
SoundWave: Using the Doppler Effect to Sense Gestures
Sidhant Gupta1,2, Dan Morris1, Shwetak N Patel1,2, Desney Tan1

1Microsoft Research
Redmond, WA, USA

{dan, desney}@microsoft.com

3University of Washington,UbiComp Lab
Seattle, WA, USA

{sidhant, shwetak}@uw.edu

ABSTRACT
Gesture is becoming an increasingly popular means of in-
teracting with computers. However, it is still relatively cost-
ly to deploy robust gesture recognition sensors in existing
mobile platforms. We present SoundWave, a technique that
leverages the speaker and microphone already embedded in
most commodity devices to sense in-air gestures around the
device. To do this, we generate an inaudible tone, which
gets frequency-shifted when it reflects off moving objects
like the hand. We measure this shift with the microphone to
infer various gestures. In this note, we describe the phe-
nomena and detection algorithm, demonstrate a variety of
gestures, and present an informal evaluation on the robust-
ness of this approach across different devices and people.

Author Keywords
In-air gesture sensing; Doppler; interaction technique.

ACM Classification Keywords
H.5.m Information interfaces and presentation: Miscellaneous

General Terms
Human Factors, Design.

INTRODUCTION AND MOTIVATION
Recent advances in computer vision techniques have popu-
larized hand and body gestures for interacting with comput-
ers. For example, the Toshiba Qosmio G55 laptop uses its
front-facing RGB webcam to allow the user to control
PowerPoint slides or music/video playback. Unfortunately,
vision-based gesture recognition techniques are generally
brittle (e.g., sensitive to lighting conditions) and require
quite a bit of processing power. The Microsoft Xbox Kinect
is another example of a successfully deployed computer
vision system, but miniaturizing this technology and mak-
ing it practical for mobile devices may take some time.

As an alternative, sonic gesture sensing has been shown to
be a reliable tool for sensing a variety of in-air gestures for
controlling interfaces. Current technologies, however, have
focused on separate transducers and receivers rather than
leveraging arguably the most ubiquitous components in
computing systems: the speaker and microphone.

To this end, we present SoundWave, a sound-based gesture
sensing approach that utilizes the existing audio hardware
of mobile devices. This technique uses a well-understood
phenomenon known as the “Doppler effect” or “Doppler
shift”, which characterizes the frequency change of a sound
wave as a listener moves toward or away from the source.
A common example is the change in pitch of a vehicle siren
as it approaches, passes, and then moves away from the
listener. Using this effect, SoundWave detects motion in
front of and around a computing device and uses properties
of the detected motion – such as speed, direction, and am-
plitude – to recognize a rich set of gestures. For instance,
the direction and speed of a hand moving up or down can
be sensed to scroll a webpage in real-time (see sketch in
Figure 1 as well as accompanying video figure). Sound-
Wave can also, for example, detect two hands moving in
opposite directions, which we use as a “rotation” gesture in
our example applications. Unlike vision, SoundWave can
detect gestures without line of sight, making it complemen-
tary to vision-based systems.

We are not the first to use sonic techniques or the Doppler
effect for gesture and motion sensing. For example, Tarzia
et al. measure the intensity of the echoes received by a mi-
crophone to detect human presence and attention [5]. Para-
diso et al. made use of a continuous 2.4 GHz tone to drive
custom patch antennas. They used the reflected Doppler-
shifted signal to infer human motion and upper body kine-
matics in an interactive space [3]. More recently, Kalgaon-
kar et al. developed a device to recognize one-handed ges-
tures in 3D space using low-cost ultrasonic transducers that
emit a 40 kHz tone. They placed one transmitter and two
receivers in a triangle pattern where gestures could be per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1: SoundWave allows non-contact, real time in-air ges-

ture sensing on existing commodity computing devices.

formed and sensed [4]. While these projects show the po-
tential of low-cost sonic gesture sensing, they require cus-
tom hardware, which is a significant barrier to widespread
adoption. In our work, we focus on a solution that works
across a wide range of existing hardware to facilitate im-
mediate application development and adoption.

THE SOUNDWAVE SYSTEM
SoundWave uses existing speakers on commodity devices
to generate tones between 18-22 kHz, which are inaudible.
We then use the existing microphones on these same devic-
es to pick up the reflected signal and estimate motion and
gesture through the observed frequency shifts.

Theory of Operation
The phenomenon SoundWave uses to sense motion is the
shift in frequency of a sound wave in response to a moving
object, an effect called the Doppler effect. This frequency
shift is proportional to source frequency and to the velocity
with which the object moves. In our approach, the original
source (the speakers) and listener (the microphone) are sta-
tionary, thus in absence of any motion, there is no frequen-
cy change. When a user moves his hand, however, it re-
flects the waves, causing a shift in frequency. This
frequency is measured by the microphone () and can be
described by the following equation, which is used for
Doppler radar as well as for estimating frequency changes
in reflection of light by a moving mirror [2]:

Figure 2 shows the frequency of the signal (a) when no mo-
tion is present and when a hand is moved (b) away from or
(c) closer to the laptop. This change in frequency as a hand
moves farther or closer is one of the many characteristic
properties of the received signal that we leverage in detect-
ing motion and constructing gestures.

Algorithm & Implementation Details
SoundWave generates a continuous pilot tone, played
through the device’s speakers at the highest possible fre-
quency (typically in the range of 18-22 kHz on commodity
audio systems). Although we have verified that SoundWave
can operate on audio down to 6 kHz, we favor tones above

18 kHz since they are generally inaudible [1]. Additionally,
the higher the frequency, the greater the shift for a given
velocity, which makes it computationally easier to estimate
motion at a given resolution. The upper bound is largely a
function of most laptop and phone speaker systems only
being capable of producing audio at up to 22 kHz. Fortu-
nately, we do not need much higher frequencies to sense the
relatively coarse gestures we are targeting.

Due to variations in hardware as well as filtering in sound
and microphone systems, SoundWave requires an initial
calibration to find the optimal tone frequency (no user in-
tervention is required). It performs a 500 ms frequency
sweep, and keeps track of peak amplitude measurements as
well as the number of candidate motion events detected
(i.e., potential false positives). SoundWave selects the high-
est frequency at which minimum false events are detected
and the peak is most isolated (i.e., the amplitude is at least
3 dB greater than next-highest peak in the sweep range).
The system consistently favors the 18-19 kHz range.

With the high-frequency tone being emitted, any motion in
proximity (around 1 m depending on speed) of the laptop
will cause Doppler-shifted reflections to be picked up by
the microphone, which is continuously sampled at
44.1 kHz. We buffer the incoming time-domain signal from
the microphone and compute the Fast Fourier Transform
(FFT) with 2048-point Hamming window vectors. This
yields 1024-point magnitude vectors that are spread equally
over the spectral width of 22.05 kHz. After each FFT vector
is computed, it is further processed by our pipeline: signal
conditioning, bandwidth extraction, motion detection, and
feature extraction.

Signal Conditioning: Informal tests with multiple people
indicated that the fastest speed at which they could move
their hands in front of a laptop was about 3.9 m/sec. Hence,
we conservatively bound signals of interest at 6 m/sec. Giv-
en our sampling rate and FFT size, this yields about 33 fre-
quency bins on either side of the emitted peak.

Bandwidth Extraction: As seen in Figure 2, motion around
the device creates a shifted frequency that effectively in-
creases the bandwidth of the pilot tone (i.e., window aver-
aging and spectral leakage blur the movement of the peak).
To detect this, SoundWave computes the bandwidth of the
pilot tone by scanning the frequency bins on both sides in-

Figure 2: (a) Pilot tone with no motion. (b and c) Increase in bandwidth on left and right due to motion away from and towards the

laptop respectively. (d) Shift in frequency large enough for a separate peak. A single scan would not capture the true shift in fre-
quency and would terminate at the local minima. A second scan compensates for the bandwidth of the shifted peak.

dependently until the amplitude drops below 10% of the
pilot tone peak. Using a relative amplitude drop allows the
system to respond dynamically, such as when the user
changes the volume of the speakers.

For most cases (e.g. Figure 2b and 2c), this is sufficient for
inferring motion. However, if the shift is large enough, the
reflected signal separates from the pilot tone’s peak rather
than blurring the peak (e.g. Figure 2d). To address this, we
perform a second scan, looking beyond the stopping point
of the first scan. If a second peak with at least 30% of the
primary tone’s energy is found, the first scan is repeated to
find amplitude drops calculated from the second peak.

To verify our approach, we analyzed various hand motions
at different speeds. Using our percentage-based thresholds,
we found that motion can be detected in each case with
near-perfect accuracy. We note that we did not change these
percentage thresholds as we tested SoundWave on different
computing devices or with different people.

Motion Detection and Feature Extraction: The frequency
vectors have a per-bin resolution of 21.5 Hz. With a pilot
tone of 20 kHz this translates to detecting movements as
slow as 18.5 cm/sec. In practice, we have found that the
bandwidth of the pilot tone itself with no motion is ~80 Hz,
which can vary from 60-120 Hz (1-3 bins on either side of
the tone) depending on the quality of the sound system.
Thus, we consider a “motion event” to occur when there is
a frequency shift bandwidth of 4 or more bins. We have
found that this threshold allows sufficiently slow move-
ments of the hand to be detected while ignoring false posi-
tives due to variations in the bandwidth.

Measurable Properties
In addition to the fundamental frequency shift, we can also
compute other useful features for inferring gestures.

Velocity: The measured frequency change is proportional to
the absolute speed of the target. SoundWave can measure
the difference between the original and reflected frequen-
cies to differentiate slow, medium, and fast gestures.

Direction: Determining whether the hand is moving toward
or away from the computing device can be made from the
sign of the frequency shift. A positive shift indicates
movement toward the device.

Proximity and Size of Target: The amplitude of the ob-
served signal increases as the target moves closer to the
computing device, and it also increases with size and reflec-
tivity of the target. For example, a larger hand or open palm
manifests as larger amplitude than a smaller or fisted hand.

Time Variation: Measuring the variation of the above three
properties over time allows us to both observe the rate of
change and use it for filtering spurious signals. For exam-
ple, any motion that lasts for a very short period of time can
be reliably filtered out, while longer lasting motion events
can be used to identify activities like walking toward or
away from the device.

GESTURES AND USE CASES
The features described above can then be combined to form
complex gestures (see Video Figure for demonstration).

Scrolling: We found that mapping motion events directly to
control scrolling, such as for a web browser, works quite
well. However, a clutching mechanism is required to pre-
vent inadvertent scrolling as the hand returns to a particular
position. Using the velocity feature and scrolling only when
it meets a certain speed criterion makes this possible. We
also investigated using a ‘double-tap’ gesture to activate
scrolling and using an idle timeout for deactivation.

Single-Tap or Double-Tap: By observing the change in
direction over time, the ‘frequency’ at which the direction is
changing can be computed. The value of this direction fre-
quency can be used for detecting tap gestures, which can be
further used to distinguish quick taps, much like a mouse
double-click, from slower taps. In a Tetris application, we
mapped slow taps to ‘left’ and quick taps to ‘right’ and
were able to maneuver with reasonable precision.

Two-Handed Seesaw: This gesture requires moving both
hands simultaneously in opposite directions at the same
time. It is detected by the presence of both up- and down-
shifted frequency components in the same FFT vector. We
mapped this gesture to rotation action in the Tetris game.

Sustained Motion: This gesture is activated when at least N
consecutive motion events in the same direction are detect-
ed. A large N can signify that a person is walking (as op-
posed to moving the hand, which has fewer consecutive
motions). We have used the walking gesture to automatical-
ly put a computer to sleep or wake it up as a user walks
away from or toward it. In a game of Tetris, we mapped a
‘pull back’ gesture (sustained motion of N=10 events away
from the device) to the ‘drop block’ action. Lastly, we im-
plemented a ‘flick’ gesture with a sustained-motion thresh-
old of N=5 events to allow users to browse a photo album
by moving her hands left or right; in this case we also put a
maximum and minimum limit on gesture speed.

PRELIMINARY PERFORMANCE EVALUATION
We performed a set of preliminary tests to evaluate how
well SoundWave works across devices and people and to
estimate accuracy and robustness in different environments.

Generalizability Across Laptops and People
To support our claim that SoundWave could potentially
work with most commodity computing platforms, we tested
SoundWave on 11 different computers: five desktop PCs (4
Dell, 1 HP), 2 MacBook Pros (15” & 13”), a Lenovo T61p,
an IBM Thinkpad T43, a Dell Studio 1555, and a HP
EliteBook laptop. We found that all of them performed sim-
ilarly to our performance results without any changes to the
algorithms or thresholds. This also included two desktop
PCs with an external USB soundcard and microphone.

To ensure that SoundWave works across people, we tested
it with 6 individuals. We asked them to control 3 applica-

tions using various gestures: (1) scrolling a webpage using
simple hand motion toward or away; (2) playing Tetris us-
ing two-handed seesaw, pull-back, double-tap, and slow-tap
gestures; and (3) browsing pictures in a cover flow layout
with a ‘flick’ gesture. Although it took a few minutes for
users to understand how to perform certain gestures, all
users were able to successfully control all 3 applications.

Accuracy and Robustness
To measure how well gestures can be detected using
SoundWave, we asked 3 users (1 female) aged 25-28 to
perform 5 different gestures. Each user performed 10 repe-
titions of each gesture in both quiet and noisy environ-
ments. The first was in a home environment (noise level
~45 dB SPL) and the second in a noisy cafeteria (noise lev-
el ~72 dB SPL). This task was repeated twice for each user.
In total, 600 gestures were performed. SoundWave per-
formed well irrespective of the location (Table 1). This was
especially the case for two-handed gestures. Quick taps
performed the worst since users tended to move their fin-
gers rather than their palm; different fingers generated dif-
ferent velocity components. However, this may not be a
problem in applications where there is visual feedback.

To measure the number of times any unintended motion
was detected, we conducted an hour-long test in each of the
two locations. Users sat in front of the laptop, but neither
performed any explicit gesture nor typed on the keyboard.
For the home environment, an average of 2.5 false motion
events occurred per minute, whereas for the café 6 events
per minute were detected. Though relatively high, setting a
threshold of N=4 for consecutive events eliminates the in-
terpretation of these ‘motions’ as ‘gestures.’ Here N means
the number of consecutive motion events or FFT frames,
i.e. the gesture needs to last for at least 4 frames or ~185ms
for it to be even considered for gesture recognition. There-
fore, although motion was detected, post-processing these
events with N=4 resulted in 0 false gesture detections, i.e.
they were classified as ‘noise’.

Because laptop microphones are generally housed in the
bezel around the keyboard, the number of false events de-
tected greatly increases when a user types. We mitigate this
by disabling SoundWave when we know the user is typing,
similar to what track-pads do to prevent accidental input.

We also confirmed that we are able to play audible music
on the same laptop while successfully detecting motion
events. We found that music does not harm performance,
because frequencies seldom conflict and the threshold
adapts. Additionally, we tested the range of detection by
setting the volume of the speakers, which in turn controls

how loud the pilot tone is. The volume control can be used
to regulate the effective detection range, which could be
useful in crowded situations in which the user may explicit-
ly not want to pick up ambient movement.

LIMITATIONS & IMPROVEMENTS
SoundWave is a promising approach for sensing interactive
in-air gestures with no additional hardware requirements.
However, it is not without limitations. The key drawback of
this approach is the dependence on a tone, which may be
audible and possibly annoying for children and pets. In ad-
dition, some devices incorporate filtering that prevents tone
generation or recording over 18 kHz; a potential solution to
this problem is “piggy-backing” a tone on a user’s digital
music. Additionally, using Doppler shift inherently limits
detection to motion gestures, thus requiring other compli-
mentary techniques for detection of static poses.

In this work, the algorithms presented were implemented
and tested on various laptops and desktop PCs, however
this approach extends to smart phones and tablets. Anecdo-
tally, we observe the same frequency shift when performing
gestures in front of mobile phones. Computational com-
plexity and power requirements on such devices can be
further reduced by using Goertzel’s algorithm for compu-
ting selective frequency bins instead of a complete FFT.

We believe gesture sets could be extended beyond the ones
presented here by using techniques like Hidden Markov
Models for multi-state gestures. Many newer mobile devic-
es also have multiple speakers and microphones that we
could leverage for gesture localization.

CONCLUSION
In this paper, we described the use of the Doppler effect to
build a software-only solution capable of sensing motion
gestures on commodity computing hardware. Furthermore,
we detailed a robust algorithm for detecting motion events
and using characteristics of the sensed signal for imple-
menting two-handed gestures, as well as more complex
gestures such as double-tap. Lastly, we showed the robust-
ness of the approach across different devices, users, and
environments.

REFERENCES
1. D’Ambrose, C. “Frequency Range of Human Hearing”.

The Physics Factbook 2003. Downloaded 10/1/2011.
2. Ditchburn, R.W. Light. Dover publications, p. 331-333.

1961, 1991.
3. Paradiso, J., Abler, C., Hsiao, K. and Reynolds, M. The

magic carpet: physical sensing for immersive environ-
ments. In Proc. ACM CHI 1997.

4. Kalgaonkar, K. and Raj, B. One-handed gesture recogni-
tion using ultrasonic Doppler sonar. In Proc. IEEE
Acoustics, Speech and Signal Processing 2009.

5. Tarzia, S.P, Dick, R.P. Dinda, P.A and Memik, G. So-
nar-based measurement of user presence and attention.
In Proc. ACM UbiComp 2009.

Location Two
Handed

Pull
Back Flick Quick

Taps
Slow
Taps

Home 96.67 95.00 98.33 86.67 96.67
Cafe 100 96.67 93.33 88.33 93.33

Table 1: Average % of correctly recognized gestures across
three users and two sessions in quiet and noisy locations.

