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Abstract— We show that any stabilizer code over a finite field ~ Lemma 1. Any symmetric bicharactex over the abelian
is equivalent to a graphical quantum code. Furthermore we group A = F7 can be written as
prove that a graphical quantum code over a finite field is a ,
stabilizer code. The technique used in the proof establiskea h . 27le h 2
new connection between quantum codes and quadratic forms. x(h, g) = exp ? (h,9) ), @)
We provide some simple examples to illustrate our results.

whereb is a symmetric bilinear form over,, i.e.,

Index Terms— Graphs, quadratic forms, quantum error-cor-
recting codes. b(h,g) = h' Mg
where M is a symmetric matrix oveF,,.

Proof: For fixedh € A, the mappingg — x(h,g) is

a character ofA. Any character( of A can be written as

Let A be the additive group of a finite fielfl,~. Denote by ((g) = exp(27i/p-h' g) whereh' g denotes the inner product
H the complex vector spad®” of dimensiona = |A|. Let B of the group elemeny identified with a vector irF";" and the
be an orthonormal basis 6" consisting of basis vectorsvectorh € F}'. As x(h1 + ha, g) = x(h1,9)x(h2, g) and the
ly) labeled by elements of the grouf’. Let K = A* and groupA is (non-canonically) isomorphic to its character group
N =2 A™ be subgroups oft**" such thatd**" = K x N.  A*, the bicharactex can be written as

Following the definition of Schlingemann and Werner in [9], 2 .
a graphical quantum code is an o*-dimensional subspac@ x(h,g) = exp (?(Mh) 9) )
of H®", which is spanned by the vectors

I. GRAPHICAL QUANTUM CODES

where M is an m x m matrix overF,. Symmetry of the

k+n bicharacter implies symmetry a¥/. ]
|) W Z( II xGioz) J)|y), (1)  Using this lemma, eq[11) can be rewritten as
yeN 1,j=1 k+4+n
i<
! @) = =" ( T explemi/o- (= Mz)™ )y}
k var

wherex € K andz = 2 +y € K x N = A*" The VEN iy=l
coefficients on the right hand side are given by the values !
of a non-degenerate symmetric bicharagtesn A x A. The = exp (—CI( ))) ). ©)
exponentsl’;; are given by the adjacency matrix of a var ooy

weighted undirected graph with integral weighty,; € Z.
As () is independent of the diagonal elemehts, we can
assume without loss of generality that the graph has no loo

Here we identifyz + y € Fyt™ with v = (v;) € Ftn),

Béjrthermoreq is the quadratic form

In [9] the authors raised the question whether or not every m(k+n)
stabilizer code is equivalent to a graphical quantum code. O Z Ijviv; (4)
main result gives an affirmative answer to this question: hj=1

Theorem 1. Any stabilizer code over the alphabét=F m(kin) . = _
is equivalent to a graphical quantum code. Conversely, aﬂ?F defined by the symmetric matrik’ := I' @ M.
graphical quantum code ovet is a stabilizer code. Hence the state§](1) of the graphical quantum oQdean be
In the sequel, we will prove this theorem. First, we sho®Xpressed in the form
that any graphical code over an extension figlg. can be
reformulated as a graphical code over the prime figJdThen ) \/_ Z Cla(z +y)ly), ()
we compute the stabilizer associated with a graphical code, venN
followed by the construction of a graphical representatibn where( is a non-trivial %ddmve character @, andgq is the
a stabilizer code. We conclude by giving examples whicipadratic form[(#) orf," (+m) We will take advantage of this
illustrate both directions of our main theorem. presentation in the followmg sections.
Finally, identifying the vector spac€?” with (CP)®™
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where x is a (non-trivial) bicharacter off, andz € Fglk, I1l. THE STABILIZER OF A GRAPHICAL QUANTUM CODE

v = (z,y) € Fr™™™_ Therefore, it is sufficient to study Fora,d € F”, we define the following operators:
graphical quantum codes over the prime figld
X* =Y |y+a)yl

[I. ORTHONORMAL BASIS OF AGRAPHICAL QUANTUM yeFy

CoDE t
. . and Z¢ = > WYy (yl,
In general, the vectors defined By (1) need not form a basis yEFn
P

of the graphical quantum code. In this section, we derive

conditions for the bicharacter and the grapii’ under which Wherew € C'is a primitivep™ root of unity. The set of unitary

the vectors form an orthonormal basis of the code. operatorst := {X“Z%: a,d € Fy} is an orthonormal basis
From the preceding it is sufficient to consider a graphicir the vector space gf" x p" matrices with respect to the

quantum code defined over the additive groug of the trace inner productA|B) = tr(AB)/p". What is more &

prime field F,. The code is spanned by the vectdrg defines anice error basis [6]. The groupG generated by

according to[(5). We can associate with the quadratic forihan extra-special-group. The element¥ *Z* and X* Z¢

q of @) a symmetric bilinear fornh on A™+* given by commute up to scalars as follows [1]
b(v1,v2) = q(vr +v2) = q(v1) — q(v2). (X2 z)(X* 27) = Wl D@D (X 77 (X2, (9)
Forv; = 2 € K andve = y € N, this implies a block where we have used the standard inner productl) :=
structure of the adjacency matrix namely Sor o aid; € F,. Equivalently, two elements of the group
M. | B commute if the vectorga,d), (a/,d’) € F2" are orthogonal
I'= ( Btm i ) ; (7)  with respect to the symplectic inner product [7]
Yy
where the symmetric matrice®/,, and M,, correspond to the (a,d) — (d’,d). (10)
restriction of the quadratic formpto K and N, resp., and the Hence, the elements of are given by{w'X?Z%: v ¢

k x n matrix B corresponds to the bilinear fort(z,y) = 4 € )
Py pJ

t
@' By. From [3) we get A stabilizer code Q C H®™ with respect to the nice error

. basis€ corresponds to a joint eigenspace of an abelian normal
l2) = Var ;VC(Q(:C +y)ly) subgroup ofG. In order to compute the stabilizer group of the
1 graphical code, we consider the action of an operatox * Z¢
= — Z C(b(x,y) + q(x) + q(y))|y) on the stateg{5). Recall that X*Z¢ belongs to the stabilizer
var yEN of the graphical quantum codg if and only if w¥ X Z%|z) =
C(q(z)) |z) for all z € K. We claim that the stabilizer of the graphical
- o ng(b(I’ y)+a)ly). ) guantum code) is given by the following set of operators

Notice that((q(z)) yields an insignificant phase factor and @ = {w!® Xz |a € N such thatBa = 0},  (11)

thus we can assume without loss of generality ids totally  \yhereas, denotes the: xn submatrix of the adjacency matrix
isotropic, i.e.,q(x) = 0 for all 2 € K. For the adjacency 1 defined in [7). Indeed, using the charactér) := w” in

the coefficients of the right hand side are independent d
wYX2Zz)

this case the code is one-dimensional. Hence we requice
be non-trivial, say((g) = exp(27i/p- g). = —= > (v +b(z,y —a) +qly—a) +d (y—a))ly).
The inner product of two base stateg and |z’) of the A JeN

code is given by _ _ _ 12)
(@'le) = . > SO y) + a)C(b(x,y) + a(y)) Comparng equationt (12) ard (2) yelds
N ’ Cy+b(z,y—a) +aly—a) +d' (y— a)) = C(b(z,y) +a(y))
1 forall x € K andy € N. As the charactey is faithful, we
= — b — bz ] K ,
IN] y;\[d (z,y) —b(z',y)) can simplify this to
1 —_— —_— t —_ =
= 3 (bl - y)). ¥ —b(z,a) —b(a,y) +q(a) +d (y —a) = 0. (13)
yeN This formula holds for any choice of € K, thusb(z,a) =0
This sum is either zero or one, that is, the vectors are eitfer all z € K. Whence the argument € N satisfies the
orthogonal or identical. The sum vanishes untéss-z',y) = constraint(z, a) = 2! Ba = 0 for all z € K, implying Ba =

(r —2')'By = 0 for all y € N, that is, unless: — 2’ lies 0 as claimed. Moreover, equatidn {13) can be simplified to
in the kernel ofB. Imposing orthogonality of different states, _ to N

i.e., ('|x) = 0 unlessz’ = z, implies that this kernel needs 7~ bla,y) +qla) +d (y —a) = 0. (14)
to be trivial. In other words, if we viewB as a matrix over Since this holds for aly € N, we get—b(a,y) +d'y = 0
F, then the rank of this matrix i%. for all y € N; hence—b(a,y) +d'y = (d — aM,)' y = 0 for
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all y € N. This shows thatz? = Z+Mv, Finally, substituting symplectic inner producf{10), we have P'* — P -1 = 0,
y = a in ([@4) yieldsy = g(a), which proves the claim. i.e., P is symmetric.

Two different elementss?(®) XazaMy aa’) xa' za'M, ¢ In the next step we perform column operations in order to
So commute, since the symplectic inner product] (10) afbtain a matrix of the forn{/|C’) whereC' is symmetric and
(a,aM,) and (a’, a’ M,) vanishes as the matri¥/, is sym- all entries on the diagonal @ are zero. The code generated
metric. As the rank of the matri® is assumed to bg, there by (7|C) is equivalent toD, and in particular, it contains a
aren — k different vectors: that satisfy the constraint. Hencesubcode that is equivalent & Let this subcode be generated
the group generated by, has at leasp™ " elements. by D-(I|C). Furthermore, leB be ak xn parity check matrix

A projection onto the joint eigenspade; C H®™ with for the linear codgn,n — k| overF,, generated byD. Then
eigenvaluel of the operators irf generating the grouf is  the matrix

given by L ( 0 | B )
- t
Mes is of the form [T). The entries df are elements df, which
The dimension ofFE; is bounded from above bgtim E; = can be interpreted as integers modploAs I is symmetric

trP = p"/|S| < p"/|So| = p*. Since E; contains@ and and the diagonal entries are zeidjs the adjacency matrix
dim @ = p¥, this shows that?; = ). We can conclude that of a weighted undirected graph. Repeating the arguments of

Q is a stabilizer code. Section] and Sectionll, it can be shown that the graphical
Omitting the phase factors?(®), we obtain an equivalent quantum code defined Wy is equivalent taC. Hence, for any
code @’ whose stabilizer group is stabilizer code oveF,~ there exists an equivalent graphical

guantum code.
Sqr = {X*Z*Mv: a € (B)* = (D)}. (15)

Here(B)1 = (D) denotes the linear space of elements N V. EXAMPLES
such thatBa = 0, and the(n — k) x n matrix D is formed by
a basis of that space. The stabilizer grdiyp gives rise to a
symplectic code oveF, x [, [7]. This code is generated by Consider the highly symmetric graph depicted in Fiy. 1.
the matrixD(I + a - M) where{1,a} is a basis off . over This graph is called the wheél’;. All edges in this graph
F,. Additionally, we have used the isomorphismIgf x F, have the same weight, hence its adjacency matrix is given by
andF,. as vector spaces.

A. The stabilizer of a graphical quantum code

oj1r 1 1 1 1 1 1
1{0 1. 0 0 0 O 1
IV. THE GRAPH OF A STABILIZER CODE 11 01 0 0 0 O

In [1] it is shown that any stabilizer code that is defined via Tw, = } 8 (1) (1) (1) (1) 8 8 ,
a code ovelf,~ can be regarded as a stabilizer code dvgr 110 001 0 1 0
Hence it is sufficient to consider stabilizer codes over aspa 110 0 0 01 0 1
‘H of prime dimension. Those codes correspond to symplectic 1710 0 0 0 1 0

codes oveilf,. [7].

Let C be a symplectic code ovét,. which is generated by
the matrixX + aZ =: (X|Z) where{1, o} is a basis off
overF, and X, Z € F"**". Furthermore, leC* denote
the orthogonal code af with respect to the symplectic inner

product onF,. As C < C*, there exists a self-dual code G = D - (I|M,)

where we have indicated the block structure as in[dg. (7). The
7 x 1 submatrixB corresponds to the repetition code, so the

matrix D (cf. eq. [I5)) generates the even weight code of

length 7. Using the notation of(16), we obtain

D with C < D = D+ < C*. Identifying Fpe and ]Fg" and 100000 1]/1 100011

rearranging the coordinates, we can choose a generatdk matr 01 0000100100710

for D of the form o 0010O0O0OT1T1 101010
B 0 0010 O0T1Tj]1 01 0110 ’

X | Z 000010 1/1 001000

G’i—(”ﬂ’)—("f ~>- (16) 00000T1T1|1 000111

where M, is the lower right7 x 7 submatrix ofI'y,. The

The group of isometries of the symplectic spage that addi- . . .
tionally preserve the Hamming weight is given by the Wreat(l;]orrespondlng additive code oveiF(4) [2] is generated by

product of the symplectic groufp,(p) and the symmetric

[\

2

a a 0 0 0 a «
group S,, [7]. The symmetric group acts on the generator 0 1 a 0 0 o 1
matrix (I8) by simultaneously permuting columnsX%f and Go=| @ @ Ia 0 o 1
Z'. The elements ofp,(p) operate from the right on the @ 0 ol a o 1 |7
i column of the submatrixX and thei™ column of the g 8 8 g i 0?2 a12

submatrixZ. On the rows of’ operates the full linear group.
Similar to GauR’ algorithm,G’ can assumed to be of thewherea denotes a primitive element ¢¥F(4). The additive
form G’ = (I|P) [4]. As D is self-dual with respect to the codeC, = (7,2°) generated by, is notGF(4)-linear asG,
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Fig. 1. The wheeW7 with 7 vertices of degree 3 yields[&, 1, 3] QECC.
has ranks over GF(4). The weight distribution of”; and its
dual Cj- are

We, (x,y) = o7 + 2123y* + 4229°
. . 5 Fig. 2. Four non-isomorphic graphs which yield graphicahmum codes
Wcj (z,y) = 2" + 21y’ + 212°y" +1262%y° + 4209° + 4597, that are equivalent to the CSS cofig 1, 3].

Thus the corresponding stabilizer code has minimum dis-

tance3. In our example, the matriB! is given by the last column of
T. This leads to the adjacency matrix
0[0 1.0 0 0 1 1
B. The graph of a stabilizer code 0j0 0 1 1 1 00
10 01 0 1 0 O
Consider the CSS code (cf. [3], [10])7,1,3] derived T Hamming = g } (1) g 8 8 } (1)
from the[7,4, 3] Hamming code oveF,. The corresponding ol1 1 00 0 0 1
additive codeC; is generated by 110 01 1.0 0 0
10 0 01 1 0 O
100 1 011 “ " ; ;
0101110 Note that the “normal” form[(17) is not unique, wherefore the
001011 1 corresponding graph is not unique either. In fij. 2 we have

100 10 1 1 [ depicted four obviously non-isomorphic graphs which adide
0101110 to graphical quantum codes that are equivalent to the CSS
0010111 ; ; ;

code[7,1, 3]. The lower right graph is a permuted version of
Hamming AS in Fig.[1, the first node is drawn as an open circle.
Lirthermore, none of the graphs reflects the cyclic symmetry
of the quantum code.

which has block diagonal form. In order to obtain a generatg
matrix G’ for the self-orthogonal cod® with ¢ < D < C*t,
we have to add a non-zero vector of the complemerd of
C* to G. In our example, we choose the all-ones vector. Next

we transformG’ into the form(I|C') whereC' is symmetric. VI. CONCLUSIONS

We obtain We have shown that any stabilizer code over a finite field
has an equivalent representation as a graphical quantuen cod
(e)y=17-G¢" -8 Unfortunately, this representation is not unique, neitthees
10000000011 100 it reflect all the properties of the quantum code. Howeve, th
0100000001010°0 construction of good quantum codes with the help of graphs
001 0O0O0O0O|1L1TO0O0UO0T1OQ0 . .

—looo1000/l1000011 is a promising avenue for further research. It should bechote
0000 7100l1 10000 1| thatindependent of this work, Dirk Schlingemann has also
000O0OOT1O0|0O0T1TT1O0TUO0O0 established the equivalence of graphical quantum codes and
0000O0O0OT1j00O01T1O00O0 a7 stabilizer codes [8].

whereS € Sp2(2)1S7, andT € GL7(2) is given by ACKNOWLEDGMENTS
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