is intuitive since the Coach’s
suggestions are intended to promote effective learning [4]
and so ignoring them would be expected to adversely
affect students. The frequency of Stay actions were not
found to be relevant by feature selection, however when
they did occur, HL students paused for significantly
longer than LL students (see ‘Stay latency avg.’ in Table
1). This is another intuitively good behavior, possible
showing that the HL students followed the Coach’s advice
more carefully by spending additional time pondering
over the current exercise before taking additional actions.

While the above patterns are quite intuitive, this approach
was also able to identify additional patterns that do not
have an obvious relation to learning. For example, the LL
students advanced sequentially through the curriculum
using the next exercise and step forward buttons
significantly more frequently than the HL group (see ‘NE
freq.’ and ‘SF freq.’ in Table 1). Considering that every
student examined all three available exercises, intuition
would suggest that there should be no differences between
the clusters along these dimensions. However, further
examination of the clusters reveals that the LL students
also made use of both the step back feature and the
Lesson Browser tool to navigate through the curriculum,
whereas none of the HL students performed these actions.
Since the LL students showed lower learning gains after
interacting with ACE, it is probable that these students
were moving impulsively back and forth through the
curriculum. This hypothesis is substantiated by the fact
that the Coach’s suggestion to continue exploring the
current exercise (computed by combining the frequencies
of move on and Stay actions) appeared more frequently
(t(25.66)=1.57, p=.063, d=.536) to the LL students than to
the HL students. As this pattern involved several interface
features (i.e., NE, SF, SB, LB, MO and Stay) it may have
been difficult to observe, even by application experts.

Similarly, there were unintuitive differences in the use of
the zooming features between the two groups (see ‘zoom’
features in Table 1). The LL students zoomed into or out
of the plot region significantly more frequently than the
HL students. The HL group students paused for a
consistently shorter duration after zooming than the LL
students on average. Although zooming may not have
clear pedagogical benefits, this behavior may suggest
confusion on the part of the LL students resulting in the
need for more detailed inspection of the plot. This is
consistent with the finding related to help page

 9

exploration. Here, LL students paused for significantly
longer after navigating to a help page then the HL
students (see ‘Help latency avg.’ in Table 1) indicating
that these students may have felt confused about how to
use ACE or about the domain concepts and so required
more help than the HL students.

Supervised Classification
In this section we first describe the method we used to
evaluate our k-means-based online classifier. Next, we
present the results on the performance of the model at
recognizing students interacting with ACE as belonging
to the LL or HL clusters identified in the offline phase.

Time restrictions prevented us from running additional
user studies to collect test data for our model. Therefore,
we performed a 36 fold leave-one-out cross validation
(LOOCV) evaluation to make use of the available data
and provide initial evidence of the online classifier’s
accuracy. In each fold, one student’s data was removed
from the training set, and the reduced set was re-clustered
by k-means. Then, the removed student’s data was fed
into a classifier model trained on the reduced data set, and
online predictions were made for the incoming actions as
explained in the Online Recognition section of our
framework description. Model accuracy is evaluated as
student actions are observed (over time), where accuracy
is measured as the percentage of students correctly
classified into the clusters to which they were assigned in
the offline phase.

It should be noted, however, that by using a LOOCV
strategy, we run the risk of altering our initial cluster
characterizations derived in the offline phase using the
entire data set. Therefore, we should not expect to achieve
100% accuracy even after seeing all the actions performed
by a student, because we are classifying incoming data
using the clusters found by the reduced data set given by
LOOCV. This issue is known as hypothesis stability [15].
Thus, prior to assessing predictive accuracy of our online
classifier, we estimate the stability cost, or the difference
between the clusters produced by LOOCV and the
original clusters, as in [15]. Low stability cost helps to
ensure that our model is essentially predicting what we
would like it to predict, i.e., the membership of the
removed student’s behavioral patterns in one of the
learning groups in the offline phase. The estimated
stability cost for our k-means classifier model was 0.062
(where 0 is considered perfect stability and 1 is
considered maximum instability [15]). This means that
the characteristic behaviors of the two clusters identified
in the offline phase are reasonably preserved during our
LOOCV evaluation.

Figure 4 shows the percentage of correct predictions as a
function of the percentage of student actions seen by the
k-means online classifier model over time. The accuracy
of the model converges to 97.2% after seeing all of the
students’ actions. Averaged over time, the accuracy is

86.3%. The figure also shows the model’s performance
over both the HL and LL groups. The accuracy for the LL
group remains relatively stable over time, whereas the
performance for the HL group is initially poor but
increases to over 80% after seeing about 45% of the
actions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

% Student Actions Seen Over Time

%
 C

or
re

ct
 C

la
ss

ifi
ca

ti

Overall
HL Group
LL Group

Figure 4: K-means classifier performance over
time.

The LL and HL group accuracies effectively measure the
sensitivity (i.e., the ability to detect suboptimal learning
behaviors when student learning gains are poor) and
specificity (i.e., the ability to detect effective learning
behaviors when student learning gains are indeed high) of
the classifier respectively. Table 2 shows these accuracies
averaged over time (i.e., by taking the average of all of
classification accuracies computed while students
interacted with ACE over time).

 ACE CSP
(k=2)

CSP
(k=3)

Accuracy 86.3% 88.3% 66.2%
Sensitivity (True Positive Rate) 94.2% 93.5% 66.1%
Specificity (True Negative Rate) 68.3% 62.4% 63.3%

Table 2. Classification accuracies averaged
over time.

For comparison with previous framework application,
Table 2 shows the similar results we obtained for k=2, and
the results we obtained for k=3, by applying our
framework to the CIspace CSP Applet data. The high
sensitivity rates obtained for k=2 in both framework
applications mean that these models would be useful for
recognizing when a student behaves in ways ineffective
for learning, essential for providing adaptive support for
students who do not learn well with a learning
environment. The sensitivity rate reported in the table for
k=3 on the CIspace CSP Applet data was computed by
combining the accuracy results for the two groups that
showed ineffective learning behaviors in this case. The
individual accuracies for these two groups were 80.9%
and 44.9% averaged over time. Therefore, this model

would be most useful for recognizing students behaving
in the ineffective ways characterized by the first (larger)
group, but not by the second (smaller) group. Within an
exploratory setting where student control is key, the low
specificity rates for all of the models may cause an
adaptive support system to interfere with an HL student’s
natural learning behavior if it is sometimes suboptimal.
This imbalance is likely due to the distribution of the
sample data [22] in all cases. For ACE, the HL group had
fewer data points than the LL group (11 compared to 25),
and similarly for the CSP Applet dataset for k=2. For k=3
on the CSP Applet dataset, the largest group (of
ineffective learners) showed the highest accuracy,
whereas the two smaller groups (one other group of
ineffective learners and one group of effective learners)
showed lower accuracies. This is a common phenomenon
observed in classifier learning. Collecting more training
data to correct for this imbalance, even if the cluster sizes
are representative of the natural population distributions,
may help increase the specificity rates of the models [22].

CONCLUSION AND FUTURE WORK
In this research, we presented a user modeling framework
that makes use of both unsupervised and supervised
machine learning in order to reduce the development costs
typically associated with knowledge-based approaches to
user modeling and supervised approaches that require
hand-labeled data. Results of applying the framework to
the ACE ELE confirm results in [7] on the value of eye-
tracking data in revealing student reflection. And perhaps
more interestingly, our approach was able to identify
more complex patterns than was found through
observation in [7]. In addition, we have demonstrated
framework transferability across applications by
comparing results with previous results on the CIspace
CSP Applet ELE in [1].

Our next step is to collect more training data to see if this
would help reveal clusters using only interface actions, as
with the CIspace CSP Applet data, and testing data to
better evaluate our user model. We also intend to build an
adaptive component for ACE that uses the model built via
our modeling process. The effectiveness of an adaptive
ACE that uses our model could then be evaluated in a real
world setting.

REFERENCES
1. Amershi, S. and Conati, C. Automatic Recognition of

Learner Groups in ELEs. In ITS (Jhongli, Taiwan),
2006, pp. 463-472.

2. Baker, R.S., Corbett, A.T., and Koedinger, K.R.
Detecting Student Misuse of ITSs. In ITS (Maceio-
Alagoas, Brasil), 2004, pp. 531-540.

3. Beck, J., Stern, M., and Haugsjaa, E., Applications of
AI in Education. ACM Crossroads 3, 1 (1996), 11-16.

4. Bunt, A. and Conati, C., Probabilistic Student
Modeling to Improve Exploratory Behavior. UMUAI
13, 3 (2003), 269-309.

5. Burton, R.R. DEBUGGY: Diagnosis of Errors in
Basic Mathematical Skills. In ITS, 1982, pp. 157-183.

6. Cohen, J., Statistical Power Analysis for the
Behavioral Sciences. 2 ed. Lawrence Earlbaum
Associates, Hillsdale, 1988.

7. Conati, C. and Merten, C., Gaze-Tracking for User
Modeling in Intelligent Learning Environments: an
Empirical Evaluation. To Appear in Knowledge Based
Systems, Special Issue on Techniques and Advances in
Intelligent User Interfaces.

8. Dash, M. and Liu, H. Feature Selection for Clustering.
In PACKDDM (Kyoto, Japan), 2000, pp. 110-121.

9. de Vicente, A. and Pain, H. Informing the Detection of
the Students' Motivational State: An Empirical Study.
In ITS (Biarritz, San Sebastian), 2002, pp. 933-943.

10. Duda, R.O., Hart, P.E., and Stork, D.G., Pattern
Classification. 2 ed. Wiley-Interscience, NY, 2001.

11. Gorniak, P.J. and Poole, D. Building a Stochastic
Dynamic Model of Application Use. In UAI (Stanford,
CA), 2000, pp. 230-237.

12. Hunt, E. and Madhyastha, T. Data Mining Patterns of
Thought. In AAAI Workshop on Educational Data
Mining (Menlo Park, California), 2005, pp. 31-39.

13. Jain, A.K., Duin, R.P.W., and Mao, J., Statistical
Pattern Recognition: A Review. IEEE Pattern
Analysis and Machine Intelligence 22, 1 (2000), 4-37.

14. Kushmerick, N. and Lau, T. Automated Email
Activity Management: An Unsupervised Learning
Approach. In IUI (San Diego, California), 2005, pp.
67-74.

15. Lange, T., Braun, M., Roth, V., Buhmann, J.,
Stability-Based Model Selection. In NIPS (Whistler,
BC), 2003, pp. 617-624.

16. Paliouras, G., Papatheodorou, C., Karkaletsis, V.,
Spyropoulos, C., Discovering User Communities on
the Internet Using Unsupervised ML Techniques.
Interacting with Computers 14, 6 (2002), 761-791.

17. Perkowitz, M. and Etzioni, O., Towards Adaptive
Web Sites: Conceptual Framework and Case Study. AI
118, 1-2 (2000), 245-275.

18. Shute, V.J., A Comparison of Learning Environments:
All That Glitters... in Computers as Cognitive Tools,
S.P. Lajoie and S.J. Derry, Editors., Lawrence
Erlbaum Associates: Hillsdale, NJ, 1993.

19. Sison, R. and Shimura, M., Student Modeling and
Machine Learning. AIED 9, (1998), 128-158.

20. Sison, R., Numao, M., and Shimura, M., Multistrategy
Discovery and Detection of Novice Programmer
Errors. ML 38, (2000), 157-180.

21. Talavera, L. and Gaudioso, E. Mining Student Data to
Characterize Similar Behavior Groups in Unstructured
Collaboration Spaces. In Workshop on AI in CSCL
(Valencia, Spain), 2004, pp. 17-23.

22. Weiss, G.M. and Provost, F., The Effect of Class
Distribution on Classifier Learning: An Empirical
Study. Rutgers Univ., 2001.

