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ABSTRACT
The design of algorithms on complex networks, such as
routing, ranking or recommendation algorithms, requires
a detailed understanding of the growth characteristics of
the networks of interest, such as the Internet, the web
graph, social networks or online communities. To this
end, preferential attachment, in which the popularity (or
relevance) of a node is determined by its degree, is a well-
known and appealing random graph model, whose pre-
dictions are in accordance with experiments on the web
graph and several social networks. However, its central
assumption, that the popularity of the nodes depends
only on their degree, is not a realistic one, since every
node has potentially some intrinsic quality which can dif-
ferentiate its attractiveness from other nodes with similar
degrees.

In this paper, we provide a rigorous analysis of pref-
erential attachment with fitness, suggested by Bianconi
and Barabási and studied by Motwani and Xu, in which
the degree of a vertex is scaled by its quality to de-
termine its attractiveness. Including quality considera-
tions in the classical preferential attachment model pro-
vides a much more realistic description of many com-
plex networks, such as the web graph, and allows to ob-
serve a much richer behavior in the growth dynamics of
these networks. Specifically, depending on the shape of
the distribution from which the qualities of the vertices
are drawn, we observe three distinct phases, namely a
first-mover-advantage phase, a fit-get-richer phase and
an innovation-pays-off phase. We precisely characterize
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the properties of the quality distribution that result in
each of these phases and we compute the exact growth
dynamics for each phase. The dynamics provide rich in-
formation about the quality of the vertices, which can be
very useful in many practical contexts, including ranking
algorithms for the web, recommendation algorithms, as
well as the study of social networks.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic Processes

General Terms
Theory

Keywords
Random graphs, preferential attachment, Pólya urns, Bose-
Einstein condensation

1. INTRODUCTION
In recent years, there has been a convergence of ideas

coming from computer science, social sciences and eco-
nomic sciences as researchers in these fields attempt to
model and analyze the characteristics and dynamics of
large complex networks, such as the web graph, social
networks and recommendation networks. From the com-
putational perspective, it has been recognized that the
successful design of algorithms performed on such net-
works, including routing, ranking and recommendation
algorithms, must take into account the social dynamics
as well as the technical properties and economic incen-
tives that govern network growth [23, 24, 16].

Random Graph Models. An appealing way to
model the growth dynamics of these networks is via ran-
dom graph models. The well-studied Erdös-Rényi model
is not an appropriate description of these networks, be-
cause it is a static rather than dynamic model, and more
importantly, because sparse graphs drawn from the Erdös-
Rényi model have Poisson degree distributions rather
than the scale-free (power-law) distributions observed in
a variety of social phenomena [27], and verified by exper-
iments on the World Wide Web [2, 12, 17]—the latter
seen as a massive graph with web pages being its ver-
tices and directed edges between vertices corresponding
to hyperlinks from one page to another.



Several models have been suggested which result in
scale-free distributions, probably the first being due to
Yule [26] and Simon [25]. In the context of scientific cita-
tions power law distributions were observed by Lotka [20],
and Gilbert [14] specifies a probabilistic model support-
ing Lotka’s law. Kleinberg et al. [17] and Kumar et
al. [19] suggest and study the copy model which captures
the power law distribution and other connectivity prop-
erties of the World Wide Web, while other models in-
clude works from Broder et al. [8], Cooper and Frieze [9],
Drinea et al. [11], Krapivsky and Redner [18].

Preferential Attachment Models. One of the
most natural and attractive models for network growth is
the preferential attachment model, suggested by Barabási
and Albert [2] to model the web graph, and originally
proposed as the cumulative advantage model by Derek
de Solla Price in 1965 [10]. See e.g. [7, 6, 13] for a rigor-
ous treatment. Roughly speaking, as time evolves, new
vertices join the network by adding several links to the
vertices already present in the network in a probabilistic
fashion. The probability of linking to an existing vertex
is an increasing function, usually polynomial, in its de-
gree, which captures the intuitive fact that higher degree
of a vertex reflects higher relevance or popularity.

This model by itself has been rather successful in
predicting the graph structure of the web [2], at least as
an undirected graph. Nevertheless, there is an unsatis-
factory assumption underlying the model. The popular-
ity of a vertex depends only on its degree. As a result,
the prediction of the model is the so-called first-mover-
advantage phenomenon in which earlier vertices tend to
have significantly higher degrees than later ones, making
it hard for a vertex which enters late to compete with the
already established hubs of the network. Moreover, the
model is completely symmetric with respect to vertices
which enter at similar times, since there is no model-
ing of how the intrinsic quality of every vertex affects its
growth in the network. How is the quality of vertices re-
flected in the network structure and its dynamics? How
can one extract such information?

To answer this type of questions we analyze a vari-
ant of the preferential attachment model which explic-
itly models the intrinsic quality of the vertices. This
model, introduced in the context of the web by Bianconi
and Barabási [4], is usually called preferential attachment
with fitness. In this model, when a new vertex is created,
it gets assigned a quality parameter, henceforth called
fitness, drawn from a given distribution, which scales its
degree to determine its attractiveness in the evolution
of the network. The resulting model provides a much
more accurate description of many real-world networks
[4], but it is also more difficult to analyze rigorously; see
Bianconi and Barabási [4] for heuristic arguments and
Motwani and Xu [22] for more precise arguments.

Our Results. We provide the first rigorous anal-
ysis of preferential attachment with fitness. We show
that, depending on the properties of the distribution
from which the fitnesses are drawn, henceforth called
the fitness distribution, there is a much richer behav-
ior that an evolving network may exhibit than what is
predicted by the classical preferential attachment model.
We precisely characterize the possible evolutions of a
complex network and we specify the properties of the
fitness distribution resulting in each of them. More pre-

cisely, we show that, depending on the fitness distribu-
tion, an evolving network can undergo one of the follow-
ing behaviors, or phases:

• the first-mover-advantage phase, which results from
flat fitness distributions and corresponds to the power-
law behavior predicted by the classical preferential
attachment model;

• the fit-get-richer phase, in which vertices of higher
fitness grow faster than those of smaller fitness; the
behavior here is a power-law within each fitness
value, but the tail exponent decreases as the fitness
increases;

• the innovation-pays-off phase, in which, roughly
speaking, the competition for links results in a con-
stant fraction of the links continuously shifting to
ever larger fitness values; this fraction of links that
“escapes to infinity” is independent of the network
size and is determined by the fitness distribution;
such behavior is not observed in the fit-get-richer
phase.

Our analysis is applicable to both discrete and con-
tinuous fitness distributions, as well as bounded or un-
bounded ones, and we provide precise criteria for the fit-
ness distribution that specify which of the above phases
will arise. Our results are in accordance with the predic-
tions of Bianconi and Barabási [4] derived by mapping
the evolving network to a Bose gas in the thermodynamic
limit. In this terminology, the innovation-pays-off phase
corresponds to the phenomenon of Bose-Einstein con-
densation, whereby a constant fraction of the particles
condensate on the lowest energy level, corresponding in
the network context to the supremum of the fitness val-
ues.

A by-product of our technique is a precise character-
ization of the vertex dynamics under preferential attach-
ment with fitness. More specifically, if a vertex v has
fitness f , then our analysis implies that its degree dv(t)
at time t scales as

dv(t) ∼ tcf , (1)

where c is a global constant determined by the fitness dis-
tribution. (The details are omitted from this extended
abstract.) Hence, the logarithm of the degree of the ver-
tices directly reflects their quality. We note in passing
that this could suggest new directions in the design of
ranking or recommendation algorithms.

Proof Techniques. The standard approach to an-
alyze preferential attachment models is to derive recur-
sions (or differential equations), typically, of the expected
number of nodes of a given degree. See e.g. [21]. This
type of technique relies crucially on the fact that the
number of nodes at any time in the graph is determin-
istic, a quantity that arises as the denominator in the
recursion. However, in our case, the relevant quantity
is the number of nodes weighted by their fitness which,
unfortunately, is a random variable. This turns out to
complicate the analysis.

To obtain our results, we rely instead on a very dif-
ferent approach, one based on the theory of Pólya urn
models. In Pólya’s classical urn scheme, an urn contains
balls of two colors. At each time step, a ball is drawn



randomly from the urn and returned along with an ex-
tra ball of the same color. This is clearly reminiscent
of a preferential attachment scheme and the connection
between the two models has previously been exploited,
e.g. in [3]. Here we use a generalized version of Pólya’s
scheme (see e.g. [15]): 1) we consider an arbitrary, but
finite number of colors; 2) each ball is picked propor-
tionally to a weight, or “activity parameter”, associated
to its color; and 3) at each time step, the ball picked
is returned along with a random number of balls of each
color, where the distribution of this “random update vec-
tor” depends on the color of the ball drawn.

We analyze the limiting behavior of the preferential
attachment scheme with fitness by coupling the growth
process with specially crafted generalized Pólya urn mod-
els where the colors represent connectivity properties of
the evolving network, e.g. the cumulative degree of all
vertices of a given fitness. When the fitness distribution
is concentrated on a finite number of atoms, the cor-
respondence is somewhat straightforward, although our
coupling appears to be novel and it allows to derive non-
trivial generalizations of classic results very easily. More
importantly, we consider in fact general fitness distribu-
tions, including continuous distributions, which in prin-
ciple require an infinite number of colors in the Pólya
urn model. Little seems to be known about the behav-
ior of generalized Pólya urns beyond the finite case, and
we resort to various truncation techniques to map the
dynamics of our network to a finite urn process.

1.1 Definitions and Main Result
The Model. The generalized preferential attach-

ment model of Bianconi and Barabási which we analyze
here is a random graph model defined as follows.

Definition 1. (Preferential Attachment Scheme with
Fitness) Let F ⊆ R+ be a set of fitnesses and Q a dis-
tribution over fitnesses such that

R
F dQ(f) = 1. The

preferential attachment process with fitness begins with
one vertex of fitness f ∈ F drawn according to Q and
a self-loop on that vertex. Then, at every time step t, a
new vertex is added to the graph, which has fitness picked
independently according to Q and is attached to an old
vertex v with probability proportional to fv ·dv,t−1, where
fv is the fitness of vertex v and dv,t−1 its degree at step
t− 1. We denote by Gn = (Vn, En) the graph at time n.
We sometimes refer to this process as the (F ,Q)-chain.

It turns out that the case of unbounded fitnesses is
easier to analyze (see Section 4.4) and hereon we assume
that sup{f : f ∈ F} = h for some h < +∞. Further-
more, we consider three main cases for F : either F is
discrete—finite or countable—with Q strictly positive on
F , or F is the interval [0, h] and Q admits a strictly pos-
itive continuous density on (0, h). We say that (F ,Q) is
regular in such cases. Also, the process above constructs
only undirected trees. However, our techniques can be
easily extended to directed scale-free graphs as defined
in [5]. We omit the details.

Main Result. Our basic result concerns the dis-
tribution of links across fitnesses as n → +∞. Let
0 ≤ a ≤ b ≤ h and denote by Mn,[a,b] the number of
edge endpoints with fitness in [a, b] in Gn. Let λ0 be the

(unique) solution in [h, +∞) of

I(λ0) ≡
Z
F

f

λ0 − f
dQ(f) = 1, (2)

if such solution exists, otherwise let λ0 = h. Our main
result is the following.

Theorem 1. (Basic Result) Assume (F ,Q) is regu-
lar. Then, for all [a, b] ⊆ [0, h) with a ≤ b, we have

Mn,[a,b]

n
→

Z
F∩[a,b]

»
1 +

f

λ0 − f

–
dQ(f) ≡ ν[a,b],

and

Mn,[a,h]

n
→ 2−

Z
F∩[0,a]

»
1 +

f

λ0 − f

–
dQ(f) ≡ 2− ν[0,a],

almost surely as n → +∞.

A surprising behavior arises when (2) has no solution
in [h, +∞), or equivalently when I(h) < 1. (It is easy
to see that there cannot be an atom at h in that case.)
Under this condition, ν[0,h−ε] ≤ 1+I(λ0) = 1+I(h) < 2
for all ε > 0 even though we expect limε→0 ν[0,h−ε] = 2

since for all n, n−1Mn,[0,h] = 2 (i.e. each edge has two
endpoints). In other words, it appears that a constant
fraction of edges is “missing” in the limit. The missing
fraction actually “escapes to h” which leads to what we
call the innovation-pays-off phase as described above. To
get a better intuition for the existence of a solution in
(2), consider the example Q ∼ Beta(α, β). One can show
that there is a solution if and only if β ≤ α+1. For a fixed
α, a large β indicates a “fast decay” to 0 at h = 1 while a
small β leads to a “fatter tail” around h = 1. A solution
to (2) exists in the latter case, e.g. in the uniform case.
In other words, the innovation-pays-off regime requires a
more “rarefied” high fitness population.

Dynamics of the Innovation-Pays-Off Phase.
In order to understand (informally) the dynamics of the
innovation-pays-off phase, fix a time t∗ and let f∗ be the
largest fitness among vertices present in the network at
time t∗. Note that

• at time t∗, the cumulative fraction of the links
shared by vertices of fitness up to f∗ is 2, since
every edge is accounted for twice;

• now, consider the network in the limit t = +∞; by
Theorem 1 and the discussion above, the fraction
of links shared among vertices of fitness up to f∗

is at most 1 + I(h); therefore at least a fraction
1−I(h) of links is shared among vertices of fitness
larger than f∗, vertices which, by definition, were
not present at time t∗.

This is the “signature” of the innovation-pays-off phase:
a constant fraction of the links changes hands toward
higher and higher fitness values.

Power Laws. In fact, we can prove more than The-
orem 1. As stated below in Theorems 3 and 4 and their
counterparts in the continuous case, we exhibit power
laws for the degree distributions on the nodes of a given
fitness and we get a tail exponent of λ0f

−1 where f is
the given fitness. See Section 4.

Proof Sketch. As we mentioned before, the basic
idea of the proof of Theorem 1 (as well as of the power
law results in Theorems 3 and 4 below) is to couple the



preferential attachment process with Pólya urn models.
The first step is the analysis of the case F finite. There
we proceed by truncating large degrees and associating
a color of a specially designed Pólya process to each pair
(degree, fitness). The limit theory of Pólya processes
then reduces the problem to an eigenvector computation
of an appropriately defined matrix (see Section 2). This
computation appears to be tricky but turns out to be
manageable.

The countable and continuous cases are more chal-
lenging since Pólya urns with infinite—whether count-
able or uncountable—colors have been less studied. In-
stead, we use further truncation and approximation tech-
niques to couple the infinite cases with finite cases. In
Section 4, we illustrate this idea on the somewhat easier
special case of F = {fj}+∞j=1 increasing. There we need
two finite Pólya models—a lower bound and an upper
bound—which are obtained by truncating F and map-
ping the remaining fitness values to either 0 or h. The
general discrete case as well as the continuous case re-
quire a more sophisticated approach which is omitted
from this extended abstract.

Organization of the Paper. We start with a brief
overview of generalized Pólya urn models in Section 2
followed by our treatment of preferential attachment for
finite fitness distributions in Section 3. The main steps of
the general proof are illustrated in Section 4 in the special
case where F = {fj}j≥1 is countable and increasing.

Notation. We denote by ei the unit vector along the
i-th axis (usually the dimension is clear). The notation
1S denotes the indicator of the event S.

2. GENERALIZED PÓLYA URNS
Our results are obtained through an appropriate map-

ping of the preferential fitness process to a finite gener-
alized Pólya urn scheme. We introduce here the basic
limit theory of generalized Pólya urn models keeping our
notation consistent with the presentation of Janson [15],
with the exception of our matrix A which is the trans-
pose of Janson’s, in accordance with common practice in
the Pólya urn literature.

Definition of the Pólya Urn Process. We have
q < +∞ bins (corresponding to colors in the original
Pólya model described in the Introduction). Each bin
i ≤ q is assigned a fixed activity ai, 0 ≤ ai < +∞. For
n ≥ 0, let Xn = (Xn,1, . . . , Xn,q), where Xn,i is the num-
ber of balls in bin i at time n. The initial load is given by
X0, which may be random or deterministic. Each bin,
say i, also has a random vector ξi = (ξi,1, . . . , ξi,q) with
integer coordinates. The process is defined as follows. At
time n, we pick one bin. Bin i is chosen with probability
proportional to aiXn−1,i. If bin i is picked, we draw an

independent copy ξ
(n)
i of ξi and update {Xn}n≥0 accord-

ing to Xn = Xn−1 + ξ
(n)
i .

Basic Pólya Urn Result. The limiting behavior
of the Pólya Urn process described above can be charac-
terized in terms of the q×q matrix A with entries Ai,j =
aiE[ξi,j ], assuming conditions (A1)-(A6) in [15] are sat-
isfied. In fact, we will only need to use the more general
assumption described in Remark 4.2 of [15]. Roughly
speaking, we require that:

• The urn process is well-defined (see the definition
of tenable in Remark 4.2 of [15]). Essentially, we re-

quire that the number of balls remains nonnegative
at all times with probability 1.

• The matrix A satisfies a slight generalization of
irreducibility and the initial load is positive on a
“dominating type.” This generalization allows for
dummy bins that “count certain events.” (See Sec-
tion 3 “Limits for urns” of [15].)

• The vectors ξi have finite second moments. In our
application, the ξi’s will actually be bounded.

We refer the reader to [15] for more details. Under these
conditions, it is not hard to see that A has a unique
largest positive eigenvalue λ1 with corresponding positive
left eigenvector v1 and right eigenvector u1 (apply the
Perron-Frobenius theorem to A + αI for an appropriate
α). We choose u1, v1 to satisfy a · v1 = 1 and u1 · v1 = 1
where a is the vector of activities. The following theorem
characterizes the vector Xn.

Theorem 2. (Limit of Finite Urns [1]; Theorem 3.21
in [15]) Assume conditions (A1)-(A6) of [15] are satis-
fied. Conditioned on essential non-extinction (see [15])
we have n−1Xn → λ1v1, almost surely as n → +∞.

In our applications of Theorem 2, it will be easy to es-
tablish that “essential extinction” is not possible.

3. PREFERENTIAL ATTACHMENT: FI-
NITE DISTRIBUTIONS

In this section, we treat the case F = {fj}j∈J where
J is finite—which we sometimes refer to as the finite-
type case. This will form the basic step in the analysis
of the countable and continuous cases. Without loss of
generality, we take {fj}j∈J increasing. We analyze sepa-
rately the distribution of degrees within each fitness value
(Section 3.1) and the distribution of links across fitness
values (Section 3.2). We then combine the two results in
Section 3.3. Note that, as we describe below, only the
first-mover-advantage and fit-get-richer behaviors arise
in the finite-type case.

3.1 Flat Fitness Distributions: First-Mover-
Advantage

Suppose first that J = 1. This is the standard pref-
erential attachment model, which is well understood (see
e.g. [21] and references therein). We rederive the degree
distribution by first mapping to a Pólya urn process and
then applying Theorem 2. The mapping is illustrative
of our technique. Let Ln,k be the number of vertices of
degree k at time n; set µ1 = 2

3
and, for k ≥ 2,

µk =
2

3

kY
l=2

l − 1

l + 2
=

4

k(k + 1)(k + 2)
∼ k−3.

In particular, {µk}k≥1 is a power law with tail exponent
2.

Proposition 1. (1-Fitness Case; see e.g. [21]) For all
k ≥ 1, n−1Ln,k → µk, almost surely as n → +∞.

Proof. Fix k ≥ 1 and consider the following urn pro-
cess with k + 1 urns of equal activities ai = 1, for all
1 ≤ i ≤ k + 1. We will design the process in such a way
that the number of balls in urn i at time n represents



the number of half-edges in the graph which are adja-
cent to vertices of degree i. Except for the (k+1)-st urn,
where the number of balls will represent the number of
half-edges adjacent to vertices of degree ≥ k + 1.

Let X0 = (0, 2, 0, . . . , 0) reflecting the fact that ini-
tially there is a single vertex with a self loop (degree 2).
For 2 ≤ i ≤ k, let the update vector ξi be deterministic
with

ξi,j =

8>><>>:
1, j = 1
−i, j = i
i + 1, j = i + 1
0, o.w.

reflecting the fact that, if the new vertex being added
to the graph links to an old vertex of degree i, then the
degree of that vertex becomes i + 1, therefore the half-
edges adjacent to that vertex must be accounted for in
the urn i + 1 instead of the urn i. Finally, for urns i = 1
and i = k + 1, the following update vectors respect the
boundary conditions

ξ1,j =


2, j = 2
0, o.w.

and

ξk+1,j =

8<: 1, j = 1
1, j = k + 1
0, o.w.

It is not hard to see that the urn process described
above can be coupled with the preferential attachment
process so that with probability 1 the following relations
are satisfied, for all n ≥ 0,

Xn,` = `Ln,`, for 1 ≤ ` ≤ k
Xn,k+1 =

P
`≥k+1 `Ln,`

The proof is concluded by computing matrix A, its largest
eigenvalue λ1 and the corresponding left eigenvector v1.
One can also check that Conditions (A1)-(A6) of [15] are
satisfied. Details are omitted from this extended abstract
(but see the proof of Proposition 3).

3.2 Competition for Links across Fitness
Values

We now consider the case J = |F| > 1 finite. We aim
to compute the limiting behavior of the random variables
Mn,j , 1 ≤ j ≤ J , corresponding to the number of half-
edges with endpoint of fitness fj at time n, i.e. the total
degree of vertices of fitness fj . Let λ0 > 0 be the largest
solution to the equation

JX
j=1

fjqj

λ0 − fj
= 1, (3)

where, by monotonicity, λ0 ∈ (maxj {fj}, +∞). Also,
for 1 ≤ j ≤ J , set

νj = λ0
qj

λ0 − fj
, (4)

and verify that

JX
j=1

νj =

JX
j=1

(λ0 − fj)
qj

λ0 − fj
+

JX
j=1

fj
qj

λ0 − fj
= 2.

We characterize the distribution of links across fitness
values in terms of the νj ’s.

Proposition 2. (Fitness Alone) For all 1 ≤ j ≤ J ,
n−1Mn,j → νj, almost surely as n → +∞.

Proof. We define the following urn process with J
urns in which urn i ≤ J has activity ai = fi. The urn
process will be designed so that the number of balls in urn
i corresponds to the number of half-edges with endpoint
of fitness fi. For 1 ≤ i ≤ J , the update vector ξi is given
by ξi = ei+∆i, where ∆i = ej with probability qj , for all
1 ≤ j ≤ J . In the context of the preferential attachment
process, this reflects the fact that, if the new vertex links
to a bin of fitness fi, then the number of edges with an
endpoint of fitness fi increases by one, hence the term
ei; moreover, the new vertex picks a random fitness ac-
cording to Q, hence the term ∆i. It is easy to couple
the defined urn process with the preferential attachment
one so that, with probability 1, Xn,j = Mn,j , for all
1 ≤ j ≤ J and all n ≥ 0, provided X0 = 2ei with prob-
ability qi. The proof is concluded by computing matrix
A, its largest eigenvalue λ1 and the corresponding left
eigenvector v1. Details are omitted from this extended
abstract (but see the proof of Proposition 3).

3.3 Finite Distributions: Fit-Get-Richer
In this section, we derive the degree distribution of

preferential attachment with fitness under finite fitness
distributions. For all 1 ≤ j ≤ J and k ≥ 1, denote by
Nn,(j,k) the number of vertices of fitness fj and degree

k at time n. Define λ0 and {νj}J
j=1 as in Section 3.2.

Moreover, for all 1 ≤ j ≤ J and k ≥ 1, let

η(j,k) = νj ·
1

k

kY
`=2

`

` + λ0/fj
. (5)

Proposition 3. (Finite Fitness Distributions: Fit-Get-
Richer) For all 1 ≤ j ≤ J and k ≥ 1, we have

Nn,(j,k)

n
→ η(j,k) = Θ(νjk

−(1+λ0/fj)),

almost surely as n → +∞.

Observe that the tail exponent, λ0/fj , is a decreasing
function of the fitness. Hence, the tail of the distri-
bution gets fatter as the fitness increases. This is the
“signature” of the fit-get-richer phase. It follows from a
combination of the couplings in Propositions 1 and 2, by
defining a Pólya urn process with a bin for every pair of
fitness and degree.
Proof of Proposition 3: Fix 1 ≤ j ≤ J and k ≥ 1. Set
r = k+1 and q = rJ . Consider the following urn process
which is a combination of those in Propositions 1 and 2.
We now have a bin—indexed (i, l)—for each fitness fi

and each degree l up to k. The number of balls in bin
(i, l) at time n is denoted Xn,(i,l). The urn process is
defined so that Xn,(i,l) = lNn,(i,l) (see below). Also, for
each i, the bin (i, r) counts all the links attached to a
vertex of fitness fi and degree more than k, that is we
have

Xn,(i,r) =
X

l≥k+1

lNn,(i,l).

The activity of bin (i, l) is a(i,l) = fi. Say at step n we
pick a ball from bin (i, l) with 1 < l < r. Then,

1. we choose a fitness, say i′, according to Q;

2. we add one ball to bin (i′, 1);



3. we remove l balls from bin (i, l);

4. we add l + 1 balls to bin (i, l + 1).

The cases l = 1, r are handled similarly (see Proposi-
tion 1).

We compute the matrix A. Let (i, l) be such that
1 < l < r. Then row (i, l) of A is

A(i,l),(i′,l′) =

8>><>>:
−fil, i′ = i, l′ = l
fi(l + 1), i′ = i, l′ = l + 1
fiqi′ , l′ = 1
0, o.w.

For l = 1, we get

A(i,1),(i′,l′) =

8>><>>:
fi(−1 + qi), i′ = i, l′ = 1
2fi, i′ = i, l′ = 2
fiqi′ , i′ 6= i, l′ = 1
0, o.w.

and, for l = r,

A(i,r),(i′,l′) =

8<: fi, i′ = i, l′ = r
fiqi′ , l′ = 1
0, o.w.

We compute the corresponding λ1, u1, v1. Consider the
following guess for u1

(u1)(i,l) =
fi

λ0 − fi
,

for all 1 ≤ i ≤ J and 1 ≤ l ≤ r where λ0 is defined in
(3). Then we have for 1 ≤ i ≤ J and 1 ≤ l ≤ q,X
(i′,l′)

A(i,l),(i′,l′)(u1)(i′,l′) = fi

X
i′

fi′qi′

λ0 − fi′
+

f2
i

λ0 − fi

= λ0(u1)(i,l),

where we used (3). Hence, the Perron-Frobenius eigen-
value is λ1 = λ0 and the corresponding right eigenvector
is u1 as above.

It remains to compute v1. Define the auxiliary vector

(ṽ1)i =

rX
l=1

(v1)(i,l),

for 1 ≤ i ≤ J . Then, by looking at column (i, 1) of A,
we must have

qi

JX
i′=1

fi′(ṽ1)i′ − fi(v1)(i,1) = λ1(v1)(i,1), (6)

for all 1 ≤ i ≤ J . From column (i, r) we get

fi(r(v1)(i,r−1) + (v1)i,r) = λ1(v1)(i,r). (7)

Finally, for 1 < l < r, column (i, l) gives

fi(l(v1)(i,l−1) − l(v1)i,l) = λ1(v1)(i,l). (8)

Summing (6), (7), and (8), we obtain

qi

JX
i′=1

fi′(ṽ1)i′ + fi(ṽ1)i = λ1(ṽ1)i.

By the convention

a · ṽ1 = 1 ⇔
JX

i=1

fi(ṽ1)i = 1, (9)

it follows that

(ṽ1)i =
qi

λ1 − fi
,

for all 1 ≤ i ≤ J . Also, from (8), for 1 < l < r, we get

(ṽ1)(i,l)
(ṽ1)(i,l−1)

=
l

l + λ1/fi
.

By our convention,

JX
i′=1

fi′(ṽ1)i′ = 1,

we get from (6),

(v1)(i,1) =
qi

λ1 + fi
.

The result now follows from Theorem 2 and the obser-
vation that the right hand side of (5) can be rewritten
as

η(j,k) = νj

k−1Y
`=1

“
1 +

1 + λ0/fj

`

”−1

= Θ(νjk
−(1+λ0/fj)),

where the constant implicit in the Θ-symbol depends on
λ0/fj . �

4. PREFERENTIAL ATTACHMENT:
COUNTABLE DISTRIBUTIONS

If J = +∞, which we sometimes call the infinite-
type case, the coupling described in the previous section
cannot be used directly, since it would then require an
infinite number of urns (for the fitnesses alone) and The-
orem 2 is not known to hold generally in the infinite case.
Nevertheless, we obtain similar results by coupling our
process this time with two finite-type preferential attach-
ment processes which provide lower and upper bounds on
the degree distribution of our process. The coupling is
presented in Section 4.1. Using this coupling and Propo-
sition 3, we exhibit the following evolution scenarios for
the preferential attachment process with countable fit-
ness distribution:

• the fit-get-richer scenario, taking place when

+∞X
j=1

fjqj

h− fj
≥ 1;

• the innovation-pays-off scenario, taking place when

+∞X
j=1

fjqj

h− fj
< 1,

where h = supj≥1 {fj}.
For convenience, we treat only the case {fj}j≥1 in-

creasing. The general case—which is omitted from this
extended abstract—follows from an analysis similar to
that for continuous fitness distributions. Most proofs in
this section are relegated to the Appendix.

4.1 Coupling
Denoting by h the supremum of {fj}j≥1, let us as-

sume that h < +∞; the case h = +∞ is treated in
Section 4.4. Setting I to be a positive integer, the upper



I-truncation of F , denoted F = {f j}j≥1, and the lower
I-truncation of F , denoted F = {f

j
}j≥1, are defined by

f j =


fj , j ≤ I
0, o.w.

and

f
j

=


fj , j ≤ I
h, o.w.

We shall couple the (F ,Q) chain with the chains (F ,Q),
(F ,Q) defined by the upper and lower truncations to pro-
vide upper and lower bounds respectively on the degrees
of chain (F ,Q)1. Roughly speaking, the chains can be
coupled so that, at every step, the probability of choosing
an old vertex of fitness value f1 up to fJ is larger in the
(F ,Q) than in the (F ,Q) chain and larger in the (F ,Q)
than in the (F ,Q) chain. This property certainly holds
in the beginning of the processes and then reproduces
itself since it makes the cumulative degree of fitness lev-
els f1 up to fJ grow faster in the (F ,Q) than in the
(F ,Q) chain and faster in the (F ,Q) than in the (F ,Q)
chain. It is important to note however that the degree
by itself is not sufficient to guarantee the domination of
probabilities for the next step of the process; rather we
couple the edges which get added at each step in such
a way that the fitness values of the endpoints in chain
(F ,Q) dominate the fitness values in (F ,Q) and those
dominate the fitness values in chain (F ,Q).

Fitness Alone. We first bound Mn,j , defined as in
Section 3.2 to be the number of half-edges with endpoint
of fitness fj . Fixing 1 < I < +∞, let Mn,j and Mn,j be

the corresponding variables of the (F ,Q), (F ,Q) chains.
It is clear that the latter are equivalent to finite type urn
processes, so that Proposition 2 applies. Let νj and νj

be the (almost sure) limits of n−1Mn,j and n−1Mn,j .
Then we have the following.

Lemma 1. (Coupling: Fitness Alone) For all 1 ≤ j ≤
I, it holds almost surely that

lim sup
n→+∞

Mn,j

n
≤ νj , and lim inf

n→+∞

Mn,j

n
≥ νj .

Proof. Consider the (F ,Q)-chain. At step n ≥ 1,
a vertex is picked with probability proportional to its
degree scaled by its fitness. Let Fn be the fitness of
the chosen vertex and denote by ρn−1,i the probability
that Fn = fi given the state of the chain after step n −
1. After a vertex is picked, a new vertex is added with
fitness chosen according to Q. Let F ′n be the fitness of

this new vertex. Denote by F n, F
′
n, ρn, F n, F ′n, ρ

n
the

corresponding variables for the chains (F ,Q) and (F ,Q)
respectively. We define a coupling of the three chains so
as to preserve the following conditions:

1. For all n ≥ 1, F n ≤ Fn ≤ F n and F
′
n ≤ F ′n ≤ F ′n.

2. For all n ≥ 1 and all 1 ≤ i ≤ I, Mn,i ≤ Mn,i ≤
Mn,i.

3. For all n ≥ 1 and all 1 ≤ i ≤ I, ρ
n,i

≤ ρn,i ≤ ρn,i.

1Strictly speaking, we think of Q here as a distribution
on the indices of the fitness sequences F , F , and F rather
than on the fitnesses themselves.

Note that 3. follows immediately from 1. and 2. We now
justify why the conditions are satisfied for all n ≥ 0. The
initial configuration (n = 0) is constructed by picking an
i according to Q and choosing the corresponding fitness
in all three chains. Therefore the conditions are satisfied
at time 0 by the definition of F and F . Assuming that
Conditions 1., 2., and 3. are satisfied at time n − 1 we
will show that they are true at time n. First, the fitness
of the new vertex is picked according to Q in all 3 chains
simultaneously and it follows from the definition of F
and F that F

′
n ≤ F ′n ≤ F ′n. Now let us consider the

choice the old vertex. By 3., it follows that the choices
made in the three chains can be coupled so as to satisfy
Conditions 1. and 2. Indeed, proceed as follows:

• with probability
PI

i=1 ρ
n−1,i

, pick the same fitness

in all three chains according to {(ρ
n−1,i

)}I
i=1;

• with probability
PI

i=1(ρn−1,i − ρ
n−1,i

), pick the

same fitness in chains (F ,Q) and (F ,Q) accord-
ing to {(ρn−1,i−ρ

n−1,i
)}I

i=1 and some fitness h for

(F ,Q);

• with probability
PI

i=1(ρn−1,i − ρn−1,i), pick a fit-

ness for the (F ,Q)-chain according to {(ρn−1,i −
ρn−1,i)}I

i=1, pick some fitness h for (F ,Q), and pick
a fitness for (F ,Q) according to {(fjMn,j)}j>I ;

• note that there is no remaining probability mass
since

PI
i=1 ρn−1,i = 1.

This concludes the proof. It should be clear that the
described coupling is valid.

Full Analysis. Using our coupling idea we can also
derive bounds on Nn,(j,k), defined as in Section 3.3 to
be the number of vertices of fitness fj and degree k at
time n in the (F ,Q)-chain, in terms of the corresponding
variables of the (F ,Q)-chain and (F ,Q)-chain. The cou-
pling has a similar flavor and its details are postponed
to the Appendix.

4.2 Fit-Get-Richer Phase
Let h = supj≥1 fj < +∞, the case h = +∞ being

treated in Section 4.4. Unlike the finite-type case, when
J = +∞, we are not guaranteed that there exists a so-
lution of

JX
j=1

fjqj

λ− fj
= 1, (10)

with λ > h. Observe, however, that in our proof of
Proposition 3 this was necessary for the existence of a
(summable) Perron-Frobenius eigenvector. We will ac-
tually show that the behavior of the process depends
crucially on the existence of such a solution. In this sec-
tion, we consider the case

JX
j=1

fjqj

h− fj
> 1, (11)

and let λ0 as in (2), i.e. λ0 is the solution of (10). We
generalize Proposition 3 exhibiting a fit-get-richer behav-
ior in this case. The following theorem summarizes our
result.



Theorem 3. (Discrete Case: Fit-Get-Richer Phase)
Let 1 ≤ J ≤ +∞, h = supj≥1 fj < +∞. Assume

JX
j=1

fjqj

h− fj
> 1

Then it holds that

1. for all 1 ≤ j < J +1, n−1Mn,j → νj, almost surely
as n → +∞,

2. for all 1 ≤ j < J + 1 and k ≥ 1,

Nn,(j,k)

n
→ η(j,k) = Θ(νjk

−(1+λ0/fj)),

almost surely as n → +∞,

where {νj}j and {η(j,k)}j,k are defined by Equations (4)
and (5).

4.3 Innovation-Pays-Off Phase
Assume that h = supj≥1 fj < +∞ and that

I(h) ≡
JX

j=1

fjqj

h− fj
≤ 1. (12)

It is easy to check that this is possible only if the fitness
supremum h is not attained in F . In particular, it must
be that J = +∞. In that case, λ0 = h (see (2)). Set
{νj}j and {η(j,k)}j,k as in Equations (4) and (5). Note
that

+∞X
j=1

νj =

+∞X
j=1

(h− fj)
qj

h− fj
+

+∞X
j=1

fj
qj

h− fj

= 1 + I(h) ≤ 2, (13)

with equality only if there is equality in (12)2.

Theorem 4. (Discrete Case: Innovation-Pays-Off
Phase) Let h = supj≥1 fj < +∞. Assume

+∞X
j=1

fjqj

h− fj
≤ 1. (14)

Then it holds that

1. For all 1 ≤ j < +∞, n−1Mn,j → νj, almost surely
as n → +∞.

2. For all 1 ≤ j < +∞ and k ≥ 1,

Nn,(j,k)

n
→ η(j,k) = Θ(νjk

−(1+h/fj)),

almost surely as n → +∞.

4.4 Unbounded Countable Case
Assume now that h = supj≥1 fj = +∞, i.e. the set

of fitnesses is unbounded. In that case, the lower bounds
in the coupling lemmas cannot be used but it turns out
that the upper bounds suffice to characterize the limit
behavior of the process. As the following theorem im-
plies, in the unbounded case, all the mass (except the
constant flow of initial half-edges) escapes to +∞. This

2Strictly speaking, the equality case belongs to the fit-
get-rich phase since Equation (10) has a solution, namely
h; nevertheless we include it in this section because its
proof is closer to the innovation-pays-off phase.

leads to what could be called the “Innovation-Wins-All
Phase”. We set

Tn,(j,k) =
X
k′≥k

k′Nn,(j,k′). (15)

Theorem 5. (Discrete Case: Unbounded Fitness) As-
sume that supj≥1 fj = +∞. Then it holds that

1. For all 1 ≤ j < +∞, n−1Mn,j → qj, almost surely
as n → +∞.

2. For all 1 ≤ j < +∞ and k > 1, n−1Tn,(j,k) → 0,
almost surely as n → +∞.

5. OPEN PROBLEMS
A challenging open problem is to give an exact quan-

titative description of the dynamics of the innovation-
pays-off phase. Our results imply that a constant frac-
tion of the links “escapes at infinity.” But we know little
about the transient behavior in this regime. How are the
links distributed among the highest fitnesses present in
the system at any given time? At what rate are new
nodes with higher fitnesses taking over? How does the
transient behavior depend on the fitness distribution?
This could have important practical implications.
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Bose-einstein condensation in complex networks.
Phys. Rev. Lett., 86(24):5632–5635, Jun 2001.
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APPENDIX
A. ANALYSIS OF COUNTABLE

FITNESS DISTRIBUTIONS

A.1 Coupling
We derive bounds on Nn,(j,k), defined to be the num-

ber of vertices of fitness fj and degree k at time n in the
(F ,Q)-chain of Section 4. Fix I and let Nn,(j,k), Nn,(j,k)

be the corresponding variables for the chains (F ,Q) and
(F ,Q) of Section 4.1 defined by the I-truncations of F .
Since the latter have finite fitness distributions, we can
apply Proposition 3. Let η(j,k) and η

(j,k)
be the almost

sure limits of n−1Nn,(j,k) and n−1Nn,(j,k). For the full
coupling, we also need the degree tails for a fixed fit-
ness. Let T n,(j,k) and T n,(j,k) be defined as in (15), with

Nn,(j,k′) replaced by Nn,(j,k′) and Nn,(j,k′), respectively.
Also, let

τ (j,k) =
X
k′≥k

k′η(j,k′),

and similarly for τ (j,k). These are well-defined because

the partial sums are increasing and bounded by 2 (see the
proof of Proposition 3). The following lemma provides a
full coupling of the chains (F ,Q), (F ,Q) and (F ,Q).

Lemma 2. (Coupling: Full Analysis) For all 1 ≤ j ≤
I and k ≥ 1, it holds almost surely that

lim sup
n→+∞

Tn,(j,k)

n
≤ τ (j,k) and lim inf

n→+∞

Tn,(j,k)

n
≥ τ (j,k).

Proof of Lemma 2: As in Lemma 1, we couple the
(F ,Q)-chain and the truncations. We use the notation
of Lemma 1. Also, for k ≥ 1, let Dn be the degree of the
vertex picked at time n in the (F ,Q)-chain (and similarly
for Dn, Dn). For 1 ≤ i ≤ I and k ≥ 1, let σn−1,(i,k) be
the probability of the event {Fn = fi, Dn ≥ k} given the
state after time n− 1 in the (F ,Q)-chain (and similarly
for σn, σn). We require the following conditions to be
satisfied:

1. For all n ≥ 1, F n ≤ Fn ≤ F n, F
′
n ≤ F ′n ≤ F ′n.

2. For all n ≥ 1 and all 1 ≤ i ≤ I, Mn,i ≤ Mn,i ≤
Mn,i.

3. For all n ≥ 1 and all 1 ≤ i ≤ I, ρ
n,i

≤ ρn,i ≤ ρn,i.

4. For all n ≥ 1, 1 ≤ i ≤ I, and k ≥ 1, T n,(i,k) ≤
Tn,(i,k) ≤ T n,(i,k).

5. For all n ≥ 1, 1 ≤ i ≤ I, and k ≥ 1, σn,(i,k) ≤
σn,(i,k) ≤ σn,(i,k).

These conditions are somewhat redundant but we keep
all of them for clarity. In particular, note that 3. fol-
lows from 1. and 2., that 5. follows from 1. and 4., and
that 2. and 3. are special cases of 4. and 5. Assume
these conditions hold up to n− 1. Our step-by-step cou-
pling has two parts. First, we pick the fitnesses F n,

Fn, F n, F
′
n, F ′n, F ′n using the scheme described in the

proof of Lemma 1. We then pick the degrees Dn, Dn,
Dn by picking a single uniform random variable in [0, 1]
and “inverting” simultaneously the tails {σn,(F n,k)}k≥1,

{σn,(Fn,k)}k≥1, and {σn,(F n,k)}k≥1. (This is sometimes

called the “inverse transform sampling method”.) It is
easy to check that all conditions are then satisfied at time
n. �



A.2 Fit-Get-Richer Phase
Proof of Theorem 3: We only need to consider the
case J = +∞. Fix 1 ≤ j < +∞ and k ≥ 1. Let
1 ≤ I < +∞ and consider once again the I-truncations
of the (F ,Q)-chain. Let νI

j , νI
j , ηI

(j,k)
, ηI

(j,k), τ
I
(j,k), τ

I
(j,k)

be as in Lemmas 1, 2 (we now indicate the dependence on
I because we will need to take I → +∞). Similarly, let

λI
0 and λ

I
0 be the largest solution to (10) for the lower and

upper truncations. By the coupling lemmas, it suffices
to prove

λI
0, λ

I
0 → λ0, (16)

as I → +∞. Indeed, in that case

νI
j , νI

j → νj ,

as I → +∞, which implies n−1Mn,j → νj , by Lemma 1.
Also, for all l ≤ k,

ηI

(j,l)
, ηI

(j,l) → η(j,l),

as I → +∞, which implies

τ I
(j,k) = νI

j −
X
l≤k

lηI

(j,l)
→ νj −

X
l≤k

lη(j,l),

as I → +∞, and similarly for τ I
(j,k). This also holds for

k − 1 so that, by Lemma 2, we have

n−1Nn,(j,k) → η(j,k),

almost surely as n → +∞.

It remains to prove (16). We argue about λ
I
0. The

proof for λI
0 is similar and is omitted. Let

S(λ) :=

+∞X
i=1

fiqi

λ− fi
, S

I
(λ) :=

+∞X
i=1

f iqi

λ− f i

.

Note that for λ′ > λ > h, we have

S(λ′), S(λ) ≤ h

λ− h
, S(λ′) < S(λ),

and ˛̨
S(λ′)− S(λ)

˛̨
≤ |λ′ − λ|h
|λ′ − h||λ− h| .

Therefore, S is continuous and strictly decreasing on
{λ > h}. Also, by definition of F , we have

R
I
(λ) := S(λ)− S

I
(λ) =

+∞X
i=I+1

fiqi

λ− fi
.

Therefore, for λ > h,˛̨̨
R

I
(λ)

˛̨̨
≤ h

λ− h

+∞X
i=I+1

qi → 0,

as I → +∞. Hence, for all ε > 0 (small enough),

limI→∞ S
I
(λ0 + ε) = S(λ0 + ε) < 1,

limI→∞ S
I
(λ0 − ε) = S(λ0 − ε) > 1,

so that eventually

λ0 − ε ≤ λ
I
0 ≤ λ0 + ε.

Since ε > 0 is arbitrary, we have (16). �

A.3 Innovation-Pays-Off Phase
Proof of Theorem 4: We use the notations of Theo-
rem 3. Similarly to Theorem 3, it suffices to prove

λI
0, λ

I
0 → h, (17)

as I → +∞. Let hI = supj≤I fj . By a remark above

the statement of the Theorem, we know that hI < h and
hI → h as I → +∞.

We first argue about λ
I
0. Note that λ

I
0 > hI . Also,

S
I
(h) < S(h) ≤ 1 and therefore λ

I
0 ≤ h. That implies

λ
I
0 → h.

Now consider the case of λI
0. Let

RI(λ) := S(λ)− SI(λ).

We have, for all ε > 0,

S(h + ε) < S(h) ≤ 1,

and ˛̨̨
RI(h + ε)

˛̨̨
≤ h

ε

+∞X
i=I+1

qi → 0,

as I → +∞. Hence, for all ε > 0,

lim
I→∞

SI(h + ε) = S(h + ε) < 1,

so that eventually

hI < λI
0 ≤ h + ε.

Since ε > 0 is arbitrary, we have λI
0 → h as I → +∞. �

A.4 Unbounded Countable Case
Proof of Theorem 5: Fix 1 ≤ j < +∞ and k > 1. We
use the upper bounds in the coupling Lemmas 1 and 2.
We use the notations of Theorems 3 and 4. We have that
hI → +∞ and therefore λ

I
0 > hI → +∞. Therefore,

plugging into the equations for νI
j and τ I

(j,k) = νI
j −P

l≤k lηI
(j,l), we get

lim sup
n→∞

Mn,j

n
≤ qj and lim sup

n→∞

Tn,(j,k)

n
≤ 0,

almost surely. We get 2. immediately. To get 1., consider
the following chain {Xn,i}n,i≥0. Pick a fitness say F0

according to Q and let X0 = eF0 . Then at each time
step, pick a fitness Fn according to Q and set Xn =
Xn−1 + eFn . This chain can clearly be coupled with the
(F ,Q)-chain in such a way that Mn ≥ Xn for all n.
Now it is easy to see that Xn,j → qj as n → +∞, and
therefore lim infn→∞ n−1Mn,j ≥ qj . �


