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We consider the ferromagnetic g-state Potts model, with each of the ¢ spin values coupled to an
external field. We also introduce a generalized random cluster model, which includes both the Potts
model in arbitrary homogeneous external fields and the non-integer ¢ random cluster model as special
cases. We establish the FKG property, the finite energy condition, uniqueness of the infinite cluster,
and Gibbsianness of limit states for this generalized model. Furthermore, we develop the theory of
Gibbs states for the Edwards-Sokal representation of the Potts model in a field, and relate the phase
structure in this representation to those in the spin and random cluster representations. Finally, we
characterize the possible color(s) of the infinite cluster(s) and show that the correspondence between
Edwards-Sokal Gibbs states and their random cluster marginals is bijective, once the color of the
infinite cluster is fixed.

I. INTRODUCTION

In this paper, we study the ferromagnetic g-state Potts model with each value of the spin coupled to a distinct
external field. The formal Hamiltonian of the model is

q
H(U) =—J Z 5am,ay - Z th(;am,nr (11)

(z,y) m=1 =z
Here o, € {1,---,q} are the spin variables, .J is a positive coupling constant, d,, », is the Kronecker delta, (hy,)5,—,

are real numbers representing the external fields, and (x,y) denotes a nearest-neighbor pair on Z?. The model (1.1)
appears in many different contexts. For example, it arises in image processing, where o, represents the color of the
pixel labeled by x, and the fields h,, lead to different a priori probabilities for different colors. Another example is
a lattice gas of ¢ species, with h,, corresponding to the fugacity of the species m.

During the past fifteen years, there has been a great deal of work on graphical representations of the Potts model
in the absence of external fields (i.e., with h,, = 0). In particular, the Fortuin-Kasteleyn [10] or random cluster (RC)
representation has been used to prove various non-perturbative results about the Potts model using percolation-type
methods (e.g., [2], [5]). In order to use the representation effectively, it was first necessary to establish certain basic
features of the resulting measure, including FKG monotonicity, existence of thermodynamic limits, and properties of
the Gibbs states ( [2], [5], [16], [21], see also [17] and [15] for reviews).

Here we consider graphical representations of the Potts model in the presence of arbitrary external fields. This
turns out to be significantly more complicated than the analysis in the absence of external fields for a number of
reasons. First, when h,, = 0, it is easy to verify that the RC representation has the FKG property, which is more
difficult to establish here. Indeed, the FKG property does not even hold for certain boundary conditions. Second, for
hp = 0, symmetry breaking in the spin representation is equivalent to percolation in the RC representation. Here the
relationship between the phase structure of the spin model and percolation in the RC representation is less direct; in
some cases the percolation threshold corresponds to no phase transition at all in the spin model [3]. Third, absence of
symmetry raises the question of the color(s) of the infinite cluster(s), a question which turns out to be quite intricate,
and does not need to be addressed for h,, = 0.

Our work was motivated by an attempt to understand the phase diagram of the model (1.1), using both cluster
expansion and percolation techniques; our results on the phase diagram are presented in a separate paper [3]. In this
paper we generalize known results on the properties of Gibbs states of the RC models to systems with external fields.
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In particular, for the RC model in an arbitrary homogeneous magnetic field, we prove FKG properties, existence
of infinite volume measures, and that these measures are Gibbs states. See also [3] and [4] for other graphical
representations of Potts models in an external field.

In addition, we develop the theory of Gibbs states for the so-called Edwards-Sokal (ES) measure, a measure on
both spin and bond variables which was originally introduced in order to explain the Swendsen-Wang algorithm for
sampling from the Potts model [8]. In a finite volume, the marginals of the ES measure are just the spin and the
RC measures. Here we consider infinite volume ES measures as interesting and important probabilistic objects in
their own right. In particular, we introduce the notion of ES Gibbs measures, and analyze whether (or under what
conditions) the marginals of such Gibbs measures are Gibbs measures of the corresponding spin and random cluster
models. We clarify this relationship, and in the process derive properties of the spaces of Gibbs states for all three
representations.

We believe that the rigorous analysis of properties of the Potts model in terms of the ES representation will prove
to be quite fruitful in future work. Indeed, while the ES representation shares many of the more useful properties
of the random cluster representation, it does not share all of its difficulties. In particular, the ES representation is
quasilocal,’ while the RC representation is not. Much of the standard theory of Gibbs states (as well as its physical
interpretation) requires quasilocality ( [14], [20], [22]). Absence of this property has been a major technical impediment
in the analysis of Gibbs states for the RC representation.

Finally, we consider the question of RC models in a field with non-integer values of ¢q. Although the spin repre-
sentation of the Potts model (and therefore also the Edwards-Sokal representation) only admits an integer number
of spin states, it has been realized for some time that the standard RC measure in the absence of a field is perfectly
well-defined for non-integer values of ¢q. Provided that ¢ > 1, the resulting finite volume measures with free and wired
boundary conditions are FKG, which allows one to prove the existence of the corresponding infinite volume measures.
However, the most straightforward version of the RC model in a field reduces to a model with integer ¢ when we take
hy = 0. Explicitly, the RC model in a field defined on bond configurations 1 = {9z, }, Nz, € {0, 1}, has weights
of the form

[T -1, [[o© (1.2)
<I7y>:"7<m,y):1 C

where the second product is over all connected components of sites, and the weights of the components are given by

o(C) = i ehm V(O (1.3)

Here |V(C)| denotes the volume of the cluster C. Notice that when h,, = 0, the weights (1.2) reduce to the more
familiar weights?

(eP7 — 1) getm), (1.4)

where n(n) is the number of bonds (x,y) with 7, ,y = 1 in configuration 1, and ¢(n) is the number of connected
components of sites in 7.
Thus we also propose a generalized random cluster (GRC) model with the weight ©(c) in (1.2) replaced by

q
Q(C) — Z qmehm‘V(C)ly (15)
m=1

where the ¢, are non-integer parameters. Provided that the g,, are positive and satisfy the condition

Y am>1, (1.6)

m: Ry =Rmax

'Recall that quasilocality is the property of continuity (in the product topology) of finite volume Gibbs states with respect to
boundary conditions.

2Even the weights (1.4) may not be entirely familiar to readers who know the RC weights as (1 — e=?7)"(m (¢=07yv(m) ge(m)
where v(n) is the number of bonds (x,y) with 7, ., = 0 in configuration 1. The only difference between the latter weights and
(1.4) is an overall normalization factor, which makes no difference in the resulting measure.



where hpax 18 the maximum value of the component fields h,,, we will be able to prove that resulting finite volume
measures with certain boundary conditions are FKG, and hence that the corresponding infinite volume measures
exist. We expect that many of our other results for the RC model in a field hold also for this generalized model, but
we have not explicitly verified this.

Notice the following two special cases of the generalized model with the weights (1.5). If we take ¢, = 1, m =
1,---,q, then we get (1.3), i.e., the random cluster representation of the Potts model in an external field. On the
other hand, if we take h,, = 0 for all m, we get the weights (1.4) with ¢ replaced by > ¢, which is in general
non-integer. Thus the GRC model generalizes both the non-vanishing external field case and the standard non-integer
q model.

It turns out that the set of “colors” m € {1,--- ,q} with Ay, = hmax will play an important role in the analysis of
both of the above described random cluster models in a field. In the standard model (with h,, = 0), it is well-known
that the extremal measures are obtained by applying free and “wired” boundary conditions. The latter are the
marginals of measures in which all spins on the boundary are set to a fixed color m € {1,--- , ¢}, and thus identified
as one component in the RC representation. In this work, we will find that the extremal measures are obtained by
applying free and what we call “maxwired” boundary conditions. Measures with maxwired boundary conditions are
the marginals of measures in which all spins on the boundary are set a color m for which h,, = hnax. The other
RC wired measures, i.e., those with boundary conditions set to a color m for which h,, < hpax, are hard to analyze
because they do not even obey the FKG inequality.

We end this section with a summary of our results:

In Section II, we state our theorems on mappings between the sets of ES Gibbs states and spin and RC Gibbs
states, respectively. In particular, Theorem II.1 implies that the relevant marginals of the infinite volume ES Gibbs
states are spin Gibbs states. The same is not true for the RC states unless we restrict to states with no more than
one infinite cluster, as we do in Theorem II.2. We also formulate results (Theorems I1.3 and I1.4) on the existence of
infinite volume measures for the RC and ES representations with free and maxwired boundary conditions. Finally,
we state a result (Theorem II.5) relating uniqueness or non-uniqueness of Gibbs states to the absence or presence of
infinite clusters. In two dimensions, we are able to prove more—namely that, away from the transition temperature,
the RC Gibbs state is unique, and similarly for the ES state, provided there is only one color m with h,, = hnax
(Theorem I1.6).

In Section III, we introduce the generalized random cluster (GRC) model and formulate its FKG monotonicity
properties. In particular, Theorem III.1 states that the free and maxwired GRC states are strong FKG, and hence that
the corresponding infinite volume limits exists. This theorem also asserts that, in the FKG order, every GRC Gibbs
state lies between these two infinite volume states. Finally, this theorem compares GRC states at different couplings
and different sets of external fields (with an appropriately defined partial order). As a corollary, we prove various
properties of the relevant percolation probabilities, which are the order parameters for the transition. Theorem III.2
deals with RC marginals of ES Gibbs states. In particular, it states that the infinite volume RC maxwired measure
dominates all such marginals, while the free RC measure is dominated by the marginals of all ES Gibbs states with
at most one infinite cluster. Our final results establish uniqueness of the infinite cluster for translation invariant GRC
Gibbs and limit states (Theorem III1.3), and give a stronger version of the DLR equation for any GRC Gibbs state
with a unique infinite cluster (Theorem III.4).

Our results are proved in Sections IV-X. In Sections IV-VI we prove the theorems stated in Section IIT (in the
order of their appearance). The theorems of Section II are proven in the remaining Sections VII-X (in the order II.4,
I1.5, I1.6, II.1 and I1.2). Theorem II.3, which is an easy corollary of the results of Section III, is proved at the end of
Section VI.

II. GIBBS STATES IN THE EDWARDS-SOKAL, SPIN AND RANDOM CLUSTER REPRESENTATIONS

In this section we define Gibbs measures for joint probability spaces of spin and bond variables, i.e., the Edwards-
Sokal Gibbs measures. We then relate the set of Edwards-Sokal Gibbs measures to the more standard sets of spin
and random cluster Gibbs measures.

We begin with some notation. For any subset A C Z¢, we introduce By(A) as the set of all bonds b = (x,y) of
nearest neighbors with both endpoints in A and B(A) as the set of all bonds with at least one endpoint in A. For any
B C By (Z), we define V(B) as the set of sites which belong to at least one bond in B.

To motivate our definitions, we first derive the Edward-Sokal representation for a finite box A C Z? with free
boundary conditions. For free boundary conditions, the Gibbs factor of the g-state Potts model in a general field is



given by

e—ﬂH(CrA) — H eﬁJéaz,ay H eﬁh(aw)7 (21)
(z,y)EBo(A) zEA

where (hy,)? _; € R? is a collection of arbitrary fields and h(c,) stands for

h(oy) = zq: [ - (2.2)

m=1

In order to derive the Edwards-Sokal (ES) and random cluster (RC) representation, we rewrite the Gibbs factor by
expanding each term ef7/%w.oy as 1 4 (e — 1)do,,0,- Introducing bond configurations ng,,) = {m}veBo(a) with
m € {0,1}, we can write the Gibbs factor (2.1) as the sum

e~ BH(oA) _ Z H (eﬁJ —1)6s. 0, H ePhloz) (2.3)

Mgy (a) b=(z,y) EBo(A) TeEA
MNa,y) =1

The key point of this reformulation is that 1 can now be treated in the same way as o; one just peels off the first
sum in (2.3) and interprets the remainder as a joint weight of o and 7. In this manner one obtains the finite volume
Gibbs measure of the Potts model as the spin marginal of a measure on both spin and bond configurations—the
Edwards-Sokal measure. The bond configuration marginal is then the random cluster measure.

So far we have considered only free boundary conditions. Instead of modifying the preceding argument for other
boundary conditions, we directly introduce the notion of infinite volume Gibbs measures on the joint space of spin
and bond variables. To define the Gibbs ES states, let us introduce for any pair of (not necessarily related) finite sets
A CZ% B C By(Z%), and any fixed configurations o e, ng. outside of them, the measure p5( + |oac, ge) by

W(O-A7n]B | UA°7nIB§“)
Z&A,ﬁE W, ng| U'AcfrllB%C)’

UE,SIB(UAvn]B%'UACaTIBC) = (2.4)

where the convention?3 MEEB(U As Mgl O Ac, Nge) = 0 is assumed for the case that the sum in the denominator vanishes,
and where

W(onnsloaemg) = [[ (" =1bo,0, [T ™. (2.5)
(z,y) EBUB(A) zEA
MNa,y) =1

The dependence on parameters J and {h,,} will be explicitly marked only when a reference to them is needed.
Our first theorem concerns the relation between the ES and spin Gibbs measures. Let GPS be the set of all infinite
volume Gibbs ES states defined by imposing the DLR equations with specification (2.4). Namely, v € G5 iff

v(f) = / v(dor, Am)uES, (f] o e 1) (2.6)

for all pairs of finite sets A and B and any cylinder function f depending only on o, and 1. Note that the fact
that the underlying “set of sites” contains both the set Z? and the set By(Z¢) does not prevent the abstract theory of
Gibbs states—in the version that allows for “hard-core interactions” (c.f., [22], [20], [14])—from being applied. The
important property, quasilocality of the specification {ME?B}, is clearly satisfied, implying, in particular, that the set
of Gibbs states GFS is not empty. Note also that quasilocality and consistency of the specifications imply that the
DLR condition (2.6) is equivalent to the (apparently stronger) statement that the conditional expectations of v are
given by (2.4), i.e.,

V(flone, Mpe) = P (floac, Me)  v-as. (2.7)

3Here we use the theory of Gibbs states as presented by Ruelle [22], who explicitly considers models with configuration spaces
determined by local restriction rules (hard cores). See Sections 1.1 and 1.5 of [22].



for all pairs of finite sets A and B and any cylinder function f depending only on o and ng.

Let G™ denote the set of all spin Gibbs states, defined by means of the DLR condition and the Hamiltonian (1.1),
appropriately modified to incorporate the boundary condition. Let Ilg denote the mapping that assigns the spin
marginal to any infinite volume ES measure. It is not a priori obvious that the spin marginal of any infinite volume
Gibbs ES state is an infinite volume Gibbs spin state. However, it turns out that even a little more is true.

Theorem IL.1 The mapping Ig is a linear isomorphism between the Choquet simplices* G*S and G*™. When
restricted to translation invariant measures, Ilg is an isomorphism between the simplex of all translation invariant
Gibbs ES states and the simplex of all translation invariant Gibbs spin states. In particular, |G®S| = 1 if and only if
|gSPIN| — 1.

Remark. The last statement is false for the correspondence between ES Gibbs states and their RC marginals. For
instance, for d = 2 it is known that there are exactly two extremal Ising Gibbs states below the critical temperature
( [11], [1], [18]) and, therefore, two extremal ES Gibbs states, while the corresponding RC marginals are identical.

As alluded to in the introduction, RC Gibbs measures have finite volume specifications that are not quasilocal, which
prevents the straightforward application of the general theory of Gibbs states. It therefore is often more convenient
to consider ES Gibbs measures, whose finite volume specifications are local, and study RC measures only as their
marginals. The relation of these marginals to RC Gibbs measures as introduced in [9], [16], [21], and [5] for Potts
models without magnetic fields is the content of our next theorem.

First, however, we generalize the notion of RC Gibbs states to Potts models with magnetic fields. To this end we
introduce, for any configuration n on By (Z?), the set of occupied bonds Boe.(n) = {b € Bo(Z%): n, = 1} and the
corresponding graph (Z¢, Bee.(n)) with the vertex set Z¢ and the edge set Boe.(n). For any connected component
C(m) of this graph (possibly a single site), we use V(C(n)) to denote the corresponding vertex set. We now define,
for any finite set of bonds B and any configuration ng., the measure

Wﬁc(nﬂmﬂw)
WEC (ng|nge)

RC
p - (Mg Mpe) = (2.8)
Ev’m
with
q
WEC (g |nge) = (€77 — 1)[Bocc(mNB| H Z ™ Plhmax—hm ) [V(C ()] (2.9)

Cm)V(C)NV(B)£D m=1

where the product runs over all connected components C(n) such that the vertex set V(C(n)) intersects the set V(B),
and hpax is used to denote

hmax = max  hyy,. (2.10)
me{l,...,q}

o0

Interpreting e~ °° = 0, any infinite cluster C'(n) intersecting V(B) contributes just the factor gy = |Qmax(h)|, the size

of the set

Quax(h) = {m € {1,...,q}hm = humax - (2.11)

For future reference, we also define N, = Ny () as the random variable denoting the number of infinite clusters of
Bocc (1), and use Coo = Co(n) to denote the unique infinite cluster whenever Ny, = 1.

As usual, one introduces the set of Gibbs states GEC as the set of measures p on {0, 138" that satisfy the DLR
equation

u(f) = / (dn) pEC(f | mpe) (2.12)

for any finite B and any cylinder function f with support in B. Note that, in contrast to equations (2.6) and (2.7),
here the DLR condition (2.12) does not imply that the conditional expectations of an RC Gibbs state p are given

“See, e.g., [22], [14] and [20] for the definition of Choquet simplices.



by the finite volume expectations (2.8) due to the lack of quasilocality. However, it turns out that uniqueness of the
infinite cluster is enough to ensure that the DLR condition implies a statement of the form (2.7) (see Theorem III.4).

As already observed in [5], the above notion of RC Gibbs states does not accommodate all “naturally arising”
limiting states. When reformulated in terms of the ES measures, not every RC marginal of an ES Gibbs measure is
an RC Gibbs state. An example is the ES Gibbs state corresponding to the standard Dobrushin state with a stable
interface between two ordered states.

However, when restricted to the set of ES measures with at most one infinite cluster, the situation changes. As it
turns out, not only is the marginal of every such ES Gibbs measure an RC Gibbs measure, but also each RC Gibbs
measure with at most one infinite cluster can be obtained as a marginal of a suitable ES Gibbs measure. In addition,
a natural refinement holds: up to a choice of the “color” of the infinite cluster, the surjective correspondence between
ES and RC measures is actually one-to-one.

To state the next theorem, we use g<1 = {v € G¥|y(Ns < 1) = 1} to denote the set of ES Gibbs measures
such that with probablhty one there is at most one infinite cluster of occupied bonds. Similarly, let GBS = {u €
QRC|,u(N <1) = 1} GES = {v € GBS|Y(Now = k) = 1} and GF€ = { € GRC|u(No = k) = 1}, k = 0,1. Also let
Gis = {v e GBS |y(AY ) = 1}, where A%, is the event A%, = {No = 1 and 0, = m for all z € V(Cw)}. Finally,
let HRC be the mapplng that assigns RC marginals to ES Gibbs measures.

Theorem I1.2 (i) The restriction of the map Hgrc to QE? 18 surjective onto gg‘f.
(ii) Every v € gg? has a unique decomposition

V= )‘OVO + Z Aml/m (213)
meQmax
with vy € GES, vy, € QE,SW Aoy Am > 0, and Ao + ZmeQmax Am = 1.
(i4i) The restriction of the map Ilgc to G&° is one-to-one from GES to GEC. If m € Qumax(h), then the restriction of
IIge to g??n is one-to-one from gF?n to GRC.
(iv) If |Qmax(h)| = 1, then the mapping Ugrc is a bijection Ige : gg? — ggﬁf.

Remarks. (i) As we will see in the next section, the set GEJ is non-empty. By the above theorem, this implies that
also GEY is non-empty.

(ii) Since {N = 0} is a tail event, it follows from the standard theory of Gibbs states and the fact that the
specifications (2.4) of the Edwards-Sokal measure are quasilocal, that the conditional measure v(+|Noo = k), k = 0,1,
is a Gibbs state for any v € GE} with 0 < v(N,, = 0) < 1. Although the corresponding statement is not known
a priori for a RC Gibbs state € GBY (due to lack of quasilocality), it is a consequence of statement (i) and the
commutativity of the following diagram,

3

v H
1 1 (2.14)
V([ No = k) =5 pu(-|Now = k)

which, in turn, is a consequence of Theorem I1.2(ii).

Next, we state our results on the existence of thermodynamic limits for the extremal ES and RC Gibbs measures
with free and wired boundary conditions. We begin by introducing the relevant finite volume ES measures. Observing
that, for a finite volume A, the state “EEB(A)( *[ o Ac, Mp(a)e) does not depend on nNp(xe, we define the measure

/J“/E\},Sm(') MAB (\UAcﬂ?]B(A)) (2.15)

where o™ is the constant configuration, o' = m for all z € 74, with m € {1,...,q}. In a similar way, the

measure M}E\,SIBO( A)(- |0'AC777]B;0( A)C) does not depend on o e, provided that the m-boundary condition is chosen as

NBy(A)e = W%O(A)C, where n° denotes the configuration with n) = 0 for all b € B(Z%). In this case we introduce the
measure

:u’gsfrce( - ) = /”LESIBO(A)( : ‘UAC? n]%(,(A)C)' (216)

The m-marginals of the measures free( ) and p&S are the RC measures pf free( ) and p}S, with free and m-wired
boundary conditions, respectively. ‘A particular role will be played by the RC measureb ‘with m-wired boundary
conditions such that m € Quax(h), i.e., hyy = hmax. Note that the measures u 7m are identical for all values

m € Qmax(h); we will use pRS, i to denote any of them.



Theorem I1.3 Let 3>0,J >0, and h,, e R, m=1,...,q.
(i) Let f be a quasilocal function on {0, 1}BO(Zd), Then the limits

RC : RC
. =1 ) 2.17
Mma.xwur(f) A;‘TZI‘! :U’A,maxwu(f) ( )
and
RC : RC
— 1 2.18
lj’free(f) Al/lHZld H’A,free(f) ( )

exist and are translation invariant.
(ii) The measures p5S . and pFS are RC Gibbs states with at most one infinite cluster.

Remarks. (i) The limit A  Z above (and hereafter) is taken in the sense of the limit along the net {A C Z? finite}
with the net ordering given by the set inclusion. However, when we talk about a general RC limit state, we will have
a weaker notion in mind. Namely, we say that a measure p on {0, 1}B°(Zd) is an RC limit state if there is a sequence
of finite sets B,, C Bo(Z%) and a sequence of configurations 5™ such that p(f) = lim,,_, pgo (f |77]§Z)).

(ii) We will prove the existence of the limit (2.17) by first establishing that the ﬂﬁ?m is strong FKG if hy, = hyax,
see Theorem III.1. The requirement h,, = hnax is crucial for our proof of Theorem III.1, since the proof relies on the
FKG property of the finite volume measures ,uicm. In fact, for g large enough, a contour argument indicates that
uﬁ?m with A, < hmax is not even FKG.

(iii) The statements of Theorem I1.3 are special cases of those of Theorem III.1 (ii), Theorem III1.3 and its corollary,
which hold for the GRC models discussed in the introduction.

By using the general theorem on the uniqueness of the infinite cluster [6], the conclusion about the existence of the
limiting RC measures can be strengthened to their ES preimages:

Theorem I1.4 Let >0 and h,, R, m=1,...,q. If m € Qumax(h), then the weak limits

ES _ 1 ES
H' = [0 X (2.19)
and
S . S
/ffgee = Ah/rnzld /‘%,free (220)

exist and are translation invariant ES Gibbs states with at most one infinite cluster.

Remark. In contrast to Theorem II.3, the statement here that the limiting measures are Gibbs states is a trivial
consequence of the general theory of Gibbs states for systems with quasilocal interactions.

Next, we state a theorem relating the uniqueness or non-uniqueness of Gibbs states to the existence of an infinite
cluster. To this end, we define the percolation probability

Pao(B,,h) = sup pu(|Co| = o) (2.21)
pEGRC
and the auxiliary percolation probability
Pyo(B,J,h) = inf pu(|Co| = o0). (2.22)
nEGRC

where Cy = Cp(n) is the cluster that contains the origin 0 € Z9, and where we have restricted ourselves to the set

GRC of all translation invariant RC Gibbs measures. As we will see in the next section (corollary to Theorem III.1),
the density Poo(53,J,h) is just the probability of percolation in the measure /‘ngwirv and is a nondecreasing, right

continuous function of J. Similarly, ﬁoo(ﬁ, J, h) is the probability of percolation in the measure ,ufR;ge. We also define
the critical coupling,

Jo(B,h) = inf{J > 0: Ps(B,J,h) > 0}. (2.23)

It turns out that if P (5, J, h) is replaced by P (0, J, h) in the definition above, the value of J.(8, k) is unchanged,
again by the corollary to Theorem III.1.



Remark. For d > 2 and ¢ sufficiently large, P (3, J,0) jumps from zero below J. to a strictly positive number at J..
This corresponds to the so-called temperature driven first order phase transition in the Potts model, whose existence
was first proved in [19].

Theorem II.5 Let 3>0 and h,, e R, m=1,...,q.

(i) For all J > 0, there is at most one ES Gibbs measure with no infinite cluster.

(i) If P (B, J,h) =0, then |QES| = |QRC| = 1. In particular, |QES| = |QRC| =14 J < J..

(i4i) If Poo(B,J,h) > 0, then the states uES, m € Qumax(h), are extremal translation invariant ES Gibbs states with

pe2(ATS,) = 1. In particular, there are at least qo = |Qmax(h)| different extremal translation invariant ES Gibbs

states.

As mentioned above, the percolation probability P (3, J,h) is nondecreasing in J. The last statement of the
theorem therefore implies that there are at least g extremal translation invariant ES Gibbs states when J > J.. This
raises the question of whether for |Quax(h)| = 1 the ES Gibbs state is unique above J.. As the next theorem shows,
this is indeed the case, at least if d = 2.

Theorem I1.6 Let § >0, and hy, €ER, m=1,....q, andd = 2.
(i) If J # J., then |QRC] =1 and P (8, J,h) = P (0, J, h).
(ii) If J # J. and, in addition, |Qmax(h)| =1, then |G*S| = 1.

Remarks. (i) For the Ising model, the condition |Qmax(h)| = 1 means that h # 0. Together with FKG, the Lee-Yang
theorem then implies that the claim (ii) is valid for d > 2 and all J > 0, including J = J.. Even though one might
conjecture that this statement holds for arbitrary ¢, since only one spin direction is preferred if |Qmax(h)| = 1, this is
in fact not true. Indeed, we show in [3] that the ¢-state Potts model has two coexisting phases at J. for sufficiently
small fields preferring one of the ¢ values m € {1,...,q} over all others, provided ¢ is sufficiently large. However, we
believe that for J # J., |Qmax(h)| = 1 does imply uniqueness for all ¢, even when d > 2.

(ii) Theorem II.6(i) and part of the statement in Theorems IL.5(ii) refer to the RC model itself, and not the
relationship between the ES and the RC model. As we will see in the proofs of Theorems I1.5 and I1.6 in Sections VIII
and IX, these statements remain true in the more general context of the GRC model introduced in Section I.

III. MONOTONICITY AND UNIQUENESS OF THE INFINITE CLUSTER

In this section, we define the generalized random cluster (GRC) model, and formulate several results concerning
the FKG properties and uniqueness of the infinite cluster in this model. The GRC measure ;L%}&e is obtained by
normalizing the weights

W/E;,l?rgc(n) = (eBJ - 1)|"7| H ercc(c(n))v (31)
C(n)

for any i € {0,1}B°(), Here || is the number of bonds in the set {b € Bo(A): 7, = 1}, the product runs over all
connected components C(n) of the graph® (A, Beee(n) N Bo(A)), and

q
Oree(C) = Z Gme?hm VO (3.2)
m=1
for any connected component C. The factors ¢,,, m = 1,...,q, are assumed to be positive real numbers such that
> gm>1 (3.3)
MEQmax

Similarly, the measure u%ﬁ‘g is obtained by normalizing the weights Wflfnc defined for any n € {0,1}B) by the
formula

W () = (7 =) T Oam(Cm)), (3.4)
C(n)

5We recall that Bocc(n) denotes the set of bonds b with 7, = 1.



where |n| now stands for the number of bonds in the set {b € B(A): m = 1}, the product runs over all connected
components C(n) of the graph (A, Bocec(n) NB(A)), A = AUIA, and O, ,,(C) is defined as

Otree (C) V(C)NA® =0

Orm(C) = {eﬁhmV(CH )

otherwise.

As already pointed out for RC measures, the measures M%,}}S are identical for all values m € Quax(h); we will use

HERS wir tO denote any of them. Note also that the definitions (3.4) and (3.5) reduce to the standard definition of
wired measures for non-integer ¢ when h,, = 0.

Finally, one can directly extend the definition (2.9) to get the weights WSS (ng|ng.),

q
WERC (g mge) = (€7 — 1)Boce(me)NE| 11 S e~ A= hmC), (3.6)
CmV(Cm)NVEB)£0 m=1

yielding the measures pu$TC (ng| np.) that define GRC Gibbs states with the help of DLR equations of the type (2.12).
GRC limit states are defined analogously to RC limit states, see Remark (i) following Theorem II.3.

GRC

Remarks. (i) It is easy to see that if we take ¢,, =1, m = 1,...,q, then the measures uA free and gy are just the

RC marginals p& A too and pf RO “m» respectively.
(ii) It is instructive to consider the effects of particular boundary conditions on the measure with weights (3.6). If

we take B = Bo(A) and . = 0, then we get the free measure pu§t free If, on the other hand, we take B = B(A) and

Nge = 1, then we get the wired measure M/C\;P;SM‘W, provided A€ is connected. If A® is not connected, i.e., if A contains

“holes,” then the boundaries of these holes will be not be wired to each other. In this case, it will often be convenient
to 1ntroduce additional “ghost” bonds linking all of the components of the boundary. If, in addition to the bonds in
B(A)°, the ghost bonds are occupied, we get the maxwired state also in this case.

(iii) Recall that in the standard RC model without magnetic fields it is possible to view the wired state as a free
state on a modified graph in which all of the boundary sites in A have been identified. However, in the case of general
external fields, the two prescriptions produce different states, i.e., setting all the sites at the boundary to a particular
value produces a different state from the free state on a graph in which all boundary sites have been identified. In
the former case, the collection {C;} of all components of (A U JA, Boec(n) NB(A)) that touch the boundary acquires
the weight efhmax 22:IV(C)l while in the latter case, it acquires the weight > = efhm (1425 IVICAATD,

Note that it is the former prescription that we use to define the m-wired GRC measure. This measure is natural
for two reasons: it is the marginal of the corresponding ES measure if all g,,’s are one, and, for m € Qmax(h), this
measure is maximal in the FKG order, whereas the alternative one is not, at least in a finite volume.

To state our results on FKG properties, we introduce the standard partial order < on {0, 1}B(Zd) by setting n < n’
whenever n, < 7, for every b € B(Z?). Since we shall also study monotonicity properties in dependence on (hy,) we
need to introduce a partial order on the external fields. Given two sets of fields (h,,) and (h),), we define

(hm) < (B.)) iff hy —hy < hj — R forall k,1=1,...,q with hy — hy > 0. (3.7)

Note that =< is indeed a partial order on g-tuples of real numbers, in particular, (h,,) < (h),) and (h/,) < (h!}) imply

(hm) < (hi)-

Recall the following definition:

Definition. Let Q) be a measurable space endowed with the partial order <. Then a measure i on 2 is said to be FKG
if W(FG) > p(F)u(G) for all measurable functions F,G : Q@ — R that are increasing with respect to <. Moreover, if
Q s of the form Q = XbeBQb; then u is said to be strong FKG if u(- |A) is FKG for all cylinder events of the form

={n:m=a, Vbe ]B%}, where B C B is finite and ap € Qp for all b € B.

Theorem II1.1 Let 3>0,J >0, hy, € R and g, >0, m=1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Then:

(i) For each finite A C Z%, the measures u%}ge and uf}fﬁ;&mir are strong FKG.

(ii) For each quasilocal function f, the limits

MSEwa1r(f) = lim uglp;rxcaxw1r(f) (38)



and

GRC : GRC
1 3.9
Htree (f) 1/(112161 MA,free(f) ( )

exist and are translation invariant.

(#ii) Let p be a GRC limit state or a GRC Gibbs state. Then

e < B S i (3.10)
FKG FKG
(iv) Suppose Jy < Jo. Let let MSES&}? denote the wired state at J = J1 and let MgiieC,Jz denote the free state at J = Js.
Then
GRC,J GRC, J.
maxvx}irl(°) S free 2(')' (311)

(v) Let (hy) < (h,) be two sets of external fields. Then

e () < e () (3.12)
Shealim () < il (). (3.13)
FKG

Remark. Note that (3.11) can be extended via (3.10) to any pair of GRC Gibbs measures at J = Jy, resp. J = Jo.

The following corollary is an immediate consequence of the above theorem. Before stating it, we recall the definitions
(2.21), (2.23) and (2.22) of Py (8, J,h), J., and ]300(5, J, h), respectively. For the GRC measures considered here,
the definitions (2.21) and (2.22) are obviously modified by replacing the space GRC of translation invariant RC Gibbs
states by the space GORC of translation invariant GRC Gibbs states.

Corollary. Let 3 >0, J >0, hyy € R and ¢, > 0, m = 1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Then:

(7’) PSO(/Bﬂ J, h) = Hggxcwirﬂcd = OO)

(’LZ) Poo(ﬂv J, h) = Mgl;;c(|00| = OO)

(iii) J — P (B, J, h) is a nondecreasing, right continuous function.

(iv) J — f’oo(ﬁ, J,h) is a nondecreasing function, which is continuous and equal to Ps(83,J,h) whenever J —
P (8, J,h) is continuous.

(v) Pso(B,J,h) = Pso(8,J,h) =0 if J < J., while both Ps(3,J,h) >0 and Ps(B,J,h) > 0 if J > J..

The next theorem is the only statement in this section that cannot be generalized to the GRC models.

Theorem II1.2 Let 3 >0, J >0, and h,, € R, m = 1,...,q. Let v € G be arbitrary and let p denote its
n-marginal. Then

N(') < MRIHSXWiI‘(.)' (314)
FKG
If, in addition, either |Qmax(h)] =1 or u(Ny < 1) =1, then
p(+) > hiee(+)- (3.15)
FKG

The following theorem states our results on the uniqueness of the infinite cluster.

Theorem I11.3 Let >0, J >0, h;, € R and g, >0, m =1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Then all translation invariant GRC Gibbs states and all translation invariant GRC limit states have
at most one infinite cluster with probability one.

Remark. We will prove the above theorem by first establishing the so-called finite energy condition for u, and then
using the results of [6]. Unfortunately, we were unable to use this strategy to prove uniqueness of the infinite cluster for
random cluster marginals of translation invariant ES Gibbs measures. In fact, it is not hard to see that there are ES
Gibbs states whose random cluster marginals do not satisfy the finite energy condition. While these counterexamples
stem from non-translation invariant ES Gibbs states obtained by so-called Dobrushin boundary conditions, we do not
see how to use the additional assumption of translation invariance to get a proof of the finite energy condition.
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In Section VII we will use the uniqueness of the infinite cluster to prove that the finite volume specifications of
psBC and pSRC . and more generally of any translation invariant GRC limit state, are “almost surely quasilocal” in

the terminology of [21] and [16]. As a corollary of this statement, we will prove the following result.

Corollary. Let 3 >0, J >0, hyy, € R and ¢, > 0, m = 1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Then all translation invariant GRC' limit states are GRC Gibbs states.

The last theorem in this section addresses the question under which conditions the conditional expectations of a
GRC

GRC Gibbs state p are given by the measures pup" " (+| npe).

Theorem I11.4 Let >0, J >0, h;, € R and g, >0, m =1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Let i be a GRC Gibbs state with (Noo < 1) = 1, let B be a finite subset of Bo(Z%), and let f be a
cylinder functions depending only on the configuration ng. Then

p(flnse) = pg" (fInge)  p-a.s. (3.16)

IV. FKG PROPERTIES OF GENERALIZED RANDOM CLUSTER MEASURES

In this section we prove Theorem III.1. In the process we formulate and prove a lemma concerning monotonicity of
GRC states in the volume (Lemma IV.1). We will also formulate and prove a second result (Lemma IV.2) concerning
domination of states with general boundary conditions, which will be used in the proof of Theorem III.2 in the next
section.

Proof of Theorem 111.1(i). We consider A to be fixed and omit it temporarily from the notation. In order to prove the
strong FKG property of u%}}rcee and uf{"ﬁg, let us recall a necessary and sufficient condition [10], the so-called lattice

condition
WERE (W) v p@YWERS (nM A @) > WERC (nMW)WERC (n(2)) (4.1)

for any pair of configurations (") and 5(?), and similarly for WSS, Here (" v (®) denotes the maximum and
7™M A1® the minimum of V) and n?.
It turns out that to verify (4.1), it suffices to consider 7™ and n® that differ just at two bonds. Indeed (see e.g.,
(7)), let
Wi (¢ V)

R(C?”’) = ;r{;eGRC(C)

free

(4.2)

and note that (4.1) can be rewritten as ’R(n(l), 77(2)) > R(n(l) An@), 77(2)). Hence, the lattice condition (4.1) is true
once we verify that R(¢,n) is increasing in ¢, for any fixed 5. Let us introduce, for any bond b, the configuration n®)

by setting néb) =1 and néf)) = 0 for any b’ # b. Ordering the set Boc.(n) into a sequence (by,. .., b, (), We have

Boce ()]
R(¢,m) = R(¢V ) v vty ptn), (4.3)
k=1

Hence, it suffices to prove monotonicity of R(¢,n) for any n that is zero except possibly at one bond. Moreover, it
suffices to prove the growth when flipping § at a single bond from 0 to 1, i.e., ¢ with ¢, = 0 to ¢* = ¢ v n®. The
verification of the needed bound, R(¢?,n® )) > R(C, n(bl)), for any pair of bonds b and ', now boils down to the
special case of (4.1) with n™ = ¢ and n® = ¢ v n®") that differ only at bonds b and ¥'. Since ) =n®@ if b =¥/,
we may further assume without loss of generality that b # b'.

Let thus V) and n® be such that

nél) = 77152) b # by, bo

1 2 1 2
WD =n®=0 g0 =y?=1

(4.4)

Since the number of 1-bonds is equal on both sides of (4.1), the nontrivial issue is therefore to check (4.1) for the
product over the connected components. Let us suppose, without loss of generality, that there exist disjoint connected
components A; and Ay of nV) A n2) (possibly isolated sites) that become connected when by is flipped from 0 to 1,
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and, similarly, By, By for the components connected by flipping bs. (The only other possibility is that both endpoints
of by, or alternatively by, lie in a single component of () A9 in which case the two sides of (4.1) are equal.) With
this proviso, there are only three generic situations:

(a) V(A1) UV(Ap) is disjoint from V(B;) U V(Bz),
(b) V(A;) = V(By) but V(A2) NV(Bz) =0,
(¢) V(A1) = V(B;) and V(As) = V(Bzg).
We will prove (4.1) separately for (a), (b), and (c). For notational brevity, we use ©(C) for both Ofee(C) and 6,,(C).
In the case (a) both sides of (4.1) reduce to the same term

O(A1 U A2)0(B1 U B3)O(A1)0(A2)0(B1)O(By). (4.5)

Hence, (4.1) is fulfilled with the equality sign.
Next, consider (b). We denote by C' the common component (i.e., C = A; = B;) and use A and B to denote the
other components. Then (4.1) boils down to the inequality

e(CO(CUAUB) >O0(CUA)BO(CUB). (4.6)
Let us first consider the free boundary conditions. Using, for any m € {1,...,q}, the notation
py = P VA
b = ePPmIVB) (4.7)

e = PhmVC)]

the condition (4.6) is equivalent to

q q q q
(Z chm> ( Z Qm’am’bm’cm’> > (Z Qmamcm> ( Z qm’bm’cm’> . (48)
m=1 m=1

m’=1 m/=1

Let us assume that the fields are ordered in an increasing order, by < hy < --- < hy. As a consequence, a1 < az <
- <ag and by < by <--- <b,. By writing the expression (4.8) as an inequality for a bilinear form in g, cmqm/ cms,
the sufficient requirement that all the independent coefficients of this form be non-negative reduces to

(@m — ) (b, — b)) >0 ¥Ym,m/, (4.9)

which is immediate by our preceding assumptions.

Turning to m-wired boundary conditions, m € Qmax(h), we will distinguish several cases. If V(A4) N A = 0,
V(B) N A® = (), as well as V(C) N A® = (), we have exactly the same situation as for free boundary conditions. If
V(C) N A® # ), both sides of (4.6) are equal to ¢rambmcm. EV(A)NAS =0, V(C)NA® =0, and V(B) NA° # 0, we
need to show that

q q
(Z chm> ambmcm 2 <Z qmamcm> bmcm- (410)

m=1 m=1

This follows once we realize that h; = hpax implies a,, < a; for any m. Similarly with the role of A and B
interchanged. Finally, if V(C') N A¢ =0, but V(A) N A® # 0 and V(B) N A° # ), we have to verify that

q
(Z qmcm> ambmcm Z amCﬁlmem. (411)

m=1

This is clearly true if we use the assumption that ZmeQmax(h) ¢m > 1 and the fact that c,, = ¢ whenever m €

Qmax(h).
It remains to establish (4.1) under (c). In this case, there are only two components in the game: A and B.
Inequality (4.1) is then implied by ©(AUB) < O(A)O(B). Let us use the definitions (4.7) of a,, and b,,. We consider

12



three cases. First, in the case of either free boundary conditions, or wired boundary conditions with the additional
conditions V(A) N A° = 0 and V(B) N A° = (), the relation we want boils down to the inequality

i Qmambm < <i Qmam> (i Qm’bm’> 5 (412)
m=1 m=1 m’=1

which is obviously satisfied since b, < Zm, €Qmax(h) Qqm'bim. Second, for wired boundary conditions under the addi-
tional conditions V(A) N A¢ = () and V(B) N A€ # 0, we get the manifestly correct inequality

q
ambm < (Z Qmam> b (413)

m=1

Finally, for wired boundary conditions with the additional conditions V(A) N A® # @) and V(B) N A°® # 0, we get the
identity asbm = ambm.- ]

Remark. The necessity of h,, = hpax, for the strong FKG property of M%Rng to hold, arises from (4.6). Namely,

suppose that B connects to the boundary (i.e., V(B) N A® # (}), whereas A and C' do not. Then (4.6) reduces to
(4.10). Tt is not difficult to convince oneself that choosing C sufficiently large one can make (4.10) be satisfied for all
A only when a; = max,, a,,. Consequently, h; must be equal to hyax for the lattice condition (4.1) or, equivalently,
the strong FKG condition to hold.

Lemma IV.1 Let >0, J >0, hyy € R and g, > 0, m =1,...,q, and suppose that the parameters q,, obey the
condition (3.3). Further, let A C A C Z% be two finite sets. Then

Bitee () S MR free(+) (4.14)
FKG
and
ugiircljaxwir(') Z /”Lgrfr(rjlaxwir(')' (415)
FKG

Proof. Using Theorem III1.1(i), the inequality (4.14) follows immediately from the fact that

e () = Hafree(+ | Da); (4.16)
where Dy is the FKG decreasing event
Dy = {77: n, =0Vb € BO(A)C}. (4.17)

For maxwired boundary conditions, the proof is more complicated, since conditioning on the FKG increasing event
On={n: my =1Vbe B(A)°} (4.18)

leads to the state u%);gaxwir only if A is a volume without “holes”, i.e., if A® has only one (infinite) component. If A°
has finite components Hy, ..., Hi, we use the following trick: for each “hole” H;, we introduce an additional bond b;
with one endpoint in H; and the other in A°. Setting

B*(A) = B(A) U {by, ..., 0}, (4.19)

we then define g&F¢ as the maxwired GRC measure on the graph (A, B*(A)), where as before A = AUJA. With

A, maxwir

this definition we get

< R e (<[5 = 1 V0 € B*(A) \ B(A))
FKG
S A (- = 1 € (B(A) \ B(A)) UB(A))

(4.20)

= ugﬁgaxwir( : )7
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proving the desired inequality (4.15). Here the first inequality uses that the strong FKG measures, conditioned on
taking a fixed configuration 74 in a set A, are FKG increasing in 7 4, while the second inequality follows by the FKG
property of ;LGRC [

A maxwir*

Proof of Theorem I11.1(ii). As a consequence of (4.14) and (4.15), the net (ufpltgee) (resp. (u§EC . i) increases (resp.

HA ,Iaxwir
decreases) as A increases (in the order defined by the set inclusion), yielding the existence of the desired limits as well
as their translation invariance for all monotone quasilocal functions. Since the latter generate all quasilocal functions,
the claim is established. O

Proof of Theorem II1.1(iii). We first prove that for any finite set of bonds B, the measure u$RC (ng| Npe) is strong FKG.

To this end, we express u$EC(ng|ng.) as a limit of ﬁmte volume measures which can be expressed as conditionals

of the finite volume measures pS7. .. Using that uR7. . is strong FKG we then will conclude that g (ng| nge) is
strong FKG.
Let A be a finite subset of Z4, let 5 € {0,1}%Z") and let
A my beBy(A
o = o(A) (4.21)
0 otherwise.
(A) (A) — o~ Bhumax
Then we have Wﬁ}g)( ]BO(A)| nBO(A)C) — ¢~ Bh |A|W§§‘§ee (n(A)). Consequently,
GRC (A) GRC (&)
HBo(A) ( | nBO(A>c) 122N frcc( | mBO(A)C) (4.22)
Since the latter measure is strong FKG and since (u$R¢) form a consistent family of specifications, u$RC( - |7](A))

is strong FKG as well for any B C B(A) (use that conditioned strong FKG measures are still strong FKG). The

strong FKG property of the measure u$t¢ (ng| 1p.) now follows from the fact that u$RC(-| nI(Be)) — uSEC (| mpe) as
A A 7% which in turn is a consequence of the observation that for each i there is a finite A such that the number
of components of the graph (A, Boe(7?))) that reach from V(B) to the boundary of A is equal to the number of
infinite components of (Z4,By(n)) that touch V(B). (Here we used that there are only finitely many infinite clusters
connected to B.)

Hence p$RC (- |nge) is strong FKG for all g and all finite sets of bonds B. In particular, u§5°(«|ng.) is increasing
in the boundary condition (the specifications are consistent), and

O mEd) < S OC e < ugRO( (g, (4.23)

where n() is the configuration with n®¥ = i for all b € Bo(Z%). Choosing B = B(A) and continuing by further
conditioning as in the proof of (4.14) and (4.20), we get

:ujc\;}}ge( ) < :U’Ig%}j)( : |nIB(A)C) < p’%ﬁgaxwu‘( : ) (424)
FKG FKG
If i is a Gibbs measure, the bound (4.24) and the DLR equation (2.12) imply that

Pidree(+) < nTO0) < () (4.25)
FKG FKG
Taking the limit A  Z¢, we get statement (iii) for an arbitrary GRC Gibbs state p.
In order to prove statement (iii) for a GRC limit state, we use that for any sequence of finite sets B,, with
B,  Bo(Z9), we can find a sequence A,, of finite subsets in Z¢ such that A, * Z¢ and B(A,) C B,,. Given such a
sequence and a sequence of boundary condition 7™, we then proceed as above to bound

GRC GRC CGRC
uAn,free( ) S 1“‘153,l ( ‘ n(n) A)C) S /j’An,maxww( ) (426)
FKG FKG
Taking the limit n — oo, this proves statement (iii) for an arbitrary RC limit state. O

Proof of Theorem Il1.1(iv). Let g be a monotone increasing function, depending only on bonds By(A) for some finite
A. For each finite A C Z¢ define

gn = Z goT”, (4.27)

x: T A)CA
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where 7 is the shift operator. Let ufljfe’c‘h’a and M/CERISMQ]? be the GRC measures with free and maxwired boundary

condition and coupling J = J1, however, with the weights in (3.1) and (3.4) multiplied by the function e*94. We then
consider the generating function

Z 0= Y et — 1)1 T Opee(C(m)), (4.28)

nEBo (24) C(n)
where, as in formula (3.1), the product runs over all connected components C(n) of the graph (A, Bocc(17) N Bo(A)).
Similarly, we introduce the generating function Z/(C‘r)nmir for the moments of gy with respect to N%,Rn?axwir Consider

now a volume A that is a disjoint union of two volumes A; and A;. Then we have the following submultiplicative
bound

Z/(\O,tf)ree 2 Z/(\C:),free Z/(\ag?free eO(a‘B(Al)nB(A2)|)? (429)
which can be easily obtained by restricting the sum in (4.28) to those 1 which are zero on the bonds in B(A;) NB(A2),
and observing that

gr = ga, +9n, + E goTt". (4.30)
x: TT(A)CA,
TT(A)NA7 £D,
~T(A) A 20

)

By standard subadditivity arguments, it follows from (4.29) that the “free energy’

. 1 (a)
fla)= Ah/rrzld o] 10g Z\ free (4.31)
exists and is convex in . In (4.31), we assume that the limit is taken over cubes of the form A,, = {-n, ..., n}<.
The same limit is obtained if Z/(;)‘f)]ree is replaced by Zl(\ar)ﬂaxwir. Indeed, observing that Z};ﬁmwir can be bounded from
below by restricting the sum over configurations to those for which 7 is 0 on B(A) \ Bo(A), we get
2 ase 2 €N 2 T Oam({a)), (4.32)
T€OA
provided m € Quax- To get an upper bound on Zl(fﬁwmr, observe that @y ,, < Opee by our assumption (3.3). As a
consequence,
24 e < OO Z() (4.33)

where, as before, A = A UJA. While A is not of the form {—n,...,n}? required for the existence of the limit (4.31),
it can easily bounded by a term of this form times a boundary term with the help of (4.29). We therefore have shown

that 2\ and Z/(\a) give rise to the same free energy f(«).

A ;maxwir Jfree

Moreover, by differentiating, we find that

a5
da—

() < (a2) < lim inf pGC e ( 9a ) : (4.34)

Al
where 0 < a3 < as < « are arbitrary.

Since gy is increasing, we have from (4.15) and the translation invariance of %" that the left hand side of (4.34)
GRC,J;

equals p. ' (g). Thus we just need to show that if « is small enough then uiﬁ’é}l’a is FKG dominated by ufﬁi’e‘h.
To this end recall that the second measure can be directly generated by the weights Wlfffree defined in (3.1), while the

first one can be generated by the weights e“94 W}\hfree As a consequence, we have

GRC,J2( . GA)

GRC, J1 HA free
A, free ()= —ZroT o (4.35)
H A?releJQ (GA )
where
wih
GA(’I’]) — eagA(n)M (436)

W;\],eree (,r’) .
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Hence it suffices to ensure that the function n — G (n) is monotone decreasing in 7). Let us define the variance of g
by the formula

var(g) =sup sup |g(n) —g(n')|. (4.37)
b mm' s m=mny
Vb£b

Note that var(g) is the maximum amount that g can change by flipping a single bond. Since

J1
WA,free

J2
WA,free

(n) = {ZZ;_” " ; (4.38)

the monotonicity of G is guaranteed for instance by e®Var(@)Bo(M)l (A1 _ 1) < (872 —1). For J; < Jo, this in turn
is achieved by taking « small enough. Thus, for « sufficiently small and positive, we have

GRC,J - GRC,J1,a ( YA .. GRC,J [ 9A GRC, J.
P (9) < T inf pi e a(m) < lim inf uA,freJ(m) < Hiree " (9); (4.39)
where the last inequality follows from ufﬁﬁ’e‘b F}%G SI;C,JQ and the translation invariance of ug}f’h. Since g was
arbitrary, (3.11) is established. O

Before proving item (v) of Theorem III.1, let us present an elementary argument showing why our definition of
partial order on the external fields is the only correct one, at least provided we stipulate that it be independent of
the volume, 8 > 0, and the values of (¢,,) (however, such that the strong FKG condition is still satisfied).

Let A = {z,y}, where x and y are nearest neighbors, and consider the event {n, = 1} that the bond b = (z,y) is
occupied. Then

GRC, (hm
Hiohine (= 1) = £ (ff2): (1.40)
where f(z) = 22/(1 + 22) and where || - |; and || - ||2 are the ¢! and 2 norms of the vector @ = (e®"1, ... ef"4) in the
metric with weights (g,,), i.e.,
q q
lalls = Z gme’t™  and  ||al|? = Z gme2Phm. (4.41)
m=1 m=1
GRC7(h7n) ”a”Z

Since = +— f(x) is strictly increasing, Iizy) free MCTEases with (hp) if and only if does. If this is to hold

independently of the ¢,,’s, then also

llallx

—28(hy,—h;)
: laj _ 1+ae
g G alh = [+ ae—Phu—h)]2 (4.42)

must be increasing for all @ > 0. (In the above limit, we fix all g,,’s with m # k,1.)
We want to show that the condition

hj, —h; > hy —h, whenever hy —h; >0 (4.43)
is necessary for the claim (3.12). To this end, we first show that the condition
hj, —h; >0 whenever hy —h; >0 (4.44)

is necessary for (3.12) to hold. To see this, assume hy > h; and hj, — h] < 0. Then for large enough 5, the r.h.s.

of (4.42) is close to 1 for (h,,) and close to a1 for (h!,). Taking o > 1, we see that the desired monotonicity of

u?fi}(?gg (n, = 1) is violated. Hence the condition (4.44) is necessary.

Now take o = 1 in (4.42). This leads to the function = +— % cosh(z)[cosh(z/2)]~!, which is even and strictly
increasing for x > 0. Hence (4.42) increases under the replacement (h,,,) — (h,,) if and only if |k}, — hj| > |hx — Ryl
which together with (4.44) gives the necessity of (4.43).

The following argument shows that the condition (4.43) it is also sufficient.
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Proof of Theorem IIl.1(v). Let (h,,) and (h},) be two sets of fields such that (h,,) < (h!,). In order to prove (3.12)
and (3.13), we need to establish that the functions

GRC,(h' GRC, (hy,
Wihe ™) _ Wi " m)
n— W = Ztree(N), n— W =Zn(n) (4.45)
WA,free (77) WA m (77)

are monotone increasing with n (the rest follows by (3.8), (3.9) and an inequality of (4.35)-type). It suffices to study
the single-bond flips. Let b = (z,y) be a nearest-neighbor bond such that 7, = 0 and let n° be the configuration
obtained by flipping 7, to 1. There are two scenarios: (1) z <>y in n, (2) z + y in 7.

In the case (1), Zee(n) = Zfee(N®), as follows by the inspection of (3.2), and similarly for the maxwired boundary
condition. In the case (2), there are two components A and B in 7, each at one end of the bond b. By flipping 7, to
1, A and B become connected in one component that we denote by C. Note that |[V(C)| = |V(A)| + |V(B)|. Since
the remaining components are not affected by this flip, it is easily seen that

Zhee(n®) @GRcv(hm)(A)QGRC,(hm)(B) 9GRC,(h/m)(C)

free free free

Zhee(n) QGRC,(h;n)(A)QGRC (h )( B) @GRC,(hm)(C)’

free free free

(4.46)

and similarly for the maxwired boundary condition. We are thus reduced to showing that the r.h.s. of (4.46) is no

less than 1, and again similarly for maxwired.
We begin with the free boundary condition. Let a,bm, ¢ have literally the same meaning as in (4.7) and let
b, denote the corresponding quantities for (h,,) replaced by (h.,). Note that ¢,, = amby, and ¢, = al,b.,.

m7 m’m

Then the condition that the r.h.s. of (4.46) be no less than 1 reads

q q q q q q
> qid] <Z ka§<> (Z Qlalbz> <> ajay (Z kak> (Z qla%) : (4.47)
=1 k=1 1= i=1 k=1 1=

We will prove this in two steps; first we “move” the prime from a;’s in the first bracket on the Lh.s. to the ones in
the last bracket and then do the same with the prime over by in the second bracket on the left. Consider the identity

ajaib; + ajajb; = %(a;al +aja;) (b + bj) + (a ‘a; — ajap)(by — bj). (4.48)
Observing that (h,,) < (h],) implies
(ajar — ajar) (b — by) < 0 < (aja — ajay)(b; — by), (4.49)

we can bound the r.h.s. of (4.48) by interchanging b; and b;. This allows us to conclude that

q q
L.h.s. of (4.47) quaj (Z qkb§€> (Z qlafbl> : (4.50)
k=1 1=1

In order to perform the same trick on b}, which will lead to the desired formula (4.47), we will need that hj, — hj >0
implies hj, — h; > hi, — hy. After a moment’s thought, the latter is a trivial consequence of our assumption (3.7).

In the case of maxwired boundary condition, let both measures be defined using the same boundary “value” m
with Ny = hmax and hl, = hl .. (such a choice always exists, due to (h,,) < (h,,)). We need to distinguish whether
any of the components A, B connects to the boundary or not. If V(A) N OA = @) and V(B) N IA = (), we are in the
same situation as for the free boundary condition. If V(A) N JA # () but V(B) N JA = (), then we have to check the
inequality

q
ar ambm (Z qkbﬁc> < al,anb, (Z qkbk> (4.51)
k=1

This is implied by the inequality b,,b} < b/, by, which in turn follows from the assumption (h,,) < (h},) and the fact
that hy, = hmax and hl, = k! In the case when V(A) N OA # 0 and V(B) N OA # 0, (4.47) (modified for the

max*
m~wired boundary condltlon) is fulfilled with the equality sign. O
Proof of Corollary to Theorem Ill.1. Items (i) and (ii) are direct consequences of (3.10). Since pFhc (0 < A°) |
0 +> 00) by Lemma IV.1, the claim (iii) follows from the fact that a monotone decreasing sequence of monotone

Hrnaxwir (
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increasing continuous functions (of parameter J in our case) has a right continuous limit. To prove claims (iv) and
(v), we note that the map J — p(ﬁ, J, h) is non-decreasing. By (3.10) and (3.11), one has lf’(ﬁ,J, h) < P(B,J,h)
for all J and P(f,Jo,h) > P(B,J1,h) for all J; < J, which implies the remaining part of (iv). Combining the
monotonicity of P(3,J,h) and P(ﬁ, J, h) with the above two inequalities, we get (v). O
We close this section with an FKG domination lemma which will be used to prove Theorem III.2 in the next section.
We need some notation. First, for a finite set A and any subset D C A, where, as before, O\ = {z € Z%|dist(z,A) =

1}, we define the D-maxwired measure in the volume A as the measure
HRTES mascwie (1) = e (+ |7 = 0 V0 € B(A) \ Bo(A U D). (4.52)

= /J/A maxwir

Note that u%?gmaxwir() is identical to the free measure u%%?ee() if D = ) and identical to the maxwired measure

GRC (.)if D = OA.

MA maxwir
We also generalize the m-wired measure M%P;S To this end we introduce, for any finite volume A C Z? and any

configuration o : A — {1,2,...,q}, a measure ARC that is obtained by normalizing the weight
W (n) = (7 — 1) H Lo, amo; 01 (M H Ore( (4.53)
1<J

Here ;A is the set of all z € JA such that o, = i, 9;A «» 0;A is the event that the sets 9; A and 9;A are not connected
by a path of occupied bonds, and

Otree (C) V(C)NA =0

@A,a(c) = {eﬂhmv(c)l V(C) A 8mA ?é 0. (454)

It is not hard to see that for the standard RC model (with g,, = 1 forallm = 1,2,...,q) ,uﬁg is in fact the RC marginal
of ME,SIB%(A)( “[oAc, Mp(a)e ), While Mﬁ?D,maxwir is the RC marginal of ME?]B( “|oAc, e ), provided B = By (A)U(B(A)NB(D)),
Neane = 0 and o, = m for some (z-independent) m € Qmax and all x € D.

The measures u/(ﬁf and u%ﬁmaxwir satisfy the following FKG bounds:

Lemma IV.2 Let A be a finite set. Then for any o on A°, we have

M%p;c( )F§ GRC (L), (4.55)

A ,axwir

Moreover, let D C OA. Then

GRC GRC GRC
/'LA free( ) < IU/A,D,maxwir( . ) < /'LA ma.XWIr( ) (456)
FKG FKG

Proof. Using the representation (4.53), it is easy to see that the measure u/(\}F;C can be recast as

GRC
GRC /’LA ma.xw1r( g)
bre () = —CGre 7 (4.57)
» 1 cwir(9)

where

H ]1{8 A A} H H ei(hmaxihm)lv(c)‘ (458)

1<J
(C)ﬂé)mA#@

for any n € {0,1}B), Tt turns out that the function g is FKG decreasing. Indeed, each indicator Iio,aw0,41(N) is
clearly decreasing. The same is true for the remaining factor as is seen by noting that

> () (4.59)
C:
V(C)NOm A£D
being equal to the number of sites connected to dA,,, is an increasing function of 1. Since hyax > hy, and since the
product of non-negative decreasing functions is decreasing, the monotonicity of g is established. Since ufﬁfmir is
FKG, (4.55) is proved.
To prove (4.56), it is enough to observe that the right hand side of (4.52) is FKG increasing in D, since M%RDC —
is FKG and the event {n: n, =0 Vb € B(A) \ Bo(A U D)} is FKG decreasing. O
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V. THE COLOR(S) OF THE INFINITE CLUSTER(S)

In this section we prove Theorem III.2. Since this result uses ES measures in its very formulation, we return to
the standard RC measures (with ¢,, = 1, m = 1,...,¢, in (3.2)) and prove the results only for them. In addition
to Lemma IV.2, the second part of Theorem III.2 requires some control of the possible values of the spins that can
be assumed on the infinite clusters. To state the theorem precisely, we introduce the notation S(o,n) for the set of
possible spin values assumed on the infinite clusters in a configuration (o, 7). (Observe that since v({(o,n): o, #

Tys May) = 1}) = 0 for each v € GFS, each connected component has a constant spin value almost surely.)

Theorem V.1 Let v € GBS, Then S C Qmax(h) v-almost surely.

Remark. We believe, but have not yet been able to prove, that |S| < 1 v-almost surely for all translation invariant
v e GEs,

Before we prove the above theorem, let us formulate a technical lemma.

Lemma V.2 Let (ay)r>1 be a sequence of numbers such that 1 < ap, < Ck™ for some constant C' < oo and an
integer n > 0. Then for each € > 0 and any k > C(n + 1)"e=(»+1)

ar S € Z Qg (51)

k' <k
holds for at least one k € {k,...,(n+ 1)k}.

Proof. If n = 0, the statement follows from the observation that 1 < a; < C and k> Cet implies a < C < ek <
€Y 1<k Gk, which gives (5.1) for k = k. If n > 1, suppose that ar > €Y _,, ., ap for all k € {k,...,(n+ 1)k}. Since
Qg 271, this implies ay > ¢k for all k € {k,...,2k} ‘and, using induction,iak > ekt for all k € {lk,..., (L + Dk},
with £ € {1,...,n}. In particular, Ant1)k > €1k However, this is in contradiction with the assumption
()i < C(n+1)"k™ whenever k > C(n + 1)me= ("), O
Proof of Theorem V.1. Let m € {1,...,q} with h,, < hmax and suppose that there is v € G¥ with v(m € S) > 0.

Since G®5 as well as the event m € S are invariant w.r.t. spatial shifts, we can suppose without loss of generality that
the event

a5, = {(o,m): 3C(n),

C(m)| = 00, V(C()) 50, 0 = m} (5.2)

has positive probability under v, i.e., v(Q% ) > 0. Let A, be the box of side length 2k + 1 centered at the origin and,
for each (o,m) € Q2 and each k > 1, let Vi(n) be the set of sites in Ay that are connected to the origin within
Bo(Ag), and let

ap = ak(n) = Vk(T]) NOAg_1]|. (53)

Note that [Vg(n)| > >, < ar and that 1 < ag < [0Ag_1| < 2d(2k 4+ 1)771 < 39dk?~!, where we have used that

k > 1 in the final bound. Hence, by Lemma V.2, we know that for each € > 0 and each k > (3d/e)? there is at least
one k, with k < k < dk, such that

[Vi(n) NOA_1| < €|Vi(n)|. (5.4)

By (5.4) and the subadditivity of the measure, we have for k > (3d/e)¢ that

V(20 < 1(Upcreai Qo 1) < Z V(0 k), (5.5)
k<k<dk

with ngk denoting the event

og=m, 0+ aAk,l,

0 _ .
Q% =< (o,m): {z € 0Mk_1: = +— 0} < e[{z € Ay 2 +— 0}
Bo(Ax) Bo(Ar)

m,k
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Here xBT 0 indicates that the connection occurs within Bg(Ay). As a result, for each € > 0 there is a deterministic
0 k

set Ne C N, |N| = oo, such that for any k € N, one has
1
Q) > —u(Q° )
by the pigeon hole principle as applied to (5.5).
On the other hand, since an,k isa (Ak, IB%O(Ak))—cylinder event, we can estimate I/(Q?n)k) using the DLR equations

(2.6). Recall that >  is the specification (2.4) with the special choice A = Ay and B = B(Ay) and the spin boundary
condition o (the n boundary condition is irrelevant in this case). Then (2.6) reads

p(Q0,.) = / v(dor, dm)uES (9, ,). (5.7)

Fix € > 0 such that dJe + hy, < hmax and pick m with hz = Apax. Then we claim that for any o

T UTNSEY o CTVU | (I Ty

(z,y): x€A],
YyEV
ES —B(hmax —hm)|V J .
B (HQ%,ke 8( ICT | ll{n@,y)_o}) (5.8)
(z,y): z€AL
YyEVy

ES —B(hmax—hm—dJe)|V —B(hmax—hm—dJe)k
< RS o (1gn e T} < A "

Here, in the first step we inserted the factor e®’ in order to convert an arbitrary configuration at the boundary bonds
of the set Vi to the vacant bond state. More explicitly, we used the following estimate

Z (ll{mw,w:o} + (e~ 1)ds, .0, ]l{mw,w:l})
N(a.y)=0,1

_ BJ J _ J
= (" —1)bg, 0, +1 <= N g g (5.9)
M(z,y)=0,1

J J
= Z eﬁ ]l{n(z,y):()} (]1{77<I,y>=0} + (eﬁ - 1)5‘716701/ ]l{n(z,y)zl})
MNa,y) =0,1

at every boundary bond. Note that there is an unconstrained summation over the bond configuration because Q%L’ &
does not depend on these boundary bonds. The conversion of an arbitrary configuration at the boundary bonds of
the set Vi, to the vacant bond state then allows us to flip o, at each x € Vi, from m to m, resulting in the exponential
factor in the second line of (5.8). The proof of the claim (5.8) is finished by noting that, on QY ,, the number of
flipped bonds does not exceed d|Vi N OAk_1| < de|Vg| and that |V| > k.

By putting (5.6), (5.7) and (5.8) together, we get that

2v(Q0) < v(QF, ;) < e Plhmax—hm=dJk g € N, (5.10)

However, since |N.| = oo and k can be arbitrarily large, this leads to a contradiction whenever v(Q2,) > 0. Hence, no
such m with h,, < hmax can exist and S C {m: h;, = hmax } v-almost surely. O

Proof of Theorem |11.2. Let us consider an ES Gibbs measure v and use p to denote its n marginal. Applying the
DLR equations (2.6) for v, we get

() = () = [ v, cm) sy (e mseny) = [ wicr ) (1
< [ vldor ) e ) = (1) (5:11)

for any increasing cylinder function f(n) supported on B C B(A). Here, the inequality follows by (4.55). Applying
now (2.17), we get (3.14).
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In order to prove (3.15), we have to work a bit harder. Let (A,),>1 be an increasing sequence of boxes centered at
the origin and let

Am)={zeA,: z» AjJU{z € A,: x4 00}, (5.12)
Dp(n) = 0An(n) N {z ¢ oo}, (5.13)

and
Dyt (m) = OAn(n) N {z 45 o0} (5.14)

Observe that D, (n) C 0A,. B B
Given A,, C A,,, D,, C dA,, N OA,, and D' C D,,, we will want condition on the event

En ={An(n) = An} N {Dn(n) = Dn} N{DF* () = D"}, (5.15)
using the DLR condition (2.7) in (A,,B,), where
B, = Bo(An) U (B(A,) NB(D,,)) . (5.16)
To this end, we write the event &, as the intersection of four events: the event
n 5

Ent — {4« D™ Yz € D, \ D& (5.17)
Bn

which depends only on the configuration in B,,, and the events

gL = {D* ={z €0\, : z +— oo}}, (5.18)
IB(A")C
57(12) = {n(:v,y) =0V(z,y) € B(An) \Bn}a (5.19)
and
&Y ={o o A Ve € A\ Ay} {w > Dy and @ > 00 ¥ € Ap \ An}, (5.20)

which depend only on the bonds in B,. To see that &, is actually the intersection of these events, we first observe
that £, = {An(n) = A} NEW N &M, Also, if £V N Ent holds, then {A, (1) = A} clearly implies £ N & So
we have to show that £ N &5 together with &M n Ent implies {A,(n) 2 A,} and {A,(n) C A,,}. The former is
obvious, since the event S,(LZ) ensures that all points in A,, that are connected to A¢ are actually connected to D,,,

and hence to infinity. The latter follows by observing that &(Lg) implies that all x € A, \ A,, are connected to the
complement of A,,, but are not connected to infinity.

Let f be a non-negative FKG increasing B (A)-cylinder function, where A is a finite set. By the assumption on p,
either gy = 1 or there is at most one infinite cluster. In both cases, the spin on the infinite component(s) is uniquely
defined: o, = m with h,, = huyax for all  in D,,. Since the indicator function of the event £ depends only on the
configuration ng _, while the indicator function of the event

EZXt — 57(11) N 87(12) N 5723) (521)

depends only on the configuration ng. , we may now use the fact the conditional expectations of the ES Gibbs measure
v are given by (2.4) to write

p(f) =v(f) = v(flfa,)oay)
= > v an=a 1, (=0, Ypge (- =Dyt Uop, =m))

_ ATLQA MEQmax
Dy, ga nQaAn
S (5.22)

/I/(da, dn) Tgext Lo, =m} ,u%i,@n (fTgin| o';\f”n@%).

Il
M
M
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Under the condition that o5 = m, the RC marginal of MES B, (-|o A MBe ) in the above equation is just the measure

N%C . . introduced in the last section. Since the event & int'; is an increasing event and since p& A ey 1S Strong
FKG (being given by conditioning from a strong FKG measure), we conclude that
RC
,UfA (f]lgmt‘ O Acs N ) = Ha, Dn,maxwlr(f]lgizm)
RC RC
> /”Lf\ D, maxwlr( ) f\n D, 7maxwir(llgibm)
RC ES
= Ml_\ D maxw1r( ) f\n (]]'5:{‘“| U[X%?”]Egl)u (523)
provided o5 = m and ng. € EX'. Observing finally that
RC RC
K D aseie (F) 2 e e (F) 2 1k iree () (5.24)

by (4.56) and (4.14), we get that

:u(f) > /Ug(,:free(f) Z Z / dU dn) ]159’“ ]l{o'D =m} MA (]15""3 | O s> 'rl]BC )
_ An.DA MEQmax
DngaAnqun
Dg*C D,
= /ug(,:free(f) Z V(]lfﬁ’“ ]152{“) = :ug(,jfree(f) V({An( . ) = A}) (525)
A, DA

Dn ga]\n QaAn
DyX*CDy,

Here in the first step we used the bounds (5.22)—(5.24), in the second we used Gibbsianness of v, and in the third we
used the fact that lgextIgint is the indicator function of the event (5.15) to resum over A,,, D,, and D,

Since v({A,(+) 2 A}) tends to 1 as n — oo by the monotone convergence theorem, the proof is finished for f > 0
by taking that limit followed by A * Z?. Arbitrary cylinder f’s are handled by noting that f — min f > 0. O

VI. UNIQUENESS OF THE INFINITE CLUSTER

In this section we prove that GRC Gibbs measures and weak limits of finite volume GRC measures have at most
one infinite cluster almost surely (Theorem II1.3). This is a direct consequence of Theorem 1 from [12], once we show
that the limiting measure satisfies the positive finite energy condition. Using a slightly stronger form of the condition
than that in [12], we say that a GRC measure p has positive finite energy if for all bonds b € B(Z<), we have

w(ne = 1|Bgzaypy) >0 p-almost everywhere. (6.1)
Here Bg(za\ (5} i the o-algebra generated by all cylinder functions on {0, 1}B(Zd)\{b}.

We start with a lemma concerning GRC measures that are either Gibbs states or weak limit points of finite volume
GRC measures.

Lemma VI.1 Let p be a translation invariant GRC measure that is either a Gibbs state or it is a weak limit of the
form lim,, o NGRC( |n,,). Then the measure p satisfies the positive finite energy condition, provided SJ > 0.

Proof. Consider a finite set of bonds B and the characteristic function 15 1 of the event {n|ny = np}. The claim

(6.1) will be proved once we verify that there exists a constant ¢ > 0 such that for every B C B(Z9) \ {b} and every
1y, one has

/u(dn)ﬂ{%}(n)u(nb = 1|Bgzay 1) (n) > C/ﬂ(dn)ll{m}(n)u(nb = 0|Bp(zay\ () (1)- (6.2)
Indeed, (6.2) implies that

(e = 1Bgzay p3)(m) > cu(n = 0|1Bgzay by) (1) (6.3)

22



almost surely, which in turn yields

w(ne = 1Bgzay p3) (M) = 1 ic (6.4)
almost surely and thus (6.1). Now, since Iz is Bg(za)\ {p}-measurable, the inequality (6.2) is equivalent to
p(Lny A=1y) = cp(Lin,y Ly, —oy)- (6.5)
If 4 € GPRC the inequality (6.5) is implied by
Ngm(ﬂ{ﬁﬁ}ﬂ{nb:1}|nDC) > CMSRC(]I{ﬁB}]l{m:O}|77Dc)~ (6.6)

for at least one D D B U {b}. Indeed, it suffices to integrate (6.6) by u using the DLR equation (2.12).

If, on the other hand, u is obtained as a weak limit of finite volume GRC measures, u = lim,, ugfc(-mn), then
the inequality (6.5) follows from (6.6) as well, provided (6.6) holds for all sufficiently large D = B,, D B U {b} and
boundary conditions Npe = Mp- Indeed, for all € > 0 and all sufficiently large n we have

155 (Mg y D=1y 1) — (i3 Ug=1y)| < 6, (6.7)
and

|En (Mg, Uy =oy 1,) — p(Ugmy Uiy =0y)| < e (6.8)
Combined with (6.6), we get

1My L =13) = ep(Lipy Liy—op) — (1 +¢). (6.9)

Since € can be made arbitrary small by choosing n large enough, we again obtain (6.5).
To get (6.6), we evaluate the infimum of the ratio
it (o = 1, oA {o} [ MTDe)

HI[G»RC(% =0, 77D\{b}|77]1]>€)

(6.10)

over all np, ). Let us consider, for any n with n, = 0, the components C,(n) and Cy(n) attached to the endpoints

x and y of the bond b = (z,y). If C,(n) = Cy(n), using (3.6) we immediately see that the ratio (6.10) equals e/7 — 1.
On the other hand, if C,(n) and Cy(n) are different components of the graph (Z¢, Boe.(n)), then

MSRC (7717 =1, o\ {b} |17]I))C) B8J ZmeQmax(h) dm
GRC > (e - ) =g 3 (6.11)
pg (e = 0, nD\{b}lnDC) (> =1 @m)
since
Z,qn:1 qmeiﬁ(hm7hmaX)(|V(CI("7))H"V(Cy("]))') meQm'}x(h) dm
(Zil:l qme_ﬁ(hm_hmaX)‘V(Cz (ﬂ))l) (Zfr]nzl Qmeiﬁ(hmfhmax)lv(cy ("7))‘) - ( gn:1 Qm)2 (612)
by the obvious fact that 0 < e~ Phm—hmax) < 1, O
Proof of Theorem I11.3. Since the positive finite energy condition has been established in both relevant cases, the result
follows immediately from Theorem 1 in [12]. O

In order to prove the corollary to Theorem III.3, we will prove a lemma that states that the specifications ,ugRC are
“almost surely quasilocal” in the language of [16,21]. For finite sets A, A with A C A C Z4, let Ma s be the event

Manar={n: Vo,y € A z < A° and y > A® implies wm) y}, (6.13)
0

where x M) y is the event that there is a path of occupied bonds in By(A) connecting x and y.
0
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Lemma V1.2 (i) Let B C Bo(Z9) be a finite set, and let f be a cylinder function depending only on the bonds in B.
Then the function

n = Dnia, (0)pgC (f] mge) (6.14)

is quasilocal for any pair of finite sets A, A with A D A D V(B).
(ii) Let ju is a GRC limit state or a GRC Gibbs state with at most one infinite cluster and A C Z% is finite, then

pMana) 11 as A1 Z4 (6.15)

Proof. Recalling the definition of u$R° (| ng.) in terms of (3.6), we note that it is enough to prove that the function

n = Tpaa , (M)W (5] Me) is quasilocal for all 7 € {0,1}B. Let A D A, and let 5 and 1 be two configurations
differing at a single bond b € ]B(A) , = 0,m2 = 1. Suppose that n € Ma x is such that and that there is a cluster
C connecting A with B(A)¢. By the definition (6.13) of Ma a, the configuration n® also satisfies these conditions,

and the component C of (Z%, By..(n)) connecting A with B(A)° is unique. Moreover, the value of WSS (7| ng.) is
clearly not affected by changing from 1 to n° unless V({b}) N V(C) # ). Suppose that the latter occurs and denote
by C® the corresponding component under n°. Then

(65'] _ 1) ‘Bocc(ﬁﬁ)nm‘

| W5 (5] M) — W™ (1| e )| <

q
<3 qm)emhmfhmnwcb)l _ Bhm—hma) V(O | (6.16)

m=1

It turns out that the r.h.s. of (6.16) is exponentially small in dist(b, A). Indeed, for the terms with h,, < hmax,
both terms between the absolute value signs go to zero exponentially fast, while for h,, = hmax both terms tend
exponentially fast to one as dist(b,A) — oo. Thus, the r.h.s. of (6.16) is summable over the positions of b. By
the standard telescoping trick, this proves quasilocality (i.e., continuity in the product topology) of the function
= Dy o (M) W5 (15| nge ), as required by (i).

(ii) Since Ma a T My, where M, is the set of configurations featuring at most one infinite component incident
with A, we have that u(Ma a) T u(Ma) =1, by the absumption that p has at most one infinite cluster. O

Proof of Corollary to Theorem 1.3, Let p = limy, o0 ALB RC(.|m,,) be a translation invariant GRC limit state. It is not
hard to verify that p, = pug"°(-|n,,) satisfies the DLR condition

in(f) = / i (A7) SR ( 1), (6.17)

for any B-cylinder function f and any B C B,,. Since the specifications u$RC(f |+) are not quasilocal, this does not
imply, however, that the limiting measure p satisfies the DLR equation. To circumvent this problem, we follow the
strategy of [21] and [16] involving the “almost sure quasilocality” of uSRC(f |-).

Let B be a finite set of bonds, and let f be a bounded B-cylinder function. Since both f and Ta, ) (- YWSEC(f[+)
are quasilocal for all A D V(B), we have

(Mg ey (s C (1)) = Tim g (vt o) (<) EC(f14)) (6.18)
and
p(f) = lim g (f) = lim g (g™ (f ), (6.19)

where we have used (6.17) in the last step.
Let € > 0. By Theorem II1.3, © has a unique infinite cluster, which allows us to use (6.15). Combined with the
boundedness of u$RC(f|-), we can therefore choose Aq, A and ng such that

€

|M(M§Rc(f | : )) - /’L(]IMA,V(TB) ( . )/j‘]gRC(f ‘ ° ))‘ < 5 (620)
and

[ (7 (1)) = b (Utg ey (g™ (f [4))] < (6.21)

€
2
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provided Ay C A C Ay and n > ng. Combining (6.18) — (6.21), we get

lu(f) = n(pg™C (f1-)] <e (6.22)

Since € was arbitrary, we get that u(f) = p(pstC(f|-)), ie., u € GERC. O]

Proof of Theorem 1ll.4. To prove Theorem III.4, we will prove that for all finite sets of bonds B; and By with
B; NBy = 0, and for all bounded cylinder functions f and g depending only on the bonds in B; and By, respectively,
we have

(g f) = u(grg™C (1)), (6.23)

provided p has at most one infinite cluster with probability one.
In a first step, we use the DLR equation (2.11) and the consistency of the specifications {u§°} to conclude that
for B D By UBy we have

ugf) = / (@S (g f| ms.)
/ (dm)uS™ (9§ (1) mse).- (6.24)

Next let A D V(B1), and let Ma y(s,) be the event introduced in (6.13). Since both g and Tn, o, (* )u]gch(f [)
are quasilocal, we have

B/‘l]é?(lzd) ,U,(d’l’]) (g]lMA V(]BI)ILL]Bl (f| )| T]IB%C) - /’L(g]lMA v(nel)ﬂ“]]i%l (f| )) (625)

Here, we have used the fact that as a quasilocal function, the function gla, y,, ,uIBRC( f|+) can be approximated

arbitrarily well by local functions, and then we have applied the DLR equation (2.11) for local functions. To complete
the proof, we use that u(/\/lAy(Bl)) 1t u(Noo < 1) =1 as A1 Z?% by Lemma VI.2. Since f and g are bounded, we
conclude that for all € > 0 we can choose A in such a way that

[ S ) ~ [ S s S )| < 5 (6.26)
and
(UM, HEEC 1)) = (gnERO(119) | < 5 (6.27)
provided B D B(A). Combined with (6.24) and (6.25) this proves that
|u(gf) = ngng(f1)] < e (6.28)
Since e was arbitrary, this completes the proof of (6.23) and hence the proof of Theorem I11.4. O

Proof of Theorem 11.3. As pointed out in the remark after Theorem I1.3, the statements of the theorem are special
cases of those in Theorem III.1(ii), Theorem III.3 and its corollary. O

VII. WEAK LIMITS OF THE ES GIBBS MEASURES

Since by Theorem II1.3(i) the limits (2.17) and (2.18) exist for every quasilocal f depending only on the bond
configurations 7, to prove Theorem I1.4 we just need to extend this to functions of both o and 7. In this regard, it
will turn out to be useful to swap the o-dependence and 1-dependence under the expectation w.r.t. the ES Gibbs
measures. Before we formulate this precisely, let us give some definitions.

For any collection {F;}?_, of pairwise disjoint finite sets F; C Z<, let us define

free H 0 ﬁ H eBhm|V(C)| (7.1)
{.7:} {Fi “"—7‘-} @free(c) . :

i<j m=1
V(C)ﬂfm?f@
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Here, ]1{}-1,%}-].}(77) is the indicator of the event that, under m, no point in F; is connected to any point in F; by a
path of occupied bonds, the product over C runs over all components of the set Boe.(n) with V(C) N F,, # 0, and
Ofree(C) is as in (3.2) (with ¢, = 1).

Similarly, given a finite set A with F = U_;F; C A, let us define

i eBhm V()|
Fliza @ H VF wry(n H H Bam(C) Xa,m(C,m) (7.2)
1< B (C)ﬁ]—' #0 ’
for each m € {1,...,q}, where we recall the definitions (3.5) and use xa »(C,m) to denote
1 V(C)NA* =0 or m=m
xam(Cym) {O otherwise. (7.3)

Remark. In the following, it will be important to remember explicitly from which value of the boundary spin the
. RC - . : : RC o RC
measure iy .. originated. Therefore we shall temporarily write py, instead of Uy

Lemma VIL.1 Let A C Z% be a finite set and let f be a cylinder function in (A,B(A)). Then there are numbers
(agx,y) such that

N’ll%sfrcc(f) = Z a{fi} /”Lﬁ,cfrcc (F{f.r;e}) (74)
{Fi}

H%,Sm(f) = Z a{r;} /&(,jm (FK_?{E}) (7.5)
{F:}

for each m € {1,...,q} and all A D A with Bo(A) D B(A). Moreover, agz,y = 0 whenever there is an x € F = Uj_ F;
with dist(z, A) > 1. In particular, both sums above are finite.

Proof. Let A be such that A D A and Bo(A) D B(A). Then by using that p5S “ree and ﬂ%?m are Gibbs measures we
have

M]/E:&,Sfree(f) /J'A free (MA B A)(f| O Ac, nIB%(A) )) (76)

and similarly for p5; (f). The finite volume specification 1% 4)(f] @ ac, 1)) depends only on spin variables at
the exterior boundary 9A of A, and not on np 4. It therefore suffices to prove the claim for functions of the spin
variables that are supported in A = A U 0A.

Each such function f can be uniquely recast as > (Fi) M{FDY f{F,}, where ayr,; are real numbers such that ayzy =0
whenever F ¢ A, and

firylo H | (7.7)

m=1 x€F,,
It is now a matter of a direct computation to show that, for all m € {1,...,q},
/’LE,Sfree( ) {f;e":a} (77) 78
NA,m( ) = A,{]—‘i}<"7>'

Namely, the components C' of Boe.(n) such that V(C') N F,,, # 0 necessarily satisfy that V(C') N F; = 0 for all i # m.
This gives rise to the indicators 1¢z,..z;. For n such that [],_; 1{x.x,3(n) =1, the spin configuration can be
integrated out, yielding the ratios e#"m V() /@ . (C) resp. ehmIV(E /@, - (C). However, one gets the latter only
when V(C) N A® =0 or m = m. The claim is finished by taking the expectation w.r.t. 7. O

It was shown in Lemma VII.1 that o-dependent cylinder functions can be interchanged under the expectation for
n-dependent functions Fg,'fie} and F}" . Unfortunately, the weak limits (2.17) and (2.18) cannot yet be invoked to
conclude the existence of (2.19) and (2.20), the reason being that the Fy£,3’s are, in general, not quasilocal. (Moreover,

F]\" (F;) even depends explicitly on the expanding volume.) However, both functions Ff?e} and F" "(F;) turn out to be
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“almost surely” quasilocal, in the terminology of [21] and [16], which is still sufficient for the limits (2.17) and (2.18)
to exist.
For finite sets F, A with F C A, let Ma 7 be the event define in (6.13). Let further

MR 7y = {neMar: ze€F with z <> A® implies = € F,, }, (7.9)

and recall g = #{m: h;, = hmax}. For each A, m € {1,...,q}, and {F;} define also a random variable QXL’{E} by
putting

= 7.10
QA’{E} {1 otherwise. ( )
The remainder of the proof is based on an approximation of Fyr;’s by quasilocal functions and showing that the
error incurred thereby upon the expectations of F(z,)’s is negligible. These claims are formulated in Lemma VII.2
and Lemma VIIL.3 below.

Lemma VIL.2 For all finite A C Z% and any {F;} with F = U, F;

(i) F{fr]‘f:f} ]IMZ,{E»} is quasilocal for all m € {1,...,q}.

(i1) F{fg,?e} Iamy - s quasilocal.

Proof. (i) Let m be fixed and let A D A. Observe that 1ym

AAF;
only the contributions from the product over the connecte(i ci)mponents in (7.1) can be altered by flipping a bond
b ¢ B(A). Let us estimate precisely the incurred change.

Let 7 and 1® be two configurations differing at a single bond b € B(A)°, m, = 0,7 = 1. Suppose that n € MZ,{E} is
such that J[;_; 1{7,..7,1(n) = 1 and that there is a C' connecting 7, with B(A)°. By the definition (7.9) of MY -,
the configuration n° also satisfies these three conditions, and by the definition (6.13) of M A,{F}, the component C'
of (Z4,Boec(n)) connecting F,,, and B(A)C is unique. Moreover, the value of F{fﬁj‘} is not affected by changing from n

[li<; 17,7} is a cylinder function in B(A). Hence,

to ® unless V({b} NV(C) # 0. Suppose that the latter occurs and denote by C? the corresponding component under
b
7n°. Then

eBhm|V(C) Bhm|V(C)]
9free (Cb) eree (C)

FE () — Pl ()] < , (7.11)

where we have estimated all ratios by 1, except for the one affected by flipping b. As in the proof of Lemma VI.2, the
r.h.s. of (7.11) is exponentially small in dist(b, F). This proves (i).
To prove (ii), it clearly suffices to note that

q
F{fr]??} []IMA,}- - Z ]IMK,{J-}}:| (7.12)
m=1

is a cylinder event in B(A). Namely, the function in the brackets is zero unless there is no component incident with F
that reaches up to A°. In that case, F{“;LC} depends only on bonds from B(A), i.e, it is effectively a local function. [

The next lemma has two parts, both of which will be needed in the proof of Theorem II.4. It turns out that the
first part can be proved for the more general GRC model.

Lemma VIL3 Let {F;}, F and m be such that F = Ul_F; and hym = hmax.
(i) Then

lim lim p§RS r)=1 7.13
AI/‘ZdAl/fz;d A,frcc(MA, ) ( )
lim lim p§RC r)=1. 7.14
AI/ZdA;‘Zri A,m(MA, ) ( )

- - -y ]-_’i m m ree
(it) In addition, let GI{\,A}:m = FA,{.H}]IMAJ’ - QA,{E}]IMK{H}FEE}' Then

lim lim u8C (G170 ) =o. 7.15
Jim ) Tim G (G Am) (7.15)
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Proof. (i) The inner limits on the Lh.s. exist because Ma r is a cylinder event, and the GRC measures have a weak
limit by Theorem III.1(ii). The outer limit is then a consequence of the fact that Ma r T Mz, where M £ is the set
of configurations featuring at most one infinite component incident with F. The limits are thus equal to ufcrf;c (Mx)
and puSRC (M x), respectively. Now, since pSR¢ and pSRC are translation invariant (as already proved Theorem II1.1)
and are obtained as weak limits of finite volume GRC measures, we can apply Theorem II1.3 to assert that both these
measures have almost surely at most one infinite cluster. This means ufE°(Mz) = 1 = pSR°(Mz). By putting these
observations together, (7.13) and (7.14) are proven.

To prove (ii), take {F;} and A C A with A D F. Then the following three possibilities can occur for configurations

n € {0,1}BW);
(A) F e A°
(B) F + A° but F «» A°
(C) F < A°.

Clearly, under (A), the absence of components connecting F with the outside of A implies

lug o =Imas QRgry =1 and FRlizy = F{5, (7.16)
by the inspection of (7.1) and (7.2). Consequently, all terms in the definition of G;{fﬁm cancel and foﬁm =0.

If (C) occurs then both terms contributing to fog}’m are zero unless there is a unique component connecting F to

OA, and this component connects F,,, to JA. If we have such a component C,, A, we get

Ofree(Crm.a)
— m — m __ pofree free\“m, A
IlMX’,{fi} - ]IMA“;-y QA7{_7.‘1} = qo, and FA7{-7:11} = F{}-Z}m (717)

Since Ofee(Cm,a)/ eBhmV(Cm. Al ig equal to go plus an error term that is exponentially small in the distance between
Fm and OA, this implies that G}{\ﬁ},m tends to zero as A 7 Z¢.

The proof of (7.15) therefore boils down to the analysis of (B). Let P/{A denote the event (B), i.e., P/{A ={n: F+
A° but F «» A°}. Then, by the preceding reasoning, |G5\FA}m| < qo ]IPfA plus an error exponentially small error term
that tends to zero as A~ Z<¢. Thus, it suffices to prove that

lim lim pRS (PLA) = 0. 7.18
A%dAI/r%duA,m(PA,A) (7.18)

We will establish this by proving that the events (A) or (C) get the full mass under these limits. First we recall the
well known characterization

RC : RC c
F <> 00) = lim F < A°). .1
Hom, ( ) Al/Zd MA,m( ) (7 9)

This follows from the fact that for A C A we have the inequalities /,L%’Cm (F & A°) < /J%Cm (F< A< uﬁ?m(}' «— A°),

where the first one is due to monotonicity of {F <+ A°} in A and the second one is due to (4.15).
Since {F «» A} 1 {F «» oo} as A N Z¢, we easily get that

lim  lim pR A° A}) =1 2
i lim g, ({F o AT ULF  A%) =1, (7.20)

proving the desired claim. O
With Lemma VII.2 and VII.3 in the hand, the proof of Theorem II.4 can be concluded.

Proof of Theorem 11.4. By Lemma VII.1, the existence of the limits (2.19) and (2.20) has been reduced the existence
of the limits imy sza uﬁ%ee(F{ﬁﬁf}) and imp _sza u%?m(FXL{Fi}). To prove the existence of the latter, let € > 0. Then

there are finite sets A, Ay, Ay C Z% such that

,ullzgree(MA,f) > 1- €/2 (721)
o (MaF) > 1—€/4 (7.22)
—€/4 < i (FRlmy Ina i — QR iy Iz o FiE) < €/4 (7.23)
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for any A D A and A; D A D Ay, and any m such that h,, = hmax. Since both Ff;-‘i},A and F{f}?e} are bounded by
one, this yields

‘ Nﬁgree(Fg?%e}) - uﬁfjfree (F{f;e'f} ]IMA,]-') < 6/2 (724)

’Hﬁ?m(FXf{fi}) = 1o (QR g7y Itz ) . {f?‘?})‘ < €/2. (7.25)

Now the functions Ff?f} Ip, - and QZ,{E}]IMK{E}F?J?} are quasilocal by Lemma VII.2 and because QZ,{}}} is of

finite support. Hence, by Theorem I1.3, the limit A 7 Z¢ can be performed on the expectations of these functions.
Consequently

‘ hAnl/rSZI%ip /’L/lt?;ree (F{fﬁf}) - 1}\H}1Z%f Mﬁgree (F{fg?_?})‘ Se (726)
|limsup pRo, (FX' ) — liminf uRS (F'rq)| < e (7.27)
S Ham A my) AR A Ea gz ] =
The arbitrariness of ¢ finishes the claim. O

VIII. GIBBS UNIQUENESS AND ABSENCE OF PERCOLATION

Before proving Theorem I1.5, we shall first establish three useful claims.

Lemma VIII.1 Let v € G5 be a measure with v(|S| < 1) = 1, and let u be its RC marginal. Then p € GRC.

Proof. Tt suffices to show that for all finite sets of bonds B and all B-cylinder function f, we have u(f|ng.) =
pBC (flmge). Since p is the n-marginal of v, it is enough to show that v(f|ng.) = uR°(f|ng.). By the definition of
conditional probabilities, we have that v-almost surely

o se) = / v(dor, dng g ) (1o ac, 5, (8.1)

for all finite A with V(B) ¢ A C Z9. Given ng., we now take A large enough such that there is no finite cluster
C(npe) connecting V(B) to A. With this choice, however, one easily computes that v(f|oac, np.) = p5C(f|ng.) for
any B-cylinder function f, because by the assumption of the lemma, all infinite clusters have almost surely the same

color. Since B is arbitrary, this implies x € GRC and, in fact, it implies the stronger statement (3.16). O
Lemma VIIL.2 The measures pSES . and pSRC are strongly mizing and, in particular, ergodic w.r.t. translations

in any of the lattice principal directions.
Proof. Let T denote the translation in one of the lattice principal directions. We shall first show that uSEC - (f gor™) —
pSRC - (F)uSEC . (g) for all L2-functions f and g. As is well known, it actually suffices to verify this for cylinder
functions (which are dense in L?) and, since we have a space with a natural ordering, we can even restrict ourselves
to f, g monotone.

Let A C Z be a finite set with connected complement A°, and let f, g be non-negative monotone increasing cylinder
functions supported in B(A). Let further g, = go 7™ and A,, = 7™(A). Then fg, is also monotone increasing and
hence for any integer n such that B(A) NB(A,) =0 and any A D AUA,,, we have

1 ieir () < 1 mewie (L In {MB(AN B(A)UB(AL)) = 1}) =

= Mgligaxwu(f) :ugli?maxww(gn) = Mgliga.xwu(f) /’Lgligaxww (g) (82>
Taking the limit A * Z% followed by n — oo and A 7 Z4, we get

lim sup Mglsgw1r(fg © Tn) S Mg§w1r(f) Mlg}ll;xcwir (g) (83)

n— oo

Since the complementary inequality follows from FKG, the strong mixing property of uSEC . is established.

The case of the free measure is completely analogous; one just needs to take f and g positive decreasing. ]
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To formulate the next lemma, we need some notation. For a finite connected cluster C' of configuration 1 we define
a measure ¢ on spin configurations on V(C') by

(o]
clove) Z @free I 600 (8.4)

zeV(C)

For each m € Qmax(h) we also define an infinite volume coloring measure

vin(on) = II wom)(@viem)) 11 oem: (8.5)

Cn): [V(C(m)]<oo zer00

Lemma VIIL.3 Let m € Quax(h), and let v € G*S with v(S C {m}) = 1. Let u be the RC marginal of v. Then for
each cylinder function f of o and

u(f) = / w(dn)vm (f1m). (3.6)

In particular, if v1,vs € QF?R are two measures with the same RC marginal, then vy = vs.

Proof. Let f by a (A,B(A)) cylinder function. Invoking the argument after (8.1) with B = §), for v-almost all n (those
whose infinite cluster(s) have color m), we can find A D A large enough but finite such that v(f|oac,n) does not
depend on o ac, in which case one easily verifies that

v(floasn) = vm(fn). (8.7)
The latter expectation depends only on 7, hence (8.1) implies the desired representation of v(f) in terms of v, (f|n)
and the RC marginal of v. O

Proof of Theorem 11.5(i). We shall prove that any v € G*5 not exhibiting percolation is equal to the limiting measure
MESG whose existence was established previously. The proof of this claim goes along the lines of the argument in
(5.12)—(5.25), however, it is much simpler in this case due to the absence of infinite clusters.

Let the sequences (A,,) and (A,(n)) be defined as in (5.12). Since there are no infinite components v-a.s, we have
An(m) ={z € A,: 2 » A%} and B,(n) = 0 for all n > 1 and v-almost all . Assume f is a cylinder function and
given € > 0, take A large enough so that f is supported in (A,Bg(A)) and

‘/u’Vfree f) - ILLfEYSe(f)| § € (88)

for all V' O A. Since the indicator function of the event {A,(-) = A, } does not depend on the configuration in
(A, By(A)), we have that

v(f) = v(fla,zap) + Y v fee(D i, ()=,7) (8.9)

AnDA

by (2.7). Combined with (8.8), this gives the estimate

V(fAga, (pay) + [hee(f) — €] v(Iga, (- )oay) < v(f)

(8.10)
<v(fla,(ypa3) + [hee(F) + €] v(Lga, (- )oa))-
Since f is bounded and A,, * Z% v-a.s., the bounded convergence theorem yields
W(f) = phise(f)] < e (8.11)
The arbitrariness of € finishes the claim. O

Proof of Theorem 11.5(ii). If P (8, J,h) = 0, then umaXer(N >0) = umaxww(N > 0) = 0 and (3.14) implies the
same is true for any v € G¥S. Thus QES QES {pE> }. On the other hand, uRS . (No > 0) = 0 implies that the
same is true for all u € G by (3.10). Repeating the argument in the proof of Theorem I1.5(i) for the RC measure
p (and using Theorem I11.4 to guarantee the analogue of (2.7)), we get that u = uES for all RC Gibbs measures j,
implying G"¢ = {ugC,}. O
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Remark. Given Theorem III.4, which is stated for the more general GRC model, the second part of the above proof
remains valid for the GRC model. As a consequence, all GRC Gibbs states are equal to the measure ,uSCRCC if
Poo(B,J,h) = 0, implying that GFC€ = {uFEC} whenever Py (3, J, h) = 0.

Proof of Theorem I1.5(iii). We first show that
pES (0, = M|z <> 00) = 6 (8.12)

provided Po(3,J,h) > 0 and m € Quax. Since uES(No, = 1) = 1 if P (8, J,h) > 0, equation (8.12) implies that

i (A5) = 1.
To prove (8.12), we recall the well known fact that

e (062 00) = B e (0 0 A°), (8.13)

see equation (7.19) above. As a consequence, we get that for all m € Qmax,

ES : ES c
<~ 00) = lim 0« A°). 8.14
Hm (.Z' ) Al/‘Zd /’[’A,m( ) ( )

Combined with the fact that 5, (0 <> A¢, 0, = m) = pi5, (0 ¢ A6, 5, this implies (8.12). It remains to show
that the state MES is extremal whenever m € Qmax. To this end, let us assume that

pES = g+ (1= Ny (8.15)

with ;(A7%,) =1 and 0 < A < 1. By Lemma VIIL.1, the RC marginals j; of v; are RC Gibbs states, which implies

that (8.15) induces a similar decomposition for p5S .. However, ul$ . is extremal by Lemma VIIL2, which implies
that py = po = /’(‘Elgxwir' Using Lemma VIIL3, this implies v; = v, and hence extremality of uE5. O

IX. RANDOM CLUSTER GIBBS MEASURES FOR d =2

Proof of Theorem 11.6(i). The proof of Theorem II.6(i) remains again valid for the more general GRC model. For
J < J., the statement has already been proven in the last section. Let us therefore suppose that J > J. and d = 2.
Then the first condition (and item (iii) of Corollary of Theorem IIL.1) implies that there is percolation under uficm’,‘llr
Moreover, since uangN‘ljr satisfies the following claims

(1) GRC,J

Mo 18 separately ergodic in all lattice directions

(2) uSRS7 g invariant under lattice reflections and rotations

Hmaxwir
(3) Honaocwir 15 FKG,

as has been proved previously, the powerful result of [13] asserts that the infinite cluster is unique under uizgvé

Moreover, by a corollary to this result, the cluster contains an infinite series of nested circuits that (eventually)
encircle any point of the lattice.

Now, according to Theorem III.1(iii), any p €
MGRC’J. Let J > J; > J.. Then

free

GORC at the coupling constant J is FKG dominating the measure

GRC,J GRC,J

,u(-) F%G lufree () F%G lumaxwirl(')7 (91)

where the second inequality is Theorem III.1(iv). Thus, all GRC Gibbs measures at J exhibit an infinite cluster as
well as the above circuits about the origin, because the latter is an FKG increasing event.

The proof is concluded in a manner similar to the argument (8.8)—(8.11). Let thus f be a cylinder function with

support in B(A), where A is supposed to be sufficiently large so that

for any V' O A. Let {A,} be an increasing sequence of boxes centered at the origin, and let §2,, be the set of all
configurations 7 for which there exists a closed circuit I" of occupied bonds surrounding A and connected to the infinite
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cluster, such that it is entirely contained in By(A,,). Let us use I';,,(n) to denote the outermost such circuit contained
in Bo(A,) and Vr, (n) the set of its interior sites. Let 1o, be the characteristic function of €2, and, for a given circuit
I, let yp,—r) denote the characteristic function of the set of all configurations such that the corresponding outermost
circuit I';, equals T'.

Using the fact that the function Ip _ry does not depend on the values of the GRC configuration on B(Vr), we
now apply Theorem II1.4 with B = B(Vr) to get

p(flg,) Zu (f1p,=ry) Zu (1Bve) (F1M8 vy ) Lr, =1}) ZM 1 maxwir () 1gr,=r1)» (9:3)

where the sum is over all closed circuits T" of occupied bonds surrounding A and contained wholly in Bg(A,,). Since
f is bounded and p(€2,) — 1 as n — oo, we have that |u(flq,) — p(f)| < € for n sufficiently large. Using (9.2) for
V = Vp, we conclude that

\u(f) = ponc (f)] < 3e. (9.4)

Since € is arbitrary, we get the desired statement that each GRC Gibbs state necessarily equals the measure uSRe . [

Proof of Theorem 11.6(ii). We again only need to prove the statement of J > J.. Using Theorem III.2, equation (3.15)
instead of Theorem I11.1(iii), we obtain the bound (9.1) for the RC marginal p of any v € GFS with |Qumax| = 1. Let
v be such a measure. Applying the steps leading to (9.3) to the measure v and a cylinder function f with support in
(A,B(A)), we will have to calculate the conditional expectation v(f| o v, Ngvp)e) = M‘E/FSB(VF)(f\ TV, Mp(vi)e)- BY
Theorem V.1 the value of o, on the sites x € OV is constrained to be one of the colors in Qumax. Since we assumed
that [Qmax| = 1, we obtain that v(f|ove, ngyye) = u‘E/FSm(f), where m is the unique spin for which A, = hpax
Continuing as in the proof of (i), we obtain that v = u=5. O

X. MAPS BETWEEN ES, SPIN AND RC GIBBS MEASURES
Proof of Theorem 11.1. Let u3™(-|oac) denote the Gibbs measure on spins in A with boundary condition o pc. The
proof is based on the crucial observations that, for the special choice B = B(A),
(A) #3%a) (* o ac, Mp(a)) does not depend on 7 (p ..

(B) The spin marginal of u%ﬁB(A (*|oAc; Mp(a)e) 1s precisely p

SPIN( |O'AC)

Let now v € GFS, A € Z9 be finite, and let f be a function depending only on the spin configuration in A. Then, by
(2.6), (A), (B), and the definition of marginals, we have

(Ts)(f) = v(f) = / v(dor, dn) 155, 0 (Fl @ aes Mpae) =
- / v(dor, dn) w0 ac) = / (sv)(do) i (floac),  (10.1)

proving that IIgv € G™. Hence, indeed, IIg is a map from G5 to G,

To prove that ITg is an isomorphism, let us first establish its surjectivity. We begin by noting that the set {(A,B(A))}
is cofinal in the set of all pairs {(A,B)}, ordered by inclusion. (Namely, for any (A,B) there exist A such that A C A
and B C B(A).) Then it is easy to see that the validity of (2.6) for the pairs (A, B(A)) implies its validity for general
(A, B) (see Remark 1.24 of [14]). Let now p € G5™ and consider the following ES measure

a(+) = [ ud) B (-l oac ) (102)

on the set of on configurations in (A,]ES(A)). Here the configuration ng). is added only for the formal completeness
since by (A) its value does not matter for v,. By taking into account the consistency of the finite volume ES measures
{u%ﬁg}, the measures v (- ) satisfy the restricted DLR equations

s(f) = [ valdordn) i (Ao ms) (103)
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for any AcC A, B C B(A), and any K,@-cylinder function f. Moreover, let A; D Ay D A be two sets. Then for any
such function f (as before) we have

oni (1) = [ 14 i8S s (1 905 s, )
/ (do) x> sy (tins mean) (F1+)] a5 MaeaL )
= / p(dor) i (pss moan) (f1)]oas)

= /M(dU)M%iB(Az)(ﬂO'Agan]B%(Ag)C) = A, (f)-

(10.4)

Here the first equality is due to (10.2), the second one follows from the fact that /fff B(A,) 18 a finite volume Gibbs
measure, the third one is established by applying (A) to the measure M}E\S B(a,)(f]+) and subsequently (B) to the
expectation w.r.t. pj" B(a,)» and, finally, the fourth equality follows from the fact that 4 € G*™. Consequently, as

A 7%, va(f) is eventually a constant for any cylinder function f. In particular, the weak limit v = limy xza v
exists and, by (10.3), it satisfies (2.6), i.e., v € GES. Finally, [Isv = p, since for any A-cylinder function f of spins

() (f) = v(f) = / u(d0) 1S ) (F] 70 Mpaye) = / w(do) uf™(floac) = ), (10.5)

proving that Ilg is surjective.
In order to see that Ilg is also injective, we notice that if 7 € G5 is such that IIg7 = yu, then

v(f) = ;(HE,SJB(A)(ﬂ : )) = (Ilsv) (,u%,SIB%(A)(ﬂ : )) = ﬂ(NE,SB(A) (f] )) (10.6)

for any (A, B(A))-cylinder function f. Here the first equation is the DLR equation for 7, the second equation follows
from (A), and the third equation is the assumption IIg7 = u. Now, the right hand sides of (10.6) and (10.2) coincide,
so U = v, with v defined by taking the limit A * Z¢ of v, in (10.2). In particular, all measures v satisfying [Is7 =
are equal, yielding thus injectivity of Ilg.

The part of the claim concerning translation invariant measures is proved in the same way, because both construc-
tions (10.1) and (10.2) preserve translation invariance. O

Proof of Theorem 11.2(i). We first note that the marginal of any ES Gibbs state with at most one infinite cluster is an
RC Gibbs state by Lemma VIII.1. This proves that IIgrc maps QE into GRC.

Next we show that the map is surjective on g<1 Let p € G35 R Recall the definition of F' free} in (7.1). It turns out
that F{fr]‘_?e} satisfies the following identity:

Z ‘{fl.%‘e-le, Fr—1,FmI{z}, Frg1,... fq}( ) {fgjie}( ) (107)

for each {F;}, any « ¢ F = U;F; and any n. Namely, let F; < F; for ¢ # j in n and suppose = <+ F,,, for some m.
Then the sum on the Lh.s. of (10.7) degenerates to the m-th entry, which is easily identified with the r.h.s. On the
other hand, if z «+» F,, for all m, then the sum in (10.7) can be propagated through the products in (7.1) up to the
last term, where the desired identity then follows by taking also (3.2) into account.
The relation (10.7) enables us to define a joint measure on o and 1. Let 1 € GRC and let A;z,; denote the event
Airy ={o: oo =m Vo e F,}. (10.8)

Note that Ay, is a cylinder event in F. Consider the set function v, for the sets on the product space of configurations
(o,m), defined as

v(Agry x B) = u( F{54 1), (10.9)

where B stands for any cylinder event on configurations 1. Due to the fact that p is a measure on 1 and due to
(10.7), the set function defined in (10.9) satisfies the consistency condition for all finite volume projections and, by
the Kolmogorov theorem, it thus gives rise to a measure on (o, 7).
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Using (10.7), the mp-marginal of v is u, so it remains to show that v € G5, Due to the consistency of the ES
specifications (2.4), it is enough to show that v-almost surely

V(o a, Meayloac, Taa)) = tasa) (@a, Maay|Ton, Maa)e) (10.10)
for all finite A C Z<. For that, it actually suffices to establish that

Ali/n%d V(o8 ME(a) T A MBa)) = HRm(a) (TA:M3(2)|[T0a: Na(A))- (10.11)

To calculate the l.h.s., we shall evaluate V(O'A,nB(A)ME(A)C). In order to keep the expressions short, we assume
without loss of generality that hpax = 0. Using (10.9) and the strong form of the DLR equation (3.16), we write

V(oA A MB(A)) = M(F{Ai}ﬂ{nE<A)}|nB(A)c) = F{Aj}(n)lﬁ%;&) (M) [MB(A) ) (10.12)

where (A;) is the partition of A defined by A; = {x € Alo, = i}.
In order to evaluate the r.h.s., we use (7.1) and (3.6) to get

free RC eﬁhle(C(n))\
FiRa musiay(Meay | m8a)) = H Lgp,on, 3 (M H H

i<j m=1V(C(1))NAm£0 Oree (C(m))
BT _ 1) Boce(m)B(A)]
X ( Z )< ) H @free (C(T’))v (1013)
BANIBA)Y) yicm)av(ea))

where Z5(a)(05(a)e) Is the normalization factor for ug(s)(+[Mp(a)e). Rewriting

B [V(C ()|

H H m X H Ofree (C(n))

m=1V(C(n)NAnm#0 V(C(m)NV(B(A))#0

4 Bhm [V(C(m))] a
=11 I1 © < 11 I1 ShmVECEI - (10,14)
m=1 V(C(m)NAm#0 eree m=1 V(C(m)NV(B(A))#0
V(C(m)NA=0 V(C(M)NAm #0

where we introduced A = AUOA and A,, = A,, N A, and inserting the identity
PhmV(CM)| — Bhm [V(CmM)NA]gfhm [V(C(m)NAT] (10.15)

we can now extract all terms that depend on oa and nga) from the r.h.s. of (10.13) to obtain the Gibbs factor
W(oa, UETON |0'3A7 MB(A)e <) times a term depending only on aA\A and 7)g(a)c. This yields the representation

(o5, M) Maa)e) = N(Oaa, Maa)e ) Hama) (08, Maa) [Toa, Taa)); (10.16)
which in turn leads to the identity

V(A MEa)|TAA, NB(A)) = Mg%B(A) (Ta, By |Ton: A (10.17)

provided that op. A Is consistent with 7ga).. Equation (10.17) immediately gives the desired claim (10.11) and
hence (10.10). Ol
Proof of Theorem 11.2(ii=iv). Let v € GE5. Since {Ny = 0} is a tail event, there is a unique decomposition of v into
oo + AsoVso, where vy € GFS and vsg € GFS. The decomposition (2.13) then follows by further conditioning upon
the color of the spin on the infinite cluster of vg. This proves (ii). To prove (iii), we just invoke Theorem IL.5(i),
Lemma VIIL.3 and Theorem II.2(i). To prove (iv), we need to realize that if |Qumax(h)| = 1, then the decomposition

is completed already by conditioning on the presence/absence of the infinite cluster, which works the same on both
gg% and ggﬁf. Ol
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