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Abstract

The certainty-factor (CF) model is a commonly used method for managing uncertainty
in rule-based systems. We review the history and mechanics of the CF model, and
delineate precisely its theoretical and practical limitations. In addition, we examine
the belief network, a representation that is similar to the CF model but that is grounded
firmly in probability theory. We show that the belief-network representation overcomes
many of the limitations of the CF model, and provides a promising approach to the
practical construction of expert systems.

Keywords: certainty factor, probability, belief network, uncertain reasoning, expert
systems
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1 Introduction
In this issue of the journal, Dan and Dudeck provide a critique of the certainty-factor (CF)
model, a method for managing uncertainty in rule-based systems. Shortliffe and Buchanan
developed the CF model in the mid-1970s for MYCIN, an early expert system for the diagno-
sis and treatment of meningitis and bacteremia [38, 37]. Since then, the CF model has been
widely adopted in a variety of expert-system shells and in individual rule-based systems that
have had to reason under uncertainty. Although we concur with many of the observations
in the article by Dan and Dudeck, we believe that the reasons for the development of the
CF model must be placed in historical context, and that it is important to note that the AI
research community has largely abandoned the use of CFs. In our laboratory, where the CF
model was originally developed, we have not used CFs in our systems for over a decade. We
accordingly welcome the opportunity to review the CF model, the reasons for its creation,
and recent developments and analyses that have allowed us to turn in new directions for
approaches to uncertainty management.

When the model was created, many artificial-intelligence (AI) researchers expressed con-
cern about using Bayesian (or subjective) probability to represent uncertainty. Of these
researchers, most were concerned about the practical limitations of using probability theory.
In particular, builders of probabilistic diagnostic systems for medicine and other domains
had largely been using the simple-Bayes model. This model included the assumptions that
(1) faults or hypotheses were mutually exclusive and exhaustive, and (2) pieces of evidence
were conditionally independent, given each fault or hypothesis (see Section 3). The assump-
tions were useful, because their adoption had made the construction of diagnostic systems
practical. Unfortunately, the assumptions were often inaccurate in practice.

The reasons for creating the CF model were described in detailed in the original paper
by Shortliffe and Buchanan [38]. The rule-based approach they were developing required a
modular approach to uncertainty management, and efforts to use a Bayesian model in this
context had been fraught with difficulties. Not only were they concerned about the assump-
tions used in the simple-Bayes model, but they wanted to avoid the cognitive complexity
that followed from dealing with large numbers of conditional and prior probabilities. They
also found that it was difficult to assess subjective probabilities from experts in a way that
was internally consistent. Furthermore, initial interactions with their experts led them to be-
lieve that the numbers being assigned by the physicians with whom they were working were
different in character from probabilities. Thus, the CF model was created for the domain of
MYCIN as a practical approach to uncertainty management in rule-based systems. Indeed,
in blinded evaluations of MYCIN, the CF model provided recommendations for treatment
that were judged to be equivalent to, or better than, therapy plans provided by infectious
disease experts for the same cases [47, 48].

Despite the success of the CF model for MYCIN, its developers warned researchers and
knowledge engineers that the model had been designed for a domain with unusual charac-
teristics, and that the model’s performance might be sensitive to the domain of application.
Clancey and Cooper’s sensitivity analysis of the CF model [4, Chapter 10] demonstrated that
MYCIN’s therapy recommendations were remarkably insensitive to perturbations in the CF
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values assigned to rules in the system. MYCIN’s diagnostic assessments, however, showed
more rapid deterioration as CF values were altered. Since MYCIN was primarily a therapy
advice system, and since antibiotic therapies often cover for many pathogens, variations in
diagnostic hypotheses often had minimal effect on the therapy that was recommended; in
certain cases where perturbations in CFs led to an incorrect diagnosis, the treatments rec-
ommended by the model were still appropriate. This observation suggests strongly that the
CF model may be inadequate for diagnostic systems or in domains where appropriate recom-
mendations of treatment are more sensitive to accurate diagnosis. Unfortunately, this point
has been missed by many investigators who have built expert systems using CFs or have
incorporated the CF model as the uncertainty management scheme for some expert-system
shells.

In this article, we reexamine the CF model, illustrating both its theoretical and practical
limitations. In agreement with Shortliffe and Buchanan’s original view of the model, we see
that CFs do not correspond to probabilities. We find, however, that CFs can be interpreted as
measures of change in belief within the theory of probability. If one interprets the CF model
in this way, we show that, in many circumstances, the model implicitly imposes assumptions
that are stronger than those of the simple-Bayes model. We trace the flaws in the model to its
imposition of the same sort of modularity on uncertain rules that we accept for logical rules,
and we show that uncertain reasoning is inherently less modular than is logical reasoning.
Also, we argue that the assessment of CFs is often more difficult and less reliable than is the
assessment of conditional probabilities. Most important, we describe an alternative to the
CF model for managing uncertainty in expert systems. In particular, we discuss the belief
network, a graphical representation of beliefs in the probabilistic framework. We see that
this representation overcomes many of the difficulties associated with both the simple-Bayes
and CF models. In closing, we point to recent research that shows that diagnostic systems
constructed using belief networks can be practically applied in real-world clinical settings.

2 The Mechanics of the Model
To understand how the CF model works, let us consider a simple example adapted from Kim
and Pearl [25]:

Mr. Holmes receives a telephone call from Eric, his neighbor. Eric notifies
Mr. Holmes that he has heard a burglar alarm sound from the direction of Mr.
Holmes’ home. About a minute later, Mr. Holmes receives a telephone call from
Cynthia, his other neighbor, who gives him the same news.

A miniature rule-based system for Mr. Holmes’ situation contains the following rules:

R1: if ERIC’S CALL then ALARM, CF1 = 0.8

R2: if CYNTHIA’S CALL then ALARM, CF2 = 0.9

R3: if ALARM then BURGLARY, CF3 = 0.7
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Figure 1: An inference network for Mr. Holmes’ situation.
Each arc represents a rule. For example, the arc from ALARM to BURGLARY represents the rule
R3 (“if ALARM then BURGLARY”). The number above the arc is the CF for the rule. The CF of
0.7 indicates that burglar alarms can go off for reasons other than burglaries. The CFs of 0.8 and
0.9 indicate that Mr. Holmes finds Cynthia to be slightly more reliable than Eric. (Figure taken
from D. Heckerman, The Certainty-Factor Model, S. Shapiro, editor, Encyclopedia of Artificial
Intelligence, Second Edition. Wiley, New York.)

In general, rule-based systems contain rules of the form “if e then h,” where e denotes a
piece of evidence for hypothesis h. Using the CF model, an expert represents his uncertainty
in a rule by attaching a single CF to each rule.

Shortliffe and Buchanan intended a CF to represent a person’s (usually, the expert’s)
change in belief in the hypothesis given the evidence. In particular, a CF between 0 and
1 means that the person’s belief in h given e increases, whereas a CF between -1 and 0
means that the person’s belief decreases. The developers of the model did not intend a CF
to represent a person’s absolute degree of belief in h given e, as does a probability [38]. We
return to this point in Section 4.3.

Several implementations of rule-based representation of knowledge display a rule base in
graphical form as an inference network. Figure 1 illustrates the inference network for Mr.
Holmes’ situation. Each arc in an inference network represents a rule; the number above the
arc is the CF for the rule.

Using the CF model, we can compute the change in belief in any hypothesis in the
network, given the observed evidence. We do so by applying simple combination functions
to the CFs that lie between the evidence and the hypothesis in question. For example, in
Mr. Holmes’ situation, we are interested in computing the change in belief of BURGLARY,
given that Mr. Holmes received both ERIC’S CALL and CYNTHIA’S CALL. We combine the
CFs in two steps. First, we combine CF1 and CF2, the CFs for R1 and R2, to give the CF
for the new composite rule R4:

R4: if ERIC’S CALL and CYNTHIA’S CALL then ALARM, CF4

We combine CF1 and CF2 using the function

CF4 =






CF1 + CF2 − CF1CF2 CF1, CF2 ≥ 0

CF1 + CF2 + CF1CF2 CF1, CF2 < 0
CF1+CF2

1−min(|CF1|,|CF2|) otherwise

(1)
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For CF1 = 0.8 and CF2 = 0.9, we have

CF4 = 0.8 + 0.9− (0.8)(0.9) = 0.98

Equation 1 may be called the parallel-combination function.
The earliest version of the CF model employed a parallel-combination function slightly

different from Equation 1. There, positive CFs—called MBs—were combined as in Equa-
tion 1. Also, negative CFs—called MDs—were combined as in Equation 1. The final CF for
the hypothesis, however, was given as the difference between MB and MD. This combination
function has the following undesirable property. Let us suppose we have many strong pieces
of evidence for a hypothesis. In particular, suppose that the combined certainty factor for
the hypothesis has asymptotically approached 1. In addition, suppose that we have one
weak piece of evidence against the same hypothesis, with a CF of -0.5. Using the original
combination function, the net CF for the combined evidence would be approximately 0.5,
which represents only weak evidence for the hypothesis. Shortliffe and Buchanan found
unappealing this ability of a single, weak piece of negative evidence to overwhelm many
pieces of positive evidence. Consequently, they and van Melle modified the function to that
described by Equation 1 [44]. In this issue, Dan and Dudek argue that the original combi-
nation function is satisfactory. We find the argument made here more compelling then their
argument.

Second, we combine CF3 and CF4, to give the CF for the new composite rule R5:

R5: if ERIC’S CALL and CYNTHIA’S CALL then BURGLARY, CF5

The combination function is

CF5 =





CF3CF4 CF3 > 0

0 CF3 ≤ 0
(2)

In Mr. Holmes’ case, we have

CF5 = (0.98)(0.7) = 0.69

Equation 2 may be called the serial-combination function. The CF model prescribes this
function to combine two rules where the hypothesis in the first rule is the evidence in the
second rule (i.e., when the rules “chain” together).

If all evidence and hypotheses in a rule base are simple propositions, we need to use
only the serial and parallel combination rules to combine CFs. The CF model, however,
also incorporated combination functions to accommodate rules that contain conjunctions
and disjunctions of evidence. For example, suppose we have the following rule in an expert
system for diagnosing chest pain:

R6: if CHEST PAIN and
SHORTNESS OF BREATH

then HEART ATTACK, CF6 = 0.9
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Further, suppose that we have rules that reflect indirect evidence for chest pain and shortness
of breath:

R7: if PATIENT GRIMACES then CHEST PAIN, CF7 = 0.7

R8: if PATIENT CLUTCHES THROAT then SHORTNESS OF BREATH, CF8 = 0.9

We can combine CF6, CF7, and CF8 to yield the CF for the new composite rule R9:

R9: if PATIENT GRIMACES and
PATIENT CLUTCHES THROAT

then HEART ATTACK, CF9

The combination function is

CF9 = CF6 min(CF7, CF8) = (0.9)(0.7) = 0.63 (3)

That is, we compute the serial combination of CF6 and the minimum of CF7 and CF8. We
use the minimum of CF7 and CF8, because R6 contains the conjunction of CHEST PAIN and
SHORTNESS OF BREATH. In general, the CF model prescribes that we use the minimum of
CFs for evidence in a conjunction, and the maximum of CFs for evidence in a disjunction.

There are many variations among the implementations of the CF model. For example,
the original CF model used in MYCIN treats CFs less than 0.2 as though they were 0 in
serial combination, to avoid the generation of unnecessary questions to the the user under its
goal-directed reasoning scheme. For the sake of brevity, we will not describe other variations,
but they are thoroughly outlined in [4].

3 The Simple-Bayes and CF Models
The simple-Bayes model is restrictive, in part, because it includes the assumption that pieces
of evidence are conditionally independent, given each hypothesis. In general, propositions
a and b are independent, if a person’s probability (or belief) of a does not change once b
becomes known. Propositions a and b are conditionally independent, given proposition c, if
a and b are independent when a person assumes or knows that c is true. Thus, in using the
simple-Bayes model, we assume that if we know which hypothesis is true, then observing
one or more pieces of evidence does not change our probability that other pieces of evidence
are true.

In the simple case of Mr. Holmes, the CF model is an improvement over the simple-Bayes
model. In particular, ERIC’S CALL and CYNTHIA’S CALL are not conditionally independent,
given BURGLARY, because even if Mr. Holmes knows that a burglary has occurred, receiving
Eric’s call increases Mr. Holmes belief that Cynthia will call. The lack of conditional
independence is due to the triggering of calls by the sound of the alarm, and not by the
burglary. In this example, the CF model represents accurately this lack of independence
through the presence of ALARM in the inference network.

Unfortunately, the CF model cannot represent most real-world problems in a way that is
both accurate and efficient. This limitation may not be serious in domains such as MYCIN’s,
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but it does call into question the use of the CF model as a general method for managing
uncertainty. In the next section, we shall see that the assumptions of conditional indepen-
dence associated with the parallel-combination function are stronger (i.e., are less likely to
be accurate) than are those associated with the simple-Bayes model.

4 Theoretical Problems with the CF Model
Rules that represent logical relationships satisfy the principle of modularity. That is, given
the logical rule “if e then h,” and given that e is true, we can assert that h is true (1) no
matter how we established that e is true, and (2) no matter what else we know to be true.
We call (1) and (2) the principle of detachment and the principle of locality, respectively.
For example, given the rule

R10: if L1 and L2 are parallel lines then L1 and L2 do not intersect

we can assert that L1 and L2 do not intersect once we know that L1 and L2 are parallel
lines. This assertion depends on neither how we came to know that L1 and L2 are parallel
(the principle of detachment), nor what else we know (the principle of locality).

The CF model employs the same principles of detachment and locality to belief updating.
For example, given the rule

R3: if ALARM then BURGLARY, CF3 = 0.7

and given that we know ALARM, the CF model allows us to update Mr. Holmes’ belief
in BURGLARY by the amount corresponding to a CF of 0.7, no matter how Mr. Holmes
established his belief in ALARM, and no matter what other facts he knows.

Unfortunately, uncertain reasoning often violates the principles of detachment and lo-
cality. Use of the CF model, therefore, often leads to errors in reasoning.1 In the remainder
of this section, we examine two classes of such errors.

4.1 Multiple Causes of the Same Effect
Let us consider a simple embellishment to Mr. Holmes’ problem:

As he is preparing to rush home, Mr. Holmes recalls that the previous sounding
of his alarm was triggered by an earthquake. A moment later, he hears a radio
newscast reporting an earthquake 200 miles from his house.

Figure 2 illustrates a possible inference network for his situation. To the original inference
network of Figure 1, we have added the rules

R11: if RADIO NEWSCAST then EARTHQUAKE, CF11 = 0.9

R12: if EARTHQUAKE then ALARM, CF12 = 0.6
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Figure 2: Another inference network for Mr. Holmes’ situation.
In addition to the interactions in Figure 1, RADIO NEWSCAST increases the chance of EARTH-
QUAKE, and EARTHQUAKE increases the chance of ALARM. (Figure taken from D. Heckerman,
The Certainty-Factor Model, S. Shapiro, editor, Encyclopedia of Artificial Intelligence, Second Edi-
tion. Wiley, New York.)

The inference network does not capture an important interaction among the propositions.
In particular, the modular rule R3 (“if ALARM then BURGLARY”) gives us permission to
increase Mr. Holmes’ belief in BURGLARY, when his belief in ALARM increases, no matter
how Mr. Holmes increases his belief for ALARM. This modular license to update belief,
however, is not consistent with common sense. When Mr. Holmes hears the radio newscast,
he increases his belief that an earthquake has occurred. Therefore, he decreases his belief that
there has been a burglary, because the occurrence of an earthquake would account for the
alarm sound. Overall, Mr. Holmes’ belief in ALARM increases, but his belief in BURGLARY
decreases.

When the evidence for ALARM came from ERIC’S CALL and CYNTHIA’S CALL, we had no
problem propagating this increase in belief through R3 to BURGLARY. In contrast, when the
evidence for ALARM came from EARTHQUAKE, we could not propagate this increase in belief
through R3. This difference illustrates a violation of the detachment principle in uncertain
reasoning: the source of a belief update, in part, determines whether or not that update
should be passed along to other propositions.

Pearl describes this phenomenon in detail [33, Chapter 1]. He divides uncertain rules into
two types: diagnostic and predictive.2 In a diagnostic rule, we change the belief in a cause,
given an effect. All the rules in the inference network of Figure 2, except R12, are of this
form. In a predictive rule, we change the belief in an effect, given a cause. R12 is an example
of such an rule. Pearl describes the interactions between the two types of rules. He notes
that, if the belief in a proposition is increased by a diagnostic rule, then that increase can be

1Heckerman and Horvitz first noted the nonmodularity of uncertain reasoning, and the relationship of
such nonmodularity to the limitations of the CF model [18, 17]. Pearl first decomposed the principle of
modularity into the principles of detachment and locality [33, Chapter 1].

2Henrion also makes this distinction [20].
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passed through to another diagnostic rule—just what we expect for the chain of inferences
from ERIC’S CALL and CYNTHIA’S CALL to BURGLARY. On the other hand, if the belief in a
proposition is increased by a predictive rule, then that belief should not be passed through
a diagnostic rule. Moreover, when the belief in one cause of an observed effect increases,
the beliefs in another cause should decrease—even when the two causes are not mutually
exclusive. This interaction is just what we expect for the two causes of ALARM.

We might be tempted to repair the inference network in Figure 2, by adding the rule

R13: if EARTHQUAKE then BURGLARY, CF13 = −0.7

Unfortunately, this addition leads to another problem. In particular, suppose that Mr.
Holmes had never received the telephone calls. Then, the radio newscast should not affect
his belief in a burglary. The modular rule R13, however, gives us a license to decrease Mr.
Holmes’ belief in BURGLARY, whether or not he receives the phone calls. This problem
illustrates that uncertain reasoning also can violate the principle of locality: The validity of
an inference may depend on the truth of other propositions.

To represent accurately the case of Mr. Holmes, we must include a rule for every possible
combination of observations:

if ERIC’S CALL and
CYNTHIA’S CALL and
RADIO NEWSCAST

then BURGLARY

if NOT ERIC’S CALL and
CYNTHIA’S CALL and
RADIO NEWSCAST

then BURGLARY
...

This representation is inefficient, is difficult to modify, and needlessly clusters propositions
that are only remotely related. Ideally, we would like a representation that encodes only
direct relationships among propositions, and that infers indirect relationships. In Section 6,
we examine the belief network, a representation with such a capability.

We find the same difficulties encountered in using CFs to represent Mr. Holmes’ situation
whenever we have multiple causes of a common effect. For example, if a friend tells us that
our car will not start, we initially may suspect that either our battery is dead or the gas
tank is empty. Once we find that our radio is dead, however, we decrease our belief that the
tank is empty, because now it is more likely that our battery is dead. Here, the relationship
between CAR WILL NOT START and TANK EMPTY is influenced by RADIO DEAD, just as the
relationship between ALARM and BURGLARY is influenced by RADIO NEWSCAST. In general,
when one effect shares more than one cause, we should expect violations of the principles of
detachment and locality.
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Figure 3: An inference network for the Chernobyl disaster (adapted from [19]).
When we combine CFs as modular belief updates, we overcount the chance of THOUSANDS DEAD.

4.2 Correlated Evidence
Figure 3 depicts an inference network for news reports about the Chernobyl disaster. On
hearing radio, television, and newspaper reports that thousands of people have died of ra-
dioactive fallout, we increase substantially our belief that many people have died. When we
learn that each of these reports originated from the same source, however, we decrease our
belief. The CF model, however, treats both situations identically.

In this example, we see another violation of the principle of detachment in uncertain rea-
soning: The sources of a set of belief updates can strongly influence how we combine those
updates. Because the CF model imposes the principle of detachment on the combination of
belief updates, it overcounts evidence when the sources of that evidence are positively cor-
related, and it undercounts evidence when the sources of evidence are negatively correlated.

4.3 Probabilistic Interpretations for Certainty Factors
Although the developers of MYCIN and derivative systems used the CF model and com-
bining functions without explicitly depending upon a specific interpretation of the numbers
themselves, several researchers have assigned probabilistic interpretations to CFs. We can
use these interpretations to understand better the limitations of the CF model. In the origi-
nal work describing the model, Shortliffe and Buchanan proposed the following approximate
interpretation:

CF (h→ e|ξ) =






p(h|e,ξ)−p(h|ξ)
1−p(h|ξ) p(h|e, ξ) ≥ p(h|ξ)

p(h|e,ξ)−p(h|ξ)
p(h|ξ) p(h|e, ξ) < p(h|ξ)

(4)

where CF (h→ e|ξ) is the CF for the rule “if e then h” given by an expert with background
knowledge ξ; p(h|ξ) is the expert’s probability (degree of belief) for h given ξ; and p(h|e, ξ) is
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the expert’s probability for h given evidence e and ξ.3 Adams examined this interpretation
in detail [1]. He proved that the the parallel combination function—with the exception of
the combination of CFs of mixed sign—is consistent with the rules of probability, provided
(1) evidence is marginally independent and (2) evidence is conditionally independent, given
h and NOT h.

Heckerman analyzed the model in a different way [12]. In particular, Heckerman showed
that Shortliffe and Buchanan’s probabilistic interpretation was inconsistent with the combi-
nation functions that were used by MYCIN and its descendants. For example, he showed
that the probabilistic interpretation prescribes noncommutative parallel combination of ev-
idence, even though the parallel combination function (Equation 1) is commutative.4 Given
this inconsistency, Heckerman argued that either the probabilistic interpretation, the com-
bination functions, or both components of the model must be reformulated. Heckerman,
in contrast to Adams, argued that Shortliffe and Buchanan’s interpretation should be dis-
carded, because he believed (as do Shortliffe and Buchanan) that the combination functions
are the cornerstone of the CF model; their proposed definitions (Equation 4) were simply an
attempt to show how the numbers used by MYCIN might be interpreted.

Heckerman went on to show that we can interpret a certainty factor for hypothesis h,
given evidence e, as a monotonic increasing function of the likelihood ratio

λ(h, e) =
p(e|h, ξ)

p(e|NOT h, ξ)
(5)

In particular, he showed that, if we make the identification

CF (h→ e|ξ) =






λ(h,e)−1
λ(h,e) λ(h, e) ≥ 1

λ(h, e)− 1 λ(h, e) < 1
(6)

then the parallel-combination function used by MYCIN (Equation 1) follows exactly from the
rules of probability. In addition, with the identification in Equation 6, the serial-combination
function (Equation 2) and the combination functions for disjunction and conjunction are close
approximations to the rules of probability. Using Bayes’ theorem, we can write Equation 6
as

CF (h→ e|ξ) =






p(h|e,ξ)−p(h|ξ)
(1−p(h|ξ))p(h|e,ξ) p(h|e, ξ) ≥ p(h|ξ)

p(h|e,ξ)−p(h|ξ)
p(h|ξ)(1−p(h|e,ξ)) p(h|e, ξ) < p(h|ξ)

(7)

This probabilistic interpretation for CFs differs from Shortliffe and Buchanan’s interpretation
only by an additional term in the denominator of each case. These extra terms make the
relationship between the probabilities p(h|e, ξ) and p(h|ξ) symmetric. It is this symmetry
that makes this interpretation consistent with the combination functions.

3Shortliffe and Buchanan did not make the expert’s background knowledge ξ explicit. Nonetheless, in
the Bayesian interpretation of probability theory, a probability is always conditioned on the background
knowledge of the person who assesses that probability.

4In this issue, Dan and Dudeck dispute this demonstration. They argue that we must combine evidence
before applying the interpretation. However, we do not see any reason why this or any other probabilistic
interpretation should be subjected to this limitation; a probabilistic interpretation should be limited only by
the rules of probability.
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The original interpretation of CFs (Equation 4) reflects Shortliffe and Buchanan’s view
that a CF represents a measure of change in belief (see the difference terms in the nu-
merators). Nonetheless, in this interpretation, as p(h|ξ) approaches 0 with p(h|e, ξ) fixed,
CF (h→ e|ξ) approaches p(h|e, ξ), a measure of absolute belief. The odd fact that a measure
of change in belief can approach a measure of absolute belief led Shortliffe and Buchanan
to emphasize the approximate nature of their probabilistic interpretation. In fact, they had
speculated that CFs may not admit any probabilistic interpretation. Heckerman’s interpre-
tation, however, does not exhibit this unusual behavior. In particular, as p(h|ξ) approaches 0
with p(h|e, ξ) fixed, CF (h→ e|ξ) approaches 1. This behavior is reasonable: If a hypothesis
is extremely unlikely, we require a strong belief update to make that hypothesis at all likely.
Thus, under the interpretation of the CF model as proposed by Heckerman, one can dispute
previous claims that the CF model is fundamentally different from the theory of probability.

Heckerman’s interpretation of CFs can help us to understand the limitations of the
model. In developing this interpretation, Heckerman showed that the parallel and serial
combination functions impose assumptions of conditional independence on the propositions
involved in the combinations. In particular, when we use the parallel-combination function
to combine CFs for the rules “if e1 then h” and “if e2 then h,” we assume implicitly that
e1 and e2 are conditionally independent, given h and NOT h. Similarly, when we use the
serial-combination function to combine CFs for the rules “if a then b” and “if b then c,” we
assume implicitly that a and c are conditionally independent, given b and NOT b. Heckerman
also showed that the combination functions for disjunction and conjunction impose specific
forms of conditional dependence on the propositions involved in the combinations [13].

Overall, Heckerman’s interpretation shows us that the independence assumptions im-
posed by the CF model make the model inappropriate for many—if not most—real-world
domains. Indeed, the assumptions of the parallel-combination function are stronger than are
those of the simple-Bayes model, the same model whose limitations motivated in part the
development of the CF model. That is, when we use the simple-Bayes model, we assume
that evidence is conditionally independent given each hypothesis. When we use the parallel-
combination function, however, we assume that evidence is conditionally independent given
each hypothesis and the negation of each hypothesis. Unless the space of hypotheses con-
sists of a single proposition and the negation of that proposition, the parallel-combination
assumptions are essentially impossible to satisfy, even when the simple-Bayes assumptions
are satisfied [23].

In closing this section, we comment on Dan and Dudek’s suggestion that CF (h →
e|ξ) should be interpreted as a measure of the absolute belief in h, given e. In making
this suggestion, they observe that most users of the model assess and use CFs as though
they were absolute measure of belief. Moreover, they argue that we should not seek a
probabilistic interpretation, because of the “inappropriate logical foundation” of probability
theory. The authors of this article disagree strongly with this view. First, we believe that—
from a theoretical perspective—probability theory is the most appropriate representation
of uncertain beliefs. The theory is self consistent and well developed, and allows for the
unambiguous representation of independence assumptions. In addition, psychologists and
decision analysts have shown that the use of probability theory can help people avoid mistakes
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in reasoning [6, 42, 40, 24]. We know of no other representation for uncertain beliefs that
have all of these benefits.

Second, if a CF (h → e|ξ) were to represent an expert’s absolute belief in h, given e,
then the parallel combination of CFs for multiple pieces of evidence would overcount the
expert’s initial or prior belief in h. For example, let us suppose that e1 and e2 are two
pieces of evidence for h. Because both CF (h → e1|ξ) and CF (h → e2|ξ) incorporate the
expert’s prior belief in h, we doublecount this prior belief when we combine the CFs using the
parallel combination function. The observation that most people interpret CFs as measures
of absolute belief simply shows that most people are making this error; the observation is
not an argument for how we should interpret CFs.

4.4 A Fundamental Difference
Under Heckerman’s interpretation, we can identify precisely the problem with the CF repre-
sentation of Mr. Holmes’ situation. There, we use serial combination to combine CFs for the
sequence of propositions EARTHQUAKE, ALARM, and BURGLARY. In doing so, we make the
inaccurate assumption (among others) that EARTHQUAKE and BURGLARY are conditionally
independent, given ALARM. No matter how we manipulate the arcs in the inference network
of Figure 2, we generate inaccurate assumptions of conditional independence.

We can understand the problems with the CF model, however, at a more intuitive level.
Logical relationships represent what we can observe directly. In contrast, uncertain relation-
ships encode invisible influences: exceptions to that which is visible. For example, a burglary
will not always trigger an alarm, because there are hidden mechanisms that may inhibit the
sounding of the alarm. We summarize these hidden mechanisms in a probability for ALARM
given BURGLARY. In the process of summarization, we lose information. Therefore, when
we try to combine uncertain information, unexpected (nonmodular) interactions may occur.
We should not expect that the CF model—or any modular belief updating scheme—will be
able to handle such subtle interactions. Pearl provides a detailed discussion of this point [33,
Chapter 1].

5 A Practical Problem with the CF Model
In addition to the theoretical difficulties of updating beliefs within the CF model, the model
contains a serious practical problem. Specifically, the CF model requires that we encode
rules in the direction in which they are used. That is, an inference network must trace a
trail of rules from observable evidence to hypotheses.

Unfortunately, we often do not use rules in the same direction in which experts can most
accurately and most comfortably assess the strength of the relationship. Kahneman and
Tversky have shown that people are usually most comfortable when they assess the strength
of relationship in predictive rules (“if CAUSE then EFFECT”) rather than in diagnostic rules
(“if EFFECT then CAUSE”). For example, expert physicians prefer to assess the likelihood
of a finding, given a disease, rather than the likelihood (or belief update) of a disease,
given a finding [43]. Henrion attributes this phenomenon to the nature of causality. In
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particular, he notes that a predictive probability (the likelihood of a finding, given a disease)
reflects a stable property of that disease. In contrast, a diagnostic probability (the likelihood
of a disease, given a finding) depends on the incidence rates of that disease and of other
diseases that may cause the finding. Thus, predictive probabilities are a more useful and
parsimonious way to represent uncertain relationships—at least in medical domains (see [21],
pages 252–3). The developers of QMR, a diagnostic program for general internal medicine
that uses ad hoc measures of uncertainty for both diagnostic and predictive rules, make
a similar observation [28]. Indeed, the majority of medical literature (both textbooks and
journal articles) describes predictive rules for a given disease, rather than diagnostic rules
for a given finding.

Unfortunately for the CF model, effects are usually the observable pieces of evidence,
and causes are the sought-after hypotheses. Thus, in using the CF model, we force experts
to construct diagnostic rules. Consequently, we force experts to provide judgments of un-
certainty in a direction that is more cognitively challenging. We thereby promote errors in
assessment. In the next section, we examine the belief network, a representation that allows
experts to represent knowledge in whatever direction they prefer.

6 Belief Networks: A Language of Dependencies
The examples in this article illustrate that we need a language that helps us to keep track of
the sources of our belief, and that makes it easy for us to represent or infer the propositions
on which each of our beliefs are dependent. The belief network is such a language.5 Several
researchers independently developed the representation—for example, Wright [46], Good
[8], and Rousseau [34], and Pearl [31]. Howard and Matheson [22] developed the influence
diagram, a generalization of the belief network in which we can represent decisions and the
preferences of a decision maker.

Figure 4 shows a belief network for Mr. Holmes’ situation. The belief network is a
directed acyclic graph.6 The nodes in the graph correspond to uncertain variables relevant
to the problem. For Mr. Holmes, each uncertain variable represents a proposition and
that proposition’s negation. For example, node b in Figure 4 represents the propositions
BURGLARY and NOT BURGLARY (denoted b+ and b−, respectively). In general, an uncertain
variable can represent an arbitrary set of mutually exclusive and exhaustive propositions;
we call each proposition an instance of the variable. In the remainder of the discussion, we
make no distinction between the variable x and the node x that represents that variable.

Each variable in a belief network is associated with a set of probability distributions.7

In the Bayesian tradition, these distributions encode the knowledge provider’s beliefs about
the relationships among the variables. Mr. Holmes’ probabilities appear below the belief
network in Figure 4.

The arcs in the directed acyclic graph represent direct probabilistic dependencies among

5Other names for belief networks include probabilistic networks, causal networks, and Bayesian networks.
6A directed acyclic graph contains no directed cycles. That is, in a directed acyclic graph, we cannot

travel from a node and return to that same node along a nontrivial directed path.
7A probability distribution is an assignment of a probability to each instance of a variable.
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Figure 4: A belief network for Mr. Holmes’ situation.
The nodes in the belief network represent the uncertain variables relevant to Mr. Holmes’ situation.
The arcs represent direct probabilistic dependencies among the variables, whereas the lack of arcs
between nodes represents assertions of conditional independence. Each node in the belief network
is associated with a set of probability distributions. These distributions appear below the graph.
The variables in the probabilistic expressions correspond to the nodes that they label in the belief
network. For example, p (b+|ξ) denotes the probability that a burglary has occurred, given Mr.
Holmes’ background information, ξ. The figure does not display the probabilities that the events
failed to occur. We can compute these probabilities by subtracting from 1.0 the probabilities shown.
(Figure taken from D. Heckerman, The Certainty-Factor Model, S. Shapiro, editor, Encyclopedia
of Artificial Intelligence, Second Edition. Wiley, New York.)

16



the uncertain variables. In particular, an arc from node x to node y reflects an assertion by
the builder of that network that the probability distribution for y may depend on the instance
of the variable x; we say that x conditions y. Thus, a node has a probability distribution
for every instance of its conditioning nodes. (An instance of a set of nodes is an assignment
of an instance to each node in that set.) For example, in Figure 4, ALARM is conditioned
by both EARTHQUAKE and BURGLARY. Consequently, there are four probability distribu-
tions for ALARM, corresponding to the instances where both EARTHQUAKE and BURGLARY
occur, BURGLARY occurs alone, EARTHQUAKE occurs alone, and neither EARTHQUAKE nor
BURGLARY occurs. In contrast, RADIO NEWSCAST, ERIC’S CALL, and CYNTHIA’S CALL are
each conditioned by only one node. Thus, there are two probability distributions for each
of these nodes. Finally, EARTHQUAKE and BURGLARY do not have any conditioning nodes,
and hence each node has only one probability distribution.

The lack of arcs in a belief network reflects assertions of conditional independence. For
example, there is no arc from BURGLARY to ERIC’S CALL in Figure 4. The lack of this arc
encodes Mr. Holmes’ belief that the probability of receiving Eric’s telephone call from his
neighbor does not depend on whether or not there was a burglary, provided Mr. Holmes
knows whether or not the alarm sounded.

Pearl describes the exact semantics of missing arcs [33]. Here, it is important to recognize
that, given any belief network, we can construct the joint probability distribution for the
variables in any belief network from (1) the probability distributions associated with each
node in the network, and (2) the assertions of conditional independence reflected by the lack
of some arcs in the network. The joint probability distribution for a set of variables is the
collection of probabilities for each instance of that set. The distribution for Mr. Holmes’
situation is

p (e, b, a, n, r, c|ξ) = p (e|ξ) p (b|ξ) p (a|e, b, ξ) p (n|e, ξ) p (r|a, ξ) p (c|a, ξ) (8)

The probability distributions on the right-hand side of Equation 8 are exactly those distri-
butions associated with the nodes in the belief network.

6.1 Getting Answers from Belief Networks
Given a joint probability distribution over a set of variables, we can compute any conditional
probability that involves those variables. In particular, we can compute the probability of
any set of hypotheses, given any set of observations. For example, Mr. Holmes undoubtedly
wants to determine the probability of BURGLARY (b+) given RADIO NEWSCAST (n+) and
ERIC’S CALL (r+) and CYNTHIA’S CALL (c+). Applying the rules of probability8 to the joint
probability distribution for Mr. Holmes’ situation, we obtain

p (b+|n+, r+, c+, ξ) =
p (b+, n+, r+, c+|ξ)

p (n+, r+, c+|ξ)

8See, for example, [41].
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=

P
ei,ak

p (ei, b+, ak, n+, r+, c+|ξ)
P

ei,bj ,ak
p (ei, bj, ak, n+, r+, c+|ξ)

where ei, bj, and ak denote arbitrary instances of the variables e, b, and a, respectively.
In general, given a belief network, we can compute any set of probabilities from the

joint distribution implied by that network. We also can compute probabilities of interest
directly within a belief network. In doing so, we can take advantage of the assertions of
conditional independence reflected by the lack of arcs in the network: Fewer arcs lead to
less computation. Several researchers have developed an algorithm in which we reverse
arcs in the belief network, applying Bayes’ theorem to each reversal, until we have derived
the probabilities of interest [22, 30, 35]. Pearl has developed a message-passing scheme
that updates the probability distributions for each node in a belief network in response to
observations of one or more variables [32]. Lauritzen and Spiegelhalter have created an
algorithm that first builds an undirected graph from the belief network [26]. The algorithm
then exploits several mathematical properties of undirected graphs to perform probabilistic
inference. Most recently, Cooper has developed an inference algorithm that recursively
bisects a belief network, solves the inference subproblems, and reassembles the component
solutions into a global solution [5].

6.2 Belief Networks for Knowledge Acquisition
A belief network simplifies knowledge acquisition by exploiting a fundamental observation
about the ability of people to assess probabilities. Namely, a belief network takes advantage
of the fact that people can make assertions of conditional independence much more easily
than they can assess numerical probabilities [22, 32]. In using a belief network, a person
first builds the graph that reflects his assertions of conditional independence; only then does
he assess the probabilities underlying the graph. Thus, a belief network helps a person to
decompose the construction of a joint probability distribution into the construction of a set
of smaller probability distributions.

6.3 Advantages of the Belief Network over the CF Model
The example of Mr. Holmes illustrates the advantages of the belief network over the CF
model. First, we can avoid the practical problem of the CF model that we discussed in Sec-
tion 5; namely, using a belief network, a knowledge provider can choose the order in which
he prefers to assess probability distributions. For example, in Figure 4, all arcs point from
cause to effect, showing that Mr. Holmes prefers to assess the probability of observing an
effect, given one or more causes. If, however, Mr. Holmes wanted to specify the probabilities
of—say—EARTHQUAKE given RADIO NEWSCAST and of EARTHQUAKE given NOT RADIO
NEWSCAST, he simply would reverse the arc from RADIO NEWSCAST to EARTHQUAKE in
Figure 4. Regardless of the direction in which Mr. Holmes assesses the conditional distri-
butions, we can use one of the algorithms mentioned in Section 6.1 to reveal the conditional
probabilities of interest, if the need arises. (See [36], for a detailed discussion of this point.)
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Second, using a belief network, the knowledge provider can control the assertions of con-
ditional independence that are encoded in the representation. In contrast, the use of the
combination functions in the CF model forces a person to adopt assertions of conditional in-
dependence that may be incorrect. For example, as we discussed in Section 4.3, the inference
network in Figure 2 dictates the erroneous assertion that EARTHQUAKE and BURGLARY are
conditionally independent, given ALARM.

Third, and most important, a knowledge provider does not have to assess indirect inde-
pendencies, using a belief network. Such independencies reveal themselves in the course
of probabilistic computations within the network.9 Such computations can tell us—for
example—that BURGLARY and RADIO NEWSCAST are normally independent, but become
dependent, given ERIC’S CALL, CYNTHIA’S CALL, or both.

Thus, the belief network helps us to tame the inherently nonmodular properties of un-
certain reasoning. Uncertain knowledge encoded in a belief network is not as modular as is
knowledge about logical relationships. Nonetheless, representing uncertain knowledge in a
belief network is a great improvement over encoding all relationships among a set of variables.

6.4 Belief Networks in Real-World Applications
Despite the strong theoretical arguments that favor the use of belief networks for representing
uncertainty in medical decision-support systems, it is appropriate to ask whether there are
practical technologic approaches to their adoption. Indeed, the belief-network representation
recently has facilitated the construction of several real-world expert systems. For example,
researchers at Stanford University and the University of Southern California used a belief
network to construct Pathfinder, an expert system that assists pathologists with the diagnosis
of lymph-node diseases [9, 11]. The program reasons about over 60 diseases (25 benign
diseases, 9 Hodgkin’s lymphomas, 18 non-Hodgkin’s lymphomas, and 10 metastatic diseases)
and over 140 features of disease, including morphologic, clinical, laboratory, immunological,
and molecular biological findings. The belief network for Pathfinder was constructed with
the aid of a similarity network, an extension of the belief-network representation that permits
the incremental construction of extremely large belief networks from cognitively manageable
subproblems that involve the comparison of two diseases and their distinguishing features
[14, 15, 16]. A formal evaluation of Pathfinder has demonstrated that its diagnostic accuracy
is at least as good as that of the program’s expert [10]. Currently, the program is undergoing
clinical trials that will compare the diagnostic accuracy of general pathologists who have
access to Pathfinder to that of pathologists who do not have such access.

Other medical expert systems have been built with belief networks. These systems
include Munin, a program for the diagnosis of muscular disorders [2], Alarm, a program that
assists physicians with ventilator management [3], Sleep-It, a program for the diagnosis of
sleep disorders [29], and QMR-DT, a probabilistic version of QMR [39, 27].

In addition to the development of the belief network, there are several changes in com-

9In fact, we are not even required to perform numerical computations to derive such indirect indepen-
dencies. An efficient algorithm exists that uses only the structure of the belief network to tell us about these
dependencies [7].

19



puting environments which have been instrumental in making it practical to return to formal
probabilistic models. In particular, the dramatic increase in raw computing power make it
reasonable to consider using search algorithms that would have brought reasoning systems
to a halt 20 years ago. Also, the graphical environments that are now routinely available
allow us to address the issues of cognitive complexity that would have limited attempts to
use belief networks in earlier decades.

7 Conclusions
The widespread adoption of the CF model in the late 1970s and early 1980s is clear evidence
of the importance of practical and simple methods for managing uncertain reasoning in
expert systems. As we have seen, however, the simplicity of the CF model was achieved only
with frequently unrealistic assumptions and with persistent confusion about the meaning of
the numbers being used.

Fortunately, the belief-network representation overcomes many of the limitations of the
CF model, and provides a promising approach to the practical construction of expert systems.
We hope that our discussion will inspire investigators to develop belief-network inference
algorithms and extensions to the representation that will simplify further the construction
and use of probabilistic expert systems. We believe that the time is right for the development
of such systems in medical domains.
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