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Abstract. We study the combinatorial auction (CA) problem, in which
m objects are sold to rational agents and the goal is to maximize so-
cial welfare. Of particular interest is the special case in which agents are
interested in sets of size at most s (s-CAs), where a simple greedy algo-
rithm obtains an s+1 approximation but no truthful algorithm is known
to perform better than O(m/

√
logm). As partial work towards resolving

this gap, we ask: what is the power of truthful greedy algorithms for
CA problems? The notion of greediness is associated with a broad class
of algorithms, known as priority algorithms, which encapsulates many
natural auction methods. We show that no truthful greedy priority algo-
rithm can obtain an approximation to the CA problem that is sublinear
in m, even for s-CAs with s ≥ 2.

1 Introduction

The field of algorithmic mechanism design attempts to bridge the competing de-
mands of agent selfishness and computational constraints. The difficulty in such
a setting is that agents may lie about their inputs in order to obtain a more desir-
able outcome. It is often possible to circumvent this obstacle by using payments
to elicit truthful responses. Indeed, if the goal of the algorithm is to maximize
the total welfare of all agents, the well-known VCG mechanism does precisely
that: each agent maximizes his utility by reporting truthfully. However, the VCG
mechanism requires that the underlying optimization problem be solved exactly,
and is therefore ill-suited for computationally intractable problems. Determining
the power of truthful approximation mechanisms is a fundamental problem in
algorithmic mechanism design.

The combinatorial auction (CA) problem holds a position at the center of this
conflict between truthfulness and approximability. Without strategic considera-
tions, one can obtain an O(min{n,

√
m}) approximation for CAs with n bidders

and m objects with a conceptually simple (albeit not obvious) greedy algorithm
[25], and this is the best possible under standard complexity assumptions [16,
31]. However, no deterministic truthful mechanism for multi-minded auctions is
known to obtain an approximation ratio better than O( m√

logm
) [17]. This is true

even for the special case where each bidder is interested only in sets of size at
most some constant s (the s-CA problem), where the obvious greedy algorithm



obtains an s + 1 approximation. Whether these gaps are essential for the CA
problem, or whether there is some universal process by which approximation
algorithms can be made truthful without heavy loss in performance, is a central
open question that has received significant attention over the past decade [14,
21, 25, 28, 30].

A lower bound for the related combinatorial public project problem [30] shows
that there is a large asymptotic gap separating approximation by determinis-
tic algorithms and by deterministic truthful mechanisms in general allocation
problems. Currently, the only such lower bounds known for the CA problem are
limited to max-in-range (MIR) algorithms [9]. While many known truthful CA al-
gorithms are MIR, the possibility yet remains that non-MIR algorithms could be
used to bridge the gap between truthful and non-truthful CA design. We consider
lower bounds for truthful CAs by focusing on an alternative class of algorithms.
We ask: can any truthful greedy algorithm obtain an approximation ratio bet-
ter than O( m√

log(m)
)? Our interest in greedy algorithms is motivated threefold.

First, most known examples of truthful, non-MIR algorithms for combinatorial
auction problems apply greedy methods [1, 4, 8, 10, 20, 24, 25, 28]; indeed, greedy
algorithms embody the conceptual monotonicity properties generally associated
with truthfulness, and are thus natural candidates for truthful mechanism con-
struction. Second, simple greedy auctions are often used in practice, despite the
fact that they are not incentive compatible; this leads us to suspect that they are
good candidates for auctions due to other considerations, such as ease of public
understanding. Finally, greedy algorithms are known to obtain asymptotically
tight approximation bounds for many CA problems despite their simplicity.

We use the term “greedy algorithm” to refer to any of a large class of algo-
rithms known as priority algorithms [7]. The class of priority algorithms captures
a general notion of greedy algorithm behaviour. Priority algorithms include, for
example, many well-known primal-dual algorithms, as well as other greedy al-
gorithms with adaptive and non-trivial selection rules. Moreover, this class is
independent of computational constraints and also independent of the manner
in which valuation functions are accessed. In particular, our results apply to al-
gorithms in the demand query model and the general query model, as well as to
auctions in which bids are explicitly represented. Roughly speaking, a priority
algorithm has some notion of what consistutes the “best” bid in any given auc-
tion instance; the auction finds this bid, satisfies it, then iteratively resolves the
reduced auction problem with fewer objects (possibly with an adaptive notion
of the “best” bid). For example, the truthful algorithm for multi-unit auctions
due to Bartal et al. [4] that updates a price vector while iteratively satisfying
agent demands falls into this framework. Our main result demonstrates that if a
truthful auction for an s-CA proceeds in this way, then it cannot perform much
better than the trivial algorithm that allocates all objects to a single bidder.

Theorem: No deterministic truthful priority algorithm (defined formally in the
text) for the CA problem obtains an o(min{m,n}) approximation to the optimal
social welfare (even for s-CAs with s ≥ 2).



The gap described in our result is extreme: for s = 2, the standard (but
non-truthful) greedy algorithm is a 3-approximation for the s-CA problem, but
no truthful greedy algorithm can obtain a sublinear approximation bound.

We also consider the combinatorial auction problem for submodular bidders
(SMCA), which has been the focus of much study [13, 12, 19, 24]. We study a
class of greedy algorithms that is especially well-suited to the SMCA problem.
Such algorithms consider the objects of the auction one at a time and greedily
assign them to bidders to maximize marginal utilities. It was shown in [24] that
any such algorithm3 attains a 2-approximation to the SMCA problem, but that
not all are incentive compatible. We show that, in fact, no such algorithm can
be incentive compatible.

Theorem: Any deterministic algorithm for submodular combinatorial auctions
that considers objects and assigns them in order to maximize marginal utility
cannot obtain a bounded approximation to the optimal social welfare.

1.1 Related Work

Many truthful approximation mechanisms are known for CAs with single-minded
bidders. Following the Lehmann et al. [25] truthful greedy mechanism for single-
minded CAs, Mu’alem and Nisan [28] showed that any monotone greedy algo-
rithm for single-minded bidders is truthful, and outlined various techniques for
combining approximation algorithms while retaining truthfulness. This led to
the development of many other truthful algorithms in single-minded settings [2,
8] and additional construction techniques, such as the iterative greedy packing
of loser-independent algorithms due to Chekuri and Gamzu [10].

Less is known in the setting of general bidder valuations. Bartal et al. [4]

give a greedy algorithm for multi-unit CAs that obtains an O(Bm
1

B−2 ) approx-
imation when there are B copies of each object. Lavi and Swamy [23] give a
general method for constructing randomized mechanisms that are truthful in
expectation, meaning that agents maximize their expected utility by declaring
truthfully. Their construction generates a k-approximate mechanism from an LP
for which there is an algorithm that verifies a k-integrality gap. In the applica-
tions they discuss, these verifiers take the form of greedy algorithms, which play
a prominant role in the final mechanisms.

A significant line of research aims to give lower bounds on the approximat-
ing power of deterministic truthful algorithms for CAs. Lehmann, Mu’alem, and
Nisan [21] show that any truthful CA mechanism that uses a suitable bidding
language, is unanimity-respecting, and satisfies the independence of irrelevant
alternatives property (IIA) cannot attain a polynomial approximation ratio. It
has also been shown that, roughly speaking, no truthful polytime subadditive
combinatorial auction mechanism that is stable4 can obtain an approximation

3 The degree of freedom in this class of algorithms is the order in which the objects
are considered.

4 In a stable mechanism, no player can alter the outcome (i.e. by changing his decla-
ration) without causing his own allocated set to change.



ratio better than 2 [14]. Also, no max-in-range algorithm can obtain an approxi-
mation ratio better than Ω(

√
m) when agents have budget-constrained additive

valuations [9]. These lower bounds are incomparable to our own, as priority
algorithms need not be MIR, stable, unanimity-respecting, or satisfy IIA5.

Another line of work gives lower bounds for greedy algorithms without truth-
fulness restrictions. Gonen and Lehmann [15] showed that no algorithm that
greedily accepts bids for sets can guarantee an approximation better than

√
m.

Similarly, Krysta [20] showed that no oblivious greedy algorithm (in our termi-
nology: fixed order greedy priority algorithm) obtains approximation ratio better
than

√
m. ( In fact, Krysta derives this bound for a more general class of prob-

lems that includes multi-unit CAs.) In contrast, we consider the more general
class of priority algorithms but restrict them to be incentive-compatible.

The class of priority algorithms is loosely related to the notion of online algo-
rithms. Mechanism design has been studied in a number of online settings, and
lower bounds are known for the performance of truthful algorithms in these set-
tings [22, 27]. The critical difference between these results and our lower bounds
is that a priority algorithm has control over the order in which input items are
considered, whereas in an online setting this order is chosen adversarily.

In contrast to the negative results of this paper, greedy algorithms can pro-
vide good approximations when rational agents are assumed to bid at Bayes-
Nash equilibria. In particular, there is a greedy combinatorial auction for sub-
modular agents that obtains a 2-approximation at equilibrium [11], and the
greedy GSP auction for internet advertising can be shown to obtain a 1.6-
approximation at equilibrium [26]. Recently, we have shown [6] that, in a wide
variety of contexts, c-approximate monotone greedy allocations can be made into
mechanisms whose Bayes-Nash equilibria yield c(1 + o(1)) approximations.

2 Defintions and Preliminary Results

Combinatorial Auctions. A combinatorial auction consists of n bidders and
a set M of m objects. Each bidder i has a value for each subset of objects
S ⊆ M , described by a valuation function vi : 2M → R which we call the type
of agent i. We assume each vi is monotone and normalized so that vi(∅) = 0.
We denote by Vi the space of all possible valuation functions for agent i, and
V = V1 × V2 × · · · × Vn. We write v for a profile of n valuation functions, one
per agent, and v−i = (v1, . . . , vi−1, vi+1, . . . , vn), so that v = (vi, v−i).

A valuation function v is single-minded if there exists a set S ⊆ M and a
value x ≥ 0 such that, for all T ⊆ M , v(T ) = x if S ⊆ T and 0 otherwise.
A valuation function v is k-minded if it is the maximum of k single-minded
functions. That is, there exist k sets S1, . . . , Sk such that for all subsets T ⊆M
we have v(T ) = max{v(Si)|Si ⊆ T}. An additive valuation function v is specified

5 The notion of IIA has been associated with priority algorithms, but in a different
context than in [21]. In mechanism design IIA is a property of the mapping between
input valuations and output allocations, whereas for priority algorithms the term
IIA describes restrictions on the order in which input items can be considered.



by m values x1, . . . , xm ∈ R≥0 so that v(T ) =
∑
ai∈T xi. A valuation function v

is submodular if it satisfies v(T ) + v(S) ≥ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆M .
A direct revelation mechanism (or just mechanism) M = (G,P ) consists of

an allocation algorithm G and a payment algorithm P . Given valuation profile d,
G(d) returns an allocation of objects to bidders, and P (d) returns the payment
extracted from each agent. For each agent i we write Gi(d) and Pi(d) for the set
given to and payment extracted from i. We think of d as a profile of declared
valuations made by the agents to the mechanism. The social welfare obtained
by G on declaration d is SW (d) =

∑
i∈N di(Gi(d)). The optimal social welfare,

SWopt, is the maximum of
∑
i∈N ti(Si) over all valid allocations (S1, . . . , Sn).

Algorithm G is a c-approximation if SW (t) ≥ 1
cSWopt for all type profiles t.

Fixing mechanism M and type profile t, the utility of bidder i given dec-
laration d is ui(d) = ti(Gi(d)) − Pi(d). Mechanism M is truthful (or incen-
tive compatible) if for every type profile t, agent i, and declaration profile d,
ui(ti,d−i) ≥ ui(d). That is, agent i maximizes his utility by declaring his type,
regardless of the declarations of the other agents. We say that G is truthful if
there exists a payment function P such that the mechanism (G,P ) is truthful.

Critical Prices. From Bartal, Gonen and Nisan [4], we have the following
characterization of truthful CA mechanisms.

Theorem 1. A mechanism is truthful if and only if, for every i, S, and d−i,
there is a price pi(S,d−i) such that whenever bidder i is allocated S his payment
is pi(S,d−i), and agent i is allocated a set Si that maximizes di(Si)−pi(Si,d−i).

We refer to pi(S,d−i) as the critical price of S for agent i. Note that pi(S,d−i)
need not be finite: if pi(S,d−i) =∞ then the mechanism will not allocate S to
bidder i for any reported valuation di. In addition, one can assume without loss
of generality that critical prices are monotone.

Priority Algorithms. We view an input instance to an algorithm as a
selection of input items from a known input space I. Note that I depends on
the problem being considered, and is the set of all possible input items: an input
instance is a finite subset of I. The problem definition may place restrictions on
the input: an input instance I ⊆ I is valid if it satisfies all such restrictions. The
output of the algorithm is a decision made for each input item. For example,
these decisions may be of the form “accept/reject”, allocate set S to agent i, etc.
The problem may place restrictions on the nature of the decisions made by the
algorithm; we say that the output of the algorithm is valid if it satisfies all such
restrictions. A priority algorithm is then any algorithm of the following form:

Adaptive Priority
Input: A set I of items, I ⊆ I
while not empty(I)
Ordering: Choose, without looking at I, a total ordering T over I
next ← first item in I according to ordering T
Decision: make an irrevocable decision for item next
remove next from I; remove from I any items preceding next in T

end while



We emphasize the importance of the ordering step in this framework: an
adaptive priority algorithm is free to choose any ordering over the space of pos-
sible input items, and can change this ordering adaptively after each input item is
considered. Once an item is processed, the algorithm is not permitted to modify
its decision. On each iteration a priority algorithm learns what (higher-priority)
items are not in the input. A special case of (adaptive) priority algorithms are
fixed order priority algorithms in which one fixed ordering is chosen before the
while loop (i.e. the “ordering” and “while” statements are interchanged). Our
inapproximation results for truthful CAs will hold for the more general class of
adaptive priority algorithms.

The term “greedy” implies a more opportunistic aspect than is apparent in
the definition of priority algorithms and indeed we view priority algorithms as
“greedy-like”. A greedy priority algorithm satisfies an additional property: the
choice made for each input item must optimize the objective of the algorithm as
though that item were the last item in the input.

3 Truthful Priority Algorithms

We wish to show that no truthful priority algorithm can provide a non-trivial
approximation to social welfare. In order to apply the concept of priority al-
gorithms we must define the set I of possible input items and the nature of
decisions to be made. We consider two natural input formulations: sets as items,
and bidders as items. We assume that n, the number of bidders, and m, the
number of objects, are known to the mechanism and let k = min{m,n}.

3.1 Sets as Items

In our primary model, we view an input instance to the combinatorial auction
problem as a list of set-value pairs for each bidder. An item is a tuple (i, S, t),
i ∈ N , S ⊆ M , and t ∈ R≥0. A valid input instance I ⊂ I contains at most
one tuple (i, S, vi(S)) for each i ∈ N and S ⊆ M and for every pair of tuples
(i, S, v) and (i′, S′, v′) in I such that i = i′ and S ⊆ S′, it must be that v ≤ v′.
We note that since a valid input instance may contain an exponential number of
items, this model applies most directly to algorithms that use oracles to query
input valuations, such as demand oracles6, but it can also apply to succinctly
represented valuation functions.7

The decision to be made for item (i, S, t) is whether or not the objects in
S should be added to any objects already allocated to bidder i. For example,

6 It is tempting to assume that this model is equivalent to a value query model,
where the mechanism queries bidders for their values for given sets. The priority
algorithm model is actually more general, as the mechanism is free to choose an
arbitrary ordering over the space of possible set/value combinations. In particular,
the mechanism could order the set/value pairs by the utility they would generate
under a given set of additive prices, simulating a demand query oracle.

7 That is, by assigning priority only to those tuples appearing in a given representation.



an algorithm may consider item (i, S1, t1) and decide to allocate S1 to bidder i,
then later consider another item (i, S2, t2) (where S2 and S1 are not necessarily
disjoint) and, if feasible, decide to change bidder i’s allocation to S1 ∪ S2.

A greedy algorithm in the sets as items model must accept any feasible,
profitable item (i, S, t) it considers8. Our main result is a lower bound on the
approximation ratio achievable by a truthful greedy algorithm in the sets as
items model.

Theorem 2. Suppose A is an incentive compatible greedy priority algorithm
that uses sets as items. Then A cannot approximate the optimal social welfare

by a factor of (1−δ)k
2 for any δ > 0. This result also applies to the special case

of (3-minded bidders for) the 2-CA problem, in which each desired set has size
at most 2.

Theorem 2 implies a severe separation between the power of greedy algo-
rithms and the power of truthful greedy algorithms. A simple greedy algorithm
obtains a 3-approximation for the 2-CA problem, yet no truthful greedy prior-
ity algorithm (indeed, any algorithm that irrevocably satisfies bids based on a
notion of priority) can obtain even a sublinear approximation.

Proof. Choose δ > 0 and suppose A obtains a bounded approximation ratio. For
each i ∈ N , let V +

−i be the set of valuations with the property that v`(S) > 0 for
all ` 6= i and all non-empty S ⊆M . The heart of our proof is the following claim,
which shows that the relationship between critical prices for singletons for one
bidder is independent of the valuations of other bidders. Recall that pi(S,d−i)
is the critical price for set S for bidder i, given d−i.

Lemma 1. For all i ∈ N , and for all a, b ∈M , either pi({a},d−i) ≥ pi({b},d−i)
for all d−i ∈ V +

−i, or pi({a},d−i) ≤ pi({b},d−i) for all d−i ∈ V +
−i. This is true

even when agents desire sets of size at most 2.

We can think of Lemma 1 as defining, for each i ∈ N , an ordering over the
elements of M . For each i ∈ N and a, b ∈M , write a �i b to mean pi(a,d−i) ≤
pi(b,d−i) for all d−i ∈ V +

−1. For all i ∈ N and a ∈ M , define Ti(a) = {aj : a �i
aj}. That is, Ti(a) is the set of objects that have higher price than a for agent
i. Our next claim shows a strong relationship between whether a is allocated to
bidder i and whether any object in Ti(a) is allocated to bidder i.

Lemma 2. Choose a ∈ M , i ∈ N , and S ⊆ M , and suppose S ∩ Ti(a) 6= ∅.
Choose some vi ∈ Vi and suppose that vi(a) > vi(S). Then if v−i ∈ V +

−i, bidder
i cannot be allocated set S by algorithm A given input v.

Lemma 2 is strongest when Ti(a) is large; that is, when a is “small” in the
ordering �i. We therefore wish to find an object of M that is small according to
many of these orderings, simultaneously. Let R(a) = {i ∈ N : |Ti(a)| ≥ k/2}, so
R(a) is the set of players for which there are at least k/2 objects greater than a.
The next claim follows by a straightforward counting argument.

8 That is, any item (i, S, t) such that no objects in S have already been allocated to
another bidder and t > 0.



Lemma 3. There exists a∗ ∈M such that |R(a∗)| ≥ k/2.

We are now ready to proceed with the proof of Theorem 2. Let a∗ ∈M be the
object from Lemma 3. Let ε > 0 be a sufficiently small value to be defined later.
We now define a particular input instance to algorithm A. For each i ∈ R(a∗),
bidder i will declare the following valuation function, vi:

vi(S) =


1 if a∗ ∈ S
1− δ/2 if a∗ 6∈ S and S ∩ (Ti(a

∗)) 6= ∅
ε otherwise.

Each bidder i 6∈ R(a∗) will declare a value of ε for every set.
For each i ∈ R(a∗), vi(aj) ≥ 1−δ/2 for every aj ∈ Ti(a∗). Since |R(a∗)| ≥ k/2

and |Ti(a∗)| ≥ k/2, it is possible to obtain a social welfare of at least (1−δ/2)k
2

by allocating singletons to bidders in R(a∗).
Consider the social welfare obtained by algorithm A. The algorithm can

allocate object a∗ to at most one bidder, say bidder i, who will obtain a social
welfare of at most 1. For any bidder ` ∈ R(a∗), ` 6= i, v`(S) = 1 − δ/2 < 1 for
any S containing elements of T`(a

∗) but not a∗. Thus, by Lemma 2, no bidder
in R(a∗) can be allocated any set S that contains an element of Ti(a

∗) but not
a∗. Therefore every bidder other than bidder i can obtain a value of at most ε,
for a total social welfare of at most 1 + kε.

We conclude that algorithm A has an approximation factor no better than
k(1−δ/2)
2(1+kε) . Choosing ε < δ

2(1−δ)k yields an approximation ratio greater than k(1−δ)
2 ,

completing the proof of Theorem 2.

We believe that the greediness assumption of Theorem 2 can be removed,
but we leave this as an open problem. As partial progress we show that this is
true for the following (more restricted) model of priority algorithms, in which
an algorithm can only consider and allocate sets whose values are not implied
by the values of other sets.

Elementary bids as items. Consider an auction setting in which agents
do not provide entire valuation functions, but rather each agent specifies a list
of desired sets S1, . . . , Sk and a value for each one. Moreover, each agent receives
either a desired set or the empty set. This can be thought of as an auction with a
succinct representation for valuation functions, in the spirit of the XOR bidding
language [29]. We model such an auction as a priority algorithm by considering
items to be the bids for desired sets. In such a setting, the specified set-value
pairs are called elementary bids. We say that the priority model uses elementary
bids as items when only elementary bids (i, S, v(S)) can be considered by the
algorithm. For each item (i, S, v(S)), the decision to be made is whether or not
S will be the final set allocated to agent i; that is, whether or not the elementary
bid for S will be “satisfied.” In particular, unlike in the sets as items model, we
do not permit the algorithm to build up an allocation incrementally by accepting
many elementary bids from a single agent.

We now show that the greediness assumption from Theorem 2 can be removed
when we consider priority algorithms in the elementary bids as items model.



Theorem 3. Suppose A is an incentive compatible priority algorithm for the
CA problem that uses elementary bids as items. Then A cannot approximate the
optimal social welfare by a factor of (1− δ)k for any δ > 0.

3.2 Bidders as Items

Roughly speaking, the lower bounds in Theorems 2 and 3 follow from a priority
algorithm’s inability to determine which of many different mutually-exclusive
desires of an agent to consider first when constructing an allocation. One might
guess that such difficulties can be overcome by presenting an algorithm with
more information about an agent’s valuation function at each step. To this end,
we consider an alternative model of priority algorithms in which the agents
themselves are the items, and the algorithm is given complete access to an agent’s
declared valuation function each round.

Under this model, I consists of all pairs (i, vi), where i ∈ N and vi ∈ Vi.
A valid input instance contains one item for each bidder. The decision to be
made for item (i, vi) is a set S ⊆ M to assign to bidder i. The truthful greedy
CA mechanism for single-minded bidders falls within this model, as does its
(non-truthful) generalization to complex bidders [25], the primal-dual algorithm
of [8], and the (first) algorithm of [4] for multi-unit CAs. We now establish an
inapproximation bound for truthful priority allocations that use bidders as items.

Theorem 4. Suppose A is an incentive compatible priority algorithm for the
(2-minded) CA problem that uses bidders as items. Than A cannot approximate

the optimal social welfare by a factor of (1−δ)k
2 for any δ > 0.

4 Truthful Submodular Priority Auctions

Lehmann, Lehmann, and Nisan [24] proposed a class of greedy algorithms that is
well-suited to auctions with submodular bidders; namely, objects are considered
in any order and incrementally assigned to greedily maximize marginal utility.
They showed that any ordering of the objects leads to a 2-approximation of social
welfare, but not every ordering of objects leads to an incentive compatible algo-
rithm. However, this does not preclude the possibility of obtaining truthfulness
using some adaptive method of ordering the objects.

We consider a model of priority algorithms which uses the m objects as input
items. In this model, an item will be represented by an object x, plus the value
vi(x|S) for all i ∈ N and S ⊆ M (where vi(x|S) := vi(S ∪ {x}) − vi(S) is the
marginal utility of bidder i for item x, given set S). We note that the online
greedy algorithm described above falls into this model. We show that no greedy
priority algorithm in this model is incentive compatible.

Theorem 5. Any greedy priority algorithm for the combinatorial auction prob-
lem that uses objects as items is not incentive compatible. This holds even if the
bidders are assumed to be submodular.



5 Future Work

The goal of algorithmic mechanism design is the construction of algorithms in
situations where inputs are controlled by selfish agents. We considered this fun-
damental issue in the context of conceptually simple methods (independent of
time bounds) rather than in the context of time constrained algorithms. Our
results concerning priority algorithms (as a model for greedy mechanisms) is a
natural beginning to a more general study of the power and limitations of con-
ceptually simple mechanisms. Even though the priority framework represents a
restricted (albeit natural) algorithmic approach, there are still many unresolved
questions even for the most basic mechanism design questions. In particular, we
believe that the results of Section 3 can be unified to show that the linear inap-
proximation bound holds for all priority algorithms (without restrictions). The
power of greedy algorithms for unit-demand auctions (s-CAs with s = 1) is also
not understood; it is not difficult to show that optimality cannot be achieved by
priority algorithms, but is it possible to obtain a sublinear approximation bound
with greedy methods? Even though an optimal polytime algorithm exists for this
case, greedy algorithms for the problem are still of interest, evidenced by the use
of greedy algorithms in practice to resolve unit-demand AdWord auctions.

An obvious direction of future work is to widen the scope of a systematic
search for truthful approximation algorithms; priority algorithms can be ex-
tended in many ways. One might consider priority algorithms with a more es-
oteric input model, such as a hybrid of the sets as items and bidders as items
models. Priority algorithms can be extended to allow revocable acceptances [18]
whereby a priority algorithm may “de-allocate” sets or objects that had been
previously allocated to make a subsequent allocation feasible. Somewhat related
is the priority stack model [5] (as a formalization of local ratio/primal dual al-
gorithms [3]) where items (e.g. bidders or bids) initially accepted are placed in
a stack and then the stack is popped to ensure feasibility. This is similar to
algorithms that allow a priority allocation algorithm to be followed by some
simple “cleanup” stage [20]. Another possibility is to consider allocations that
are comprised of taking the best of two (or more) priority algorithms. A spe-
cial case that has been used in the design of efficient truthful combinatorial
auction mechanisms [4, 8, 28] is to optimize between a priority allocation and
the näıve allocation that gives all objects to one bidder. Another obvious ex-
tension is to consider randomized priority algorithms, potentially in a Bayesian
setting. Finally, one could study more general models for algorithms that im-
plement integrality gaps in LP formulations of packing problems; it would be
of particular interest if a deterministic truthful k-approximate mechanism could
be constructed from an arbitrary packing LP with integrality gap k, essentially
derandomizing the construction of Lavi and Swamy [23].

The results in this paper have thus far been restricted to combinatorial auc-
tions but the basic question being asked applies to all mechanism design prob-
lems. Namely, when can a conceptually simple approximation to the underlying
combinatorial optimization problem be converted into an incentive compatible
mechanism that achieves (nearly) the same approximation? For example, one



might consider the power of truthful priority mechanisms for approximating un-
related machines scheduling, or for more general integer packing problems.
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