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ABSTRACT
We define a distance of two graphs that reflects the
closeness of both local and global properties. We also
define convergence of a sequence of graphs, and show
that a graph sequence is convergent if and only if it is
Cauchy in this distance. Every convergent graph sequence
has a limit in the form of a symmetric measurable func-
tion in two variables. We use these notions of distance
and graph limits to give a general theory for parameter
testing. As examples, we provide short proofs of the
testability of MaxCut and the recent result of Alon and
Shapira about the testability of hereditary graph properties.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete mathemat-
ics—Graph theory
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1. INTRODUCTION
Imagine that we have a huge graph G, so large that we

cannot describe it completely in any way. All we can do is
sample a bounded number of nodes of G and look at the
subgraph induced by them. What can we learn about G?

There are two related, but slightly different ways of asking
this question, property testing and parameter testing. Our
main concern here will be parameter testing; we’ll show one
way to obtain results about property testing from this, by
considering the “edit distance” from the property as a pa-
rameter.

Parameter testing is easier to state. We may want to de-
termine some parameter of G, say what is the edge density?
Or how large is the density of the maximum cut? Of course,
we’ll not be able to determine the exact value of this param-
eter; the best we can hope for is that if we take a sufficiently
large sample, we can find the approximate value of the pa-
rameter with large probability.

To be precise, a graph parameter f is testable, if for every
ε > 0 there is a positive integer k such that if G is a graph
with at least k nodes and we select a set X of k independent
uniform random nodes of G, then from the subgraph G[X]

induced by them we can compute an estimate f̃(G[X]) of f
such that

P(|f(G)− f̃(G[X])| > ε) < ε.

It is an easy observation that we can always use f̃(G[X]) =
f(G[X]) (cf. [14]).

As a basic example, consider the density of maximum cuts
(i.e., the number maxcut(G) = MaxCut(G)/|V (G)|2, where
MaxCut(G) is the size of the maximum cut in G). One of
the first substantial results on property testing [13, 7] is
that this parameter is testable. It is relatively easy to see
(using high concentration results like Azuma’s inequality)
that if S is a sufficiently large random subset of nodes of
G, then maxcut(G[S]) ≥ maxcut(G) − ε: a large cut in G,
when restricted to S, gives a large cut in G[S]. It is much
harder, and in fact quite surprising, that if most subgraphs
G[S] have a large cut, then so does G.



Instead of estimating a numerical parameter, we may want
to determine some property of G: Is G 3-colorable? Is it con-
nected? Does it have a triangle? The answer will of course
have some uncertainty. A precise definition was given by
Rubinfeld and Sudan [18] and by Goldreich, Goldwasser and
Ron [13], who also proved several fundamental results about
this problem. (In the slightly different context of “additive
approximation”, closely related problems were studied by
Arora, Karger and Karpinski [7].) The standard definition
is as follows. A property P is said to be testable if, for
every ε > 0, there is a positive integer k such that for all
graphs G on at least k nodes, the following holds: If X is
a k-node random subset of G, then, with high probability,
the induced subgraph G[X] has the property P whenever
G has the property, and G[X] does not have the property
whenever G is ε-far from having the property. Here we say
that a graph G on n nodes is ε-far from having the property
P if all graphs G′ which differ from G on at most εn2 edges
do not have the property P.

Graph property testing has a large literature; see e.g. [11]
for a survey. Many extensions deal with situations where
we are allowed to sample more than a constant number of
nodes of the large graph G; our concern will be the original
setup, where the sample size is bounded. In this direction, a
surprisingly general result was proved very recently by Alon
and Shapira [5, 6]: they showed that every hereditary graph
property is testable; more generally, the “edit distance” to
a hereditary property is a testable parameter.

We develop a general theory of parameter testing, based
on the notions of convergent graph sequences (introduced by
Lovász and Szegedy [15]) and graph distances (introduced
by Borgs, Chayes, Lovász, Sós and Vesztergombi [9]).

In Section 3, we introduce a notion of “distance” of two
graphs that is suitable for the study of parameter testing. In
Section 4, we define the notion of convergence of graphs and
characterizations of the limit object. Informally, convergent
sequences will be just those sequences that are Cauchy in
this metric, and testable parameters will be just those graph
parameters that are continuous in this metric.

As an illustration of our results, we show how the testa-
bility of the density of maximum cut (and extensions to
multiway cuts) follows from our results, and sketch a rea-
sonably simple way to derive the recent result of Alon and
Shapira mentioned above.

2. PRELIMINARIES: GRAPH HOMO-
MORPHISMS

A graph parameter is a function defined on simple graphs
that is invariant under isomorphism.

For two graphs G and H, a homomorphism from G to H
is an adjacency preserving map V (G) → V (H). When G
is large and H is small, a homomorphism from G to H is
often called an H-coloring of G. Let hom(G, H) denote the
number of homomorphisms from G to H.

Let G be a graph on n nodes, and F be a graph on k nodes.
We define t(F, G) to be the probability that a random map
of V (F ) into V (G) is a homomorphism, i.e.,

t(F, G) =
hom(F, G)

nk
.

We call t(F, G) the homomorphism density (of F in G).
Sometimes it is more convenient to consider the number

of injective homomorphisms inj(F, G), and the number of

embeddings as induced subgraphs, ind(F, G). The corre-
sponding densities are defined by

tinj(F, G) =
inj(F, G)

n(n− 1) . . . (n− k + 1)

and

tind(F, G) =
ind(F, G)

n(n− 1) . . . (n− k + 1)
.

These quantities don’t carry much new information: if G is
large enough then tinj(F, G) ≈ t(F, G), and tind(F, G) can
be expressed in terms of tinj(F, G) by inclusion-exclusion.

We extend these notions to the case when the target graph
G is weighted. A weighted graph G is a graph with a weight
αi(G) associated with each node and a weight βij(G) as-
sociated with each edge ij. In this paper we assume that
αi(G) > 0 and 0 ≤ βij(G) ≤ 1. An edge with weight 0 will
play the same role as no edge between those nodes. The ad-
jacency matrix of a weighted graph is obtained by replacing
the 1’s in the adjacency matrix by the weights of the edges.
Let αG =

∑
i∈V (G) αi(G) denote the total nodeweight of G.

An unweighted graph is a weighted graph where all the node-
and edgeweights are 1.

The notion of homomorphisms can be easily extended to
the case when the target graph G is weighted:

hom(F, G) =
∑

φ: V (F )→V (G)

∏

u∈V (F )

αφ(u)(G)

×
∏

uv∈E(F )

βφ(u),φ(v)(G)

where the sum runs over all maps from V (F ) to V (G). The
homomorphism density is now defined as

t(F, G) =
hom(F, G)

αG
|V (F )| .

Example 1 If G is a simple graph, then hom(K3, G) is 6
times the number of triangles in G. So t(K3, G) is the tri-
angle density.

Example 2 If F is a simple graph, then hom(F, Kq) is the
number of q-colorations of the graph G.

Example 3 Let G consist of two nodes, connected by an
edge, and with a loop at one of the nodes. Then hom(F, G)
is the number of independent sets of nodes in F .

Example 4 Let G consist of two nodes, connected by an
edge with weight 2, and with a loop of weight 1 at each of
the nodes. Then

|MaxCut(F )− log2 hom(F, G)| = O(|V (F )|),
so except for sparse graphs, log2 hom(F, G) gives a very good
approximation for the maximum cut in G.

3. DISTANCES OF GRAPHS

3.1 Definition of graph distances
We want to define a measure of similarity of two large

graphs. There is more than one very reasonable definition;
but one of these, the “rectangle” or “cut” distance, will be
particularly useful.



We have to proceed in two steps. It is easier to define the
distance when the two graphs have the same set of nodes;
but then we have to deal with finding the optimal overlay.
It turns out that it is worth extending the arguments to
“fractional overlays” (in the spirit of fractional solutions to
integer programs, often used in combinatorial optimization).

3.1.1 Labeled graphs
Let G and G′ be two unweighted labeled graphs with the

same set of n of nodes. We want to define a notion of dis-
tance between them that reflects structural similarity. A
natural distance measure is the “edit distance”:

dedit(G, G′) =
|E(G)4E(G′)|

n2
,

where for convenience we divided by n2, so that the distance
of two graphs is always between 0 and 1.

This distance notion is, however, often too restrictive: For
example, the distance of two random graphs with the same
density is of constant order (with large probability), even
though two random graphs are structurally very similar.
For our purposes, the following distance function between
unweighted labeled graphs will be more useful:

d¤(G, G′) =
1

n2
max

S,T⊆{1,...,n}
|eG(S, T )− eG′(S, T )|,

where eG(S, T ) is the number of edges joining S and T (with
the edges in S ∩ T counted twice, so that eG(S, S) is twice
the number of edges in G). Note that we are dividing by n2

and not by |S| · |T |, so the contribution of a pair S, T is at
most |S| · |T |/n2. Thus small sets of size o(n) play no role
when measuring the distance.

If G is weighted, let

eG(S, T ) =
∑
i∈S

∑
j∈T

αi(G)βij(G)αj(G).

For the case when G and G′ have the same nodeweights, we
define

d¤(G, G′) =
1

α2
G

max
S,T⊆{1,...,n}

|eG(S, T )− eG′(S, T )|.

There are several versions of the d¤ distance that differ
from each other only by absolute constant factors. For ex-
ample, we could restrict the maximization in the definition
to S = T . Another notable variation is obtained by consider-
ing an appropriate semidefinite relaxation of the maximiza-
tion problem involved in the definition. The fact that this
only changes by a factor of at most 2.78 . . . is equivalent to
Grothendieck’s inequality in functional analysis. This shows
that d¤(G, G′) can be computed in polynomial time up to
an absolute constant factor (see [4]).

3.1.2 Unlabeled graphs with the same number of
nodes

Now assume that G and G′ are unlabeled graphs on n
nodes with nodeweights 1. We then define

δ̂¤(G, G′) = min
G̃,G̃′

d¤(G̃, G̃′),

where G̃ and G̃′ range over all labelings of G and G′, respec-
tively.

Consider any labeling that attains the minimum in this
definition, and identify the nodes of G and G′ with the same

label. In this case, we say that G and G′ are optimally
overlaid.

3.1.3 Unlabeled graphs with different number of
nodes

To define the distance of two unlabeled graphs with dif-
ferent number of nodes, say G with n nodes and G′ with
n′ nodes, a first idea is to blow up each node of G into
n′ twins, and each node of G′ into n twins, so that both
graphs now will have nn′ nodes. Here, as usual, two nodes
in a graph are called twins if they have the same neighbor-
hood. An improved version of this idea is to match up the
nodes “fractionally”.

It will be convenient to consider weighted graphs G and
G′ right away, and assume that the sum of nodeweights is
1 (just scale the nodeweights of each graph). Let X be a
nonnegative n× n′ matrix such that

n′∑
u=1

Xiu = αi and

n∑
i=1

Xiu = α′u.

We think of Xiu as the portion of node i that is mapped
onto node u. We call such a matrix X a fractional overlay
of G and G′, and use X (G, G′) to denote the set of all these
fractional overlays. If we view α(G) and α(G′) as proba-
bility distributions on V (G), then every X ∈ X (G, G′) is a
coupling of these distributions.

For each fractional overlay, we construct the following two
weighted graphs, G[X] and G′[X>]. The nodes of G[X] are
all pairs (i, u) where 1 ≤ i ≤ n and 1 ≤ u ≤ n′. The weight
of the node (i, u) is Xiu, the weight of the edge ((i, u), (j, v))
is βij . The other graph G′[X>] is defined similarly, except
that the roles of i and u are interchanged.

Now the node sets of G[X] and G′[X>] are labeled by the
same set of pairs (i, u), and they have the same nodeweights,
so their d¤ distance is well defined. Minimizing over all frac-
tional overlays, we therefore obtain a well-defined distance
between any two weighted unlabeled graphs G and G′ each
with total nodeweight 1:

δ¤(G, G′) = min
X∈X (G,G′)

d¤(G[X], G′[X>]).

This distance can be expressed in terms of the original
graphs G and G′ according to

δ¤(G, G′) = min
X∈X (G,G′)

max
S,T⊆V×V ′∣∣∣

∑
(i,u)∈S
(j,v)∈T

XiuXjv(βij(G)− βuv(G′))
∣∣∣.

If G or G′ do not have total nodeweight 1, we define their
distance as the distance of the rescaled graphs G̃ and G̃′

obtained from G and G′ by dividing the nodeweights of G
and G′ by αG and αG′ , respectively.

Of course, the above definition also applies if G and G′ are
simple graphs with the same number of nodes, but it may
give a different value than discussed above in section 3.1.2.

It is trivial that δ¤(G, G′) ≤ δ̂¤(G, G′). An inequality in
the other direction also holds [9], so that

δ¤(G, G′) ≤ δ̂¤(G, G′) ≤ Cδ¤(G, G′)1/4 (1)

with an absolute constant C. We believe that a much
stronger bound holds, probably

δ¤(G, G′) = Ω(δ̂¤(G, G′)).



This notion of graph distance allows us to give a very sim-
ple formulation of Szemerédi’s Regularity Lemma, at least
in its weaker (but more effective) form given by Frieze and
Kannan [12]. For a graph G and partition P = (V1, . . . , Vk)
of V (G), define the weighted complete graph GP for which
V (GP) = V (G) and every u ∈ Vi and v ∈ Vj is connected
by an edge with weight eG(Vi, Vj)/(|Vi| · |Vj |).

Lemma 3.1 (Frieze-Kannan) For every graph G and ev-

ery ε > 0, there exists a partition of V (G) with at most 22/ε2

classes such that d¤(G, GP) ≤ ε.

(At the cost of increasing the bound on |P|, we could assume
that the classes of P have equal size.)

Corollary 3.2 For every graph G and every ε > 0, there

exists a weighted graph H with at most 22/ε2
nodes such that

δ¤(G, H) ≤ ε.

The following inequality was proved in [15]; it is also
closely related to the “Counting Lemma” in the theory of
Szemerédi partitions:

Lemma 3.3 For any pair of weighted graphs G, G′ and any
simple graph F ,

|t(F, G)− t(F, G′)| ≤ |E(F )| · δ¤(G, G′).

It will be more convenient to prove this inequality after
we introduce the “limit objects” in Section 4.

3.2 The distance of a sample
The following lemma is a consequence of a more general

result in [2]; see also [9] for a simpler proof of a weaker
version (which would still be enough for us).

Lemma 3.4 Let G1 and G2 be two weighted graphs on
the same set of nodes V with nodeweights 1, and let ε =
d¤(G1, G2). Let δ > 0, k ≥ 1010 log(2/ε)/(ε4δ5), and let S
be a random k-subset of V . Then with probability at least
1− δ,

2−10ε ≤ d¤(G1[S], G2[S]) ≤ 107ε/
√

δ.

Now we come to the main theorem about sampling.

Theorem 3.5 Let G be a simple graph, let ε, δ > 0 and

k ≥ 2Θ(1/(δε2)). Let S be a random k-subset of V . Then
with probability at least 1− δ,

δ¤(G, G[S]) ≤ ε.

Proof. We use the weak Regularity Lemma 3.1. Let P
be a partition of V (G) with q = 22/(ε

√
δ10−8)2 classes so

that d¤(G, GP) ≤ ε
√

δ10−8. Consider a random subset S
of V (G) with k elements. Then

δ¤(G, G[S]) ≤δ¤(G, GP) + δ¤(GP , GP [S])

+ δ¤(GP [S], G[S]). (2)

On the right hand side, the first term is at most ε
√

δ10−8 ≤
ε10−8 by the the choice of P. To estimate the second term,
notice that both GP and GP [S] are obtained by blowing up
the same weighted graph H with q nodes (we may assume
that αH = 1): in GP , we blow up each node i ∈ V (H) into

a set Vi with |Vi| = αi(H)|V (G)|; in GP [S], we blow up
each node into |Vi ∩ S| nodes. Since S is a random sample,
with large probability all these sizes will be close to their
expectation, which in turn is closed to αik provided k/n
is small. Blowing up each node of GP [S] into |V (G)|/k
copies, we get a graph H ′ that can also be obtained from H
by blowing up each node i into approximately αi(H)|V (G)|
copies. This argument can be made precise by choosing
appropriate fractional overlays, leading to the estimate

δ¤(GP , GP [S]) = δ¤(GP , H ′) ≤ 2

q∑
i=1

∣∣∣αi − 1

k
|S ∩ Vi|

∣∣∣.

Using standard second moment bounds, the right hand side
can be made smaller than ε/3 with probability at least 1−
δ/2 provided k = O(εn) and q = O(δε2k).

Finally, to see that the third term in (2) is at most ε/3,
we invoke Lemma 3.4: this says that the samples G[S] and
GP [S] are close in the d¤ metric, completing the proof for
k = O(εn). The case k ≥ εn is much easier and left to the
reader, see also [9].

Corollary 3.6 For every simple graph G and ε > 0 there

is simple graph H with at most 2Θ(1/ε2) nodes such that

δ¤(G, H) < ε.

This corollary can be thought of as a strengthening of
the (weak) Szemerédi lemma in two directions. First, it
says that the approximating weighted graph can have 0-1
weights; second, that it can be obtained just by drawing a
random sample. The theorem also explains why parameter
testing works: if a parameter is “continuous” in the δ¤ met-
ric, then with large probability, it will not change much if G
is replaced by the random sample G[S].

In terms of metric spaces, Corollary 3.6 says that the set

of simple graphs with at most 2c/ε2
nodes form an ε-net in

the metric space of all simple graphs with the metric δ¤.

4. CONVERGENT GRAPH SEQUENCES
AND THEIR LIMITS

4.1 Definitions
Let (Gn) be a sequence of unweighted simple graphs.

Throughout this paper we assume that |V (Gn)| → ∞.
We say that this sequence is convergent, if the sequence
t(F, Gn) has a limit for every simple graph F . Note that
it would be enough to assume this for connected graphs F ;
indeed, if F1, . . . , Fk are the connected components of F ,
then t(F, Gn) =

∏
i t(Fi, Gn), and so if each factor here is

convergent, so is t(F, Gn). Furthermore, it is not hard to see
that instead of t(F, Gn), we could stipulate the convergence
of tinj(F, Gn) or tind(F, Gn).

This notion of convergence corresponds to the notion of
distance we have introduced [9]:

Theorem 4.1 A graph sequence (Gn) is convergent if and
only if it is Cauchy in the δ¤ metric.

A “finite” implication of this theorem is that if two huge
graphs on the same number of nodes have approximately
the same subgraph densities, then they can be overlaid so
that they will be close in the d¤ distance. Note that this
statement provides a certain converse to Lemma 3.3.



Proof. The “if” part of this result follows immediately
from Lemma 3.3. To prove the “only if” part, consider a
convergent graph sequence (Gn). It is easy to see that this
implies that tind(F, Gn) has a limit for every F , which is
equivalent to saying that for every fixed k, the distribution
of Gn[Sn] (where Sn is a random k-subset of V (Gn) ) has
a limit, so there is an n0 such that for n, m ≥ n0, the total
variation distance of the distributions of Gn[Sn] and Gm[Sm]
is less than ε/3, implying that we can couple them in such a
way that δ¤(Gn[Sn], Gm[Sm]) = 0 with probability at least
1 − ε/3. By Theorem 3.5, if we choose k large enough, we
have that for each n

δ¤(Gn, Gn[Sn]) ≤ ε

6
,

and each m

δ¤(Gm, Gm[Sm]) ≤ ε

6

with probability at least 1− ε/3, and so with probability at
least 1−2ε/3, we have that δ¤(Gn, Gm) ≤ δ¤(Gn, Gn[Sn])+
δ¤(Gm, Gm[Sm]) ≤ ε/3.

One can define a “limit object” for every convergent graph
sequence; in fact, there are several quite different and useful
descriptions of the limit object [15]. In this extended ab-
stract, we are going to use the following. Let W denote the
set of all bounded measurable functions W : [0, 1]2 → R
such that W (x, y) = W (y, x) for all x, y ∈ [0, 1], and let
W0 = {W ∈ W : 0 ≤ W ≤ 1}. Let W ∈ W0, and let F be
a simple graph with V (F ) = {1, . . . , k}. We define

t(F, W ) =

∫

[0,1]k

∏

ij∈E(F )

W (xi, xj) dx.

It is easy to see that for every weighted graph H with
αH = 1, the graph parameter t(., H) is a special case: we
consider the adjacency matrix of H, and replace each entry
(i, j) by a square of size αi(H) × αj(H) with the constant
function βij on this square. The function WH obtained this
way satisfies WH ∈ W0, and

t(F, H) = t(F, WH)

for every simple graph F .
It was proved in [15] that

Proposition 4.2 For every convergent graph sequence
(Gn) there is a function W ∈ W0 such that

lim
n→∞

t(F, Gn) = t(F, W )

for every finite simple graph F .

We call this function W the limit of the sequence (Gn).
Note that the limit is not uniquely determined. For example,
the function W (1 − x, 1 − y) also satisfies the conditions.
We’ll return to this question later.

4.2 Examples

Example 5 (Random graphs) Let G(n, p) be a random
graph on n nodes with edge-density 0 ≤ p ≤ 1; then it is not
hard to prove (using high concentration results) that the se-
quence (G(n, p), n = 1, 2, . . . ) is convergent with probability

1. In fact, t(F,G(n, p)) converges to p|E(F )| with probabil-
ity 1, and so (with probability 1) the limit of G(n, p) is the
constant function W = p.

Example 6 (Quasirandom graphs) A graph sequence is
quasirandom with density p if and only if it converges to the
constant function p (cf. [10] for the definition and various
characterizations of quasirandom graph sequences).

Example 7 (Half-graphs) Let Hn,n denote the bipartite
graph on 2n nodes {1, . . . , n, 1′, . . . , n′}, where i is connected
to j′ if and only if i ≤ j. It is easy to see that this sequence
is convergent, and its limit is the function

W (x, y) =

{
1, if |x− y| ≥ 1/2,

0, otherwise.

Example 8 (Uniform attachment) Various sequences
of growing graphs, motivated by (but different from)
internet models, are also convergent. We define a uniform
attachment graph sequence: if we have a current graph Gn

with n nodes, then we create a new isolated node, and then
for every pair of previously nonadjacent nodes, we connect
then with probability 1/n.

One can prove that with probability 1, the sequence (Gn)
has a limit, which is the function W (x, y) = min(x, y). From
this, it is easy to calculate that with probability 1, the edge-
density of Gn tends to

∫
W = 1/3. More generally, the

density of copies of any fixed graph F in G(n) tends (with
probability 1) to t(F, W ), which can be evaluated by a sim-
ple integration.

4.3 Some properties of limit functions

4.3.1 W -random graphs
Every function in W0 arises as a limit. One proof of this

fact is through the construction of certain random graphs
that are of interest in their own right. Given a function
W ∈ W0 and an integer n > 0, we can generate a W -random
graph G(n, W ) on nodes {1, . . . , n} as follows: We generate
n independent samples X1, . . . , Xn from the uniform distri-
bution on [0, 1], and for all i, j ∈ {1, . . . , n}, we connect i
and j by an edge ij with probability W (Xi, Xj) (making
an independent decision for every pair). Using Azuma’s in-
equality, one can prove [15]:

Theorem 4.3 The graph sequence G(n, W ) is convergent
with probability 1, and its limit is the function W .

4.3.2 Distances of functions
An analogue of the d¤ distance can be defined for func-

tions U, W ∈ W0; in fact, it can be defined as a norm:

‖U‖¤ = sup
S,T⊆[0,1]

∣∣∣
∫

S×T

U(x, y) dx dy
∣∣∣

(the distance of two functions U, W is ‖U −W‖¤). Recall
that the standard L1 norm is defined as

‖U‖1 =

∫

[0,1]2
|U(x, y)| dx dy

so that

‖U‖¤ ≤ ‖U‖1. (3)

It is not hard to see that this norm could also be defined by

‖U‖¤ = sup
f,g

∣∣∣
∫

[0,1]2
f(x)g(y)U(x, y) dx dy

∣∣∣,

where f, g : [0, 1]2 → [0, 1] are integrable functions.



Analogously to graphs, we define a version which corre-
sponds to the best “overlaying”. We define a measure pre-
serving bijection as a bijective map φ : [0, 1] 7→ [0, 1] such
that both φ and φ−1 are measurable and λ(φ(U)) = λ(U)
for every measurable set U ⊆ [0, 1] (where λ is the Lebesgue
measure). For W ∈ W0, we define W φ by W φ(x, y) =
W (φ(x), φ(y)). With this notation, let

δ¤(U, W ) = inf
φ
‖Uφ −W‖¤,

and

δ1(U, W ) = inf
φ
‖Uφ −W‖1

where φ ranges over all measure preserving bijections
[0, 1] → [0, 1].

Both δ1 and δ¤ are symmetric (δ¤(U, W ) = δ¤(W, U)),
and they satisfy the triangle inequality. However, they are
only semimetrics, because different functions can have dis-
tance 0. To get a metric space, we have to identify pairs of
functions at distance 0. We’ll not carry this out formally.

To justify the above notation, we note that

δ¤(G1, G2) = δ¤(WG1 , WG2).

An argument similar to the proof of Theorem 4.1 gives that
the sequence (Gn) of graphs converges to W if and only if
δ¤(WGn , W ) → 0 as n → ∞. Furthermore, if W is a limit
of the convergent sequence (Gn), then so is every function
U with δ¤(U, W ) = 0.

The δ¤ distance can be used to bound differences in sub-
graph densities, generalizing Lemma 3.3:

Lemma 4.4 Let U, W : [0, 1]2 → [0, 1] be two symmetric
integrable functions. Then for every simple finite graph F ,

|t(F, U)− t(F, W )| ≤ |E(F )| · δ¤(U, W ).

Proof. Since the left hand side is invariant under
measure-preserving transformations, it suffices to prove the
seemingly weaker inequality

|t(F, U)− t(F, W )| ≤ |E(F )| · ‖U −W‖¤.

Let V (F ) = [n] and E(F ) = {i1j1, . . . , imjm}. Then

t(F, U)− t(F, W )

=

∫

[0,1]n

( m∏
t=1

W (xit , xjt)−
m∏

i=1

U(xit , xjt)
)

dx.

We can write the integrand as

m−1∑
s=0

( ∏

t≤s−1

W (xit , xjt)
)(∏

t>s

U(xit , xjt)
)
×

× (W (xis , xjs)− U(xis , xjs)).

To estimate the integral of a given term, let us fix all vari-
ables except xis and xjs ; then the integral is of the form

∫

[0,1]2
f(xis)g(xjs)(W (xis , xjs)− U(xis , xjs)),

where 0 ≤ f, g ≤ 1. which is at most ‖U −W‖¤. Hence the
whole integral of the term is at most ‖U −W‖¤, and so

|t(F, U)− t(F, W )| ≤ m‖U −W‖¤.

Using this lemma and an argument similar to the proof of
Theorem 4.1, we get the following convergence criterion:

Theorem 4.5 Let W ∈ W0 and Wn ∈ W0 (n = 1, 2, . . . ).
Then δ¤(Wn, W ) → 0 if and only if t(F, Wn) → t(F, W ) for
every simple graph F .

This theorem contains a certain converse of Lemma 4.4:
it says that if two functions have approximately the same
subgraph densities t(F, W ), then they are almost equal up
to a measure-preserving transformation.

4.3.3 Compactness
Using the (weak) Regularity Lemma 3.1, one can prove

[17] that

Theorem 4.6 The metric space (W0, δ¤) (where functions
at distance 0 are identified) is compact.

It turns out that stronger forms of the regularity lemma
can in turn be derived from this compactness theorem.

4.3.4 Connections between the two distances
The distance δ¤ is quite different from the distance δ1.

Let Gn = G(n, 1/2) be a random graph on n nodes with
density 1/2. As we have seen in Example 5, this sequence is
convergent with probability 1, and its limit is the function
W ≡ 1/2. This means that

δ¤(WGn , W ) = ‖WGn −W‖¤ → 0

(since the function W is constant, measure-preserving trans-
formations don’t change ‖WGn − W‖¤). On the other
hand, WGn − W has value ±1/2 everywhere, and hence
δ1(WGn , W ) = ‖WGn − W‖1 = 1/2. It is easy to see that
no subsequence of this sequence has a limit in the δ1 metric,
which also implies that Theorem 4.6 does not hold for the
δ1 distance.

But there are some more subtle relations between the δ1

and δ¤ distances. Inequality (3) implies that δ¤ is a con-
tinuous function with respect to the metric δ1. It is much
less trivial that the distance δ1 is lower-semi-continuous with
respect to the metric δ¤ [17]:

Lemma 4.7 Suppose that both δ¤(Wn, W ) → 0 and
δ¤(Un, U) → 0 as n → ∞ (where U, W, Un, Wn ∈ W0).
Then δ1(U, W ) ≤ lim infn δ1(Un, Wn).

Proof. Let ε > 0. There exist stepfunctions Y and Z
such that ‖U − Y ‖1 ≤ ε and ‖W − Z‖1 ≤ ε. Let Y and Z
have at most k steps.

We may assume (by applying a measure-preserving trans-
formation to Un and Wn) that δ¤(Un, U) ≤ ‖Un − U‖¤ +
ε/k4 and δ¤(Wn, W ) ≤ ‖Wn−W‖¤ +ε/k4 for all n. If m is
large enough, then ‖Wm−W‖¤, ‖Um−U‖¤ ≤ ε/k4, and fur-
thermore there exists a measure preserving transformation
π : [0, 1] 7→ [0, 1] such that ‖Um−W π

m‖1 ≤ δ1(Um, Wm)+ε.
There is a partition P of [0, 1] into at most k2 classes so that
both stepfunctions Y and Zπ are constant on S × T for all



S, T ∈ P. Then

‖Y − Zπ‖1 =
∑

S,T∈P

∣∣∣
∫

S×T

(Y − Zπ)
∣∣∣

≤
∑

S,T∈P

∣∣∣
∫

S×T

(Y − U)
∣∣∣ +

∑
S,T∈P

∣∣∣
∫

S×T

(U − Um)
∣∣∣

+
∑

S,T∈P

∣∣∣
∫

S×T

(Um −W π
m)

∣∣∣

+
∑

S,T∈P

∣∣∣
∫

S×T

(W π
m −W π)

∣∣∣

+
∑

S,T∈P

∣∣∣
∫

S×T

(W π − Zπ)
∣∣∣

≤ ‖Y − U‖1 + k4‖U − Um‖¤ + ‖Um −W π
m‖1

+ k4‖W π
m −W π‖¤ + ‖W π − Zπ‖1

≤ δ1(Um, Wm) + 7ε.

Hence

δ1(U, W ) ≤ ‖U −W π‖1
≤ ‖U − Y ‖1 + ‖Y − Zπ‖1 + ‖Zπ −W π‖1
≤ δ1(Um, Wm) + 9ε.

Since ε is arbitrary, this completes the proof.

Finally, we remark that convergence in the ‖.‖¤ implies
weak convergence in the following sense:

Lemma 4.8 Let W, W1, W2 · · · ∈ W0, and suppose that
‖Wn − W‖¤ → 0 as n → ∞. Then for every integrable
function Z : [0, 1]2 → R, we have
∫

[0,1]2
Z(x, y)Wn(x, y) dx dy →

∫

[0,1]2
Z(x, y)W (x, y) dx dy.

In particular,
∫

S

Wn →
∫

S

W

for every measurable set S ⊆ [0, 1]2.

Proof. If Z is the indicator function of a rectangle, this
follows from the definition of the ‖.‖¤ norm. Hence the
conclusion follows for stepfunctions, since they are linear
combinations of a finite number of indicator functions of
rectangles. Then it follows for all integrable functions, since
they are approximable in L1([0, 1]2) by stepfunctions.

5. CHARACTERIZATIONS OF TESTABLE
PARAMETERS

The following theorem [9] gives a number of equivalent
conditions characterizing testability of a graph parameter.

Theorem 5.1 For a simple graph parameter f , 0 ≤ f ≤ 1,
the following are equivalent:

(a) f is testable.

(b) For every ε > 0 there is an integer k0 such that for
every k > k0 and every graph G on at least k nodes, a
random set X of k nodes of G satisfies

|f(G)− E(f(G[X]))| < ε. (4)

(c) For every convergent graph sequence (Gn), the se-
quence of numbers (f(Gn)) is convergent.

(d) There exists a functional f̂(W ) on W0 that is contin-
uous in the δ¤ distance of functions, and extends f in the

sense that |f̂(WG)− f(G)| → 0 if |V (G)| → ∞.

(e) For every ε > 0 there is an ε0 > 0 and a positive inte-
ger n0 so that if G1 and G2 are two graphs with |V (Gi)| ≥ n0

and δ¤(G1, G2) < ε0, then |f(G1)− f(G2)| < ε.

If we want to use (e) to prove that a certain parameter is
testable, then the complicated definition of the δ¤ distance
may cause a difficulty. So it is useful to show that (e) can
be replaced by a weaker condition, which consists of three
special cases of (e):

Supplement 5.2 The following three conditions together
are also equivalent to the testability of f :

(e.1) For every ε > 0 there is an ε′ > 0 such that if
G and G′ are two simple graphs on the same node set and
d¤(G, G′) ≤ ε′ then |f(G)− f(G′)| < ε.

(e.2) Let G(m) denote the graph obtained from G by blow-
ing up each node into m twins. Then for every simple graph
G, f(G(m)) has a limit as m →∞.

(e.3) Let G+ be obtained from G by adding a single isolated
node. Then f(G+)− f(G) → 0 if |V (G)| → ∞.

Proof Sketch. (a)⇒(b): The definition of testability is
very similar to condition (b): it says, in this language, that
a random set X of k nodes of G as in (b) satisfies

|f(G)− f(G[X])| < ε

with large probability. This clearly implies that this differ-
ence is small on the average.

(b)⇒(c): Suppose that a sequence (Gn) is convergent,
then for any fixed k and sufficiently large n and m, and ran-
dom subsets X ⊆ V (Gn) and Y ⊆ V (Gm) with |X| = |Y | =
k, the distribution of Gn[X] is very close to the distribu-
tion of Gm[Y ]. Hence |E(f(Gn[X]) − E(f(Gm[Y ])| ≤ ε/3.
By (b), we can choose k large enough so that |f(Gn) −
E(f(Gn[X]))| ≤ ε/3 and |f(Gm)−E(f(Gm[Y ]))| ≤ ε/3, and
so |f(Gn)− f(Gm)| ≤ ε.

(c)⇒(a): If (a) fails to hold, then there exists an ε > 0
such that for every k there exists a graph Gk on at least k
nodes for which |f(Gk) − f(Gk[X])| ≥ ε holds with proba-
bility at least ε (where X is a random k-subset of V (Gk)).
By Theorem 4.6, we may assume that Gk is convergent,
and by Theorem 3.5 we know that if k is large enough,
then δ¤(Gk, Gk[X]) ≤ c(log k)−1/3 with probability at least
1− ε/2. Hence we can fix a k-subset Xk ⊆ V (Gk) such that
both

|f(Gk)− f(Gk[Xk])| ≥ ε (5)

and

δ¤(Gk, Gk[Xk]) ≤ c(log k)−1/3 (6)

hold. Now merging the sequences (Gk) and (Gk[Xk]), we
get a convergent graph sequence by (6), which violates (c)
by (5).

(c)⇒(d): Consider any W ∈ W0, and define f̂(W ) as
the limit of f(Gn), where (Gn) is any sequence of graphs



converging to W . It is not hard to check that this value
does not depend on the choice of the graph sequence, and
that it satisfies the conditions.

(d)⇒(c): Consider a convergent graph sequence (Gn), and
let W ∈ W be its limit. Then δ¤(WGn , W ) → 0 and so by

the continuity of f̂ , we have f̂(WGn) − f̂(W ) → 0. By

assumption, f(Gn)− f̂(WGn) → 0, and so f(Gn)− f̂(W ) →
0. This proves that (f(Gn)) is convergent.

(c)⇒(e): Suppose (e) does not hold, then there are two
sequences (Gn) and (G′n) of graphs so that δ¤(Gn, G′n) → 0
but |f(Gn) − f(G′n)| > c for some c > 0. By select-
ing a subsequence, we may assume that (Gn) is conver-
gent. Then Theorem 4.1 implies that the merged sequence
(G1, G

′
1, G2, G

′
2 . . . ) is convergent. But then the assumption

|f(Gn)− f(G′n)| > c contradicts (c).

As we have remarked before, (e) implies all three of (e.1),
(e.2) and (e.3). We conclude with sketching the proof that
(e.1), (e.2) and (e.3) imply (c). Suppose not, then there exist
two graph sequences (Gn) and (G′n) such that Gn, G′n → W ,
but |f(Gn)− f(G′n)| > c for some fixed c > 0.

By (e.1), there exists an ε > 0 such that if G and G′ are
two graphs on the same node set, and d¤(G, G′) ≤ ε, then
|f(G) − f(G′)| ≤ c/4. By Corollary 3.6, for every n there
is a simple graph Hn whose number of nodes k depends
only on ε such that δ¤(Gn, Hn) ≤ ε4/(3C) (where C is the
constant in (1)). By selecting an appropriate subsequence,
we may assume that Hn = H is the same graph for all n.
Since (Gn) and (G′n) have the same limit, it follows that
δ¤(G′n, H) ≤ ε4/(2C) for all n that are large enough.

Let us add to each Gn at most k−1 isolated nodes so that
the resulting graph G∗n has kmn nodes for some integer mn.
For n large enough, the mn-fold blow-up H[mn] of H then
satisfies

δ¤(G∗n, H[mn]) ≤ ε4/C,

and so by (1), for a suitable overlay of Gn and H[mn], we
have

d¤(G∗n, H[mn]) ≤ ε,

and so, by the definition of ε,

|f(G∗n)− f(H[mn])| ≤ c

4
.

Using (e.3), we see that f(G∗n)− f(Gn) → 0, and hence

|f(Gn)− f(H[mn])| ≤ c

3

if n is large enough. Similarly, H has a m′
n-node blow-up

H[m′
n] such that

|f(G′n)− f(H[m′
n])| ≤ c

3
.

But since H[mn] and H[m′
n] are blow-ups of the same graph

H, (e.2) implies that f(H[mn]) − f(H[m′
n]) → 0, a contra-

diction.

To illustrate the use of this theorem, let us consider the
density maxcut(G) of the maximum cut. Of the conditions
above, (b) and (c) do not seem easier to verify than the def-
inition of testability (a). Conditions (e.1–3), on the other
hand, are easy to verify: (e.1) is immediate from the def-
inition of the d¤ distance, and (e.3) is trivial. To prove

(e.2), notice that every cut in G yields a cut in G(m) with
the same density, so maxcut(G(m)) ≥ maxcut(G). Con-
versely, consider a maximum cut C in G(m). For each
node i ∈ V (G), select a node i′ from the set of m twins
in G(m) corresponding to i. The nodes i′ induce a copy of
G, in which the cut C induces a cut C′. It is easy to check
that the expected density of C′ is the density of C. Hence
maxcut(G(m)) = maxcut(G).

We could also use (d): the parameter maxcut extends to
functions in a natural way, so that the conditions in (d) are
easily verified.

However, we don’t get a polynomial bound (in 1/ε2) on
the sample size as obtained in [2]. It is not clear which
testable parameters can be tested by a polynomial sample
size.

6. HEREDITARY PROPERTIES
Let H be a hereditary graph property, i.e., a property

closed under removal of vertices. Let dedit(G,H) denote
the “edit distance” of the graph G from property H, i.e.,
the minimum number of edges to be changed in G (deleted
and/or added) to get a graph with property H. We need the
normalized version d1(G,H) = dedit(G,H)/|V (G)|2. The
following surprisingly general result was proved by Alon and
Shapira [6].

Theorem 6.1 (Alon and Shapira) For every hereditary
property H, the graph parameter d1(G,H) is testable.

Our goal here is to sketch the proof of this theorem based
on our analytic framework. One should point out that our
proof is not constructive, in contrast to the proof of Alon and
Shapira, which is constructive (but gives a “tower of towers”
dependence of the test size on the error, through the use of a
strengthened version of the Szemerédi Regularity Lemma).

6.1 The closure of a hereditary property
Let H denote the set of functions in W0 for which there

is a sequence (Gn) of graphs in H such that Gn → W . It
follows easily from Theorem 4.1 that H is closed in the δ¤
distance. This implies that H is invariant under measure-
preserving transformations.

Lemma 6.2 A function W ∈ W0 is in H if and only if the
W -random graph G(n, W ) ∈ H with probability 1 for every
n.

Proof. First, let W ∈ H, then there exists a sequence
Gn ∈ H such that Gn → W . Suppose that there is an n
such that with positive probability, G(n, W ) does not have
property H. Then there is a simple graph F /∈ H such that
G(n, W ) = F with positive probability. On the other hand,
we have tind(F, Gn) = 0 (since H is hereditary), which im-
plies that tind(F, W ) = 0, which means that the probability
that G(n, W ) = F is null.

Conversely, assume that G(n, W ) has property H with
probability 1. Since G(n, W ) → W with probability 1, it
follows that W ∈ H.

Corollary 6.3 If U ∈ H, and U ′ ∈ W0 is a function such
that U ′(x, y) = U(x, y) whenever U(x, y) ∈ {0, 1}, then U ′ ∈
H.



6.2 Conclusion of the proof

To show that d1(.,H) is testable, we verify condition (d)
in Theorem 5.1. The “extension to the limit” of d1(.,H) is
the functional

d1(W,H) = inf
U∈H

‖U −W‖1,

where ‖U‖1 denotes the L1 norm of the function U . Note
that since H is invariant under measure-preserving transfor-
mations, we could as well define this extension by

d1(W,H) = inf
U∈H

δ1(U, W ).

To verify that this is a valid choice for (d), it suffices to
prove the following two claims.

Claim 6.4 d1(W,H) is a continuous function of W in the
‖.‖¤ norm.

Proof. We have to show that if ‖W −Wn‖¤ → 0, then

lim
n→∞

d1(Wn,H) = d1(W,H).

We may assume (by choosing a subsequence) that the limit
on the left exists.

Let ε > 0 be an arbitrary number and let Un ∈ H be a
sequence with ‖Wn−Un‖1 ≤ d1(Wn,H)+ε. We can assume
by Theorem 4.6 that Un converges to some function U ∈ W0

in δ¤. Then U ∈ H. Let πn be a sequence of measure pre-
serving transformations such that ‖U−Uπn

n ‖¤ → 0. Clearly
δ1(U

πn
n , Wn) ≤ ‖Un −Wn‖1 ≤ d1(Wn,H) + ε. It follows by

Lemma 4.7 that d1(W,H) ≤ δ1(U, W ) ≤ limn d1(Wn,H)+ε.
This implies that d1(W,H) ≤ limn d1(Wn,H).

On the other hand, let U ∈ H be function with ‖U −
W‖1 ≤ d1(W,H) + ε. Let S0 = U−1(0) and S1 = U−1(1).
Let Zn be a function which is 0 on S0, 1 on S1 and is equal to
Wn everywhere else. It follows by Corollary 6.3 that Zn ∈ H.
We have d1(Wn,H) ≤ ‖Wn−Zn‖1 =

∫
S0

Wn +
∫

S1
(1−Wn).

By Lemma 4.8, the right hand side converges to

∫

S0

W +

∫

S1

(1−W ) ≤ ‖W − U‖1 ≤ d1(W,H) + ε.

Hence limn d1(Wn,H) ≤ d1(W,H).

Claim 6.5 If |V (G)| → ∞, then d1(G,H) ≤ d1(WG,H) ≤
d1(G,H) + o(1).

Proof. First we show that for every graph G,

d1(G,H) ≤ d1(WG,H). (7)

Let ε > 0, and let U ∈ H be such that ‖WG − U‖1 ≤
d1(WG,H) + ε. By Corollary 6.3, we may assume that U is
a {0, 1}-valued function. Let V (G) = [n], and let Xi be a
uniform random element of the interval Li = [ i−1

n
, i

n
]. Let

GX denote the graph on [n] in which i and j are adjacent
if and only if U(Xi, Xj) = 1. Then with probability 1, GX

has property H. Furthermore,

E(d1(G, GX)) =
1

n2
E(|E(G)4E(GX)|)

=
1

n2

n∑
i,j=1

Pr(WG(Xi, Xj) 6= U(Xi, Xj))

=

n∑
i,j=1

∫

Li×Lj

|WG(Xi, Xj)− U(Xi, Xj)|

≤ ‖WG − U‖1 ≤ d1(WG,H) + ε.

Hence there is a choice of X for which GX ∈ H and
d1(G, GX) ≤ d1(WG, PP ) + ε. This proves (7).

To prove the other inequality, suppose that there exist a
c > 0 and a sequence of graphs (Gn) with |V (Gn)| → ∞
such that d1(WGn ,H) > d1(Gn,H) + c for all n. Let Hn

be a graph on V (Gn) such that Hn ∈ H and d1(Gn, Hn) =
d1(Gn,H). We may assume (by selecting a subsequence)
that Gn → W and Hn → U for some U, W ∈ W0. It
follows by the definition of H that U ∈ H. Furthermore,
δ¤(WGn , W ) → 0 and δ¤(WHn , U) → 0, hence by Lemma
4.7, we get that

d1(W,H) ≤ δ1(W, U) ≤ lim inf
n

δ1(WGn , WHn)

≤ lim inf
n

d1(Gn, Hn) = lim inf
n

d1(Gn,H),

a contradiction.
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