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Suppose that a quantum circuit with K elementary gates is known for a unitary matrix U, and
assume that U™ is a scalar matrix for some positive integer m. We show that a function of U can be
realized on a quantum computer with at most O(mK + m?log m) elementary gates. The functions
of U are realized by a generic quantum circuit, which has a particularly simple structure. Among
other results, we obtain efficient circuits for the fractional Fourier transform.
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Let U be a unitary matrix, U € U(2™). Suppose that a
fast quantum algorithm is known for U, which is given
by a factorization of the form

U=U,U;- Uk, (1)

where the unitary matrices U; are realized by controlled-
not gates or by single qubit gates [[]. We are interested
in the following question:

Are there efficient quantum algorithms for
unitary matrices, which are functions of U?

The question is puzzling, because the knowledge of the
factorization ([l) of U does not seem to be of much help
in finding similar factorizations for, say, V = U/3. The
purpose of this letter is to give an answer to the above
question for a wide range of unitary matrices U.

Our solution to this problem is based on a generic cir-
cuit which implements arbitrary functions of U, assum-
ing that U™ is a scalar matrix for some positive integer
m. If m is small, then our method provides an efficient
quantum circuit for V.

Notations. We denote by U(m) the group of unitary
m X m matrices, by 1 the identity matrix, and by C the
field of complex numbers.

I. PRELIMINARIES

We recall some standard material on matrix functions,
see [f, [, ] for more details. Let U be a unitary matrix.
The spectral theorem states that U is unitarily equivalent
to a diagonal matrix D, that is, U = T DT for some
unitary matrix 7. The elements A; on the diagonal of
D = diag(A1, ..., \an) are the eigenvalues of U.
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Let f be any function of complex scalars such that its
domain contains the eigenvalues \;, 1 < ¢ < 2. The
matrix function f(U) is then defined by

f(U) = Tdiag(f()‘l)v tr f()‘2”)) TT,

where T denotes the diagonalizing matrix of U, as above.

Notice that any two scalar functions f and g, which
take the same values on the spectrum of U, yield the
same matrix value f(U) = g(U). In particular, one can
find an interpolation polynomial g, which takes the same
values as f on the eigenvalues A;. It is possible to assume
that the degree of g is smaller than the degree of the
minimal polynomial of U. In other words, V = f(U) can
be expressed by a linear combination of integral powers
of the matrix U,

V= f(U)= 2 o U, (2)
=0

where m is the degree of the minimal polynomial of the
matrix U, and o; € C for i = 0,...,m — 1. In order for
V' to be unitary, it is necessary and sufficient that the
function f maps the eigenvalues \; of U to elements on
the unit circle.

Remark. There exist several different definitions for
matrix functions. The relationshop between these defi-
nitions is discussed in detail in [[f]. We have chosen the
most general definition that allows to express the func-
tion values by polynomials.

II. THE GENERIC CIRCUIT

Let U be a unitary 2" x 2™ matrix with minimal polyno-
mial of degree m. We assume that an efficient quantum
circuit is known for U. How can we go about implement-
ing the linear combination (f])? We will use an ancillary
system of p quantum bits, where p is chosen such that
21—l « m < 2# holds. This will allow us to create the
linear combination by manipulating somewhat larger ma-
trices, which on input [0) ® [¢)) € C? @ C?" produce the
state [0) @ V' [¢)).
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FIG. 1: A quantum circuit realizing the block diagonal matrix
A =diag(1,U,U?,..., U "),

We first bring the ancillary system into a superposition
of the first m computational base states, such that an
input state |0) ® |¢)) € C?" ® C?" is mapped to the state

1 m—1
=2 ek, (3)
=0

m

This can be done by acting with a 2 x 2 unitary ma-
trix B on the ancillary system, where the first column
of B is of the form 1/\/m(1,...,1,0,...,0)". Efficient
implementations of B exist.

Notice that there exists an efficient implementation of
the block diagonal matrix A = diag(1,U,U?,...,U*"~1).
Indeed, A can be composed of the matrices U2", 0 <
n < u, conditioned on the p ancillae bits. The result-
ing implementation is shown in Fig. . The state (f) is
transformed by this circuit into the state

m—1
Z i) @ U* ) . (4)
=0

In the next step, we let a 2* x 2¥ matrix M act on
the ancillae bits. We choose M such that the state @) is
mapped to

m—1
k
—f ; k) @ UMV |4) (5)

It turns out that M can be realized by a unitary matrix,
assuming that the minimal polynomial of U is of the form
™ — 7, 7 € C. This will be explained in some detail in
the next section.

We apply the inverse AT of the block diagonal ma-
trix A. This transforms the state (f]) to

m—

Z YOV |¥). (6)

;g:

We can clean up the ancillae bits by applying the 2# x 2#
matrix Bf. This yields then the output state

0) @ V|¢) = [0) @ f(U)[¢) - (7)

The steps from the input state |0)®|1) to the final output
state |0)®@V |¢) are illustrated in Fig. [ for the case u = 2.
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FIG. 2: Generic circuit realizing a linear combination V. The
case pu = 2 is shown.

The following theorem gives an upper bound on the
complexity of the method. We use the number of ele-
mentary gates (that is, the number of single qubit gates
and controlled-not gates) as a measure of complexity.

Theorem 1 Let U be a 2™ x2™ unitary matriz with mini-
mal polynomial ™ — 7, 7 € C. Suppose that there exists
a quantum algorithm for U using K elementary gates.
Then a unitary matrizc V = f(U) can be realized with at
most O(mK + m?logm) elementary operations.

Proof. A matrix acting on p € O(logm) qubits can be re-
alized with at most O(m?logm) elementary operations,
cf. [m] Therefore, the matrices B, Bf, and M can be
realized with a total of at most O(3m?logm) operations.

If K operations are needed to implement U, then at
most 14K operations are needed to implement Aq(U),
the operation U controlled by a single qubit. The reason
is that a doubly controlled NOT gate can be implemented
with 14 elementary gates [ﬂ], and a controlled single qubit
gate can be implemented with six or fewer elementary
gates [fl.

We observe that 2# —1 copies of A1 (U) suffice to imple-
ment A. Indeed, we certainly can implement Al(UQk) by
a sequence of 2" circuits A;(U). This bold implementa-
tion yields the estimate for A. Typically, we will be able
to find much more efficient implementations. Anyway, we
can conclude that A and AT can both be implemented by
at most 14(2# — 1)K € O(14mK) operations. Combining
our counts yields the result. O

III. UNITARITY OF THE MATRIX M

It remains to show that the state ([]) can be transformed
into the state () by acting with a unitary matrix M on
the system of p ancillae qubits. This is the crucial step
in the previously described method.

Let U be a unitary matrix with a minimal polynomial
of degree m. A unitary matrix V' = f(U) can then be
represented by a linear combination

m—1
V=> ol (8)
=0



We will motivate the construction of the matrix M by ex-
amining in some detail the resulting linear combinations
of the matrices U*V. From @, we obtain

m—1
UkV =Y iUt (9)
i=0
Suppose that the minimal polynomial of U is of the form
m(z) = 2™ — g(x), with g(z) = 327" giz’. The right
hand side of (Eg can be reduced to a polynomial in U of
degree less than m using the relation U™ = ¢g(U):

m—1
URV =Y Bl
1=0

The coefficients Gi; are explicitly given by

(ﬁkovﬁkla"- -,Oémfl)Pk

aﬁk(m—l)) = (QOa aq, ..

where P denotes the companion matrix of m(z), that is,

010 -+ 0
o0 1-- 0
P=
o 00 - 1
go 91 92 ... gm-1

The 2* x 2* matrix M is defined by

C 0
w=(51)
where C' = (Bki)k,i=o0,....m—1, and 1 is a (2#—m) x (2 —m)
identity matrix. Under the assumptions of Theorem El,
it turns out that the matrix M is unitary. Before prov-
ing this claim, let us formally check that the matrix M
transforms the state ({) into the state ({). If we apply

the matrix M to the ancillary system, then we obtain
from () the state

which coincides with (), as claimed.

Lemma 2 Let U be a unitary matriz with minimal poly-
nomial m(z) = 2™ —7. Let V be a matriz satisfying (@).
If V is unitary, then M is unitary.

Proof. Tt suffices to show that the matrix C' is unitary.
Notice that the assumption on the minimal polynomial
m(z) implies that C' is of the form

(e7y] aq Amp—2 Om—1
Tam—1 Qo Qm—-3 Qm-—-2

C= : : : : :

T TOQ -+ TOm—1 (7))

that is, C is obtained from a circulant matrix by mul-
tiplying every entry below the diagonal by 7. In other
words, we have

C= ([T]i>j Oéj—imodm) ‘
1,7=0,...,m—1
where [7];5>; = 7 if i > j, and [r];>; = 1 otherwise.

Note that the inner product of row a with row b of
matrix C is the same as the inner product of row a + 1
with row b+ 1. Thus, to prove the unitarity of C, it
suffices to show that

a—1 m—1
! -
da,0 = (row alrow 0) = » Ta;_,o; + E Oj_aQj
Jj=0 j=a

(10)

holds, where §4,0 denotes the Kronecker delta and the
indices of a are understood modulo m.
Consider the equation

1=Vv= <mz oTiU_’) <mZ ozl-Ui) (11)
=0 =0

The right hand side can be simplified to a polynomial in
U of degree less than m using the identity 7U™ = 1. The
coefficient of U? in (|L1]) is exactly the right hand side of
equation (E) Since the minimal polynomial of U is of
degree m, it follows that the matrices U°, U, ..., U™}
are linearly independent. Thus, comparing coeflicients
on both sides of equation (L)) shows ([Ld). Hence the
rows of C' are pairwise orthogonal and of unit norm. O

A Simple Example. Let F, be the discrete Fourier

transform matrix
F, =272 (exp(—=2mi k€/2™))ko=0... 2n 1,

with i2 = —1. Recall that the Cooley-Tukey decomposi-
tion yields a fast quantum algorithm, which implements
F,, with O(n?) elementary operations. The minimal poly-
nomial of F,, is * — 1 if n > 3. Thus, any unitary ma-
trix V, which is a function of F),, can be realized with
O(n?) operations.

For instance, if n > 3, then the fractional power F?,
z € R, can be expressed by

F* = ag(x)] + a1(z)F, + az(z)F? + as(z)F3,
where the coefficients «;(z) are given by (cf. []):
ag(z) = 3(1+€e®)cosz, ai(z)=3(1 —ie")sinz,

as(z) = 3(—1+ ™) cosz, az(z)=3(—1—ie™)sinz.



In this case, F)¥ is realized by the circuit in Fig. E with
U=F, and M = (a;—;()); j=0,...,3. The circuit can be
implemented with O(n?) operations.

IV. LIMITATIONS

The previous sections showed that a unitary matrix f(U)
can be realized by a linear combination of the powers U?,
0 < i < m, if the minimal polynomial m(z) of U is of
the form 2™ — 7, 7 € C. One might wonder whether the
restriction to minimal polynomials of this form is really
necessary. The next lemma explains why we had this
limitation:

Lemma 3 Let U be a unitary matriz with minimal poly-
nomial m(x) = 2™ — g(z), degg(z) < m. If g(x) is not
a constant, then the matrix M is in general not unitary.

Proof. Suppose that g(z) = >, " giz’. We may choose
for instance V. = U™ = g(U). Then the norm of first
row in M is greater than 1. Indeed, we can calculate
this norm to be |go|> + |g1]®> + - -+ + |gm—1|>. However,
lgo|? = 1, because go is a product of eigenvalues of U.
By assumption, there is another nonzero coefficient g;,
which proves the result. O

V. EXTENSIONS

We describe in this section one possibility to extend our
approach to a larger class of unitary matrices U. We
assumed so far that f(U) is realized by a linear com-
bination (E) of linearly independent matrices U'. The
exponents were restricted to the range 0 < ¢ < m, where
m is degree of the minimal polynomial of U. We can cir-
cumvent the problem indicated in the previous section by
allowing m to be larger than the degree of the minimal
polynomial.

Theorem 4 Let U € U(2") be a unitary matriz such
that U™ is a scalar matriz for some positive integer m.
Suppose that there exists a quantum circuit which im-
plements U with K elementary gates. Then a unitary
matriz V = f(U) can be realized with O(mK +m? logm)
elementary operations.

Proof. By assumption, U™ = 71 for some 7 € C. This
means that the minimal polynomial m(z) of U divides
the polynomial 2™ — 7, that is, 2™ — 7 = m(z)ma(z) for
some ma(z) € Clz].

We may assume without loss of generality that the
function f is defined at all roots of 2™ — 7. Indeed, we
can replace f by an interpolation polynomial g satisfying
f(U) = g(U) if this is necessary.

Choose any unitary matrix A € U(2") with minimal
polynomial ms(x). The minimal polynomial of the block
diagonal matrix Uy = diag(U, A) is 2™ — 7, the least
common multiple of the polynomials m(x) and ms(z).
Express f(Ua) by powers of the block diagonal matrix
Uga:

m—1

F(Ua) = diag(f(U), f(A) = Y aidiag(U", A"). (12)

=0

The approach detailed in Section [I] yields a unitary ma-
trix M to realize this linear combination. On the other
hand, we obtain from (@) the relation

m—1
fO) =" U’
=0

by ignoring the auxiliary matrices A%, 0 < i < m. It is
clear that a circuit of the type shown in Fig. E with p
chosen such that 2#~1 < m < 2# implements this linear
combination of the matrices U?, 0 < i < m, provided we
use the matrix M constructed above. O

VI. CONCLUSIONS

Few methods are currently known that facilitate the en-
gineering of quantum algorithms. Linear algebra allowed
us to derive efficient quantum circuits for f(U), given
an efficient quantum circuit for U, as long as U™ is a
scalar matrix for some small integer m. This method
can be used in conjuction with the Fourier sampling tech-
niques by Shor [E], the eigenvalue estimation technique
by Kitaev [E], and the probability amplitude amplifica-
tion method by Grover []E], to design more elaborate
quantum algorithms.
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