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A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers,
suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this pheno-
type have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to
HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-
1-infected African American controllers and progressors (n 5 1107), and tested them for association with
host control using genome-wide single nucleotide polymorphism data to account for population structure.
Several classical alleles at HLA-B were associated with host control, including B∗57:03 [odds ratio (OR) 5
5.1; P 5 3.4 3 10 – 18] and B∗81:01 (OR 5 4.8; P 5 1.3 3 1029). Analysis of variable amino acid positions
demonstrates that HLA-B position 97 is the most significant association with host control in African
Americans (omnibus P 5 1.2 3 10221) and explains the signal of several HLA-B alleles, including B∗57:03.
Within HLA-B, we also identified independent effects at position 116 (omnibus P 5 2.8 3 10215) in the canon-
ical F pocket, position 63 in the B pocket (P 5 1.5 3 1023) and the non-pocket position 245 (P 5 8.8 3 10210),
which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for
residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 rep-
lication, likely through the molecular interaction between HLA-B and viral peptides presented by infected
cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.
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INTRODUCTION

Human immunodeficiency virus-1 (HIV-1) controllers are a
subset of infected individuals who are able to maintain
plasma viremia below 2000 copies per ml without antiretro-
viral therapy. These individuals generally remain healthy,
with high CD4 counts and lower rates of HIV-1 transmission
(1). Genome-wide association studies (GWASs) in individuals
of European ancestry have consistently implicated variants in
the major histocompatibility complex (MHC) as key determi-
nants of HIV-1 virus load and disease progression (2–6). In
addition to the MHC, variants in the CCR5/CCR2 region
have also been convincingly associated with control of
HIV-1 replication and altered disease progression (7–9). Add-
itional loci have been suggested to impact disease outcome,
but most remain un-confirmed (3,6).

The importance of the classical HLA genes in HIV-1
disease outcome has been documented in numerous studies.
In Europeans, alleles of HLA-B have been associated with
both control, such as B∗57:01, and lack of control, such as
B∗35:01 (10–12). Smaller studies in populations of African
ancestry have also identified alleles, such as B∗57:03, that as-
sociate with decreased plasma viremia (13–15). Although the
mechanism by which these alleles mediate viral control or pro-
gression is not well understood, both genetic and immunologic
data suggest that the interaction between the viral peptide and
the host HLA protein is key, likely through influencing gener-
ation of HIV-1-specific CD8+ T cells (16).

Thanks to a large collaborative network of infectious
disease physicians, we have assembled a multiethnic cohort
of 1528 HIV-1 controllers and, in collaboration with the
AIDS Clinical Trials Group (ACTG), 2975 HIV-1-infected
individuals with progressive disease, the majority of whom
were included in a recent GWAS (6). In that study, we
focused on the European subset and identified four independent
genome-wide significant single nucleotide polymorphism
(SNP) associations. Using a novel procedure to impute classical
HLA alleles and amino acid polymorphisms, we fine-mapped
these SNP associations to specific amino acid positions in the
peptide-binding cleft of HLA-B, specifically positions 67, 70
and 97, and validated their effects on virus load set point in
an independent cohort of European ancestry (6). Thus, these
amino acids play a key role in determining control/progression
after HIV-1 infection, likely through the molecular interaction
between HLA and the viral peptide. In addition, it has been pro-
posed that an expression quantitative trait locus (eQTL) of
HLA-C has an independent effect on host control, possibly involv-
ing a variant in the miRNA-148a-binding site (17–20), but this
remains unconfirmed.

In the African American subset, we also identified four
independent genome-wide significant SNP associations
(rs2523608, rs2255221, rs2523590 and rs9262632) in the
MHC, all of which differed from those observed in Europeans.
Using a similar imputation strategy for classical alleles and
amino acids, although with a much smaller reference panel
(N ¼ 596 individuals with SNP and 4-digit HLA data), we
were able to confirm HLA-B∗57:03 as the top classical
allele association and position 97 as the top amino acid pos-
ition (6). However, due to the limitations of our imputation
reference panel (chiefly its small size), we were unable to

implement the complimentary amino acid fine mapping in
African Americans. Given the genetic diversity across contin-
ental populations in the MHC, such fine mapping has the po-
tential to uncover classical alleles and amino acids not present
in individuals of European ancestry.

Here, we build on and extend our previous work by obtain-
ing high-quality sequence data at HLA-A, HLA-B and HLA-C
in African American HIV-1 controllers and progressors.
Through association testing of classical HLA alleles and indi-
vidual polymorphic amino acid positions, we demonstrate
disease-modifying effects of multiple HLA variants, including
some that do not segregate at appreciable frequency in popu-
lations of European ancestry.

RESULTS

Comparison of sequence-based and imputation-based
classical class I HLA types in African American HIV-1
controllers/progressors

In a previous study, we used an imputation framework to es-
timate genotype dosage of classical alleles and variable
amino acid positions at the HLA class I locus in HIV-1 con-
trollers/progressors. Although this approach was highly accur-
ate in individuals of European ancestry (where a large
reference panel was available), the results in African Amer-
icans were not as clear (owing to the relatively smaller refer-
ence panel) (6). In order to improve upon this, we obtained
sequenced-based types at HLA-A, HLA-B and HLA-C in the
majority of the African American sample with the available
genome-wide SNP data (Supplementary Material, Table S1)
using a combination of Sanger and next-generation sequencing
(21). To evaluate the relative performance of both methods,
we calculated association statistics of the classical HLA
alleles for the imputed and sequence-based types and com-
pared them. We observed good agreement in terms of the
effect estimate (Fig. 1A–C) and significance (expressed as
the Z-score) (Fig. 1D–F) of classical alleles identified by
both approaches (Pearson r2 . 0.8 for all genes).

However, we did observe greater HLA allelic diversity from
the sequencing data, documenting 25 HLA-A, 34 HLA-B and
20 4-digit HLA-C alleles in this sample compared with 21
HLA-A, 26 HLA-B and 19 HLA-C alleles from imputation.
Notably, HLA-B∗58:02, previously associated with high virus
load (13), was not present in our imputation reference panel
so could not be included in the analyses based on imputation.
In contrast, from the sequencing data, we found HLA-B∗58:02
to be associated with progression [OR ¼ 0.4, where an OR,1
indicates progression and OR . 1 indicates control, P ¼ 4.9 ×
1023]. Thus, direct sequencing of HLA alleles provides a
more complete data set for fine-mapping of the genetic contribu-
tors to HIV-1 control in African Americans, when compared
with imputation from a relatively small reference sample.

Multiple classical HLA alleles associate with HIV-1
control in African Americans

We next examined the impact of class I HLA genes on HIV-1
control using logistic regression, including covariates to
control for population structure. The association signal was
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the strongest for HLA-B, where 14 alleles were nominally
associated (all univariate P , 0.05, Table 1). The alleles
B∗57:03 (OR ¼ 5.1; P ¼ 3.4 × 10218) and B∗81:01 (OR ¼
4.8; P ¼ 1.3 × 1029) showed the strongest associations con-
sistent with previous reports in populations with African an-
cestry (13–15). As in Europeans (6), B∗57:01 (OR ¼ 2.7;
P ¼ 3.8 × 1022), B∗14:02 (OR ¼ 2.4; P ¼ 4.2 × 1023),
B∗27:05 (OR ¼ 2.4; P ¼ 4.4 × 1022) and B∗52:01 (OR ¼
2.1; P ¼ 2.7 × 1022) are associated with protection and
B∗35:01 (OR ¼ 0.5; P ¼ 8.5 × 1023) is associated with pro-
gression in African American HIV-1 controllers/progressors.
The remaining associated HLA-B alleles, B∗45:01 (OR ¼
0.2; P ¼ 1.4 × 1025), B∗39:10 (OR ¼ 4.6; P ¼ 5.4 × 1024),
B∗53:01 (OR ¼ 0.6; P ¼ 1.3 × 1023), B∗57:02 (OR ¼ 4.5;
P ¼ 3.8 × 1023), B∗58:02 (OR ¼ 0.4; P ¼ 4.9 × 1023),
B∗15:10 (OR ¼ 0.5; P ¼ 3.2 × 1022) and B∗42:01 (OR ¼
0.6; P ¼ 3.6 × 1022), are all either absent or present only at
low frequency in European populations.

To address which of these HLA-B alleles are independently
associated, we next performed stepwise selection considering
all nominally associated alleles. Of the 14 alleles listed above,
10 (B∗57:03, B∗81:01, B∗45:01, B∗39:10, B∗57:02, B∗14:02,
B∗52:01, B∗27:05, B∗57:01 and B∗58:02) are independently
associated (Table 1), demonstrating the key contribution of
multiple HLA-B alleles to HIV-1 control and progression.

Adjusting for HLA-B effects, we next tested for the inde-
pendent association of classical alleles at both HLA-A and
HLA-C (Supplementary Material, Table S2). Of the 25
HLA-A and 20 HLA-C alleles tested, only A∗31:01, C∗05:01,
C∗08:04 and C∗12:03 showed evidence of association after
adjusting for either the 10 independent HLA-B alleles listed
above or (more conservatively) all HLA-B alleles (Supplemen-
tary Material, Table S2). These data show that the major deter-
minants of host control are localized to HLA-B, with a minor
role for HLA-A and HLA-C alleles.

Variable amino acid positions in HLA-B associate
with host control

To assess the extent to which specific amino acid positions
within HLA-B may impact HIV-1 control, we tested each vari-
able position by effectively grouping classical HLA-B haplo-
types according to the amino acid carried at each position.
In this analysis, a biallelic position corresponds to a
1-degree of freedom test, whereas positions accommodating
more than two possible alleles require multiple degrees of
freedom in an omnibus test (Supplementary Material,
Table S3). Several positions in HLA-B are highly associated
with host control (Fig. 2) with position 97 (omnibus P ¼
1.2 × 10221) showing the most significant association in this

Figure 1. Comparison of sequence-based and imputed classical HLA allele association results. For each HLA allele called by both sequencing and imputation,
the point estimate of the beta (A–C) and Z-score (D–F) from logistic regression models using sequence types (x-axis) or imputed dosages (y-axis) is plotted.
Pearson r2 is given for each comparison and the red line indicates a perfect correlation.
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study. Position 97 accommodates six amino acid alleles and is
more significant than the classical B∗57:03 allele, the strongest
association for HIV-1 host control reported to date in African
Americans (15).

Given that HLA-B is among the most polymorphic genes in
the human genome, we tested how likely such a result could
emerge by chance tagging of classical HLA-B alleles with dif-
ferential impact on HIV control. We performed a permutation
analysis that effectively shuffles the amino acid haplotypes
assigned to a given classical allele while holding classical
allele type and phenotype constant per individual (6). The
result of 10 000 such permutations showed that the association
at position 97 is unlikely to be explained by spurious tagging
(permutation P ¼ 0.025). This provides further evidence of the
importance of position 97 in HIV-1 control.

In order to identify additional amino acid associations
within HLA-B, we used stepwise conditional haplotype ana-
lysis. Using this procedure, we further identified positions
245, 116 and 63 (Table 2 and Supplementary Material,
Table S4). After controlling for these four positions (and the

haplotypes they form), addition of further amino acids into
the regression model failed to improve the goodness-of-fit
(P . 0.05). A model including positions 97, 245, 116 and
63 explains 25.6% of the variation in HIV-1 control in this
sample as calculated using Nagelkerke’s approximation (22).

Relationship between classical HLA-B alleles
and associated amino acid positions

The four amino acid positions in HLA-B form 18 haplotypes
whose effects run from strong HIV control to progression
(Table 3). Adjusting for the amino acid alleles at these posi-
tions, and the haplotypes they form, explains the association
at the independently significant classical HLA-B alleles (condi-
tional P . 0.05 for all). Position 97, which lies at the bottom
of the beta-sheet in the canonical C pocket accommodates six
amino acid alleles (Fig. 3A). This position explains the pro-
tective effect of the B∗57 alleles (i.e. 57:01, 57:02 and
57:03) which all carry Val97 (OR ¼ 4.6, P ¼ 8.0 × 10220)
and of B∗27:05, which carries Asn97 (OR ¼ 2.4, P ¼ 2.2 ×
1022).

Position 116 also lies at the bottom of the beta-sheet in the
canonical F pocket, spatially adjacent to position 97, and
accommodates multiple amino acid alleles associated with
host control (Fig. 3A). This position explains the protective
alleles B∗14:02 and B∗39:10, which carry Phe116 (OR ¼
2.0, P ¼ 4.2 × 1024), and B∗52:01, which carries Tyr116
(OR ¼ 1.7, P ¼ 9.2 × 1028), and the risk alleles B∗45:01
and B∗58:02, which carry Leu116 (OR ¼ 0.4, P ¼ 1.3 ×
1026) and Ser116 (OR ¼ 0.6, P ¼ 1.4 × 1026), respectively.

The biallelic position 63 (Asn63Glu) lines the edge of the
peptide-binding groove. Carrying Glu63 is associated with
HIV-1 control in this sample (OR ¼ 1.4, P ¼ 1.5 × 1023),
while Asn63 lies on several risk haplotypes. Position 245
outside of the groove in the a3 domain is also biallelic
(Ala245Thr), with Thr245 being strongly protective (OR ¼
5.1, P ¼ 8.8 × 10210) (Fig. 3A). In this sample, only the clas-
sical HLA-B∗81:01 allele carries Thr245 with all other alleles
carrying Ala245. Interestingly, certain amino acid alleles at
these positions lie on both protective and risk haplotypes
(e.g. Glu63), highlighting that combinations (haplotypes) of
amino acids, rather than any single position, may be required
for durable HIV-1 control.

Replication of HLA-B association results
in an independent sample

In order to replicate the above findings, we accessed an inde-
pendent cohort of African American individuals with multiple
measurements of plasma HIV-1 RNA concentration at set
point. This sample is a subset of individuals enrolled in the
US Department of Defense Human Immunodeficiency Virus
Natural History Study (DoD HIV NHS) that were part of a
previous GWAS (15). From this data set, we inferred amino
acid variants in HLA-B in 216 individuals for whom classical
allele types were available (using standard HLA definitions).
Association testing of amino acid positions was performed
using linear regression, including principal components
based on GWAS data to correct for population structure, age
and sex as covariates.

Table 1. Association results for classical HLA-B alleles sorted by OR

Allele Frequency in
progressors

Frequency in
controllers

OR (95% CI) P-values

B∗57:03 0.035 0.145 5.1 (3.5–7.3) 3.4 × 10218

B∗81:01 0.016 0.072 4.8 (2.9–8.0) 1.3 × 1029

B∗39:10 0.005 0.025 4.6 (1.9–10.8) 5.4 × 1024

B∗57:02 0.004 0.016 4.5 (1.6–12.6) 3.8 × 1023

B∗57:01 0.006 0.015 2.7 (1.1–6.9) 3.8 × 1022

B∗14:02 0.013 0.033 2.4 (1.3–4.5) 4.2 × 1023

B∗27:05 0.007 0.016 2.4 (1.0–5.8) 4.4 × 1022

B∗52:01 0.013 0.026 2.1 (1.1–4.2) 2.7 × 1022

B∗15:01 0.006 0.010 1.8 (0.6–5.0) 2.8 × 1021

B∗44:03 0.049 0.066 1.4 (0.9–2.0) 1.3 × 1021

B∗41:02 0.008 0.010 1.3 (0.5–3.2) 6.1 × 1021

B∗58:01 0.042 0.048 1.1 (0.7–1.8) 5.5 × 1021

B∗13:02 0.010 0.012 1.1 (0.5–2.8) 7.7 × 1021

B∗40:01 0.011 0.012 1.0 (0.4–2.5) 9.5 × 1021

B∗15:03 0.050 0.049 1.0 (0.7–1.6) 9.4 × 1021

B∗07:05 0.007 0.007 1.0 (0.3–3.0) 9.4 × 1021

B∗44:02 0.018 0.016 0.9 (0.4–1.9) 7.8 × 1021

B∗07:02 0.071 0.063 0.9 (0.6–1.3) 4.9 × 1021

B∗14:01 0.012 0.010 0.8 (0.3–2.1) 6.8 × 1021

B∗15:16 0.021 0.016 0.8 (0.4–1.6) 5.2 × 1021

B∗08:01 0.032 0.025 0.8 (0.4–1.4) 3.9 × 1021

B∗51:01 0.021 0.015 0.7 (0.3–1.5) 3.7 × 1021

B∗42:02 0.007 0.005 0.7 (0.2–2.5) 5.9 × 1021

B∗53:01 0.129 0.079 0.6 (0.4–0.8) 1.3 × 1023

B∗42:01 0.054 0.033 0.6 (0.2–2.5) 3.6 × 1022

B∗18:01 0.028 0.016 0.6 (0.3–1.2) 1.2 × 1021

B∗49:01 0.020 0.012 0.6 (0.2–1.3) 1.7 × 1021

B∗35:01 0.065 0.035 0.5 (0.3–0.8) 8.5 × 1023

B∗15:10 0.036 0.018 0.5 (0.3–0.9) 3.2 × 1022

B∗58:02 0.045 0.018 0.4 (0.2–0.8) 4.9 × 1023

B∗78:01 0.011 0.003 0.3 (0.1–1.3) 1.1 × 1021

B∗37:01 0.006 0.002 0.3 (0.0–2.3) 2.4 × 1021

B∗50:01 0.013 0.003 0.3 (0.1–1.1) 6.6 × 1022

B∗45:01 0.067 0.016 0.2 (0.1–0.4) 1.4 × 1025

ORs and P-values were computed by logistic regression including principal
components to correct for population structure. ORs are for each allele
compared with all others and expressed such that alleles at a higher frequency
in HIV-1 controllers have OR.1.
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Overall good agreement was observed between ORs from
controllers/progressors and the beta coefficients in the DoD
HIV NHS sample for the independent positions identified in
controllers (Fig. 3B and Supplementary Material, Table S5).
Again, HLA-B position 97 shows the strongest association
of all variants tested (omnibus P ¼ 1.7 × 1027) with Val97
decreasing (b ¼ 20.868, P ¼ 5.0 × 1029) and Arg97 increas-
ing (b ¼ 0.148, P ¼ 2.1 × 1022) virus load. Asn97, carried on
the B∗27:05 haplotype, was not observed in this sample. At
position 116, both Tyr116 (b ¼ 20.140, P ¼ 3.1 × 1022)
and Leu116 (b ¼ 0.258, P ¼ 1.2 × 1022) are nominally asso-
ciated with the same effect directions as observed in control-
lers/progressors (Fig. 3B). However, Thr245 (b ¼ 20.469,
P ¼ 0.07) and Glu63 (b ¼ 20.029, P ¼ 0.64) were not nom-
inally significant, although both decrease virus load in the
DoD HIV NHS sample (consistent with results in control-
lers/progressors). This lack of statistical replication may be
due to the much smaller sample, which provides ,45%
power to detect a variant that explains 2% of the trait variance
(the approximate effect size of Thr245) at nominal signifi-
cance (P , 0.05). Overall, the consistency of the effect direc-
tions observed across the amino acids lends support to these
positions mediating HIV-1 control.

Amino acid positions in HLA-B explain the majority
of associations in HLA-A and HLA-C

We next assessed the extent to which amino acid positions in
HLA-A and -C contribute to HIV-1 control. Adjusting for
effects at HLA-B positions 63, 97, 116 and 245, we individu-
ally tested each variable position in HLA-A and HLA-C for
association and an improved model fit. Of the amino acids
tested, only position 304 in HLA-C showed an improved
goodness-of-fit (P ¼ 5.6 × 1023). Position 304 is located in
the transmembrane domain and is biallelic (Cys304Met),
with Met304 occurring at a higher frequency in HIV-1 control-
lers than progressors (OR ¼ 1.5, P ¼ 3.5 × 1023).

Interestingly, this position was also identified by our previous
analysis in European HIV-1 controllers and validated in an in-
dependent sample from the Swiss HIV Cohort Study (6). In-
cluding position 304 to the multivariate amino acid model
increased the explained variance in host control from 25.6 to
26.4% in this sample.

Conditional analysis of associated classical HLA-A and -C
alleles in the presence of the four amino acid positions in
HLA-B and position 304 in HLA-C shows no residual signal
at A∗31:01, C∗05:01, C∗08:04 and C∗12:03 (P . 0.05).
Thus, these five positions are collectively able to explain all
classical allele effects in the class I region. The improved
model fit and consistency with results in Europeans suggest
an interesting role for position 304 in HLA-C (or an unrecog-
nized functional variant in LD with it), and requires further in-
vestigation.

Amino acids in HLA proteins explain the majority
of the SNP association signal

In order to resolve the relation between the tag SNPs previous-
ly identified in African American HIV-1 controllers/progres-
sors by GWAS (6) and the amino acids highlighted above,
we performed haplotype analysis while accounting for the ad-
mixture in this population (see Supplementary note and
Fig. S1). This analysis showed a complex structure of LD
between the SNPs and amino acids with alleles at each SNP
tagging multiple protective and risk HLA variants (Supple-
mentary Material, Table S6).

We next tested for evidence of residual association at the
four tag SNPs accounting for the effects of the identified
amino acids. Three of the four SNPs showed evidence for an
improved model fit (model comparison P , 0.05, Supplemen-
tary Material, Table S7) with rs2523608 (the strongest asso-
ciated SNP) demonstrating the largest improvement (P ¼
3.6 × 1023). This suggests that additional MHC variation,

Figure 2. Association results (2log10 P-value) for all variable amino acid positions in HLA-B. African American HIV-1 controllers were compared with pro-
gressors at each position using logistic regression including covariates to correct for populations structure. For amino acid positions accommodating more than
two possible alleles (such as position 97), the multi-degree of freedom omnibus test P-value is shown. Positions are colored according to canonical pockets of the
peptide-binding groove. Classical 4-digit HLA-B allele association results are shown for comparison on the left.
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possibly outside of classical HLA genes, may contribute to
HIV-1 control.

Residual SNP association in African American HIV-1
controllers/progressors is not due to a miRNA-binding site
deletion

A proposed explanation for the SNP signal not accounted for
by amino acids in HLA-B is an HLA-C eQTL effect (19)
mediated through an insertion/deletion polymorphism
(rs67384697) in a microRNA-binding site in the 3′ UTR of
HLA-C (20). However, this effect has not been investigated
in populations with African ancestry. As all classical HLA-C
alleles can be categorized as carrying either the deletion
(high HLA-C expression) or insertion (low expression) poly-
morphism [(20,23) and Supplementary Material, Table S8],
we used HLA-C types to infer genotype at this site and
tested for association with HIV-1 control. Using either an
additive (per allele) or dominant (del/del + del/ins versus
ins/ins) model, we found no association between carrying
the deletion and HIV-1 control (Padditive¼ 2.9 × 1021 and
Pdominant¼ 2.8 × 1021). The lack of association was main-
tained in a model including the four independent amino acid
positions in HLA-B (Padditive¼ 7.0 × 1022 and Pdominant¼
1.1 × 1021). Although limited power in this sample may
explain the lack of evidence for association of the deletion car-
rying high expression HLA-C alleles with HIV-1 control, this
result does suggest that an HLA-C eQTL effect mediated
through rs67384697 is not sufficient to explain the residual
SNP signal.

DISCUSSION

The present study demonstrates the importance of HLA-B in
durable host control of HIV-1 in African Americans. Improv-
ing upon our previous HLA allele imputation analysis, we
show multiple classical HLA-B alleles are associated with
control/progression, all of which can be explained by variants
at amino acid positions 63, 97, 116 and 245 in the HLA-B
protein. We also show good consistency of the effect direction
of these amino acids in an independent cohort, where all
alleles that associate with HIV-1 control also decrease virus
load set point. Together, these four positions account for
.25% of the observed trait variance. Controlling for these
main effects, we observed a residual signal mapping to
amino acid position 304 in HLA-C and further residual SNP

signals, suggesting a role for additional MHC variation in me-
diating HIV-1 control.

Multiple independent SNP associations with HIV-1 control
have been observed in the MHC region in African Americans
(6,15). In order to fine map these SNP associations, we
obtained classical class I HLA types in 1107 African Ameri-
can HIV-1 controllers/progressors. Compared with our previ-
ous effort where we imputed classical allele and amino acid
types, a higher level of HLA diversity was observed at all
class I genes through sequencing. Additionally, sequencing
provides direct genotypes rather than genotypic probabilities
(calculated by imputation), reducing uncertainty (particularly
for low frequency alleles). Although the sequence-based
types analyzed here are an improvement over the previously
imputed types (particularly for fine-mapping), it should be
noted that the consistency of association results of the
alleles called by both methods suggests that a larger reference
panel that captures more classical HLA allele diversity in
populations of African ancestry (such as the one generated
in this study) would improve the performance of imputation.

The 10 independent classical HLA-B alleles identified in
controllers are consistent with previous work. In a study of
1211 HIV-1-infected individuals from South Africa B∗57:03,
B∗57:02, B∗81:01 and B∗39:10 (which all associate with
HIV-1 control) decreased virus load, while B∗58:02 and
B∗45:01 (associated with progression) increased virus load
(14). Only B∗14:02 (associated with control) failed to show
the same trend in the South African sample, possibly due to
low power or clade-specific effects. The remaining alleles,
B∗57:01, B∗27:05 and B∗52:01, were not observed in the
South African sample. However, the effect direction in
African American HIV-1 controllers is consistent with Eur-
opeans for each of these alleles. Taken together, these
results confirm the causal role of HLA-B in controlling
HIV-1 replication and highlight the impact of multiple classic-
al alleles at this locus on host control.

Testing individual amino acid positions has proved fruitful
in mapping key residues that contribute to complex pheno-
types with strong evidence for classical HLA allele associa-
tions (6,24,25). To define the specific amino acids that
contribute to the observed classical allele signal, we tested
variable positions within HLA-B for association. This strategy
amounts to grouping classical alleles at each position based on
the amino acid residue they carry, and tests the overall contri-
bution of that position to control or progression. Using this
strategy, position 97 shows the strongest signal of any

Table 2. Association results and model comparisons of the independent amino acid positions in HLA-B identified by stepwise conditional haplotype analysis (see
Materials and Methods)

Step Position Alleles Location Position P-value Model comparison P-value

1 97 V/N/S/T/W/S C pocket 1.2 × 10221 —
2 245 T/A a3 domain 8.8 × 10210 4.1 × 10212

3 116 F/Y/D/S/L F pocket 2.8 × 10215 1.0 × 10210

4 63 E/N B pocket 1.5 × 1023 1.1 × 1023

Positional P-values are given where a 1-degree of freedom test is used for the biallelic positions 245 and 63 while positions 97 (six alleles) and 116 (five alleles)
require multiple degrees of freedom. Model comparison P-values are calculated using the LRT where a model including the position identified in that step (and all
previous steps) is tested against the model without the newly implicated position.
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variant tested. Position 97 sits at the bottom of the peptide-
binding cleft (Fig. 4A) and is critical for HLA protein con-
formation and folding, affecting both epitope presentation
and surface expression (26). This single position accommo-
dates six amino acid alleles with disparate effects on host
control. This result is consistent with observations in European
HIV-1 controllers, and was replicated in the independent DoD
HIV NHS sample underscoring the key effect of position 97
across continental populations.

We further identified positions 116 and 63, also in the
HLA-B peptide-binding groove (Fig. 4A), as independent con-
tributors to HIV-1 control. Position 116 is located in the ca-
nonical F pocket, sits adjacent to position 97 on the floor of
the beta-sheet and contributes to epitope selection and
binding. In addition to influencing epitope specificity, studies
of variation at this position have shown that certain alleles
(particularly Tyr116) can determine the peptide loading
pathway used (27), highlighting the importance of this pos-
ition to antigen processing. Position 63 lies in the a1
domain and contributes to the shaping of the B pocket. Like
position 97, this position was identified in HIV-1 controllers
of European ancestry as independently contributing to host
control (6). That three positions in the binding groove are
identified in this sample as key mediators of HIV-1 control
supports the hypothesis that the peptide/HLA-B interaction
is critical in determining disease course. Functional studies
designed to measure the impact both on the virus and the
host CD8+ T cell response as residues at these positions
vary (while keeping the amino acid sequences at all other posi-
tions constant) would be of great interest, as the nature of the
CD8+ T cell response and the impact that HLA has on viral
fitness have been implicated in mediating HIV control (28–
31). Such studies would be most useful for informing
vaccine trials as to the types of responses that are beneficial,
as inducing the controller phenotype in individuals that
would otherwise progress could have a large impact on the
pandemic (1).

In addition to the positions within the peptide-binding
groove, the newly implicated non-groove position 245 in
HLA-B is located in the a3 domain (Fig. 4B) and is mono-
morphic in Europeans with all classical alleles carrying
alanine. Thr245 defines the strongly protective B∗81:01
allele. Variation at this position, although outside of the
peptide-binding cleft, has been shown to affect the binding
kinetics between HLA class I and CD8a homodimers
(32,33) as this position contributes to the shape of the a3
domain, which directly interacts with CD8 (Fig. 4B).
HLA-B∗48, present in Asian and Native American popula-
tions, also carries Thr at position 245 and has been shown to
bind CD8a with lower affinity than alleles with Ala245, an
effect that was ablated upon a Thr245Ala substitution (33).
Interestingly, B∗81:01 and B∗42:01 carry the same amino
acid alleles at positions 63, 97 and 116 but have opposite
impacts on HIV control, with B∗42:01 being a putative risk
allele (OR ¼ 0.6, P ¼ 0.04). Although these alleles present
the same epitopes (including the immunodominant Gag TL9
epitope), B∗81:01 has been shown to have an increased
ability to present variant epitopes and has a higher functional
avidity than B∗42:01 (34,35). Although these two alleles vary
at more than just position 245 (and thus other positions cannot
be ruled out as contributors to the observed differences of
effect), it is possible that the interaction between CD8 and
the a3 domain may partially explain these functional differ-
ences. Further studies are warranted to determine the precise
effect of variation at position 245 on the MHC/CD8 inter-
action and the functional consequences this has to the
general anti-HIV response. Such analyses could potentially
lead to the development of therapies that seek to mimic this
function in individuals with progressive disease.

The role of HLA-C in HIV-1 control is less clear. After con-
ditioning on positions 97, 245, 116 and 63 in HLA-B, only the
dimorphic position 304(Met/Val) located in the transmem-
brane domain of HLA-C remains associated. Including this
position in a regression model shows a better goodness-of-fit

Table 3. Haplotype structure relating amino acid alleles at the independently associated positions to significant classical HLA-B alleles ordered by OR. ORs were
calculated taking the haplotype with the lowest frequency difference between cases and controls as reference. P-values are for each haplotype tested against all
others. Only haplotypes with frequency above 1% were included accounting for .95% of the haplotype diversity

Classical allele 63 97 116 245 Frequency in progressors Frequency in controllers P-values OR (95% CI)

81:01 N S Y T 0.012 0.059 7.6 × 1028 4.8 (2.2–10.7)
57:02 57:03 E V Y A 0.031 0.163 1.3 × 10215 4.4 (2.4–8.1)
39:10 N R F A 0.009 0.037 9.2 × 1025 4.2 (1.7–10.0)
57:01 E V S A 0.010 0.013 4.5 × 1025 2.6 (1.1–6.2)
27:05 E N D A 0.009 0.023 1.5 × 1022 2.6 (1.0–6.5)
52:01 E T Y A 0.017 0.030 7.4 × 1022 1.6 (0.7–3.6)
14:02 N W F A 0.023 0.044 3.2 × 1022 1.6 (0.8–3.3)

E R Y A 0.027 0.014 4.2 × 1023 1.2 (0.5–2.7)
E T L A 0.011 0.012 7.2 × 1021 Reference
E R S A 0.078 0.125 6.5 × 1021 0.9 (0.5–1.6)
E R D A 0.072 0.086 9.7 × 1021 0.8 (0.5–1.5)
E S Y A 0.037 0.013 1.7 × 1021 0.8 (0.4–1.7)
N S Y A 0.148 0.142 1.1 × 1021 0.7 (0.4–1.1)
N R S A 0.268 0.138 4.6 × 1028 0.4 (0.3–0.8)
N R Y A 0.035 0.021 1.2 × 1021 0.4 (0.2–1.0)
N T Y A 0.030 0.018 7.8 × 1022 0.3 (0.1–0.8)

58:02 E W S A 0.046 0.015 1.1 × 1023 0.2 (0.1–0.6)
45:01 E R L A 0.101 0.029 2.2 × 1028 0.2 (0.1–0.4)
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than the HLA-B only amino acid model and explains the
signal of the three associated HLA-C alleles (C∗12:03,
C∗05:01 and C∗08:04) which all carry the protective Met304
residue. Interestingly, this position was also selected by step-
wise regression in HIV-1 controllers/progressors of European
ancestry, with Met304 associating with control (6). After con-
ditioning on all five amino acid positions, no classical alleles
remain significantly associated. Thus, these five amino acid
positions fully explain all classical allele associations in this
sample.

Although the mechanism by which variation at position 304
in HLA-C may mediate HIV-1 control is not obvious, the
transmembrane domain has been implicated in influencing
HLA class I cell surface levels and immune response to
alloantigens (36,37), supporting a mechanism other than
peptide presentation. In individuals of European ancestry, an
HLA-C expression effect, influenced by a microRNA-binding
site insertion/deletion polymorphism, has been proposed to
contribute to HIV-1 control (20). Using HLA-C classical
allele type as a proxy for the insertion/deletion (20,23), we
did not observe evidence for association in this African Ameri-
can sample. Further studies, including full sequencing of the
HLA-C 3′ UTR, are required to fully understand the impact
of HLA-C variation on HIV-1 control in multiple populations.

The results presented here underscore the value of genetic
studies in multiple populations to confirm potentially causal

variants and to discover novel associations. We employed
HLA allele and amino acid association testing to resolve
SNP signals within the MHC of African American HIV-1 con-
trollers and progressors. Our results strongly support the role
of position 97 in the HLA-B-binding cleft as the key mediator
of HIV-1 control. We provide additional evidence that posi-
tions 245, 116 and 63 in HLA-B and position 304 in HLA-C
also contribute to host control. Taking these effects into
account, residual evidence for association exists in the MHC
region. Understanding this residual association will require
larger samples with full characterization of variation across
this region. Community-wide meta-analyses and sequencing
studies are needed to more fully capture host genetic variation
that mediates HIV-1 control.

MATERIALS AND METHODS

Sample collection

Details of the sample collection have been previously reported
(6). Briefly, 1528 HIV-1 controllers, defined as individuals
that maintain plasma virus load below 2000 copies/ml in the
absence of antiretroviral therapy, with a minimum of three
determinations spanning at least a 12-month period, were
recruited through outpatient clinics (http://www.
hivcontrollers.org/membermap). A total of 2975 antiretroviral

Figure 3. Frequency and effect sizes for key HLA-B amino acids in HIV-1-infected African Americans. (A) Allele frequency differences between controllers (in
orange) and progressors (in blue) for amino acids at positions 63, 97, 116 and 245 in HLA-B. Numbers above bars are ORs where OR .1 indicates a protective
effect. (B) Beta estimates of alleles at positions 63, 97, 116 and 245 in the DoD HIV NHS sample. Asn97 was not observed in this sample. The beta estimates are
from linear regression models including covariates and are given in log10 units of virus load set point.
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naı̈ve individuals with progressive HIV-1 infection were
recruited through the AIDS Clinical Trials Group (protocols
ACTG384, A5095, A5142 and A5202) and consented for
genetic testing under protocol A5128. All progressors were
recruited prior to standardized screening for B∗57:01 to
exclude individuals at high risk of abacavir hypersensitivity.
All subjects gave written informed consent and institutional
review boards for all participating centers approved the
study protocol. Ancestry was assessed using genome-wide
SNP data over a set of high-quality (.99% call rate), unlinked
SNPs using EIGENSTRAT (38) to project controllers and pro-
gressors onto HapMap 3 populations (39). For the present ana-
lysis, only individuals clustering with the African Americans
from the southwestern US (ASW) population were retained.

Classical HLA class I allele and amino acid imputation and
sequencing

Methods for imputing classical HLA alleles and amino acids
in this sample have been previously described (6). Briefly, a
reference panel was constructed from a subset of the HIV-1
controllers (n ¼ 596) with both genome-wide SNP data and
4-digit HLA types. To eliminate bias due to sample overlap
an iterative, leave-one-out, imputation procedure was per-
formed, where a sample was removed from the reference
panel when imputing alleles in that subject. Imputation was
performed using default parameters in BEAGLE (10 iterations
of phasing/imputation, testing 4 pairs of haplotypes for each
individual at each iteration) (40). Alleles with low imputed
frequency (,1%) were excluded from the analysis.

Sequenced-based HLA classical allele types in HIV-1 con-
trollers were obtained on DNA samples using standard Sanger
sequencing of exons 2 and 3 and/or single-stranded conform-
ation polymorphism PCR. The standardized protocols for
HLA genotyping by this method, according to International
Histocompatibility Working Group (http://www.ihwg.org),

were followed. In progressors, HLA-A, B and C types were
obtained by sequencing exons 2 and 3 on the 454 FLX Titan-
ium platform coupled to a novel HLA calling algorithm that
has shown good concordance with standard Sanger method-
ology (21). Amino acid variants for all classical alleles were
inferred using definitions for HLA allele sequences from the
EMBL-EBI Immunogenetics HLA database (41). In indivi-
duals with classical allele types having incomplete protein se-
quence information, the genotypes at the unresolved positions
were set to missing. Comparison of association results from
imputation and sequencing were performed in the R statistical
package version 2.12 (http://www.r-project.org).

Association testing and stepwise regression modeling

Classical HLA alleles and amino acid residues were tested for
association with HIV-1 control using logistic regression in
PLINK version 1.07 (42). For sequencing data, classical
alleles and amino acid genotypes were tested directly. For
imputed types, genotype dosages calculated by BEAGLE
were used (to account for imputation uncertainty). To
correct for population stratification, we added the top principal
component calculated on genome-wide SNP by EIGEN-
STRAT (38) as a covariate in all models. This top PC was
selected for inclusion because it is the only one that signifi-
cantly associates with the phenotype (P , 0.05) and we
have previously shown that its inclusion is sufficient to
correct for inflation in this sample (6).

For classical HLA alleles, given the prior evidence for a
primary role for HLA-B, we considered all nominally signifi-
cant (P , 0.05) alleles as associated. To determine independ-
ence of effects for these alleles, we used simultaneous forward
and backward stepwise regression in the statistical package R
version 2.12 (http://www.r-project.org). To assess the associ-
ation evidence at HLA-A and -C, we tested classical alleles
at these genes controlling for the effects at either the

Figure 4. Three-dimensional structure of HLA-B highlighting key amino acid positions. (A) The HLA-B protein based on Protein Data Bank entry 2BVP
looking in to the peptide-binding groove (44). The independently associated pocket positions 63, 97 and 116 are highlighted. (B) Side view of the HLA-B mol-
ecule (blue) interacting with CD8 (green) based on Protein Data Bank entry 1AKJ with position 245 highlighted (45). Variation at position 245 has been shown to
influence the binding kinetics between the CD8a subunit and the HLA molecule (32,33). The figure was prepared with UCSF Chimera (46).
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independent HLA-B alleles or all HLA-B alleles. We only con-
sidered HLA-A and -C alleles with P , 0.05 in the univariate
test and after controlling for HLA-B alleles as associated.

To determine independent effects of amino acid positions,
we performed stepwise conditional haplotype testing followed
by model comparison. In the first step, we built a model in-
cluding population covariates and the top associated position
(position 97 in HLA-B) and tested all remaining positions in
that model. The top association in that analysis was then
added to the regression model and the two models were com-
pared using the likelihood ratio test (LRT). This procedure
was repeated (i.e. comparing a model containing the next
top association to one containing all previous positions) until
the addition of the top associated position failed to show a sig-
nificant model improvement compared with the previous
model (LRT P . 0.05).

Using the resulting positions in HLA-B, we then tested all
positions in HLA-A and -C. We required a multivariate P ,
5 × 1024 (to account for the number of positions tested) and
an improved model fit than the HLA-B alone model using
the LRT to consider a position as associated.

Permutation of amino acid results

To further address the significance of the top position in
HLA-B, we devised a permutation scheme where, at each per-
mutation, a given classical allele was randomly assigned one
of the amino acid sequences that corresponds to a 4-digit
type while case/control status and classical allele types were
held constant. Association was then tested for each position.
This randomization was carried out 10 000 times and a
P-value was assigned based on how often the permuted
result was more significant than what was observed in our
sample. This test gives a quantitative indication of how
likely the alleles of a given position divide the classical
HLA alleles into differential risk groups by chance.

Replication set of African American individuals with virus
load set point measurements

We acquired classical HLA-B allele types from an additional
set of African American individuals recruited as part of the
US Department of Defense HIV-1 Natural History Study
(DoD HIV NHS) with multiple measurements of virus load
at set point (n ¼ 216). Genome-wide identity-by-state analysis
was performed to ensure no overlap between this sample and
the HIV controller/progressor sample. Details of HLA typing
and association testing in this replication set have been pub-
lished elsewhere (15). Association of HLA allele and amino
acid types with virus load set point was tested using linear re-
gression including the top principal component from EIGEN-
STRAT, age and sex as covariates. These covariates were
previously shown to be sufficient to control for inflation in
this sample (15). Power for variant detection was calculated
using the online genetic power calculator (http://pngu.mgh.
harvard.edu/~purcell/gpc/) (43).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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