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Engineering Functional Quantum Algorithms
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Suppose that a quantum circuit with K elementary gates is known for a unitary matrix U , and
assume that Um is a scalar matrix for some positive integer m. We show that a function of U can be
realized on a quantum computer with at most O(mK + m2 log m) elementary gates. The functions
of U are realized by a generic quantum circuit, which has a particularly simple structure. Among
other results, we obtain efficient circuits for the fractional Fourier transform.

PACS numbers: 03.67.Lx

Let U be a unitary matrix, U ∈ U(2n). Suppose that a
fast quantum algorithm is known for U , which is given
by a factorization of the form

U = U1U2 · · ·UK , (1)

where the unitary matrices Ui are realized by controlled-
not gates or by single qubit gates [1]. We are interested
in the following question:

Are there efficient quantum algorithms for
unitary matrices, which are functions of U?

The question is puzzling, because the knowledge of the
factorization (1) of U does not seem to be of much help
in finding similar factorizations for, say, V = U1/3. The
purpose of this letter is to give an answer to the above
question for a wide range of unitary matrices U .

Our solution to this problem is based on a generic cir-
cuit which implements arbitrary functions of U , assum-
ing that Um is a scalar matrix for some positive integer
m. If m is small, then our method provides an efficient
quantum circuit for V .

Notations. We denote by U(m) the group of unitary
m×m matrices, by 1 the identity matrix, and by C the
field of complex numbers.

I. PRELIMINARIES

We recall some standard material on matrix functions,
see [2, 3, 4] for more details. Let U be a unitary matrix.
The spectral theorem states that U is unitarily equivalent
to a diagonal matrix D, that is, U = TDT † for some
unitary matrix T . The elements λi on the diagonal of
D = diag(λ1, . . . , λ2n) are the eigenvalues of U .

∗Electronic address: klappi@cs.tamu.edu
†Research partly supported by NSF grant EIA 0218582, and a
Texas A&M TITF grant.
‡Electronic address: roettele@ira.uka.de
§Research supported by EC grant IST-1999-10596 (Q-ACTA).

Let f be any function of complex scalars such that its
domain contains the eigenvalues λi, 1 ≤ i ≤ 2n. The
matrix function f(U) is then defined by

f(U) = Tdiag(f(λ1), . . . , f(λ2n))T †,

where T denotes the diagonalizing matrix of U , as above.
Notice that any two scalar functions f and g, which

take the same values on the spectrum of U , yield the
same matrix value f(U) = g(U). In particular, one can
find an interpolation polynomial g, which takes the same
values as f on the eigenvalues λi. It is possible to assume
that the degree of g is smaller than the degree of the
minimal polynomial of U . In other words, V = f(U) can
be expressed by a linear combination of integral powers
of the matrix U ,

V = f(U) =
m−1
∑

i=0

αiU
i, (2)

where m is the degree of the minimal polynomial of the
matrix U , and αi ∈ C for i = 0, . . . ,m− 1. In order for
V to be unitary, it is necessary and sufficient that the
function f maps the eigenvalues λi of U to elements on
the unit circle.

Remark. There exist several different definitions for
matrix functions. The relationshop between these defi-
nitions is discussed in detail in [5]. We have chosen the
most general definition that allows to express the func-
tion values by polynomials.

II. THE GENERIC CIRCUIT

Let U be a unitary 2n × 2n matrix with minimal polyno-
mial of degree m. We assume that an efficient quantum
circuit is known for U . How can we go about implement-
ing the linear combination (2)? We will use an ancillary
system of µ quantum bits, where µ is chosen such that
2µ−1 < m ≤ 2µ holds. This will allow us to create the
linear combination by manipulating somewhat larger ma-
trices, which on input |0〉⊗ |ψ〉 ∈ C

2µ ⊗C
2n

produce the
state |0〉 ⊗ V |ψ〉.
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FIG. 1: A quantum circuit realizing the block diagonal matrix
A = diag(1, U, U2, . . . , U2

µ−1).

We first bring the ancillary system into a superposition
of the first m computational base states, such that an
input state |0〉⊗ |ψ〉 ∈ C

2µ ⊗C
2n

is mapped to the state

1√
m

m−1
∑

i=0

|i〉 ⊗ |ψ〉 . (3)

This can be done by acting with a 2µ × 2µ unitary ma-
trix B on the ancillary system, where the first column
of B is of the form 1/

√
m(1, . . . , 1, 0, . . . , 0)t. Efficient

implementations of B exist.
Notice that there exists an efficient implementation of

the block diagonal matrix A = diag(1, U, U2, . . . , U2µ−1).
Indeed, A can be composed of the matrices U2η

, 0 ≤
η < µ, conditioned on the µ ancillae bits. The result-
ing implementation is shown in Fig. 1. The state (3) is
transformed by this circuit into the state

1√
m

m−1
∑

i=0

|i〉 ⊗ U i |ψ〉 . (4)

In the next step, we let a 2µ × 2µ matrix M act on
the ancillae bits. We choose M such that the state (4) is
mapped to

1√
m

m−1
∑

k=0

|k〉 ⊗ UkV |ψ〉 (5)

It turns out that M can be realized by a unitary matrix,
assuming that the minimal polynomial of U is of the form
xm − τ , τ ∈ C. This will be explained in some detail in
the next section.

We apply the inverse A† of the block diagonal ma-
trix A. This transforms the state (5) to

1√
m

m−1
∑

k=0

|k〉 ⊗ V |ψ〉 . (6)

We can clean up the ancillae bits by applying the 2µ×2µ

matrix B†. This yields then the output state

|0〉 ⊗ V |ψ〉 = |0〉 ⊗ f(U) |ψ〉 . (7)

The steps from the input state |0〉⊗|ψ〉 to the final output
state |0〉⊗V |ψ〉 are illustrated in Fig. 2 for the case µ = 2.

|0〉
|0〉

|x〉 ...

B

U U2
...

M

U−2 U−1
...

B†

FIG. 2: Generic circuit realizing a linear combination V . The
case µ = 2 is shown.

The following theorem gives an upper bound on the
complexity of the method. We use the number of ele-
mentary gates (that is, the number of single qubit gates
and controlled-not gates) as a measure of complexity.

Theorem 1 Let U be a 2n×2n unitary matrix with mini-
mal polynomial xm − τ , τ ∈ C. Suppose that there exists
a quantum algorithm for U using K elementary gates.
Then a unitary matrix V = f(U) can be realized with at
most O(mK +m2 logm) elementary operations.

Proof. A matrix acting on µ ∈ O(logm) qubits can be re-
alized with at most O(m2 logm) elementary operations,
cf. [1]. Therefore, the matrices B,B†, and M can be
realized with a total of at most O(3m2 logm) operations.

If K operations are needed to implement U , then at
most 14K operations are needed to implement Λ1(U),
the operation U controlled by a single qubit. The reason
is that a doubly controlled NOT gate can be implemented
with 14 elementary gates [6], and a controlled single qubit
gate can be implemented with six or fewer elementary
gates [1].

We observe that 2µ−1 copies of Λ1(U) suffice to imple-

ment A. Indeed, we certainly can implement Λ1(U
2k

) by
a sequence of 2k circuits Λ1(U). This bold implementa-
tion yields the estimate for A. Typically, we will be able
to find much more efficient implementations. Anyway, we
can conclude that A and A† can both be implemented by
at most 14(2µ−1)K ∈ O(14mK) operations. Combining
our counts yields the result. 2

III. UNITARITY OF THE MATRIX M

It remains to show that the state (4) can be transformed
into the state (5) by acting with a unitary matrix M on
the system of µ ancillae qubits. This is the crucial step
in the previously described method.

Let U be a unitary matrix with a minimal polynomial
of degree m. A unitary matrix V = f(U) can then be
represented by a linear combination

V =

m−1
∑

i=0

αiU
i. (8)
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We will motivate the construction of the matrixM by ex-
amining in some detail the resulting linear combinations
of the matrices UkV . From (8), we obtain

UkV =

m−1
∑

i=0

αiU
i+k. (9)

Suppose that the minimal polynomial of U is of the form
m(x) = xm − g(x), with g(x) =

∑m−1
i=0 gix

i. The right
hand side of (9) can be reduced to a polynomial in U of
degree less than m using the relation Um = g(U):

UkV =

m−1
∑

i=0

βkiU
i.

The coefficients βki are explicitly given by

(βk0, βk1, . . . , βk(m−1)) = (α0, α1, . . . , αm−1)P
k

where P denotes the companion matrix of m(x), that is,

P =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
g0 g1 g2 . . . gm−1













.

The 2µ × 2µ matrix M is defined by

M =

(

C 0
0 1

)

,

where C = (βki)k,i=0,...,m−1, and 1 is a (2µ−m)×(2µ−m)
identity matrix. Under the assumptions of Theorem 1,
it turns out that the matrix M is unitary. Before prov-
ing this claim, let us formally check that the matrix M
transforms the state (4) into the state (5). If we apply
the matrix M to the ancillary system, then we obtain
from (4) the state

1√
m

m−1
∑

i=0

M |i〉 ⊗ U i |ψ〉 =
1√
m

m−1
∑

k,i=0

βki |k〉 ⊗ U i |ψ〉

=
1√
m

m−1
∑

k=0

|k〉 ⊗
m−1
∑

i=0

βkiU
i |ψ〉

=
1√
m

m−1
∑

k=0

|k〉 ⊗ UkV |ψ〉

which coincides with (5), as claimed.

Lemma 2 Let U be a unitary matrix with minimal poly-
nomial m(x) = xm − τ . Let V be a matrix satisfying (2).
If V is unitary, then M is unitary.

Proof. It suffices to show that the matrix C is unitary.
Notice that the assumption on the minimal polynomial
m(x) implies that C is of the form

C =











α0 α1 · · · αm−2 αm−1

ταm−1 α0 · · · αm−3 αm−2

. . .
. . .

. . .
. . .

τα1 τα2 · · · ταm−1 α0











,

that is, C is obtained from a circulant matrix by mul-
tiplying every entry below the diagonal by τ . In other
words, we have

C =
(

[τ ]i>j αj−imodm

)

i,j=0,...,m−1

where [τ ]i>j = τ if i > j, and [τ ]i>j = 1 otherwise.
Note that the inner product of row a with row b of

matrix C is the same as the inner product of row a + 1
with row b + 1. Thus, to prove the unitarity of C, it
suffices to show that

δa,0
!
= 〈row a|row 0〉 =

a−1
∑

j=0

τ αj−aαj +

m−1
∑

j=a

αj−aαj

(10)

holds, where δa,0 denotes the Kronecker delta and the
indices of α are understood modulo m.

Consider the equation

1 = V †V =

(

m−1
∑

i=0

αiU
−i

)(

m−1
∑

i=0

αiU
i

)

(11)

The right hand side can be simplified to a polynomial in
U of degree less than m using the identity τ Um = 1. The
coefficient of Ua in (11) is exactly the right hand side of
equation (10). Since the minimal polynomial of U is of
degree m, it follows that the matrices U0, U1, . . . , Um−1

are linearly independent. Thus, comparing coefficients
on both sides of equation (11) shows (10). Hence the
rows of C are pairwise orthogonal and of unit norm. 2

A Simple Example. Let Fn be the discrete Fourier
transform matrix

Fn = 2−n/2(exp(−2πi kℓ/2n))k,ℓ=0,...,2n−1,

with i2 = −1. Recall that the Cooley-Tukey decomposi-
tion yields a fast quantum algorithm, which implements
Fn withO(n2) elementary operations. The minimal poly-
nomial of Fn is x4 − 1 if n ≥ 3. Thus, any unitary ma-
trix V , which is a function of Fn, can be realized with
O(n2) operations.

For instance, if n ≥ 3, then the fractional power F x
n ,

x ∈ R, can be expressed by

F x
n = α0(x)I + α1(x)Fn + α2(x)F

2
n + α3(x)F

3
n ,

where the coefficients αi(x) are given by (cf. [7]):

α0(x) = 1
2 (1 + eix) cosx, α1(x) = 1

2 (1 − ieix) sinx,

α2(x) = 1
2 (−1 + eix) cosx, α3(x) = 1

2 (−1 − ieix) sinx.
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In this case, F x
n is realized by the circuit in Fig. 2 with

U = Fn and M = (αj−i(x))i,j=0,...,3. The circuit can be
implemented with O(n2) operations.

IV. LIMITATIONS

The previous sections showed that a unitary matrix f(U)
can be realized by a linear combination of the powers U i,
0 ≤ i < m, if the minimal polynomial m(x) of U is of
the form xm − τ , τ ∈ C. One might wonder whether the
restriction to minimal polynomials of this form is really
necessary. The next lemma explains why we had this
limitation:

Lemma 3 Let U be a unitary matrix with minimal poly-
nomial m(x) = xm − g(x), deg g(x) < m. If g(x) is not
a constant, then the matrix M is in general not unitary.

Proof. Suppose that g(x) =
∑m−1

i=0 gix
i. We may choose

for instance V = Um = g(U). Then the norm of first
row in M is greater than 1. Indeed, we can calculate
this norm to be |g0|2 + |g1|2 + · · · + |gm−1|2. However,
|g0|2 = 1, because g0 is a product of eigenvalues of U .
By assumption, there is another nonzero coefficient gi,
which proves the result. 2

V. EXTENSIONS

We describe in this section one possibility to extend our
approach to a larger class of unitary matrices U . We
assumed so far that f(U) is realized by a linear com-
bination (2) of linearly independent matrices U i. The
exponents were restricted to the range 0 ≤ i < m, where
m is degree of the minimal polynomial of U . We can cir-
cumvent the problem indicated in the previous section by
allowing m to be larger than the degree of the minimal
polynomial.

Theorem 4 Let U ∈ U(2n) be a unitary matrix such
that Um is a scalar matrix for some positive integer m.
Suppose that there exists a quantum circuit which im-
plements U with K elementary gates. Then a unitary
matrix V = f(U) can be realized with O(mK+m2 logm)
elementary operations.

Proof. By assumption, Um = τ1 for some τ ∈ C. This
means that the minimal polynomial m(x) of U divides
the polynomial xm − τ , that is, xm − τ = m(x)m2(x) for
some m2(x) ∈ C[x].

We may assume without loss of generality that the
function f is defined at all roots of xm − τ . Indeed, we
can replace f by an interpolation polynomial g satisfying
f(U) = g(U) if this is necessary.

Choose any unitary matrix A ∈ U(2n) with minimal
polynomial m2(x). The minimal polynomial of the block
diagonal matrix UA = diag(U,A) is xm − τ , the least
common multiple of the polynomials m(x) and m2(x).
Express f(UA) by powers of the block diagonal matrix
UA:

f(UA) = diag(f(U), f(A)) =

m−1
∑

i=0

αidiag(U i, Ai). (12)

The approach detailed in Section III yields a unitary ma-
trix M to realize this linear combination. On the other
hand, we obtain from (12) the relation

f(U) =

m−1
∑

i=0

αiU
i

by ignoring the auxiliary matrices Ai, 0 ≤ i < m. It is
clear that a circuit of the type shown in Fig. 2 with µ
chosen such that 2µ−1 < m ≤ 2µ implements this linear
combination of the matrices U i, 0 ≤ i < m, provided we
use the matrix M constructed above. 2

VI. CONCLUSIONS

Few methods are currently known that facilitate the en-
gineering of quantum algorithms. Linear algebra allowed
us to derive efficient quantum circuits for f(U), given
an efficient quantum circuit for U , as long as Um is a
scalar matrix for some small integer m. This method
can be used in conjuction with the Fourier sampling tech-
niques by Shor [8], the eigenvalue estimation technique
by Kitaev [9], and the probability amplitude amplifica-
tion method by Grover [10], to design more elaborate
quantum algorithms.
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