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External information propagates in the cell mainly through signal-
ing cascades and transcriptional activation, allowing it to react to a
wide spectrum of environmental changes. High-throughput experi-
ments identify numerous molecular components of such cascades
that may, however, interact through unknown partners. Some of
them may be detected using data coming from the integration
of a protein—protein interaction network and mRNA expression
profiles. This inference problem can be mapped onto the problem
of finding appropriate optimal connected subgraphs of a network
defined by these datasets. The optimization procedure turns out to
be computationally intractable in general. Here we present a new
distributed algorithm for this task, inspired from statistical physics,
and apply this scheme to alpha factor and drug perturbations
data in yeast. We identify the role of the COS8 protein, a member
of a gene family of previously unknown function, and validate
the results by genetic experiments. The algorithm we present is
specially suited for very large datasets, can run in parallel, and can
be adapted to other problems in systems biology. On renowned
benchmarks it outperforms other algorithms in the field.

computational biology | minimum Steiner tree |
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Signaling cascades, an exemplar of which is the phosphoryla-
tion MAPK kinase pathways, consist of sequential reactions
starting at receptor proteins and transmitted through protein
interactions to effector proteins. Activation of these effectors
leads to cellular changes, notably at the transcriptional level, and
results in the adaptation of the cell to its surroundings (1). Iden-
tifying signaling pathways is particularly important for medical
studies because their malfunction is responsible for many diseases,
such as cancer (2) or Alzheimer’s disease (3).

From an engineering point of view, signaling cascades present
interesting properties: They provide signal filtering (4) and am-
plification (5). Their global interconnected organization equips
the cell with an integrated sensor network where pathways can
modulate one another through crosstalk and retroactions. In this
complex system, signal specificity is maintained by scaffold pro-
teins (6, 7) acting as connectors of particular reactions. Finally,
the output of the information carried by the transduction network
allows for another layer of regulation—namely combinatorial
control in gene expression (8). A purely experimental approach
to the identification of all components of a pathway, or all com-
ponents of a functional gene module, would need long and
costly experiments. Such a process would greatly benefit from the
extraction of indirect information about pathways from produci-
ble large-scale data, such as expression, sequencing, and protein
interaction data. Indeed, even if the correlation between signal-
ing pathway activity and expression data may be weak (although
this may be case-dependent; see ref. 9as an interesting example),
expression data are available in shear quantity. By introducing a
parameter weighting the relative importance given to expression
data with respect to reliable protein—protein interaction data or
in general established pathways knowledge, we hope to be able to
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enrich the existing knowledge by the small amount of information
needed to reveal unknown interactions. To this scope, important
aspects like the varying reliability of interaction data and the
proliferation of alternative paths, require the development of
heuristic algorithmic techniques which need to be efficient on
large-scale datasets.

Here we propose a method for the inference of hidden com-
ponents of functional networks and signaling pathways from
large-scale transcriptomics and protein interaction data. Such
functional networks, composed of proteins acting together in
given environmental conditions, are an integrated way of describ-
ing information processes in the cell. This problem has enormous
potential applications and has already been addressed in several
works (10-13), leading to interesting theoretical predictions. In
these works, the underlying methodology consists of separately
identifying single signaling pathways and then collecting them
in an aggregated network. The methodology proposed here
attempts instead to extract information on an entire network,
defined as a connected subgraph of the full protein interaction
network. This technique was roughly sketched in a biological
inference context (14). Here we present a complete, in-depth
description and analysis of the approach, including in particular
algorithmic and experimental validations, and a comparison with
results from a previous work along the same lines. We also give
full details of the algorithmic framework we use, which may allow
implementation of the same ideas to similar systems biology
problems.

We state the functional network inference problem in a rather
simple and general graphical form. Given a graph G = (V. .E)—
the protein interaction network (PIN)—with positive costs over
edges {c.: e € E} and positive prizes over vertices {b;: i € '},
find a connected subgraph G’ = (V',E’) that minimizes the
following function:

o ggllll/l cv 2 c, —AZbi. (1]

eeE’ eV’
(E',V")connected
To our purpose the costs of edges c, are chosen so that high
confidence interactions (protein interactions verified in small-
scale experiments or found in many large-scale datasets) have
lower value with respect to low confidence ones (interactions ex-
perimentally shown only once in a large-scale experiment). The
node prizes are computed by b; = —logp;, where p; is the p-value
of differential expression of node i in the corresponding micro-
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array. The parameter A regulates the trade-off between the edge
costs and vertices prizes, and its value indirectly controls the size
of the subgraph G'.

In spite of its apparent simplicity, the problem of solving Eq. 1,
known as the prize-collecting Steiner tree problem (PCST), is
computationally intractable (NP-Hard), and heuristic algorithms
need to be developed in order to solve instances arising from
large datasets. Satisfying the connectivity constraint on the opti-
mization task constitutes a major computational difficulty. The
problem remains intractable even in the case in which b; € {0.L}
for alarge L > 0, because this limit case corresponds to the better
known minimum Steiner tree problem (MSTT) on graphs, which
is also NP-Hard.

Modeling ideas related to our work are discussed in refs. 15—
18. These studies rely on different algorithmic techniques—
namely on a combination of linear programming relaxation
solvers, branch and bounds optimization methods, and prepro-
cessing of the underlying biological network. A detailed compar-
ison shows essentially that the difference in performance between
LP-based methods and the one presented here increases drama-
tically with the problem size. Additionally, the computational
cost of our approach scales roughly linearly with the size of the
problem, and the algorithm is fully parallelizable. These two facts
suggest that the method proposed here may be particularly well-
suited to study problems defined on large networks.

The paper is organized as follows: First we present the general
problem of identifying optimal subgraphs as a technique for
integrating different data types. Then we discuss an algorithmic
approach based on belief propagation: We provide benchmark
performances together with a specific application to pheromone
response data in yeast. Finally, we describe in detail the experi-
mental validation of the predictions relative to the functional
role of a family of genes (COS). Complete details are given in
SI Appendix.

Results

A Message-Passing algorithm for PCST. In ref. 19, a statistical physics
analysis of the properties of Steiner trees on different ensembles
of large random graphs was presented. Here we generalize this
work and introduce an algorithm that can be used to identify
signaling pathways in transduction PINs. A detailed discussion
is given in SI Appendix. Minimizing Eq. 1 gives access to con-
nected networks that include reliable edges and, at the same time,
nodes that are significantly differentially expressed (see Fig. 1).
This cost function could easily be generalized to other types of
interactions; e.g., gene-based information such as results of
knockout experiments. Biological priors such as the relative posi-
tion of proteins (nodes) along the tree or their expected degree
could also be easily included in the same scheme.

One main difficulty with an optimization over connected
subgraphs is that the connectivity condition is global rather than
local; i.e., it can not be verified by a set of simple local checks over

Fig. 1. An example of a prize-collecting Steiner tree. Larger nodes mean
larger prizes; thickness of the edges is proportional to their cost. A prize-
collecting minimum Steiner tree (right) picks as many as possible of the larger
nodes while simultaneously picking the thinnest links and maintaining
connectivity. The analyzed yeast protein network has approximately 5,000
nodes and 22,000 edges.
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the graph. This problem is dealt with here by switching to a richer
description of the subgraph that includes an extra variable for
each graph node, which essentially denotes when (if ever) nodes
would be visited by an algorithm that explores the subgraph from
a given starting “root” node. While such representations are in
one-to-one correspondence to connected subgraphs, the connec-
tivity condition does have an expression as a set of simple local
conditions for the new variables.

The proposed algorithm consists of a set of functional equa-
tions for estimating the probabilities that individual links belong
to the optimal subgraph at a given distance from the starting
node. Such equations can be written in a computationally effi-
cient form that is solved by iteration in a so-called message-
passing procedure. The general derivation and other details
are given in SI Appendix, whereas the source code is available
for download (www.polito.it/cmp). A proof that in certain limit
cases the algorithm provides optimal results can be found
in ref. 20.

Tests and Data Analysis. In order to assess the general efficacy of
the algorithm, it was tested against the collection of MSTT bench-
mark problems in the SteinLib dataset (21), which defines the
state of the art in the field. Though the benchmarks problems
are not of a biological nature, they are both large and difficult
to solve and therefore particularly useful for comparing the
performance of different algorithms. Quite surprisingly the best-
known cost of almost all of the open problems could be improved
in a fraction of the computational time (details and complete
tables in SI Appendix). Most of the heuristic algorithms with
the previously best-known performance are based on linear pro-
gramming (LP) relaxations complemented with preprocessing
of the underlying graph and a branch-and-bound strategy;
e.g., ref. 15 (details in SI Appendix). Further direct comparisons
between such methods and our approach suggest that already for
moderate-sized networks the LP-based methods become highly
inefficient (details in SI Appendix).

As a second preliminary test, on biological data, we have com-
pared our technique to another method for the inference of linear
signaling pathways based on color coding (11), the optimization
criterion of which is a restriction of ours to the edge cost part. We
have assessed our algorithm performance relative to ref. 11 with
the same data and optimization criterion. Essentially, the same
pathways were found much more efficiently (due to the fact that
the computational cost does grow only linearly with the chain
length and not exponentially as in ref. 11), and it was possible
to recover their variability by adjusting the chain length (details
in ST Appendix), thereby proving the capacity of our algorithm to
recover known biology.

Pheromone Response Data. Finally, we have applied the algorithm
to analyze pheromone sensing on a yeast protein network built
by fusion of the Munich Information Center for Protein Se-
quences (MIPS) (22) and Database of Interacting Proteins (DIP)
(23) networks by using 56 large-scale expression datasets created
to reconstruct the pheromone pathway experimentally by study-
ing the expression of strains deleted for key genes in the pathway
(24). This system was chosen as a case study by virtue of a pre-
existing good theoretical understanding of its functioning. The
pheromone response system is in fact a well-studied MAPK
kinase cascade, which permits communication previous to mating
in haploid yeasts. Upon sensing a pheromone, the cell cycle is
arrested, the cytoskeleton and membrane structure are modified,
and finally mating occurs by fusion of two cells of opposite
sexual type.

The identification of optimal subnetworks was done for a range
of A values, giving us variable structures going from the backbone
of the network to a very detailed picture of each subpathway. The
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root of the trees was defined to be STE2, the a-pheromone recep-
tor and entrance of the entire pheromone pathway (25, 26).

The biological coherence of our results was assessed by show-
ing that the average number of GO Slim annotations shared
between neighbors in the inferred trees is significantly superior
to those of random trees (¢-test, p < 5.1077, see SI Appendix).
The results obtained from each one of the 56 expression patterns
have been merged, leading to a final network with links that are
weighted by their frequency of appearance. For each identified
tree there is also a direction associated to each link toward
the chosen root (not displayed in Fig. 2 for clarity).

The network we found (see Fig. 2) contains known pathways,
whose completeness depends on A. It shows signaling going from
STE2, to the cell cycle module (starting from CDC28), proteins
involved in cell polarity and cytoskeleton reorganization (RVS161
and RVS167), and another branch containing essentially PRM

proteins and proteins involved in sphingolipid synthesis (ELO1)
or cell wall (CHS1). A closer look at the structure of the inferred
subnetwork shows that it is constituted of two types of proteins:
proteins differentially expressed during pheromone response,
already discovered by transcriptomic studies, and protein brid-
ging between subparts of the network, while having a stable
expression level in these conditions. These proteins, that will be
called herein Steiner proteins in reference to Steiner nodes in the
MSTT, are not detected by classical transcriptomics but may have
an informative or signaling role nonetheless: They allow signal
propagation between modules of the transduction network and
can be discovered only through a combined analysis of the protein
interaction and transcriptomics data.

One such protein we found is COS8, a gene of unknown func-
tion, which appears at the head of the third main branch starting
from STE2, linking between the standard pheromone pathway

Fig. 2. This graph is a subnetwork of the protein-protein interaction map, obtained by including nodes that appear more than 30% of the time on the 56
inferred Steiner trees for 1 = 0.2, with link intensity proportional to the number of times the specific connection was found and node size proportional to
average prize. The layout was decided in order to minimize crossings with the Graphviz suite. Afterwards, colors were added denoting the main GO annota-
tion: actin (light green), cell cycle (yellow), chromatin structure (blue), spindle checkpoint (dark green), cell wall (cyan), and pheromone sensing (magenta). The
annotations were obtained from the SGD project Saccharomyces Genome Database http:/www.yeastgenome.org/.
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and a group of proteins related to membrane structure. To ensure
that COS8 frequent occurrence is not due to a bias of our opti-
mization criterion to predict proteins having high connectivity
(12), we assessed the statistical significance of the Steiner pro-
teins by bootstrap experiments with noisy costs and prizes. Inter-
estingly, the COS8 protein appears frequently enough to be
considered as significant and biologically relevant. Given the
interest in uncovering a role for a member of a large gene family
in yeast (the COS family contains 11 highly similar members), we
therefore attempt to infer its biological role using its neighbor-
hood in the inferred trees.

COSS8 is suggested to be the target of the STE2-GPA1-SST2-
SHOL1 cascade. Because SHOL is also a sensor involved in the
filamentous growth and osmolarity pathway, COSS8 could be an
actor of more than just the pheromone system and could provide
crosstalk between these different pathways. Out of 48 proteins
experimentally shown to interact with it, a small subset appear in
most simulations, composed of the membrane protein PRM10,
the fatty acid elongases ELO1, SUR4, and FEN1—involved in
the first steps of sphingolipid synthesis—and other components
of the secretion pathway and ceramide synthesis such as AURI,
LACI1 and IFA38. Such homogeneity in the uncovered interac-
tions of COSS, relative to the diversity in the 48 interactants
set, allows us to putatively predict both localization and the role
of COSS: It should be an endoplasmic reticulum (ER) protein
involved in sphingolipid synthesis. Concerning localization, these
predictions corroborate the results of a previous study using GFP
fluorescence, that localized COSS either in the ER or the nucleus
(27). Moreover, the single hint about COSS function, uncovered
in a large-scale transcriptomic experiment, and not experimen-
tally verified, is an undetermined role in the unfolded protein
response, a process occurring in the ER (28), in agreement with
our results.

As for the role of COSS8, sphingolipids are essential compo-
nents of the membrane, being part of the lipid rafts microdomains
(29). To check the relevance of COSS for the sphingolipid synth-
esis, and more generally for membrane structure, we analyzed
with the same algorithm another large-scale dataset (30) testing
for response to caffeine or rapamycin stress, which are also

A

known to inhibit the TOR pathway (31) and therefore to disrupt
membrane structure. Consistently with the pheromone results,
COS8 was also detected as a Steiner protein and was significantly
enriched in the resulting subgraphs with the same interacting
partners. We therefore decided to check experimentally our pre-
dictions about COSS interactions and their putative role.

Experimental Validation. We proceeded to genetic experiments in
strains with disrupted COSS or containing a plasmid overexpres-
sing (Fig. 3). We tested interactions with the main components of
sphingolipid synthesis, in various conditions.

We made the ACOSS strain for this study, by replacing the
chromosomal copy of this gene by cos8::LEU2 deletion cassette.
For the overexpression study, we cloned COSS8 gene in multicopy
plasmid pRS426 (with URA3 marker). To obtain double mutants
used in this study cos8: :LEU2 deleted BY4741 strain was crossed
with a strain from YKO collection (ORF::KAN). The resultant
diploid was dissected and segregants having KAN and LEU2
markers were selected and used for further experiments. Details
concerning all the experiments are given in SI Appendix.

We found that deleting COS8 rescued completely the pheno-
type of AFEN1 and AYCRO061W strains in rapamycin medium—
as well as caffeine—and partially the phenotype of ASUR4 in
the same conditions. Oppositely, a strain overexpressing COSS is
hypersensitive to caffeine and presents the same phenotype as
FEN1 deletion. This shows a clear interaction between TOR
signaling, COSS8, and long chain fatty acid elongation and hints
at a negative regulation of very long chain fatty acid (VLCFA)
elongation by COS8. As a control experiment, we checked for
genetic interactions with IRE1, the master regulator of unfolded
protein response, which is the annotated role of COSS8 (28), and
we also found this interaction (see Fig. 3). Finally, we tested for
growth defect in ACOSS strains in media containing myriocin.
Mpyriocin is a very potent inhibitor of serine palmitoyltransferase
(32), the first step in sphingosine biosynthesis and slow sphingo-
lipid synthesis. We compared the sensitivity of ACOS8 and WT
strains to this antibiotic. After 36 h of incubation in liquid YPD
media with 0.1 mM of myriocin we observed a transient but clear
positive effect of COS8 deletion on cell growth (see Table 1).

C YPD medium

wt

[ever] ACOS8
SHO1
Rapamycin
3 o | ACOS8
AYCRO61W ACOS8
B ASUR4
VLCFA elongation ASUR4 ACOSS
- AFENT
cos
ELO1 FEN1 SUR4 ATENT ACOSS
C,s-CoA ]
+ ' AIRE1
DHS/PHS ® e AIRE1 ACOS8
coss LW_J Caffeine
Ceramide wt
ACOS8
TOR Pathway Unfolded Protein m +pCOS8

Response

Fig. 3. (A) The main proteins interacting with COS8 in our signaling tree. Squares stand for membrane proteins. The dotted lines show that many protein
interactions are never found in our tree. (B) A global scheme of the putative negative regulatory role of COS8, at the interface between very long chain fatty
acid elongation (VLFCA), TOR signaling, and the unfolded protein response (see text). (C) A subset of the genetic experiments showing (/) the rescue of
AYCRO61W, ASUR4, AFEN1, and AIRE1 by ACOS8 in rapamycin medium; (ii) the effects of either the disruption or the overexpression of COS8 in a caffeine

medium.
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Table 1. OD600 of the WT strain and the ACOS8 strain in myriocin
and control medium

Strain Control (SD 0.8) 0.1 mM myriocin (SD 0.45)
WT 20 1.9
ACOS8 20.8 6.7

Weak but reproducible increase of myriocin resistance for
ACOSS could also be seen on solid YPD media. This can be inter-
preted if COS8 indeed regulates negatively the sphingolipid pro-
duction, via VLCFA synthesis: In these conditions the cell growth
rate should become dependent on the efficiency of VLCFA elon-
gation, which is less restricted in ACOSS strains, therefore lead-
ing to smaller effects of myriocin. We therefore conclude that the
function of COSS is indeed related to sphingolipid metabolism
and probably regulates negatively the VLCFA synthesis and
therefore the sphingolipid production.

Discussion

Algorithmic predictions and genetic experiments show interac-
tions between sphingolipid synthesis, particularly ceramide, pher-
omone response, and TOR signaling. Sphingolipids have recently
been involved in the TOR-regulated network (33, 34): TOR is
able to activate the reaction of synthesis of ceramide from dihy-
drosphingosine. The molecular mechanisms of this regulation are
still unknown but are coherent with our experimental results
about a negative role of COS8 in VLCFA elongation, because
ACOSS strains are resistant to caffeine and rapamycin—two
components known to inhibit the TOR pathway. Because sphin-
golipids are now known to be both essential membrane compo-
nents and signaling molecules, understanding the regulation of
their synthesis by various pathways, and the potential crosstalk
they could provide, is a crucial issue. Here, regulation of sphin-
golipid synthesis by COS8 would provide the cell with the ability
to integrate a signal from the pheromone pathway, the osmolarity
pathway, and the TOR pathway in order to modify its membrane
structure. Finally, COSS8 is a member of a gene family of 11 highly
similar members. Further investigations would be needed to
identify the functional role of other members of the family, con-
sidering that both our predictions and experiments seem to indi-
cate that COS8 has a major effect among all members of the COS
family.
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Conclusions

We have presented a previously undescribed computational
technique, inspired from statistical physics, that can efficiently ex-
tract useful information about interactions in signaling pathways
(from gene expression and protein—protein data) by solving an
appropriately defined optimization problem on graphs. Our
method not only provides candidate networks linking proteins
of known function, the method also suggests new roles for pro-
teins of previously unknown function. As a test case we specifi-
cally predict a functional role for the COSS8 protein (a member of
a large gene family with yet unknown functional role) both in
sphingolipid synthesis and in the TOR pathway in Saccharomyces
cerevisiae. We have validated the prediction by providing experi-
mental evidence showing that COSS is involved in a regulatory
loop at the level of ceramide synthesis. Our algorithmic technique
has several properties that should make it of significant value to
optimization problems in systems biology: efficiency (nearly
linear time complexity), simplicity (it is based on a fixed point
equation), parallelizability, and the ability to include other biolo-
gical priors, such as synthetic lethal interactions or phosphopro-
teomics data. Moreover, the technique outperforms the best-
known techniques in the field: We tested it on unsolved instances
of the best-known library (SteinLib), and it achieved better opti-
ma than were known previously. Finally, it is relatively easy to
adapt the technique to a large class of network reconstruction
problems, including many which arise in systems biology.

Materials and Methods

Full methods are in S/ Appendix. They include: (i) algorithm design (the
model, derivation of the message-passing cavity equations, the max-sum
limit, computation of marginals, iterative dynamics and reinforcement, a
note on directness); (i) numerical results on benchmark problems and direct
comparison with LP-based techniques; (iif) data source and results (including
data concerning GO annotation enrichment); (iv) experimental protocols
(strains, media and culture conditions, construction of multicopy plasmid
with COS8 chromosomal allele, construction of the COS8 deleted strain,
construction of double mutants, drug sensitivity assays); and (v) algorithm
comparison with previous data.
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