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Abstract

In this paper, we extend the QMR-DT probabilistic
model for the domain of internal medicine to include
decisions about treatments. In addition, we describe
how we can use the comprehensive decision model to
construct a simpler decision model for a specific pa-
tient. In so doing, we transform the task of problem
formulation to that of narrowing of a larger prob-
lem.

1 Introduction

The structuring of problems that serve as the basis
for inferential analysis has been considered one of
the most ill-characterized phase of machine reason-
ing [17] Several investigators have speculated that
we may never identify principled machinery for prob-
lem formulation [18, 3]. In this paper, we describe
a formal approach to problem formulation in which
we reduce a large decision model. In particular, we
develop a comprehensive influence diagram for the
domain of internal medicine. The model provides
recommendations for treating a patient, given obser-
vations about that patient. To simplify the solution
of the comprehensive model, we prune nodes and
arcs from the model, based on observations that are
specific to a given patient. We conjecture that the
patient-specific influence diagram produces treat-
ment recommendations that are typically identical
to those recommendations derived from the compre-
hensive influence diagram.
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2 Related Research on Prob-
lem Formulation

Previous artificial-intelligence approaches to prob-
lem formulation—both heuristic and formal—
involve the direct synthesis of problem-specific mod-
els rather than the reduction of comprehensive mod-
els. Researchers have made the assumption (typ-
ically implicit) that computer-based reasoning sys-
tems must be limited to the construction of relatively
simple models for action at run time. A heuristic
approach to problem formulation can be found in
the Present Illness Program (PIP), developed over a
decade ago [13]. PIP was designed to assist physi-
cians with patients presenting with different types of
swelling. All possible hypotheses considered by PIP,
are stored in the system’s long-term memory. Each
disease in the knowledge base is associated with a set
of observable criteria, called triggers, that are used
to make decisions about whether a disease should
be considered as active. Information about com-
peting and complementary diseases is also stored in
the long-term memory. A disease is activated, or
brought into consideration in PIP’s short-term mem-
ory, when a trigger is observed. Diseases that are
competitors or complements also are brought into
consideration as semi-active hypotheses. A prob-
lem, composed of active and semi-active hypothe-
ses, is addressed with logical and quasi-probabilistic
analyses in the working memory.

Researchers have pursued heuristic problem-
formulation methodologies primarily because they
reduce the computational burden by selecting a sub-
set of distinctions for analysis. These heuristic ap-
proaches, however, are intrinsically limited by their
poor characterization. In recent work, spanning ar-
tificial intelligence and decision science, several in-
vestigators have developed formal approaches that
automate the formulation of decision problems. For
example, Wellman has examined the identification of
tradeoffs through utility-dominance theorem prov-
ing [21]. Also, Holtzman [8] and Breese [1] have



developed rule-based techniques for constructing in-
fluence diagrams. In Section 7, we compare our ap-
proach for problem formulation to these approaches
in the context of the internal-medicine domain.

3 Beyond Internist-1: QMR
and QMR-DT

Our work is motivated by the QMR-DT, a
decision-theoretic decision-support system for inter-
nal medicine, based on the comprehensive Quick
Medical Reference (QMR) knowledge base [7, 5, 16].
The QMR reasoning system is the primary descen-
dant of the Internist-1 project at the University of
Pittsburgh [15, 12]. The QMR knowledge base was
developed, and is being refined, by Miller and other
researchers [11]. Over 25 person-years of effort have
been directed at the construction of the QMR knowl-
edge base.

QMR (and Internist-1) relies on heuristic nu-
meric weighting schemes for reasoning under uncer-
tainty. Several years ago, one of us developed a map-
ping between these methods and probability theory
[6]. That early work, and more recent work within
the QMR-DT (for QMR decision-theoretic) research
group,1 led to a reformulation of the QMR knowl-
edge base in the form of a belief network for internal
medicine.

Figure 1 portrays the general structure of the cur-
rent QMR-DT belief network. Each disease in the
upper layer of the network conditions a subset of
manifestations in the lower layer of the network.
The actual belief network contains 534 diseases, 4040
manifestations, and a 40740 arcs. Both diseases
and manifestations are binary or two-valued distinc-
tions. Also, diseases are marginally independent,
and features are conditionally independent given an
instance of diseases (i.e., given an assignment of true
or false to each disease). Although not shown in
the network, we model the influence of multiple dis-
eases on a single manifestation using the assump-
tion of causal independence. In particular, we use
Pearl’s noisy OR-gate model [14]. In the future, we
plan to extend this model to include nonbinary dis-
eases and manifestations, dependencies among dis-
eases and manifestations, intermediate pathophys-
iological states, and manifestations that condition
diseases.

The QMR-DT group is currently developing al-
gorithms for the computation of the marginal poste-

1The QMR-DT team also includes Gregory Cooper, Max
Henrion, Harold Lehmann, Blackford Middleton, Randolph
Miller, and Michael Shwe.
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Figure 1: A portion of the QMR-DT belief network.
The upper layer of the network consists of over 500
disease propositions. These propositions are associ-
ated with over 4,000 manifestations represented as
nodes in the bottom layer of the network.

rior probability of each disease given instances of one
or more of the manifestation nodes. Although this
computation is an NP-hard task [4], preliminary re-
sults with several algorithms are encouraging. One
algorithm, called Quickscore, performs inference ef-
ficiently when the number of findings observed to
be present in a patient is small [5]. Another al-
gorithm determines bounds on disease probabilities;
these bounds shrink as the amount of computation
increases [7]. An algorithm based on Monte-Carlo
sampling, provides approximate disease probabili-
ties; the approximations improve as sampling pro-
gresses [16].

4 From Belief to Action

Determining the probability that single diseases or
disease combinations have manifested in a patient is
only one component of the internal-medicine prob-
lem. In addition, an automated reasoner should con-
sider the possible actions that a physician might
take, and the desirability of the possible conse-
quences of those actions. For example, suppose an
expert system determines that the probability that
a given patient has syphilis is small—say, 0.01. If
the program only considers the likelihoods of dis-
eases, it will probably fail to suggest to a physician
user that he should consider the disease. This failure
to suggest the disease to the physician, however, is
probably inappropriate, because the side effects of
the treatment for syphilis (penicillin) are minimal,
and the consequences of the untreated disease are
severe.

In the domain of internal medicine, physician ac-
tions include treatments and other patient interven-



tions, and the performance of tests to gather ad-
ditional information about a patient. In this paper,
we extend the QMR-DT model to include treatment
actions only. This extension is illustrated by a por-
tion of an influence diagram for internal medicine
shown in Figure 2. In the diagram, CORNEAL HER-

PES ZOSTER and CORNEAL HERPES SIMPLEX are
two diseases that can cause RED EYE. ACYCLOVIR

and PREDNISONE are two treatments for CORNEAL

HERPES ZOSTER, whereas ARA-A is a treatment for
CORNEAL HERPES SIMPLEX. In general, there can
be no treatment, one treatment, or more than one
treatment for a given disease. Also, each treatment
option may be associated with many (possibly an
infinite) number of option alternatives, although in
this paper, to keep the discussion simple, we limit
the number alternatives for each treatment to two:
true and false. The diamond node u represents the
overall utility of the patient. The diamond nodes
u1, u2, and u3, called subvalue nodes [19, 20], repre-
sent components of overall patient utility. The nodes
u1 and u3 encode the patient utilities associated
with the treatment of CORNEAL HERPES ZOSTER

and CORNEAL HERPES SIMPLEX, respectively. The
node u2 represents the fact that prednisone therapy
can be extremely detrimental to a patient if he has
CORNEAL HERPES SIMPLEX. We refer to the entire
influence diagram for the QMR domain as the com-
prehensive decision model.

We measure the utilities underlying the compre-
hensive model using standard gambles. For exam-
ple, let us consider the utility associated with the
node u3 in Figure 2 that corresponds to the situa-
tion where a patient has CORNEAL HERPES SIMPLEX

and is not receiving ARA-A, the only treatment for
that disease. To assess this utility, we ask the patient
(or an agent of that patient), “Imagine that there is
a magic pill that will cure your CORNEAL HERPES

SIMPLEX without any side effects with probability
p, but will kill you immediately and painlessly with
probability 1 − p. What probability p makes you
indifferent between taking the pill and remaining in
your current situation?” As another example, let
us consider the utility that corresponds to the sit-
uation where the patient does not have CORNEAL

HERPES SIMPLEX, and is erroneously receiving ARA-

A. To assess this utility, we ask the patient “Imagine
that there is a magic pill that will eliminate all side
effects of ARA-A with probability q, but will kill you
immediately and painlessly with probability 1 − q.
What probability q makes you indifferent between
taking the pill and remaining in your current situ-
ation?” Similarly, we can assess the remaining two
utilities associated with u3. Most people find these

utilities difficult to assess directly, especially when
the magic-pill probabilities are small (e.g., q in the
previous example). Howard, however, has developed
a model that greatly simplifies such assessments [10].

In constructing the comprehensive decision model
for the QMR domain, we assume that the magic-pill
probabilities are independent of other diseases that
the patient may have and of other treatments that
the patient may be receiving. The assumption is a
good one, because we can always introduce nodes, as
we introduced u2, to represent interactions among
diseases and treatments. In making this assump-
tion of independence, we can select the treatment
alternatives that maximize the expected utility of
u by choosing those alternatives that maximize the
expected utility of each of the ui separately.2 We
thereby reduce the number computations that we
require to solve the comprehensive decision model.

5 Problem Formulation as
Large-Model Reduction

The independence assumption we just discussed is a
large step toward tractable solutions of the compre-
hensive decision model. Nonetheless, for most pa-
tient cases, we shall still require inordinate amounts
of time to solve the model. We address this diffi-
culty by using observations about a given patient to
build a patient-specific decision model. This decision
model is likely to be smaller than the comprehen-
sive decision model, and is also likely to give us the
same recommendations for action at a lower com-
putational cost. We view the construction of this
model as problem formulation.

Before we discuss the construction, let us consider
the quantity called p∗ij , the lowest probability of dis-
ease dj such that treatment ai is warranted by the
comprehensive model, given that the patient has at
most disease dj and receives no other treatments.
We compute p∗ij by setting all diseases except dj and
all treatments except ai to false, and then solving
the comprehensive decision model. The computa-
tion does not depend on specific observations about
a patient. Thus, we have to compute each p∗ij only
once for the comprehensive model.

Given the p∗ij , we can construct a patient-specific
decision model in two steps. First, given disease
manifestations φ for a particular patient, we com-
pute the marginal posterior probability of each dis-
ease dj , denoted p(dj |φ). If the number of positive

2Such decomposition is possible for any utility model that
is additive or multiplicative [9]. The standard gamble model
that we describe here is multiplicative.
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Figure 2: A portion of the comprehensive decision model for the QMR domain. CORNEAL HERPES ZOSTER

and CORNEAL HERPES SIMPLEX are two diseases that can cause RED EYE. ACYCLOVIR and PREDNISONE are
two treatments for CORNEAL HERPES ZOSTER, whereas ARA-A is a treatment for CORNEAL HERPES SIMPLEX.
The overall utility of the patient is represented by the the diamond node labelled u. The diamond nodes u1,
u2, and u3, called subvalue nodes, represent components of patient utility that contribute independently to
the overall utility of the patient. For example, the node u2 represents the fact that prednisone therapy can
be extremely detrimental to a patient if he has Corneal Herpes Simplex.



findings in φ is small, we can use the Quickscore
algorithm to perform this inference. Otherwise, we
can use Henrion’s algorithm that provides bounds
on these probabilities. In either case, we instantiate
ai to false if and only if, for every disease dj that has
ai as a possible treatment, the upper bound for the
probability of dj falls below p∗ij for that treatment–
disease pair. Second, we discard the portions of the
comprehensive decision model that are not relevant
to the utility of the patient, given those decision vari-
ables that we have instantiated. A simple algorithm
for doing so is as follows: (1) for all subvalue nodes
ui, if all decision-node predecessors of ui are set to
false, then remove ui from the comprehensive model;
(2) remove all chance and decision nodes that be-
come disconnected from the node u.

The solution of a patient-specific decision model is
likely to be significantly more tractable than that of
the comprehensive decision model. One obvious sim-
plification is that a patient-specific decision model
will probably contain fewer nodes than the compre-
hensive decision model. Another, more important,
simplification is illustrated by the portion of com-
prehensive decision model shown in Figure 2. In
particular, suppose our problem-formulation proce-
dure instantiates PREDNISONE to false for a partic-
ular patient. In this case, we can solve the ACY-

CLOVIR and ARA-A portions of the influence diagram
separately. A similar simplification is illustrated by
the portion of the comprehensive decision model in
Figure 3. If the problem-formulation procedure in-
stantiates THEOPHYLLIN to false, then we can deter-
mine the decisions of whether or not to administer
DIGOXIN and ERYTHROMYCIN independently.

In general, we say that a procedure for pruning a
comprehensive decision model is sound if and only if
the treatment decisions that are determined by the
process of pruning the large model and by solving
the reduced model are identical to those decisions de-
termined by solving the comprehensive model. Our
approach is not sound. For example, consider the
case where ai is a treatment for diseases dj and dk,
but has many side effects. Let us suppose that, for
a given patient, the upper bounds for p(dj |φ) and
p(dk|φ) fall just below p∗ij and p∗ik, respectively. In
this situation, our approach instantiates ai to false.
Within the comprehensive decision model, however,
the treatment ai may be optimal, because the pos-
itive benefits of ai applied to both diseases may
outweigh the negative side effects of the treatment.
Nonetheless, we conjecture that such situations will
arise rarely. After we construct a substantial subset
of the comprehensive decision model for the QMR
domain, we shall test this conjecture.

We have described our approach for creating a
patient-specific decision model in terms of reducing
a large comprehensive decision model by instanti-
ating particular treatment nodes. Alternatively, as
illustrated in Figure 4, we can view this approach as
a model-construction process. From this perspective,
treatment nodes that are not instantiated to false be-
come active. In addition, subvalue and chance nodes
that are relevant to u, given the instantiated treat-
ment nodes, become active. The patient-specific de-
cision model is then constructed from these active
nodes and from the relationships among these nodes
found in the comprehensive decision model.

6 Problem Formulation as a
Metalevel Decision Analysis

We can view our approach as a metalevel decision
analysis in which we tradeoff the comprehensiveness
of the model with the amount of time required to
solve the model. In particular, we have assumed
that (1) the cost of including a treatment in a model,
given that a full analysis would have proven the
treatment should not be undertaken, is small, and
(2) the utility of omitting a treatment from a model,
given that a full analysis would have indicated the
treatment be performed, is large. The first assump-
tion requires the cost of computation to be small,
or that the addition of another distinction (or set of
distinctions) does not increase the complexity of the
analysis significantly. Additional work is needed to
measure such metalevel costs and benefits more ac-
curately, and to develop procedures for constructing
patient-specific models that exploit these measure-
ments once they are made.

7 Comparison to Other For-
mal Approaches

We believe that the rule-based and qualitative-
tradeoff approaches to problem formulation are in-
adequate for handling the construction of patient-
specific decision models in the QMR domain. In
applying the rule-based approach, an expert would
not build a comprehensive decision model. Instead,
he would generate rules that correspond to small
components of the influence diagram for the QMR
domain. For example, one rule might describe the
THEOPHYLLINE–DIGOXIN interaction in Figure 3.
The primary drawback of this approach—when ap-
plied to internal medicine—is that it will be ex-
tremely difficult for an expert to construct a large
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Figure 3: Another portion of the comprehensive decision model for the QMR domain. HEART FAILURE,
ASTHMA, and LUNG INFECTION are diseases that can cause SHORTNESS OF BREATH. DIGOXIN is a treat-
ment for HEART FAILURE, THEOPHYLLINE is a treatment for ASTHMA, and ERTHYROMYCIN is a treatment
for LUNG INFECTION. THEOPHYLLINE interacts negatively with both DIGOXIN and ERYTHROMYCIN. The
subvalue nodes u2 and u4 represents the negative interactions.

set of rules that are consistent. The lack of con-
sistency is a limitation, because there is no guaran-
tee that influence diagrams constructed by the rule-
based approach will be valid unless the rules used to
build those diagrams are self consistent [2]. Our ap-
proach does not suffer from this drawback, because
the expert builds an influence diagram for the en-
tire QMR domain explicitly, and thereby guarantees
the self consistency of the knowledge represented in
that diagram. Of course, the rule-based approach
may be useful in domains where it is impossible or
extremely difficult to build an influence diagram for
the entire domain. For example, the approach may
be useful for stock-market trading, where unforesee-
able situations arise frequently.

Wellman’s approach examines only qualitative in-
teractions among alternatives, beliefs, and prefer-
ences. For example, using the approach, we can rep-
resent the fact that THEOPHYLLINE might relieve
the symptoms of ASTHMA, but we cannot represent
the degree of belief that these symptoms will be re-
lieved, nor can we represent the patient’s degree of
preference for such relief. Given these qualitative
interactions, and a set of observations about a pa-
tient, Wellman’s method can identify all decision,

chance, and utility variables that might be relevant
to the utility of that patient. Unfortunately, almost
all variables in the QMR domain might be relevant
to a patient’s utility at the level of qualitative analy-
sis. Thus, the approach approach will probably cre-
ate extremely large patient-specific decision models.
We need a more quantitative analysis to produce
smaller patient-specific decision models whose solu-
tions are tractable.

8 Summary

We have described an approach to problem formu-
lation that uses the results of inference in a belief
network to transform a large, comprehensive deci-
sion model into a smaller, patient-specific decision
model. A crucial question is: Will this approach
produce patient-specific decision models whose solu-
tions are both accurate and tractable? We are cur-
rently implementing our approach within the QMR-
DT framework to answer this question.
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Figure 4: The construction of a patient-specific decision model. First, we apply an inference algorithm to the
QMR-DT belief network that produces probabilities or bounds on the probabilities of each disease. Second,
we identify treatments that we need to consider. In particular, we make treatment ai active if and only if
there is some disease dj for which ai is a possible treatment, such that the upper bound for the probability of
dj exceeds p∗ij for that treatment–disease pair. Third, we identify active subvalue and chance nodes as those
nodes that are relevant to the decision problem, given the active treatment nodes. The active treatment,
subvalue, and chance nodes, and the relationships among these nodes, form the patient-specific decision
model, shown at the top of the figure. Nodes that represent disease findings are omitted from the figure.
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