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Abstract 

We demonstrate that classes of dependencies among beliefs 
held with uncertainty cannot be represented in rule-based 
systems in a natural or efficient manner. We trace these 
limitations to a fundamental difference between certain and 
uncertain reasoning. In particular, we show that beliefs held 
with certainty are more modular than uncertain beliefs. We 
argue that the limitations of the rule-based approach for 
expressing dependencies are a consequence of forcing non- 
modular knowledge into a representation scheme originally 
c!esigtrect to represent modular beliefs. Finally, we describe cl 
representation technique that is related .to the rule-based 
framework yet is not limited in the types of dependencies that 
it can represent. 

I Introduction 

Original research on expert systems relied primarily on 
techniques for reasoning with propositional logic. Popular 
approaches included the rule-based and frame- based 
representation frameworks. As artificial in tell igence 
researchers extended their focus beyond deterministic 
problems, the early representation methods were augmented 
with techniques for reasoning with uncertainty. Such 
extensions left the underlyin g structure of the representations 
largely in tact. 

In this paper, we examine the rule-bastd approach to 
reasonrng with uncertainty. Within this context, we describe a 
fundamental difference between beliefs which are uncertain 
and beliefs which are held with certainty in the sense of 
monotonic propositional logic. In particular, we show that 
beliefs which are certain are more modular than uncertain 
beliefs. We demonstrate that because of this difference, 
simple augmentations to the rule-based approach are 
inadequate for reasoning with uncertainty. 

We exhibit this Inadequacy in the context of the MYClN 
certainty factor model [Shortliffe 7.51, an adaptation to the 
rule-based approach for reasoning with uncertainty which has 
seen widespread use in expert systems research. We show that 
this adaptation does not have the expressiveness necessary to 
represent certain classes of dependencies that can exist among 
beliefs held with uncertainty. After demonstrating the 
limitations of the certainty factor model, we describe a 
representation technique called belief networks that is not 
similarly limited in its ability to express uncertain 
relationships among propositions. 

II The MYCIN certainty factor model 

In this section, we describe the aspects of the MYCJN 
certainty factor model that are central to our discussion. The 
knowledge in MYCTN is stored in rules of the form “IF E 
THEN H” where E denotes a piece of evidence for hypothesis 

H. A certainty factor is attached to each rule that represents 
the change in belief in the hypothesis given the piece of 
evidence for the hypothesis. Certainty factors range between 
-1 and l. Positive numbers correspond to an increase in the 
belief in a hypothesis while negative quantitres correspond to 
a decrease in belief. It is important to note that certainty 
factors do not correspond to measures of ubsolute belief 
This distinction, with respect to certainty factors as well as 
other measures of uncertainty, has often been overlooked* in 
the artificial intelligence literature [Horvitz 861 

We will sometimes use the following notion to represent the 
rule “IF E THEN H”: 

CFU-W 
E&H 

where CF(H,E) is the certainty factor for the rule. In the 
certainty factor model, as in any rule-based framework, 
multiple pieces of evidence may bear on the same hypothesis 
and a hypothesis may serve as evidence for yet another 
hypothesis. The result is a network of rules such as the one 
shown in Figure 1. This structure IS called an inference net 

[Duda 76-j. 

Figure 1: An inference net 

The certainty factor model contains a prescription for 
propagating uncertainty through such an Inference net. For 
example, the CF model can be used to compute the change in 
belief in hypotheses G and H when A and R are true (see 
Figure 1). 

In this paper, we will focus on two types of propagation, 
parallel combination and divergent propagation. Parallei 
combination occurs when two or more pieces of evidence 
impinge on a single hypothesis, as shown .in Figure 2(a). In 
this case, the certainty factors on two rules are combined with 
the parallel combination function to generate a certainty 
factor for the hypothetical rule “IF E, AND E, THEN H.“’ 
Divergent propagation occurs when one piece of evidence 

I The comblnatton ftrncr~on IS given 11, the FMYClh’ manual [FMYCIN 

791. 
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bears on two or more hypotheses as shown in Figure 2(b). In 
this case, the updating of each hypothesis occurs 
independently. More generally, if two sub-nets diverge from a 
common piece of evidence, uncertainty is propagated in each 
sub-net independently. 

cannot be represented in a natural or efficient manner within 
the rule-based framework.’ In this section, we examine two 
such classes, termed mutual exclusivity and multiple causation, 
which occur commonly in real-world domains. 

A set of hypotheses is said to be mutually exclusive and 
exhaustive when one and only one hypothesis from the set is 

E, CF(hE1 ) 

\ 
H 

CW 1 ,E) 

1 

H1 
true. We examine the case where two or more pieces of 
evidence are relevant to a set of three or more mutually 
txclusive and exhaustive hypotheses. We will show that 

E parallel combination cannot be used to efficiently represent 
this situation. Mulriple causalion occurs when a piece of 
evidence has two or more independent causal or explanatory 
hypotheses. We will show that divergent propagation cannot 
be used to efficiently represent this situation. Rather than 

(a) Parallel combination (b) Divergent propagation 
present proofs of these results which can be found elsewhere 
[Heckerman 861, we will present examples that facilitate an 

Figure 2: Two types of propagation in the CF model intuitive understanding of the limitations. 

A. Mutual exclusivity 

To illustrate a difficulty with representing mutual 
exclusivity in a rule-based framework, consider an example 

III A fundamental difference 

Let us now explore a fundamental difference between rules 
which represent deterministic relationships among propositions that harkens back to simpler days. Suppose you are given one 
and rules which reflect uncertain relationships. Again of three opaque jars containing mixtures of black licorice and 
consider the case of parallel combination as shown in Figure white peppermint jelly beans: 
2(a). Suppose the certainty factor for the rule involving E, is 
equal to 1. This corresponds to the situation where E, proves 
H with certainty. In this case, E, also proves H if E, is OO 
already known when E, is discovered. In other words, the 

certainty factor CF(H,E,) does not depend on whether or not 
E, is known when the rule involving E, is invoked. Note we 
are assuming that deterministic beliefs are monotonic, a 

E 

typical assumption of rule-based frameworks associated with 
schemes for reasoning with uncertainty. In contrast, suppose 

5 H2 H3 

the certainty factor for this same rule lies between -1 and 1. 
This corresponds to the situation where E, potentially updates 

The first jar contains one white jelly bean and one black jelly 

the belief in H but does not prove or disprove the hypothesis. 
bean, the second jar contains two white jelly beans, and the 

In this case, it is reasonable to expect that the certainty factor 
third jar contains two black jelly beans. You are not allowed 

for the rule may depend on the degree of belief assigned to 
to look inside the jar, but :you are allowed to draw beans from 
the jar, one at a time, wilh replacement. That is, you must 

E, when the rule is invoked. 

The above is an instance of a fundamental difference 
between rules that are certain and those that are not. We say 
that deterministic or logical rules are modular while rules 

replace each jelly bean you draw before sampling another. 
Let H, be the hypothesis that you are holding the izh jar. As 
you are told that the jars were selected at random, you believe 
each H, is equally likely before you begin to draw jelly beans. 

reflecting an uncertain relationship are non-modular. We use 
the term modular to emphasize that rules which are certain 
stand alone; the truth or validity of a deterministic rule does 

It seems natural to represent this situation with the 
following rules for each hypothesis I-l,: 

not depend upon beliefs about other propositions in the net. 
As mentioned above, the modularity of deterministic rules is a 
consequence of the assumption of monotonicity. We 
introduce the term modularity in lieu of monotonicity because 
we do not wish to confuse the notion of non-modularity, a 

Black q(H i Black) 

concept we apply to uncertain beliefs, with non-monotonicity, 
a concept traditionally reserved for beliefs that are held with 
certainty. 

/ White CF(H i ,White) 

That indeterministic rules are less modular than 
deterministic rules is also demonstrated in the case of 
divergent propagation (see Figure 2(b)). In particular, if E 
proves H, with certainty when the status of H, is unknown, 
then E will also prove H, with certainty when H, is known to 

That is, each time a black jelly bean is observed, the belief in 
each hypothesis is revised using the certainty factors 
CF(Hi, Black) in conjunction with the parallel combination 
rule. Beliefs are similarly revised for each white jelly bean 
observed. 

be true or false. However, if E does not prove or disprove 
Hi conclusively, the certainty factor for the rule involving H, 
may depend upon the belief assigned to H, at the time E is 
discovered. 

2We note that some classes of dependencies can be represented efficiently. 
In another paper [Heckerman SG], several of these classes are identtfied 111 a 

IV Limitations of the rule-based representation probabilistic context. It IS shown that if relationships among proposltlons 
satisfy certain strong forms of condillonal Independence, then these 

by based framework. relationships are accommodated 
Unfortunately, such conditions are 

naturally 
rarely met 

the rule- 
pracllce. 

As a result of this fundamental difference concerning 
modularity, there are certain classes of dependencies that 
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Unfortunately, such a representation is not possible because 
the modularity of rules imposed by parallel combination is 
too restrictive. To see this, suppose a black jelly bean is 
selected on the first draw. In this case, the belief in H, 

increases, the belief in HZ decreases to complete falsity, while 

the belief in H, remains relatively unchanged. Thus, the 

certainty factor for the rule “IF Black THEN 14,” IS close to 

zero.3 In contrast, suppose a black jelly bean is selected 
following the draw of a white jelly bean. In this case, the 
certainty factor for the rule “IF Black THEN H,” should be 
set to 1 as H, is confirmed with certainty. As only one 
certainty factor can be assigned to each rule, it is clear that 
the above representation fails to capture the dependencies 
among beliefs inherent in the problem. 

This result can be generalized. It has been shown that 
parallel combination cannot be used to represent the situation 
where two or more pieces of evidence bear on a hypothesis 
which is a member of a set of 3 or more mutually exclusive 
and exhaustive hypotheses [Johnson 86, Heckerman 861. 

We should mention that the above problem can be forced 
into the rule-based framework. For example, it can be shown 
that the following set of rules accurately represents the 
situation for Ii,. 

It seems natural to represent this situation with the 
inference net shown in Figure 3. However, a problem arises 
in trying to assign a certainty factor to the rule 
“IF Alarm THEN Burglary.” Had Mr. Holmes not heard the 
radio announcement, the alarm sound would have strongly 
supported the burglary hypothesis. However, since Mr. 
Holmes heard the announcement, support for the burglary 
hypothesis is diminished because the earthquake hypothesis 
tends to “explain away” the alarm sound. Thus, it is necessary 
to attach two certainty factors to the same rule; one for the 
case where Mr. Holmes hears the announcement and another 
for the case where he does not. As only one certainty factor 
can be assigned to each rule, the inference net in Figure 
3 fails to capture the situation. 

7 Burglary 

/ 
Alarm 

\ 
YA 

Y 

Earthquake 

Radio ’ 
announcement 

IF 1st draw Black THEN H,, 0 Figure 3: An inference net for Mr. Holmes’ situation 

The problem of Mr. Holmes can be generalized. It has been 
shown that divergent propagation cannot be used to represent 
the-case where a single piece of evidence is caused by two 
explanatory hypotheses if either of these hypotheses ‘can be 
updated with independent evidence [ Heckerman S6 J. 

As in the jelly bean problem, Mr. Holmes situation can be 
forced into a rule-based representation. For example, the case 
can be represented by writing a rule for almost every possible 
combination of observations. 

IF AND Phone call 
Announcement THEN Burglary, .l 

IF AND Phone call 
No announcement THEN Burglary, .8 

IF AND No phone call 
Announcement THEN Burglary, -.Oi 

IF AND No phone call 
No announcement THEN Burglary, -.05 

IF 1st draw White THEN H,, 0 

IF AND 1st draw Black 
Current draw Black THEN H,, -.5 

IF 1st draw Black 
Current draw Wh ite THEN H,, 1 

IF AND 1st draw White 
Current draw Black THEN H,, 1 

IF AND 1st dr aw White 
Curren t draw White THEN H 1' -.5 

Unfortunately, this representation is inefficient and awkward. 
The simplicity of the underlying structure of the problem is 
lost. 

We note that there are even more pathological examples of 
inefficient representation. For example, if we add another 
white and black jelly bean to each jar in the above problem, 
it can be shown that the number of rules required to 
represent N draws is greater than N. 

R. Multiple causation 

In discussing another limitation of the rule-based 
framework, let us move from the simple world of jelly beans 
to a more captivating situation. Consider the following story 
from Kim and Pearl [Kim 83): 

IF Announcement THEN Earthquake, 1 

IF AND Phone 
No an 

call 
ounceme nt THEN Earthquake, .Ol 

IF AND No phone call 
No announcement THEN Earthquake,-.01 

As in the previous problem, however, this representation is 
undesirable. In particular, the underlying causal relationships 
among the propositions are completely obscured. Moreover, 
the representation will become inefficient as the problem is 
modified to include additional pieces of ;evidence. For 
example, suppose the radio announcement is garbled and Mr. 
Holmes makes use of many small clues to infer that an 
earthquake is likely to have occurred. In this case, the 
number of rules required would be an exponential function of 
the number of clues considered. 

Mr. Holmes received a telephone call from his 
neighbor notifying him that she heard a burglar 
alarm sound from the direction of his home. As 
he was preparing to rush home, Mr. Holmes recalled 
that last time the alarm had been triggered by an 
earthquake. On his way driving home, he heard a 
radio newscast reporting an earthquake 200 miles 
away. 

3 In another paper [Heckerman 873, a method for calculating numertcal 
values for certainty factors is described. The results of’ this method are 
consistent with the rntult!ve results presented here. 
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V A more appropriate representation no arcs into the “Identity of jar” node, an unconditional or 
marginal distribution for this variable is given. 

We will now describe a representation technique that is 
closely related to the rule-based framework yet is not limited 
in the types of dependencies among propositions that it can 
represent. The representation, termed belief networks, has 
recently become a focus of investigation within the artificial 
intelligence community [Pearl 86].4 After briefly describing 
belief networks, we will show how the examples discussed 
above are represented within the methodology. We will then 
define a weaker notion of modularity that is more appropriate 
for uncertain knowledge in the context of belief networks. 
Finally, we wiIl show how this weaker notion of modularity 
can facilitate efficient knowledge base maintenance. 

A belief network is a two-level structure. The upper level 
of a belief network consists of a directed acyclic graph that 
represents the uncertain vuriables relevant to a problem as 
well as the relationships amon, 0 the variables. Nodes (circles) 
are used to represent variables and directed arcs are used to 
represent dependencies among the variables. The bottom level 
represents all possible values or outcomes for each uncertain 
variable together with a probability distribution for each 
variable. The arcs in the upper level represent the notion of 
probabilistic conditioning. In particular, an arc from variable 
A to variable B means that the probability distribution for B 
may depend on the values of A. If there is no arc from A to 
B, the probability distribution for B is independent of the 
values of A. 

To illustrate these concepts, consider once again the jelly 
bean problem. An belief network for this problem is shown 
in Figure 4. 

Level 1: 

Level 2: ” 

Figure 4: A belief network for the jelly bean problem 

The two nodes labeled “Identity of jar” and “Color drawn” in 
the upper level of the belief network represent the uncertain 
variables reIevant to the problem. The tables in the lower 
level list the possible values for each variable. The arc 
between the two nodes in the upper level means that the 
probability distribution for “Color drawn” depends on the 
value of “Identity of jar.” Consequently, the probability 
distribution for “Color drawn” given in the second level of 
the network is conditioned on each of the three possible 
values of “Identity of jar”: H,, H,, and H,. Since there are 

Note that the same jar problem can 
belief network with the arc reversed. 

be represen ted by a 
In this case, an 

unconditional probability distribution would be assigned to 
“Color drawn” and a conditional probability distribution 
would be assigned to “Identity of jar.” This highlights a 
distinction between inference nets and belief networks. 
Inference networks require dependencies to be represented in 
the evidence-to-hypothesis direction. III a belief network, 
dependencies may be represented in whatever direction the 
expert is most comfortable.5 

As discussed earlier, it is difficult to represent this situation 
in an inference net because the three hypotheses reflecting the 
identity of the jar are mutually exclusive. In a belief 
network, however, this class of dependency is represented 
naturally. Rather than attempt to list each hypothesis in the 
upper level, these mutually exclusive hypotheses are moved to 
the second level and are considered together under the single 
variable, “Color drawn.” 

Now let us reexamine the story of Mr. Holmes to see how a 
belief network can be used to represent multiple causation. 
The upper level of a 
is shown in Figure 5. 

belief network for Mr. Holmes’ situation 

Figure 5: A belief network for Mr. Holmes’ situation 

The lower level of the belief network contains value lists and 
probability distributions as in the previous problem. For 
example, associated with the nodes “Phone call,” “Alarm,” 
“Burglary,” and “Earthquake” are the value lists 
(Received, Not received}, {Sounded, Not sounded), 
(True, False), and {True, False) respectively. Associated with 
the node “Phone call” are the two probability distributions 
p(Phone call I Alarm 
p(Phone call I Alarm q  Not sounded).h= 

Sounded) and 

As mentioned earlier, an inference net cannot represent this 
situation in a straightforward manner because there are two 
causes affecting the same piece of evidence. However, this 
dependency is represented naturally in a belief network. In 
this example, the dependency is reflected in the probability 
distributions for “Alarm.” In particular, a probability 
distribution for each combination of the values of the two 
variables “Burglary” and “Earthquake” is associated with the 
“Alarm” variable. That is, the following probability 

5Typically, the direction of arcs 
relationships [Pearl 86, Shachter 871. 

in belief nelworks reflect causal 

4We note that the influence diagrams of Howard [Howard Sl] and the 
probabilistic causal nefworks of Cooper [Cooper S43 are closely related to 

belief networks. 

G Note that we are using a short-hand notation for probabrlrty distrrbutrons. 
For example, p(Phone call I Alarm = sounded) is an abbrevration for the two 
probabilities p(Phone call = Received 1 Alarm = sounded) and 
p(Phone call = Not received I Alarm = sounded). 
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distributions 
network: 

will be included in the lower level of the belief 

p(Alarm 1 Burglary=False AND Earthquake=False) 

p(Alarm 1 Burglary=False AND Earthquake=True) 

p(Alarm 1 Burglary=True AND Earthquake=False) 

p(Alarm 1 Burglary=True AND Earthquake=True). 

The interaction between the “Burglary,” “Earthquake,” and 
“Alarm” variables is completely captured by these probability 
distributions. 

The above example points out that the representation of 
dependencies in a belief network does not come without 
increased costs. In particular, additional probabilities must be 
assessed and computational costs will increase. However, these 
costs are no greater and typically less than costs incurred in 
attempting to represent the same dependencies within the 
rule-based representation. For example, in the case of the 
garbled radio announcement discussed above, the belief 
network approach will generally not suffer the same 
exponential blow-up which occurs in the inference net 
representation. 

P(iIS’,) = P(ilP,). (1) 
Relation ii) rays th?t if :he ou:comes of the direct 
predecessors of a node i are known with certainty, then the 
probability distribution for node i is independent of all 
nodes that are not successors of node i. Thus, whenever an 
arc is omitted from a non-successor of node i to node i, an 
assertion of conditional independence is being made. It is 
important to remember that such assertions are under the 
control of the knowledge engineer or expert. For example, in 
the belief network for Mr. Holmes, arcs from “Burglary,” 
“Earthquake,” and “Radio announcement” to “Phone call“ are 
omitted because it IS believed that “Phone call” is independent 
of these variables once the status of “Alarm” is known. 

We identify relation (1) as a weaker notion of modularity 
more appropriate for uncertain reasoning. Note that (1) is a 
local notion of modularity; assertions of conditional 
independence are made about each variable individually. This 
is in contrast with the modularity associated with inference 
nets where straightforward representation of uncertain 
relationships requires global assumptions of independence 

[ Heckerman 861. 

VII Knowledge maintenance in a belief network 
VI A weaker notion of modularity 

Notice that many of the nodes in Figure 5 are not directly 
connected by arcs. The missing arcs are interpreted as 
statements of conditional independence. For example, the 
absence of a direct arc between “Burglary” and “Phone call” 
indicates “Burglary” influences “Phone call” only through its 
influence on “Alarm.” In other words, “Burglary” and “Phone 
call” are conditionally independent given “Alarm.” This 
would not be true if, for example, Mr. Holmes believed his 
neighbor might be the thief. Thus, belief networks provide a 
flexible means by which a knowledge engineer or expert can 
represent assertions of conditional independence. 

The concept that a variable may depend on a subset of 
other variables in the network is the essence of a weaker 
notion of modularity more appropriate for representing 
uncertain relationships. In this section, we define this 
concept more formally. 

To define weak modularity, we first need several auxiliary 
definitions: 

1. A node j is a direct predecessor of node i if 
there is an arc from j to i. 

2. A node k is a mccessor of node i if there is a 
directed path from i to k. 

3. Pi is the set of all direct predecessors of i. 

4. Si is the set of all successors of i. 

5. Si is the complement of the set of all successors 
of i excluding i. 

As a result of (1) and the fact that the graph component of 
a belief network is acyclic, it is not difficult to show that the 
probability distributions found at the second level of the 
belief network are all that is needed to construct the full joint 
prolkbility dislribz~tion of the variables in the network 

[Shachter 863. Formally, if a belief network consisis of n 
uncertain variables i,, i,, . . . , and i,,, then 

p(i, AND i, . . . in) = n, p(i,(P, ) (2) m 
where p(i”,lP, ) is the probability distribution associated with 

m 
node i,, at the second level of the belief network. 

As the joint probability distribution for a given problem 
implicitly encodes all information relevant to the problem, 
property (2) can be used to simplify the task of modifying a 
belief network. To see this, imagine that a proposition is 
added to a belief network. When this occurs, the expert must 
first reassess the dependency structure of the netw0r.k. For 
example, the new node may be influenced by other nodes, 
may itself influence other nodes, or may introduce conditional 
independencies or conditional dependencies among nodes 
already in the network. Then, in order to construct the new 
joint probability distribution, the expert need only reassess the 
probability distribution for each node which had its incoming 
arcs modified. Given (2), there is no need to reassess the 
probability distributions for the nodes in the network whose 
incoming arcs were not modified. Similarly, if a proposition 
is deleted from a belief network, the expert must first reassess 
dependencies in the network and then reassess only the 
probability distributions for those nodes which had their 
incoming arcs modified. 

To illustrate this point, consider the following modification 
to Mr. Holmes’ dilemma: 

For example, in the belief network for Mr. Holmes’ situation, 

P Phone call = {Alarm} 
Shortly after hearing the radio announcement, 

Mr. Holmes realizes that it is April first. He then 
recalls the April fools prank he perpetrated on his 

S Phone call = ci, 
neighbor the previous year and reconsiders the 
nature of the phone call. 

Now consider a particular node i. The conditional 
independence assertion associated with this node is 

S’ Phone call = {Alarm, Burglary, Earthquake, With this new information, an “April fools” node should be 
Radio announcement) added to the belief network and a conditioning arc should be 

added from the new node to "Phone call” (see-Figure 6). No 
other arcs need be added. For example, the arc from “April 
fools” to “Radio announcement" is absent reflecting the belief 
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that radio announcers take their jobs somewhat seriously. The networks, a representation scheme related to the I ule-based 
arc from “April fools” to “Burglary” is absent because it is approach. We believe artificial intelligence researchers ~111 

assumed that burglars don’t observe this holiday. The absence find belief networks an expressive representation for 
of an arc from “April fools” to “Earthquake” reflects certain capturing the complex dependencies associated with uncertain 
beliefs about the supernatural. knowledge. 

Given the new graph, we see from (2) that the following 
probability distributions are needed to construct the new joint 
probability distribution: 
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p(Alarm 1 Burglary AND Earthquake) 

p(Radio announcement 1 Earthquake) 

WuWw) 

p(Earthquake) 

Fortunately, all nodes except for “Phone call” have retained 
the same predecessor nodes and so, by (2), the probability 
distributions corresponding to these nodes are available from 
the old belief network (see Figure 5). Only the probability 
distribution for “Phone call” needs to be reassessed. 

Figure 6: MJ. Holmes revisited 

The modification above should be compared with the 
modification required in a rule-based framework. Because 
divergent propagation cannot be used to represent multiple 
causation in this framework, we are limited to an unnatural 
representation such as constructing a rule for each possible 
combination of observations. In this representation, 
modification to include the consideration of April fools 
results in a doubling in the number of rules. Thus, it is clear 
that the local modularity property associated with belief 
networks can help to reduce the burden of knowledge base 
maintenance. 

VIII Summary 

In this paper, we demonstrated that particular classes of 
dependencies among uncertain beliefs cannot be represented 
in the certainty factor model in an efficient or natural 
manner. We should emphasize that, to our knowledge, all 
uncertainty mechanisms designed as incremental extensions to 
the rule-based approach suffer similar limitations. Also, we 
identified a fundamental difference between reasoning with 
beliefs that are certain and reasoning with beliefs that are 
uncertain. We demonstrated that rules representing 
deterministic relationships between evidence and hypothesis 
are more modular than rules reflecting uncertain relationships. 
We showed that the limitations of the rule-based approach for 
representing uncertainty is a consequence of forcing non- 
modular knowledge into a representation scheme designed to 
represent modular beliefs. Finally, we described belief 
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