

Fundamental States of Interaction for
Pen, Touch, and Other Novel Interaction Devices

Ken Hinckley

Microsoft Research, One Microsoft Way, Redmond, WA 98052

kenh@microsoft.com

ABSTRACT

Traditional mouse-based desktop interfaces support a

number of fundamental capabilities that frequently become

problem areas for novel interaction devices with new

capabilities. The same interaction and device design

problems come up with these devices over and over again,

with researchers and designers repeating the same mistakes.

This note describes these fundamental capabilities, how

they are supported on mouse-based interfaces, and

identifies fundamental problems in extending them to novel

interaction devices. My hope is that this can help designers

identify basic mismatches between input device and

interaction technique in the early stages of a design, as well

as to consider design solutions (or to be more precise,

various design compromises) that have been proposed.

Keywords

pens, hands, tables, mobile devices, touch, proximity,

pressure, tracking, dragging, three-state model

INTRODUCTION

What do PDA’s, Tablet PC’s, touchscreens, interactive

tables, and bare-hand sensing devices all have in common?

Despite their rich and exciting interaction possibilities,

none of them can do everything a mouse can do.

This simple fact repeatedly leads designers to three

fundamental choices in the design of their devices and

interaction techniques. The options are simple, yet often

equally unpalatable:

1. Design all interactions and applications such that they

are based upon only dragging actions, with no

intermediate cursor feedback. This can be very

limiting, and prevents use of unmodified “legacy”

applications that were not written to understand the

special limitations of a device.

2. Add new capabilities to the input device to allow it to

directly incorporate additional state transitions. These

may include adding buttons or pressure-sensing

capabilities to a device. However, these may not

necessarily make the interaction that much simpler,

especially for novices. For example, barrel buttons on a

pen place constraints on how the user can hold the pen,

and can be difficult to press without disturbing the

position of the pen tip. Buttons on a trackball or

touchpad often are awkward to hold down while

moving the cursor, and may even require the user to

employ a second hand just to hold the button.

3. Introduce special mechanisms that allow simulation of

mouse click, right click, dragging, cursor feedback, and

hover capabilities. These introduce indirect

mechanisms that users must learn, which often gets

away from the direct and simple interactions that make

direct input devices and touch devices appealing in the

first place.

Pick your poison: no matter how clever you are, you will

have to make one (or more!) of the above compromises.

A TALE OF TWO STATES

Input devices taken in general can support three possible

states: out-of-range, tracking, and dragging [1].

Practitioners refer to these three states as states 0, 1 and 2,

respectively, as a simple shorthand (Fig X). However,

many input devices, including traditional mice, can only

support two of the three possible states. Conveniently, these

are not the same two states that are sensed by most touch-

based input devices. Even more confusing, as we shall

discuss later, is that traditional WIMP (windows-icons-

menus-pointer) interactions use these two basic mouse

device states, plus the buttons on the mouse, to support five

interaction states.

State Description

0 Out Of Range: the device is not in its physical

tracking range.

1 Tracking: moving the device causes the

tracking symbol to move.

2 Dragging: allows one to move objects in the

interface.
Fig. 1. Summary of the three-state model of input devices.

All of this leads to unending tension between designs for

each type of device, and confusion about what is and what

is not possible with a device.

Unpublished manuscript 2004

This work-in-progress underscores some of the
difficult issues in supporting standard graphical user
interface operations on pen and touch-operated devices.

It is currently more of a reminder of the general
problems likely to be encountered, and is not as strong in
pointing out solutions. For many combinations of input
device and desired functionality it is important to be aware
that there may not be any good or easy solution, however.

L Button Down1

dx, dy

2

dx, dyL Button Up
motion

motion

MOUSE

motion
Touch0

nil

2

x, yRelease
no motion

TOUCH DEVICES

Fig. 2. States sensed by a mouse (top) versus states
sensed by basic touch devices (bottom). The fundamental

problem is that many touch devices only support one state
of interaction that can sense the position (motion) of an
input.

The 3-state model describes the mouse as a 2-state device,

supporting state 1, the cursor tracking state, as well as state

2, the dragging state. State 1 allows the user to receive

feedback of what position on the screen the mouse button

will act upon, while State 2 allows the user to drag an

object on the screen by pressing and holding the mouse

button. Note that traditional graphical user interfaces

assume the mouse can track its position in both the tracking

and dragging states, represented in Fig. X by the (dx,dy) in

each state, indicating relative motion tracking capability.

Touch-activated devices such as touchscreens, touchpads,

and PDA screens (operated by stylus or finger) are also two

state devices, but as Buxton points out, these devices do not

sense the same two states as the mouse. A PDA with a

stylus, for example, can sense the stylus when it is in

contact with the screen; this is the equivalent of the mouse

dragging state (state 2). The PDA can also sense when the

stylus is removed from the screen, but once the stylus

breaks contact, this enters state 0 (out-of-range), where no

continuous property can be sensed at all (represented by nil,

Fig. Y).

Thus, although PDA’s support two separate interaction

states, the lack of any motion sensing capability in state 0

means that there is going to be serious difficulty in

supporting all of the same interactions that are possible

with a mouse.

True Three-State Devices

Some touch-based input devices address this problem by

providing additional sensing capabilities that support all

three states of the 3-state model.

Proximity Sensing

One option is to support a proximity sensing capability.

Many tablets, for example, can sense a special stylus when

it is within about 2 centimeters of the screen surface. When

the stylus is near the screen, the device enters state 1,

providing intermediate cursor feedback of the screen

location that the pen will act upon. Touching the pen to the

screen surface enters state 2, which allows the user to click

on objects or drag objects on the screen.

0

nil Release

2

x, y

1

x, yOut of range

In Range

PROXIMITY SENSING DEVICES

Touch

Fig. 3. A device that can track a pen when it is close to,
but not touching the screen, and which can also distinguish
this from when the pen is touching the screen, can use
proximity to support state 1 (cursor tracking).

Touch
0

nil

1

x, y

FRelease
no motion

2

x, y

F

Press: F > f1

Relax: F < f2

motion motion

PRESSURE SENSING DEVICES

Fig. 4. A device that can sense pressure (or contact area)
can use contact force to separate the tracking from the
dragging states. Dual force thresholds should be used such
that a high force is required to enter state 2, but a low force
is required to revert back to state 1.

Most such devices offer an additional capability absent

from traditional mice. Proximity sensing pens (tablets) can

signal an input event when the stylus enters or leaves the

range of the screen (i.e. an OutOfRange event for the state

1-0 transition, and an InRange event for a state 0-1

transition). These signals are often ignored, but can have

interesting clever uses in interface design [1-3].

Pressure Sensing

A second option is to provide a pressure sensing capability.

In practice, many tablet computers support both range

sensing and pressure sensing. Typically, in this case,

proximity to the screen is used to perform state 0-1

transitions, and contact with the screen performs state 1-2

transitions. This leaves the interaction designer free to use

pressure sensing as a continuously controllable parameter

(e.g. some drawing programs change the shape of the user’s

pen stroke depending on the pen pressure). Users have a

poor absolute sense of the pressure they are exerting, but

can effectively control the exerted pressure with

appropriate visual feedback encapsulated in “pressure

widgets” [4].

The 5 Hidden States of Conventional WIMP Interfaces

Unfortunately, despite the techniques presented in the

previous section, supporting both state 1 and state 2 with a

pen or finger-based interaction is still not enough to support

all the capabilities offered by the humble mouse. Modern

graphical interfaces actually make use of at least 5 states.

Here, we describe these states and introduce a specialized

version of the 3-state model to describe them.

The five states of conventional graphical interfaces are as

follows: Tracking (1), Hover (1H), Left Click (2L),

Dragging (2D), and Right Click (2R). To complete this list,

one must also consider double click. In principle this could

be represented as a sixth state, but we prefer to think of it as

a series of state transitions (1-2L-1-2L-1) in the model

presented in Fig X.

State Description

1 Tracking: moving the device causes the

tracking symbol to move.

1H Hover: holding the mouse stationary over an

object reveals Tooltips

2L Left Click: pressing the left mouse button. To

complete the normal “Click” event, the user

releases the mouse button (without moving).

2D Dragging: pressing the left mouse button and

moving the mouse. Typically this drags the

selected object, or activates rubber-band

selection (if no object is selected).

2R Right Click: pressing the right mouse button

activates context menus. The mouse can then

be moved to make a selection.

- Double Click: Double click is a series of (1-2L-

1-2L-1) state transitions, with timing

constraints, no mouse motion between clicks,

and no mouse motion while in state 2L.

Fig. 5. Fig D: Summary of the five states of conventional
WIMP interfaces.

Note that state 0 is not part of the picture for conventional

graphical interfaces, as conventional mice cannot sense

state 0 (i.e., system software does not receive an event

when the user picks up or puts down the mouse, nor when

the user touches or lets go of the mouse). Such

enhancements to the traditional mouse have been

considered by researchers but have not yet found

widespread use [3, 5].

L Button Down

1Hover

dx, dy

1

dx, dy

2Left

dx, dy

2Drag

dx, dy

∆t >Tout;

dx,dy < εenter

dx,dy > εexit

2Right

dx, dy

L Button Up (Click)

L Button Up (D
rop)

R Button Down

R Button Up (R Click)

dx,dy > εdrag

Fig. 6. Fig E: Hidden states of interaction with the
mouse. The mouse is a “simple” device but there are

actually 5 states needed by modern GUI’s. These states
support cursor tracking (state 1), clicking (state 2L), dragging
(state 2D), right-clicking (State 2R), and hovering (state 1H).
Double-clicking also must be considered, but we do not
model this as a separate state (it is a 1-2L-1-2L-1 series of
state transitions, with timing constraints and little or no
cursor motion).

The Full Extent of Our Dilemma

We can now observe the full extent of the dilemma facing

interaction designers working with basic touch devices

(Fig. A, bottom) that cannot sense proximity or pressure.

All current PDA’s (e.g. Pocket PC’s and Palm Pilots)

represent examples of such devices. Such devices have just

a single state, state 2, that can sense (x,y) position. In

addition we have a pair of events, Touch and Release, that

signal transitions to state 0. If one is to support all of the

traditional mouse interactions that may be expected by an

application with a conventional graphical interface, one

must synthesize five states that rely on or make use of

pointer motion (dx, dy) from this single position-sensing

state and pair of events.

This is certainly difficult and a good solution may be

impossible. We are not aware of any elegant solution that

provides all five of these states for basic touch devices. It is

possible to support all five states with more advanced three-

state devices with proximity-sensing or pressure-sensing

capabilities. However the resulting techniques do not have

quite the same feel as mouse-based interfaces and suffer

some significant deficiencies.

Of course, one can argue that pen-based interaction

techniques should not attempt to imitate the techniques

developed for the mouse and traditional graphical

interfaces. Rather, interaction designers should focus on

techniques, such as gesture recognition [6-9], marking [10-

12], tracking menus [13], or pressure widgets [4], to name a

few, which are uniquely well suited to pen or touch devices.

While we agree with this view in principle, in practice we

anticipate that the inability of pen, touch, and other novel

pointing techniques to adequately support traditional

mouse-based interaction states will be a stumbling block for

quite some time to come. Many applications are designed

for mouse-based devices and ported to mobile devices.

Many users are familiar with mouse-based interfaces and

can have difficulty learning equivalent mechanisms for pen

interfaces, or new learning new skills needed to succeed

with pens.

Even casting all legacy issues aside, we believe that the

ability to rapidly and/or unambiguously initiate one of

several possible actions (or modes) with a pointing device

represents a fundamental building block of graphical

interaction techniques. The difficulty for the user to rapidly

and/or unambiguously indicate, and for the system to

recognize, multiple distinct interaction modes represents a

continuous theme in the long history of research on pen,

touch, 3D interaction and virtual environments, and other

direct input techniques. The tricks that researchers and

interaction designers have adopted to allow separation and

rapid, unambiguous interpretation of inputs are often

application-specific, may only work in specific contexts, or

may become problematic or impossible to extend or

maintain as new commands and features are added to a pen-

based interface. As such we believe these represent

fundamental problems to the field.

Example Tricks of the Trade: Solutions, Problems, and
Issues to Consider

Timeouts and/or dwell. Use timing cues, such as a tap-

and-hold gesture, to allow the introduction of a separate

mode (state) to the interaction, such as right-click

simulation with pen interfaces. Downside: (1) the timeout

adds extra time to every single activation of the associated

functionality. (2) The timeout can be confounded with

mental preparation time; the feature will be repeatedly

activated by accident when the user is just thinking about

what to do next.

Time delays are risky to use as implicit state transitions:

 Users may be thinking about their next action

 This introduces a delay at least as long as the timeout

into every single user action involving this state

transition. This can be tedious to the user, and

irritating. Typically the user must wait significantly

longer than the timeout threshold to be sure the action

is not performed too soon.

 Appropriate delays may vary significantly between

users. Novices may require long delays to prevent

accidental mode switches, while more experienced

users will quickly grow tired of delays of as little as 0.3

to 0.5 seconds.

 Time delays may be unituitive or mysterious. Typically

there is no visual feedback associated with such delays,

and the user may not realize what has triggered a

differing behavior. Of course, such feedback may be

added, such as the “circling” icon feedback provided

by Pocket PC 2003 devices for the tap-and-hold action.

Extra state transitions: using a specific series of state

transitions to segment gestures or indicate a separate state,

e.g. using a “tap-and-a-half” gesture to allow dragging on a

laptop touchpad [14]. Another example would be drawing a

dot after a series of ink strokes to indicate that the

“command” is complete. Downside: accidental contact with

the screen or incidental movements may produce the same

series of state transitions, triggering accidental and

unwanted behavior.

Using a series of state transitions to synthesize extra states

is possible, but this can be time consuming and may be

error prone. For example, many laptops include touchpads

that allow the user to “click” by tapping on the pad. This is

a 0-1-0 state transition. However, if the user accidentally

touches or brushes against the pad, this also triggers a 0-1-0

state transition. It can be difficult to reliably determine if

this really represents a user’s intent to “click” or not. More

complex behaviors require increasingly complex tricks,

such as a tap-and-a-half (state 0-1-0-1) gesture to initiate

dragging. These become increasingly difficult for the user

to perform, and increasingly error prone. They also lead to

special cases (what happens when the user drags but hits

the edge of the touchpad?) that introduce further

complexity and modes in to the user interaction.

Out of band signals – e.g. resorting to an extra button on

the device, barrel button on the pen, etc. These are simple

and unambiguous signals. Downside: restricts how you

hold the device(s), may prevent single-handed interaction,

may not be self-revealing to the user, may be activated by

accident anyway…

Highly modal interfaces – let the user explicitly select a

mode of operation. Robust, simple. Downside: It takes time

to select and to switch modes. User may enter information

or perform actions in the wrong mode by accident. Mental

load imposed to remember current mode. Mynatt &

Igarashi [15] represents a good example of this design

approach.

Speculative execution. This is a fancy way of saying

“assume that the user is going to perform a default action,

until proven otherwise.” A good example of this is the

“circling timer” speculative feedback provided by the

PocketPC 2003 for right-click functionality via tap-and-

hold. Bartlett provides another example in the context of

using tilt to scroll [16]. Downside: Typically the designer

can only “assume” one default action, so it is difficult to

extend (it buys you one additional mode). It also requires

“undoing” a user action that has already started, if the user

does take the non-default interaction path. Thus it can only

be applied to actions that are easily reversible, and there

remains the potential to confuse the user or have misleading

feedback for a short time.

Special case gestures for commands. For example, in the

context where most pen input is treated as “ink,” a special-

case gesture, such as scribbling to erase, can be introduced.

Downside: (1) Naturally occurring movements can be

confused with the command (e.g. scribbling to shade an

area in a picture is interpreted as a “scratch-out” gesture to

delete ink strokes). (2) The approach scales poorly– it is

extremely difficult to add more than a few commands in

this way.

Clever tricks with input transfer functions, e.g. varying

input device gain with velocity of movement [17], or

touchscreen selection on lift-off with high resolution

touchscreen pointing [18, 19]. Such techniques can be

intuitive, even invisible, to the user if designed well.

Downside: (1) May result in undesired or aberrant behavior

in unforeseen circumstances or for some users. (2) may be

too clever or require learning or modification of naturally

occurring behavior; may make a simple device complicated

to use. (3) may be very difficult to design well.

These are the main approaches. There are others that

have been considered, mostly in specialized contexts. More

to be fleshed out.

Some other random points to consider and remaining
issues to be discussed. Under construction.
Instability of Touch/Pen Devices

It is hard to hold a stylus stationary on a screen

 When holding screen in other hand

 During tap or double tap

 When moving around with device

 Location of the cursor is disturbed when removing

the pen/finger from the screen.

 With proximity tracking devices, the location of

the cursor while holding the pen above the screen

may change by the time user makes contact with

the screen. For example, try dragging a standard

window resize control on the Tablet PC. You

hover to get the pointer just right, but by the time

you press down and apply enough pressure the

pointer has moved and you miss the resize handle.

Direct Input Devices are Special

On direct input devices, the hand or stylus acts as its own

physical cursor, and occludes a portion of the screen. A

virtual cursor separate from the hand or stylus can be

introduced for more precise pointing, but arguably this

interferes with the direct nature of the input. A problem can

be making every pixel of the screen available for pointing.

A constant offset for a virtual cursor relative to the finger

must change depending on which edge of the screen the

user may be closest to. Of course, parallax error is another

common problem.

CONCLUSION

xxx

REFERENCES

1. Buxton, W. A three-state model of graphical input.

in Proc. INTERACT'90. 1990: Amsterdam: Elsevier

Science.

2. Hinckley, K., M. Czerwinski and M. Sinclair.

Interaction and Modeling Techniques for Desktop Two-

Handed Input. in Proceedings of the ACM UIST'98

Symposium on User Interface Software and Technology.

1998. San Francisco, Calif.: ACM, New York.

3. Hinckley, K. and M. Sinclair. Touch-Sensing Input

Devices. in ACM CHI'99 Conf. on Human Factors in

Computing Systems. 1999.

4. Ramos, G., M. Boulos and R. Balakrishnan.

Pressure Widgets. in CHI 2004. 2004.

5. Rekimoto, J., T. Ishizawa, C. Schwesig and H.

Oba. PreSense: Interaction Techniques for Finger Sensing

Input Devices. in UIST 2003. 2003.

6. Buxton, W., E. Fiume, R. Hill, A. Lee and C.

Woo. Continuous hand-gesture driven input. in

Proceedings of Graphics Interface '83. 1983.

7. Mynatt, E.D., T. Igarashi, W.K. Edwards and A.

LaMarca. Flatland: New Dimensions in Office

Whiteboards. in ACM SIGCHI Conference on Human

Factors in Computing Systems. 1999. Pittsburgh, PA.

8. Moran, T., P. Chiu and W. van Melle. Pen-Based

Interaction Techniques for Organizing Material on an

Electronic Whiteboard. in Proc. ACM UIST'97 Symp. on

User Interface Software & Technology. 1997.

9. Kramer, A. Translucent Patches--Dissolving

Windows. in Proc. ACM UIST'94 Symp. on User Interface

Software & Technology. 1994.

10. Buxton, W., Touch, Gesture, and Marking, in

Readings in Human-Computer Interaction: Toward the

Year 2000, R. Baecker, et al., Editors. 1995, Morgan

Kaufmann Publishers. p. 469-482.

11. Kurtenbach, G. and W. Buxton. Issues in

Combining Marking and Direct Manipulation Techniques.

in Proc. UIST'91. 1991.

12. Kurtenbach, G. and W. Buxton. The Limits of

Expert Performance Using Hierarchic Marking Menus. in

Proc. INTERCHI'93. 1993.

13. Fitzmaurice, G., A. Khan, R. Pieke, B. Buxton and

G. Kurtenbach. Tracking Menus. in UIST 2003. 2003.

14. MacKenzie, I.S. and A. Oniszczak. A Comparison

of Three Selection Techniques for Touchpads. in Proc.

ACM CHI'98 Conf. on Human Factors in Computing

Systems. 1998.

15. Nelson, L., S. Bly and T. Sokoler. Quiet Calls:

Talking Silently on Mobile Phones. in CHI 2001. 2001.

16. Bartlett, J.F., Rock 'n' Scroll Is Here to Stay. IEEE

Computer Graphics and Applications, 2000(May/June

2000): p. 40-45.

17. Hinckley, K., E. Cutrell, S. Bathiche and T. Muss.

Quantitative Analysis of Scrolling Techniques. in currently

submitted to CHI 2002. 2001.

18. Sears, A. and B. Shneiderman, High Precision

Touchscreens: Design Strategies and Comparisons with a

Mouse. International Journal of Man-Machine Studies,

1991. 34(4): p. 593-613.

19. Sears, A., C. Plaisant and B. Shneiderman, A New

Era for High Precision Touchscreens, in Advances in

Human-Computer Interaction, Hartson and Hix, Editors.

1992, Ablex Publishers. p. 1-33.

