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Abstract—In a video conferencing setting, people often use an
elongated meeting table with the major axis along the camera
direction. A standard wide-angle perspective image of this setting
creates significant foreshortening, thus the people sitting at the
far end of the table appear very small relative to those nearer the
camera. This has two consequences. First, it is difficult for the
remote participants to see the faces of those at the far end, thus
affecting the experience of the video conferencing. Second, it is a
waste of the screen space and network bandwidth because most of
the pixels are used on the background instead of on the faces of the
meeting participants. In this paper, we present a novel technique,
called Spatially-Varying-Uniform scaling functions, to warp the
images to equalize the head sizes of the meeting participants
without causing undue distortion. This technique works for both
the 180-degree views where the camera is placed at one end of
the table and the 360-degree views where the camera is placed at
the center of the table. We have implemented this algorithm on
two types of camera arrays: one with 180-degree view, and the
other with 360-degree view. On both hardware devices, image
capturing, stitching, and head-size equalization are run in real
time. In addition, we have conducted user study showing that
people clearly prefer head-size equalized images.

Index Terms—Head-size equalization, video conferencing, visual
perception.

I. INTRODUCTION

N the past a few years, a lot of progress has been made to
I improve the audio and video quality during video confer-
encing. To address the problem of poor audio quality when a
speaker is far away from the audio capturing device, researchers
have designed microphone arrays and beamforming techniques
to capture audio with much higher signal to noise ratio [1]-[3].
Intuitively speaking, the effect of beamforming is to virtually
pull a far away speaker closer to the audio capturing device.

To address the video capturing problem, people have used
pan/tilt/zoom (PTZ) cameras to obtain better images of meeting
participants who are far away from the camera. One drawback
with PTZ cameras is that they have limited field of view. If they
zoom in too much, the context of the meeting room is lost. If they
zoom out too much, the meeting participants who sit far away
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from the camera appear very small. Fig. 1 shows a cylindrical
projection of a meeting room. We can see that the images of the
people sitting at the far end of the table are very small compared
to the two people at the front. The remote participants would
have to switch views in order to see the people at the far end
thus affecting the video conferencing experience. Furthermore,
it is a a waste of screen space and network bandwidth because
most of the pixels are used on the background instead of on the
faces of the meeting participants.

More recently, researchers have designed camera arrays
which are placed at the center of a meeting table to capture
360-degree panoramic views [1], [4]-[11]. When a meeting
table is round, such camera array provides good resolution to
all the meeting participants. But unfortunately many meeting
tables in practice are elongated. For elongated meeting tables, it
has the same problem that people’s head sizes are not uniform
due to the distances to the camera. Fig. 2 shows an image
captured by an omnidirectional camera placed at the center of a
meeting table. The table size is 10 x 5 feet. We can see that the
person in the middle of the image appears very small compared
to the other two people because he is further away from the
camera.

In this paper, we present a novel technique, called Spa-
tially-Varying-Uniform scaling functions, to warp the images
to equalize the head sizes of the meeting participants without
causing undue distortion. This is analogous to audio beam-
forming in that we virtually pull those participants which sit far
away from the camera closer.

This algorithm works for both the 180-degree views where
the camera is placed at one end of the table and the 360-de-
gree views where the camera is placed at the center of the table.
We have implemented this algorithm on two types of hardware
devices. The first is a five-camera array with a nearly 180-de-
gree field of view. The five individual cameras in the camera
array have different field of views so that the camera at the
center has enough resolution to capture people who sit at the
far end of the table. This camera is usually placed at one end
of the meeting table to capture the entire room. The second is a
five-camera array with a 360-degree field of view. This camera
is usually placed at the center of the meeting table to capture a
360-degree panoramic view of the meeting room. On both hard-
ware devices, image capturing, stitching, and head-size equal-
ization are run in real time. In addition, we have conducted a
user study which shows that head-size equalization indeed im-
proves people’s perception.
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II. SPATIALLY VARYING UNIFORM SCALING FUNCTION

In this section, we describe a parametric class of image
warping functions that attempt to equalize people’s head sizes
in the video conferencing images. We call the class of warping
functions Spatially Varying Uniform Scaling functions, or SVU
scaling for short. These functions locally resemble a uniform
scaling function to preserve aspect ratios, however, the scale
factor varies over the image to create the warp. The class
of conformal projections can provide local uniform scaling,
however, they introduce rotations which are visually disturbing.
This led us to the SVU scaling functions that avoid rotations at
some costs in terms of introducing shear.

We will use the example shown in Fig. 1 to describe the SVU
scaling. The images are captured in real-time using a five-lens
device we describe later. After stitching, this provides us with a
full 180-degree cylindrical projection panoramic image.

We would like the warping function to be such that it zooms
up the center more than the sides while locally mimicking a
uniform scaling. We would like to avoid rotations (as might
appear in conformal projections), particularly keeping vertical
lines vertical. The warp we initially describe induces some ver-
tical shear, thus slanting horizontal lines. We describe at the end
of this section a modification that corrects for much of this at
some cost to aspect ratio near the top and bottom boundaries.

The SVU scaling function depends on two curves, repre-
sented as piecewise cubic splines, as shown in Fig. 3. These two
source curves define common (real world) horizontal features
such as the tops of people’s heads, and the edge of the table.
The two curves can be either marked by a user manually, or
estimated automatically by segmenting the boundary of the
meeting table [12]. A factor, a which is a parameter specified
by the user determines how much the image is warped.

Lety = Si(z) and y = Sp(x) be the equations of the top and
bottom source curves, respectively. Two target curves (where
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Fig. 3. Warping function is determined by two sets of curves: source (green)
and target (red) curves.

points on the source curves will move to) are determined by
the source curves and «. If we denote the equation of the line
between the end points of S;(z) as y = y:(x), and the equation
of line connecting the bottom source ends as y = (), then
the top target curve is

Tiy(z) = (1 — @)Si(x) + ay(z) )]
and the bottom target curve is
Ty(z) = (1 — a)Sp(z) + ayp(z). 2)

An « = 0 will leave the image untouched. An o = 1 will pull
pixels on source curves to the lines between the end points. For
example, the four curves shown in Fig. 3 consist of two green
source curves and two red target curves.

Given any vertical scanline z as shown in Fig. 3, let A, B
denote its intersections with the source curves, and A’, B’ the
intersections with the target curves. The SVU scaling function
will scale AB to A’B’. Let

r(z) = [A'B|| _ Ti(x) — Ty(z)
IAB| - Si(z) = Sp(x)

3
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We scale the line vertically by 7(z), and to preserve aspect ratio
we also scale the scanline horizontally by r(x). Therefore, the
total width of the new image w’ becomes

w' = /w r(x)dx 4)
0

where w is the width of the source image.
For any pixel (z, y) in the source image, let (2/,y’) denote its
new position in the warped image. We have

' = /0”” r(z)dx
Y =Ty(x) +r(x) * (y — Se(w)). )

This is the forward mapping equation for the SVU scaling func-
tion. The SVU scaling function is not a perfect uniform scaling
everywhere. It is easy to prove that the only function that is a
perfect uniform scaling everywhere is a uniform global scaling
function.

To avoid hole filling, we use backward mapping in the imple-
mentation. Denote

R(z) = / r(z)dz. (6)
0
The backward mapping equation is

z =R
_ y;(—ft)(x) + 8y(). )

A. Horizontal Distortion Correction

While the SVU-scaling function maintains vertical lines as
vertical, it distorts horizontal lines. The distortions are smallest
between the source curves and largest near the top and bottom.
Scenes often contain horizontal surfaces near the top or bottom,
such as a table and the ceiling on a room for which the distor-
tions may be noticeable (see Fig. 1). To minimize this problem,
we relax the uniformity of the scaling and nonlinearly scale each
vertical scanline. The portion of the image between the source
curves is scaled by r(z) as described above. The portions out-
side the source curves are scaled less in the vertical direction.
The horizontal scaling remains the same (i.e., (x)) to main-
tain the straightness of vertical lines. To maintain continuity,
the vertical scaling function smoothly transitions as it crosses
the source curves.

Consider the vertical line in Fig. 3. Denote ¢(y) to be the ver-
tical scale factor at any point y on this vertical line (see Fig. 4).
Note that g(y) is dependent on x. g(y) is controlled by two pa-
rameters s and w. The portion of the vertical scanline more than
w/2 distance from the source curves is scaled by r(z) between
the source curves and by s outside the source curves. The three
constant segments are glued together by two cubic splines in
[S: — 0.5w, St + 0.5w] and [Sy, — 0.5w, Sp + 0.5w]. Each cubic
spine has ends with values s and 7(z) and a slope of 0 at both
ends.

The parameter w controls the continuity at the source curves.
For example, if the scene is discontinuous at the source curves,
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Fig. 4. Vertical scale function.

Fig. 5. Half-ring camera which consists of five 1394 fire-wire video cameras.
The center camera has the smallest field of view.

one can choose a very small w without noticeable artifacts. In
the special case when s = r(z), g(y) becomes a constant which
is what we assume in deriving (5).

III. HALF-RING CAMERA ARRAY

If we directly apply our warping function, the extreme en-
largement of the far people will be very blurry due to the limited
resolution of the image in this area. To solve this problem, we
have built a special “half-ring” video camera consisting of five
inexpensive (<$50 each) fire-wire video cameras daisy-chained
together (see Fig. 5). A single IEEE 1394 fire-wire delivers five
video streams to the computer. The resolution of each camera
is 640 x 480. Each camera has a different lens. Fig. 6 shows
the five images directly from the five video cameras. The center
camera has the smallest field of view (about 25 degrees) to pro-
vide enough resolution for the distance. The field of view of the
two cameras next to the center are 45 degrees, with the outer
having the largest field of view (60 degrees). Together, they
cover 180 degrees with enough overlap between neighboring
cameras for calibration and image stitching.

We use well-known techniques to calibrate these cameras and
compute the homography between the cameras [13]-[16]. We
then stitch the individual images together to generate a 180-de-
gree cylindrical image (see Fig. 1). Computation overhead is re-
duced at run time by pre-computing a stitch table that specifies
the mapping from each pixel in the cylindrical image to pixels
in the five cameras. For each pixel in the cylindrical image, the
stitch table stores how many cameras cover this pixel, and the
blending weight for each camera. Blending weights are set to
one in most of the interior of each image with a rapid fall off to
zero near the edges. Weights are composed with an over oper-
ator where the higher resolution pixel is composed over a lower
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Fig. 8. After applying SVU scaling to the image in Fig. 2.
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Fig. 9. Source curves and the target curves with a = 0.3.

resolution one. At run time, we use a look up the table to per-
form color blending for each pixel.

A. SVU Scaling the Stitch Table

Applying the SVU scaling function to the stitched image
would result in a loss of resolution. Instead, we apply the
SVU scaling function to the stitch table itself, and generate a
concatenated table. During this offline concatenation, we use
bilinear interpolation on both the pixel positions and camera
weights to fill in zoomed-up regions to avoid losing resolution.
Below is a more detailed description.

Assume there are n individual cameras. Let I. denote the
image from camera ¢ where ¢ = 1,...,n. Let I denote the
stitched image and I’ the image after SVU scaling. For any
given pixel location (4, j) in image I’, let (u(4,7),v(7, 7)) de-
note its corresponding location in I5. (u(%,J),v(7,7)) is com-
puted by the backward mapping [(7)].

Note that in general (u(z, j), v(7, 7)) are not integers. We use
bilinear interpolation to obtain the corresponding location in
each image I.. Given any pixel location (z,y) in the stitched

image, let pZ(z, y) denote the corresponding location in .., and
w?(z,y) denote the weight of the cth camera for this pixel. Both
pi(z,y) and ws(x,y) are stored in the stitch table. Note that
pi(x,y) is a floating-point number. Given any pixel location
(4,7) inimage I', its corresponding location in image I.. is com-
puted by the following bilinear interpolation equation:

11
P d) =D Y MwN()pi([u) +k, (o] + 1) ®)
=0 (=0

k=0 I=

where Au = u — |u], Av = v — |v], \p(uw) = kEAu + (1 —
E)(1 = Au), and \i(v) = [Av + (1 = )(1 — Av).

Similarly we obtain the bilinear interpolation equation for the
weight of the cth camera corresponding to pixel location (3, j)
in image I’

wi(i j) =Y M(whi(w)wi(lu] + &, [o] +1). O

1 1
k=0 1=0

Both p’.(, j) and w4, j) are stored in the concatenated table.
At run time, the intensity of I’ at pixel location (¢, j) is calcu-
lated as

I'(i,5) =Y wl(i, )I(pL(i, ))- (10)
c=1

Note that the format of the concatenated table is the same as
the stitch table, and the operation at each pixel is also the same.
Therefore, SVU scaling does not result in any additional run
time overhead. Since each pixel in I’ is accessed exactly once,
the computational complexity of the combined SVU scaling and
stitching is linear in the number of pixels of I’.
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Fig. 12. SVU scaling with oo = 0.2.

IV. APPLICATION TO THE IMAGES CAPTURED BY
OMNIDIRECTIONAL CAMERAS

SVU scaling functions can be applied to images captured by
omnidirectional cameras as well. For images captured by an om-
nidirectional camera, the shapes of the two source curves are dif-
ferent due to the camera position. Fig. 7 shows the two source
curves on the 360-degree panoramic image as shown in Fig. 2.
As we can see, the bottom curve has two peaks, and the top
curve has two valleys. The line connecting the two peaks of the
bottom curve is used as y = yp(x) (See Fig. 3), while the line
connecting the two valleys of the top curve is used as y = y;().
The two target curves can be computed in the same way as in (1)
and (2). The rest of the algorithm is carried out in the same way
as in the 180-degree image case. Fig. 8 shows the result after
applying SVU scaling function to the image in Fig. 2.

As the sensor technology rapidly advances, people are
designing inexpensive high-resolution (over 2000 pixels in
horizontal resolution) omnidirectional video cameras [1] for
video conferencing. But due to network bandwidth and client’s
screen space, only a smaller-sized image can be sent to the
client. The SVU scaling function provides a much better way
to effectively use the pixels to optimize the user’s experience.
Notice that by concatenating SVU scaling table with the stitch
table, the zoomed up pixels will not become blurry because
there are enough pixels in the images captured by the individual
cameras.

V. RESULTS

A. Results on Images Captured With the Half-Ring Camera

The image in Figs. 1 and 9 shows both the source and target
curves with « = 0.3. Fig. 10 through 13 show the results of
using the SVU scaling function. Fig. 10 shows the result of ap-
plying the SVU scaling function without correcting horizontal
distortion. Fig. 11 shows the result after correcting for horizontal
distortion with w = 0.8. By comparing Fig. 11 with Fig. 10,
we can see that after horizontal distortion correction, the sur-
face of the meeting table surface becomes flat and so does the
ceiling. Finally, we show some results with different «.. Fig. 12
shows the result with « = 0.2, and Fig. 13 shows the result with
a = 0.4. We would like to point out that one of the individual
cameras (the second image from left in Fig. 6) does not focus
well because the lens we bought has a defect. As a result, the
image captured by this camera is somewhat blurry.

During live meetings, we store multiple tables corresponding
to different a’s so that one can change levels in real time. The
size of the stitched image is approximately 300 by 1200 pixels.
During warping, we keep the image width the same, and as a
result, the image height decreases as we zoom up. The frame
rate is 10 frames per second on a CPU with a single 1.7-GHZ
processor. The delay is approximately 65 ms.

B. Results on Images Captured With an Omnidirectional
Camera

We have experimented the head-size equalization algorithm
with a new prototype of the omnidirectional camera device [1].
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Fig. 16. Sample frame of the video captured in the second room setting. The table dimension is 16 X 5 feet.

We performed experiments in three different meeting room
settings. Figs. 14, 16, and Fig. 18 each shows a sample frame
from the three different room settings. For the first setting
(Fig. 14), the table dimension is 12 x 5 feet. For the second
setting (Fig. 16), the table dimension is 16 x 5 feet. The third
setting (Fig. 16) is the same as the second setting except that a
person stands up and walks around the table.

Figs. 15, 17, and Fig. 19 are the results after applying SVU
scaling function with = 0.5 on the images in Figs. 14, 16, and
Fig. 18, respectively.

VI. USER STUDY

We have conducted user study to check whether head-size
equalization improves people’s perception. We use the data cap-
tured in three different room settings as shown in Figs. 14, 16,
and Fig. 18. Each video is about 30 s long. For each room set-
ting, we generate five video sequences. The first video sequence
is the original stitched video sequence without SVU scaling. The
other four sequences are generated by applying SVU scaling
with a =0.3, 0.5, 0.7, and 0.9, respectively. For each setting, a
user is presented with the five video sequences side-by-side on a
1024 x 768 computer screen. The reason we chose 1024 x 768
screen resolution is that this is the typical screen size that a re-
mote meeting participant may use in practice. For each setting,

the user is required to rank the five video sequences. A rank of 1
means the best, and a rank of 5 is the worst. In addition, the user
is asked to compare his/her best-ranked video sequence with
the original stitched video sequence and give an opinion score
ranging from 1 to 5, where a score of 3 means the best-ranked
video sequence looks the same as the original video sequence,
a score of 1 means the best-ranked sequence looks much worse
than the original video sequence, and 5 means the best-ranked
sequence looks much better.

There are 17 users who participated in the user study. Fig. 20
shows the user study ranking results where the horizontal axis
is the a value and the vertical axis is the average ranking. The
solid curve in Fig. 20 is the user study result for the first room
setting where the meeting table size is 12 x 5 feet. The dashed
curve is the result for the second setting where the meeting
table size is 16 x 5 feet. The dotted curve is the result for the
third setting where a person walks around the room. We can see
that for all three settings, the original stitched sequence without
SVU-scaling is ranked the worst. For the first setting, « = 0.5,
a = 0.7, and a = 0.9 are all ranked very high. It suggests
that there are no visible distortions even for large o values, and
people prefer the images after head size equalization. For the
second and third setting, the meeting table is extremely long
thus resulting in visible distortions when « is large. That is why
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Fig. 19. Result of applying SVU scaling with o = 0.5 to the image shown in Fig. 18.
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Fig. 20. Results of the user study. Solid curve: user study result for the first
room setting where the meeting table size is 12 X 5 feet. Dashed curve: user
study result for the second setting where the meeting table size is 16 X 5 feet.
Dotted curve: user study result for the third setting where a person walks around
the room. The horizontal axis is the o value and the vertical axis is the average
ranking.

a = 0.5 is ranked the best in both settings. The user study result
suggests that & = 0.5 is a safe choice for all table sizes.

The average opinion scores for the three room settings are
4.52,4.42, and 4.41, respectively. We can see that in all three
room settings, people strongly prefer the results after head-size
equalization.

VII. CONCLUSION

We have presented a technique, called SVU scaling func-
tion, for head-size equalization during video conferencing. The
algorithm is fast and can be easily combined with panorama

stitching operation so that it does not add additional computa-
tional overhead. We have applied this technique to 180-degree
wide-angle images captured by a half-ring camera as well as
360-degree panoramic images captured by an omnidirectional
camera. We have conducted user study which shows that people
clearly prefer images after head-size equalization.

One limitation of our current system is that the user has to
invoke a calibration program to re-compute SVU scaling func-
tion when there is a change on the orientation or position of
the camera device. We have developed a technique to estimate
the relative position and orientation of a camera device auto-
matically [12], but it is computationally too expensive to run at
every frame. In the future, we would like to develop a technique
to automatically track the position and orientation of the camera
device with very small computational overhead.
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