
Experience with embedding hardware descriptionlanguages in HOLRichard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert,John Van TasselUniversity of Cambridge Computer Laboratory, New Museums Site,Pembroke Street, Cambridge, CB2 3QG, England.AbstractThe semantics of hardware description languages can be represented in higher order logic.This provides a formal de�nition that is suitable for machine processing. Experiments arein progress at Cambridge to see whether this method can be the basis of practical toolsbased on the HOL theorem-proving assistant. Three languages are being investigated:ELLA, Silage and VHDL. The approaches taken for these languages are compared andcurrent progress on building semantically-based theorem-proving tools is discussed.Keyword Codes: F.4.1; B.7.2; I.2.3Keywords: Mathematical Logic; Integrated Circuits, Design Aids;Deduction and Theorem Proving.1 IntroductionHardware can be directly speci�ed in the notation of mathematical logic [11, 14, 18], butthis form is unacceptable to many designers and is also unsuitable for input to CAD toolssuch as simulators and circuit synthesizers. The work described here aims to supportthe use of conventional hardware description languages (HDLs) within a general theorem-proving environment. The approach taken is semantic embedding in higher order logic[13, 19], and the theorem-proving infrastructure is provided by the HOL system [12].Three languages are being investigated by separate teams: ELLA (by Boulton, Harrisonand Herbert), Silage (by A. Gordon) and VHDL (by Van Tassel). The HOL-ELLAproject [1] is the largest e�ort and has been running longest. The other two projects havebene�ted from experience and tools arising from early experiments with ELLA. Note thatnone of the three languages considered has a formal semantic speci�cation; constructingsuitable speci�cations is a major part of each of the projects.The three projects surveyed here all have di�erent goals. The aim of the HOL-ELLAproject was originally to explore the combination of conventional CAD tools (namely theELLA simulator) with formal proof (namely HOL). The intention was to build a hybrid

system combining HOL and ELLA. This hybrid would then be used to explore designmethodologies that mixed conventional methods with formal methods. As the projectevolved, the emphasis shifted to the embedding of ELLA in HOL; the current goal isto produce a self-contained prototype design environment entirely within HOL. This isbeing driven by two examples: a simple real time controller and a
oating-point square-root chip. The designs for these will be expressed in ELLA and then be veri�ed againstspeci�cations written directly in logic.The aim of the HOL-Silage project, which is part of the ESPRIT CHEOPS project,a collaboration between Cambridge, IMEC in Leuven, and Philips in Eindhoven, is toformalize the semantics of Silage and to use the result to validate Silage-to-Silagetransformations. Eventually it is hoped to implement a transformation manager thatwill permit users to prove new transformations prior to their being added to a library.Current work (in collaboration with Catia Angelo of IMEC) concentrates on using theSilage semantics to prove correct examples from practical applications of Silage atIMEC.The aim of the HOL-VHDL project is to explore the possibility of providing a formalsemantics for a subset of VHDL that formalizes the spirit of the existing informal se-mantics. It is eventually hoped to use the semantics for a variety of purposes, includingthe validation of algebraic laws for manipulating VHDL processes. However, the currentinitial phase of the work is concentrating on �nding a tractable semantics.The general technique of embedding a conventional notation, such as a hardware de-scription language, in a mechanized formal system, such as HOL, o�ers several possiblebene�ts:� formal de�nition of the semantics of various notations;� mechanized support for syntax and type checking;� a framework for establishing metatheorems about the notation (such as consistency);� support for formal proof about programs;� derivation of proof rules for notation (such as equational transformations);� veri�cation of compilers.The most important part of doing a formal embedding is the de�nition of semantics.The HDLs presented here do not have a fully de�ned formal semantics. The few HDLswhich have been designed with semantics as the primary consideration (e.g., Funnel [33])are not part of CAD environments, and are not yet used in practical applications.In de�ning a formal semantics for the HDLs, it may only be possible to give a semanticsfor a subset of the notation. There is often a balance between obtaining a useful subset ofthe notation and having a tractable formal semantics. A wider subset might be coveredby re-de�ning the intended meaning of some constructs so that the formal semanticsremains tractable. This departure from the `correct' semantics must be treated carefully(cf., Section 7.7).

HOL is a foundational system which means that one can de�ne new constants in away that does not a�ect the logical consistency of the system. This is important as itmeans the embedding of an HDL can be achieved using these de�nitions rather than byintroducing arbitrary axioms to describe the semantics.The organization of the paper is as follows. Higher order logic is brie
y reviewedin Section 2. In Section 3, the similarities and di�erences between the three hardwaredescription languages are discussed. Section 4 discusses the general principles of semanticembedding. Section 5 gives an overview of the projects. The circuit used to illustrate thesemantic embeddings of the three languages is described in Section 6. Sections 7, 8 and 9outline the embeddings of ELLA, Silage and VHDL, respectively. Finally, in Section 10the lessons learned so far are discussed.2 Higher order logicHigher order logic is a generalization of �rst-order logic that allows variables to range overfunctions and predicates. There are many kinds of higher order logic, but they all imposesome kind of type discipline on the use of functions and predicates (types are required toavoid inconsistency). Higher order logics di�er in the sophistication of the type systemthey provide. One of the simplest type systems is due to Church [3] and is similar tothe programming language type disciplines found in functional languages like ML andMiranda. This is the system that underlies the work described here, but knowledge ofthe details will not be needed. More elaborate type systems supporting `dependent types'and `subtypes' are sometimes used for hardware speci�cation [15, 21] and provide, at acost, greater expressive power. However, simple types are adequate for the needs of thispaper (though it is probable that some notational improvement would be possible if moresophisticated types were available).Standard predicate calculus notation will be used. In higher order logic there is asingle syntactic class of terms. There is no need (as there is in �rst-order logic) for aseparate class of formulae, because these can be identi�ed with Boolean-valued terms.The constants T and F denote `true' and `false', respectively. Predicates will be identi�edwith Boolean valued functions. If P is a predicate, then P (x) means `x has property P '.Often the brackets will be omitted and just P x will be written. If t, t1 and t2 stand forBoolean terms, and t[x] stands for some Boolean term containing the variable x, then::t means `not t', t1 ^ t2 means `t1 and t2', t1 _ t2 means `t1 or t2', t1 =) t2 means`t1 implies t2', 8x: t[x] means `for all x it is the case that t[x]', 9x: t[x] means `for somex it is the case that t[x]' and "x: t[x] (a notation due to Hilbert) denotes an arbitrarilychosen value a such that t[a] (if no such value exists then an arbitrary value is chosen).The epsilon operator is generally very useful for denoting terms known to exist withoutintroducing additional constant symbols. If t1 and t2 are terms of the same type, thent1 = t2 means `t1 equals t2'(i.e., t1 and t2 denote the same value), in the case that t1 andt2 are functions, this means that they produce the same result when applied to the samearguments (this is called extensionality). The special notation �x: t denotes the function,which is sometimes written informally as x 7! t, that maps an argument a to the resultof substituting a for x in t. For example, �x: x + 1 denotes the successor function (i.e.,

n 7! n + 1). The notation: (t ! t1 j t2) means the conditional `if t then t1 else t2'.3 Comparison of HDLsThe three languages ELLA, Silage and VHDL di�er along several dimensions, includingintended applications, underlying behavioural model and generality. This makes it hardto compare them. Furthermore, the work on embedding each language has been doneby di�erent people having di�erent stylistic tastes in writing formal speci�cations, andhas been driven by di�erent project aims. This section compares the three hardwaredescription languages, while Section 5 gives an overview of the projects.3.1 Size and style of languagesELLA [4, 29] is not especially big for an industrial-strength language, but is considerablylarger than the toy languages often used in research into formal methods and computerlanguage semantics. The language is mostly functional in style though there are someimperative features. These require some notion of state within the semantics, whereasfor the purely functional subset it is possible to give a semantics in terms of types andfunctions.Silage [7, 16, 17] is a small data
ow language designed for specifying digital signalprocessing (DSP) devices. There are several dialects of Silage and no agreed standard;the HOL-Silage project deals with the IMEC dialect. The language is declarative instyle. A program is an unordered series of equations specifying the values of signals.VHDL [20] is a large HDL. In syntax it is reminiscent of Ada, but the similarity endsthere. There are two main classes of statements in the language: concurrent and sequen-tial constructs. Architectural elements are made up of concurrent statements that containsequential statements. The syntax is in the style of an imperative programming language.The VHDL tools use an event-driven simulator, or interpreter. An operational-style se-mantics is therefore particularly suitable for VHDL, whereas both ELLA and Silage lendthemselves to denotational techniques.3.2 Level of abstractionELLA takes a fairly high-level view of hardware, though designs can be described atvarious levels of abstraction. The ability to declare new datatypes makes this easy.VHDL can be used to describe hardware from a high level to a low level. The idealdesign cycle would see VHDL used to describe the high-level behaviour of a system andthroughout the expansion of the design into an implementation.Silage programs can be thought of as signal
ow graphs, and are intended to be freeof any architectural commitment.3.3 Application areas of each languageELLA is intended as a general-purpose hardware description language, and has the nec-essary infrastructure to support this. The language takes a structural view of hardware

where designs are built up from components which are declared as functions or macros.VHDL is, like ELLA, meant to be used as a general-purpose language. Each is intendedto support design from initial speci�cation to implementation.Silage is intended for high-level descriptions of DSP circuits in areas such as imageprocessing or cryptography. Silage is not meant for low-level description of circuits; suchdescriptions of Silage programs are intended to be synthesized automatically.3.4 Di�erences in timing modelsThe ELLA language has a timing model based on an implicit, universal time base. Time isdiscrete and has a beginning. All variables in ELLA texts represent sequences over time.Special constructs such as the DELAY operator refer explicitly to time. The ELLA timingmodel can be represented in HOL using natural numbers, and signals as functions fromthese natural numbers to the type of the data. For components with state it is possibleto specify initial values.The IMEC dialect of Silage also makes use of a global clock, and all signals areproduced in phase at the same rate. Silage expressions denote in�nite arrays of samplevalues, indexed by time. Time is represented by the integers. Computation starts at time0, and negative times are used only to initialize delays. Multirate and aperiodic signalscan be expressed in other dialects but are not present in IMEC Silage, and hence notdealt with in HOL-Silage.VHDL makes use of a non-decreasing global clock which begins at time 0. Because itis event-driven in nature, VHDL's clock does not advance in regular discrete time steps.Instead, it moves forward on demand to the nearest collection of events.4 Semantic embeddingThere are two approaches to embedding HDLs in logic:(1) Represent the abstract syntax of HDL programs by terms, then de�ne within thelogic semantic functions that assign meanings to the programs.(2) Only de�ne semantic operators in the logic and arrange that the user-interface parseinput from HDL syntax directly to semantic structures, and also print semanticrepresentations in HDL syntax.These two approaches will be referred to as deep embedding and shallow embedding,respectively. An embedding is deep or shallow depending on whether the syntax of theHDL is represented by a HOL type or ML type respectively. Each of these has advantagesand disadvantages. The advantage of deep embedding is that it allows reasoning aboutclasses of programs, since one can quantify over syntactic structures [24]. Setting up HOLtypes of abstract syntax and semantic functions can be a lot of work. The advantageof shallow embedding is that this work is avoided; the interface handles the mappingbetween HDL programs and their semantic representations. Since this mapping is outsidethe logic it is not subject to the rigour of mechanized formal speci�cation and proof,

and so the resulting system is less secure. Furthermore, it is not possible to directlystate theorems about classes of programs, since program structures are not representedin the logic (e.g., variables ranging over programs are not available). However, it maybe possible to formulate general results at the semantic level by proving properties ofsemantic operators (this is what is being done for Silage), but there may be results thatcan only be expressed by saying that all HDL programs of a certain form have a particularproperty.Both the HOL-ELLA and the HOL-Silage projects are using shallow embedding: onlythe semantics is represented in the HOL logic. The HOL-VHDL project uses deep embed-ding, since it aims to model in the logic the VHDL simulation cycle, which is representedby an interpreter on program texts.The approach to the semantics of ELLA and Silage is quite similar; they are bothgiven `denotationally', but the denotations of ELLA programs are functions, whereas thedenotation of Silage programs are relations. However, in both cases the meaning of aprogram is couched in terms of in�nite sequences of values, representing signals. Thesemantics of VHDL, on the other hand, is quite di�erent. This is completely operationaland consists in a formalization within higher order logic of an idealized VHDL simulator.Reasoning about VHDL is conducted by reasoning about runs of the simulator.5 Overview of projectsThere are di�erent concerns when it comes to embedding di�erent HDLs in HOL. Theoriginal aim of the HOL-ELLA project was to explore the combination of conventionalCAD tools with a mechanical theorem prover. The emphasis has shifted towards theembedding of ELLA in HOL, but the original aims have had a signi�cant in
uence on thechoice of the subset of the ELLA language in use.Since the project is industrially oriented, the subset chosen was quite substantial. Adeclarative (functional) subset was selected since this made the embedding in HOL moretractable. However, many of the more complex language structures left out of the sub-set (e.g., sequences) can be thought of as abbreviations of longer texts and might betransformed into the subset (see [29]).Since the connection between conventional tools and theorem proving techniques wasbeing investigated, the HOL style of de�nition was closely adhered to so that the applica-bility of known techniques to a real hardware description language could be investigated.This, together with the di�culties of formally supporting a substantial subset of a realhardware description language led to the use of a shallow embedding in which ELLAdeclarations become HOL de�nitions.Shallow embedding has the disadvantage that only speci�c ELLA texts can be reasonedabout formally because ELLA texts are not explicitly represented in the logic. However,it is still possible to prove generic properties of ELLA constructs below the declarationlevel. One advantage of transforming ELLA declarations into HOL de�nitions is that theycan be freely mixed. In particular, behavioural speci�cations can either be given in ELLAand translated or can be written directly in HOL. Shallow embedding is simpler than deepfor large languages, since it avoids building infrastructure for the syntax of the language

within the logic.The semantics in HOL was originally written to re
ect very accurately the behaviourof the industrial compiler and simulator for ELLA. However, with the change of emphasisof the project the semantics has been simpli�ed to make formal reasoning easier. Thecost is a minor inconsistency between the semantics and the behaviour of the ELLAsimulator. The ELLA designers have indicated that the new semantics accurately re
ectstheir original intention.The eventual goal of the HOL-Silage project is to build an interactive system tomanage source-to-source meaning-preserving transformations of Silage programs. Therebeing no existing formal semantics, a substantial subset of Silage has been de�ned usingset theory and logic. The HOL-Silage subset contains all the IMEC dialect, except thatthe type system is much simpli�ed, and many arithmetic, bitwise and vector operationsare omitted. This policy was adopted because examples of program transformations atIMEC have exclusively dealt with control
ow rather than with details of arithmetic. Thede�nition has been mechanized as an ML program mapping Silage syntax into the HOLlogic. Experiments are under way to see how the HOL system can be used alongside theIMEC simulator and synthesizers to support transformational design of Silage programs.The goals of the VHDL project are twofold. The �rst one is to develop a tractablesemantics for a subset of VHDL. The second is to make use of the semantics to reasonabout VHDL programs. Support will be o�ered for reasoning about properties of indi-vidual VHDL programs, as well as for proofs involving two VHDL texts purporting to beequivalent.VHDL is a radically di�erent language from both ELLA and Silage. Its semantics, evenat the informal level, is speci�ed by the way di�erent language constructs interact withthe VHDL simulation engine. This lends itself to a more operational style of semanticsthan those used in the other two projects. This particular style is advantageous in thatit will allow us to work with general classes of VHDL programs, and to derive useful lawsabout their operation. It also lends itself well to capturing the intuition behind the wayVHDL users actually think about their programs. A side e�ect of developing the semanticsof VHDL in this manner is the speci�cation of what constitutes a VHDL simulator. Thiscan then be used as a design document for language implementors.At the current stage of development, only an individual iteration of the simulation loophas been formalized. Work is under way to incorporate this individual simulation cyclewith a more complete view of the VHDL simulation engine. Nevertheless, it is possibleto make use of the single iteration to give a
avour of the kind of reasoning involved inembedding VHDL in HOL.6 An example circuitThe example described in this section is based on the example in [12]. It is not claimedto be typical of real design, but is merely intended to illustrate the HOL semantics forthe three hardware description languages. The example is a bit-serial parity checker. Itsdesign is shown in the schematic diagram below.

INVMUXONEREG MUXREG

in

out

l1 l2
l3 l4l5

�

�
�

This works by storing the parity of the sequence input so far in the lower of the tworegisters. Each time true is input at in, this stored value is complemented. Registersare assumed to `power up' in a state in which they are storing false. The second register(connected to ONE) initially outputs false and then outputs true forever. Its role is just toensure that the device works during the �rst cycle by connecting the output out to thedevice ONE via the lower multiplexer. For all subsequent cycles out is connected to l3 andso either carries the stored parity value (if the current input is false) or the complementof this value (if the current input is true).7 Embedding ELLAIn ELLA, designs are built up from components which are declared as functions or macros(essentially parameterized functions). These can be implicitly connected together by func-tion application. Constructs are also present which allow the designer to make connectionsbetween components explicitly.

7.1 ELLA text for the parity checkerThe following is a complete speci�cation in ELLA of the parity checker. This gives a
avour of the language; the example is explained in more detail below.TYPE bit = NEW (hi | lo).FN INV = (bit: in) -> bit:CASE inOF lo: hi,hi: loESAC.FN MUX = (bit: cntl in1 in2) -> bit:CASE cntlOF hi: in1,lo: in2ESAC.FN REG = (bit) -> bit: DELAY(lo, 1).FN PARITY_IMP = (bit: in) -> bit:BEGINMAKE INV: l1,MUX: l3 out,REG: l2 l5.JOIN (in, l1, l2) -> l3,hi -> l5,(l5, l3, hi) -> out,out -> l2,l2 -> l1.OUTPUT outEND.The �rst line of the text is a type declaration. All types used in ELLA have to bedeclared explicitly; there are no primitive types. In the above example the basic type isdeclared as a two-valued enumerated type bit, which has the values hi and lo. Intuitivelythis corresponds to the two possible logic levels on a wire. Note however that an ELLAdatatype is an abstract object and the nature of its mapping onto a wire or wires is notde�ned as part of the ELLA text | as a matter of policy ELLA abstracts away from suchlow-level implementation details.The ELLA text then de�nes four di�erent circuit blocks, respectively an inverter, a2-to-1 multiplexer, a D-type latch or `register', and �nally a complete parity checker.ELLA includes no logic gates or other circuit elements as primitive. The de�nitionsof INV and MUX illustrate one of the main tools for constructing such gates, namely theCASE statement. This is interpreted like a CASE statement in an Algol-like programminglanguage. For example, the CASE statement in the de�nition of INV says that if the inputis lo then give the output hi, and if the output is hi give the output lo.

All elements built from such primitives are delay-free. The REG element introduces timedelays using the DELAY primitive. The declaration of REG simply says that the output hasvalue lo at time zero, and thereafter the input delayed by one time unit.The most complex declaration is the last one, specifying how the entire circuit is con-structed from the above-mentioned elements. The MAKE statement declares names for theinstances of each sub-element; for example l1 represents the only inverter, while l3 andout are both multiplexers. The JOIN statement speci�es, as its name suggests, how theparts are then connected.In a JOIN statement the names of the elements have a dual role. When they appear onthe left of an arrow, they represent the output of that element; conversely on the right ofan arrow, they represent its input. Then the arrow simply speci�es how the output of anelement or elements is connected to the input of others. For example out -> l2 meansconnect the output of the multiplexer out to the input of the register l2.The component ONE, which appears in the description of the circuit in Section 6, is notused in the ELLA description. Instead the value hi is used directly as an input.7.2 The semantics of ELLA in HOLELLA constructs are translated into HOL via a shallow embedding which re
ects theintended meaning of constructs in the ELLA subset. The subset is quite substantial, butavoids parts of ELLA which do not have a simple functional semantics. Note that there isno formal semantics of ELLA against which to judge this embedding | the main point ofreference is the ELLA simulator, but this is imperfect in various respects. Since ELLA isembedded in logic by means of conservative extension, the semantics is at least consistentin the sense of not leading to logical contradiction.The terms of HOL produced by the translation are pure logical terms, but includevarious semantic constants which are constructed using HOL's de�nitional mechanisms.Although it is possible (and often necessary as part of a proof of correctness) to expandthese constants into their primitive logical meanings, the constants are useful in main-taining a close syntactic link between an ELLA text and the result of translation intoHOL.This makes the translation process simpler and more modular, keeps the size of theresulting HOL more manageable, and most importantly allows an approximate inversemapping back to ELLA, allowing the pretty-printing of HOL terms as ELLA text. Thislast consideration justi�es the independent existence of semantic constants which simplycorrespond to things like equality, which already have a name in HOL.Before launching into an examination of the semantics of the parity checker in theHOL-ELLA system, a few points are in order about the general scheme.ELLA types are modelled using corresponding type de�nitions in higher order logic.These are not primitive in HOL, but are made available in terms of primitive types usinga procedure written by Tom Melham [26].These primitive types may be built up into composites, which may be thought of asrepresenting collections of wires such as buses. These are modelled as lists or tuples inHOL, depending on precise structural details. These will not feature in our example, sowill not be discussed further.

Time in ELLA is modelled by the natural numbers starting at zero. A type synonymtime is provided for the type of natural numbers, but this is purely surface syntax, soall the HOL theory of natural numbers applies to time | for example it is possible toperform proofs by induction to show that a certain property holds for all time.A signal in ELLA is simply represented as a function from time into the correspondingtype of values. Such signals are the objects which are generally manipulated in a HOLproof of correctness: higher-order logic places no inconvenient restrictions on their use.In the example which follows, the reader may simply identify `wire' with `function fromtime to bit'.7.3 Translating CASE statementsThe de�nition of the INV block is translated into the following piece of HOL:INV in = CASE in[OF[(CONST lo,SIGNAL hi); (CONST hi,SIGNAL lo)]]("x.T)Although not especially readable, the correspondence with the ELLA text should befairly clear. The semantic constant CONST essentially corresponds to equality, so CONST lomeans is equal to lo. The semantic constant SIGNAL takes a constant and generates asignal which has that value for all time. The CASE and OF constants behave in the wayone would expect: when applied to a signal x, the entire CASE statement means: look atthe list of pairs given as an argument to OF, and try applying the �rst element of eachpair to the signal x at the current time. For instance, if the CONST lo predicate returnstrue, it means that the signal has value lo at the current time. For the �rst predicatewhich succeeds, the output is the second element of the corresponding pair. If none ofthem succeed, the output is the term at the end ("x.T), the unknown value.The unknown value is discussed in more in more detail in Section 7.7, but it is notimportant for this example because every signal has either value hi or lo at any time,so the default clause of the case statement is never reached. This can be proved in HOLusing a theorem returned by the type de�nition package, and using this fact as well asexpanding with the de�nitions of the semantic constants, the following theorem can beproved, which speci�es in pure HOL the behaviour of the inverter:8in t. INV(in) t = (in t = lo) ! hi j loThis may be read as: the output of the inverter, given the input in, at time t is eitherhi or lo when the signal in at that time is lo or hi, respectively. Clearly this re
ects theintended meaning of the inverter.7.4 Translating delaysThe semantics of delays is quite simple. The subset of ELLA handled by the HOL-ELLAsystem allows only unit delays, and these are implemented by a semantic constant DELAY1which has the following property:8in t. DELAY1(in)(t + 1) = in(t)

The above theorem states that the output of the delay element at time t+1 is equal toits input at time t. The behaviour at time zero is speci�ed in a slightly involved way, butit is fairly easy to prove that the output of REG has value lo at time zero, as requested inthe declaration.7.5 Translating arbitrary networksThe MAKE and JOIN statements in ELLA allow more or less arbitrary connections betweenfunctional blocks. This means that it is not possible in general to translate the ELLAinto a HOL function | HOL functions are all total, and so cannot re
ect unrealizablecon�gurations like wiring the input and output of a (zero-delay) inverter together.The HOL-ELLA system therefore uses the "-operator. Intuitively, a network is rep-resented as the choice term meaning some function which has the appropriate property,namely the property of satisfying a set of equations representing connections. Internalwires are represented as existentially quanti�ed variables, as is conventional in hardwareveri�cation in pure HOL.This means that no restrictions are placed on the translation process, nor any proofobligations involved in making the translation go through. However it leaves some work todo in HOL afterwards to show that the resulting block does represent a realizable function(and indeed, this may be impossible, but that would be indicative of a design error suchas wiring outputs together).There do exist various proof tools which provide automatic support for the process.Some of these tools are speci�c to the HOL-ELLA system, whereas others are common tohardware veri�cation in pure HOL. A good example is unwinding (removal of existentiallyquanti�ed `internal wires'). In particular, most sensible circuits without loops can bereduced to an equivalent functional form without user proof e�ort.The case of the parity checker is slightly more complex since it does feature a loop.However the output at time t is only fed back as an input at time t+1, so it is a relativelystraightforward exercise to de�ne a primitive recursive function in HOL and prove it isthe unique function satisfying the constraints. This shows that the "-term representingthe parity checker is equal to this function.The result is a pure HOL function representing the parity checker. This can then beproved in HOL against its speci�cation using standard methods.7.6 Proof methodology in the HOL-ELLA systemThe general objective of the HOL-ELLA project is to investigate how formal veri�cationcan be merged with existing CAD tools. Although this is notionally tied to ELLA, thelessons learned and proof tools written have had wider application.Since most hardware engineers are unfamiliar with the formal details of logical proof, itwas felt to be worth exploring the possibility of working with an ELLA representation ofthe underlying logic. This is the rationale behind incorporating an ELLA pretty-printerinto the system. However it seems unlikely that ELLA o�ers the expressive power to statemany desirable properties of a speci�cation. (On the other hand it should be possible to

use the system to justify, with respect to our semantics, the correctness of appropriateELLA transformations.)In the case studies so far undertaken, the usual method is to eliminate the semanticconstants and generally simplify to a logical term representing the implementation. Thisis then proved correct with respect to a speci�cation (also a pure logical term) just as innormal hardware veri�cation in pure HOL. The simpli�cation is assisted by various proofprocedures.7.7 LiftingELLA features an unknown value, which is denoted by ? in ELLA texts. This is encodedin the HOL translation using the "-operator applied to a predicate which is always true.This seems to be appropriate in that it represents an unknown value of the appropriatesignal type. However this does not entirely re
ect the behaviour of the ELLA simulatorin all contexts.In a CASE statement, `choosers' (that is, the set of values of a given type to be matchedagainst) may be written as a type name. This matches any value of the relevant type,including the unknown value. However a chooser consisting of an explicit enumerationof all the values of a type does not match the unknown value. This means that in thiscontext, the unknown value really behaves like an extra value in the relevant type.This is not possible to implement in the straightforward interpretation of the unknownvalue explained above, because although an "-term is an unknown value of a given type,it is known (to be more precise, is provable in HOL) that it is equal to one of the possiblevalues of that type.Because of this mismatch, the �rst version of the HOL-ELLA system used a more elab-orate semantics featuring lifting. This means that for every type declared in ELLA, thetype in the HOL translation consists of one special unknown value denoted by UU and allthe values corresponding to a straight implementation of the ELLA type. Values otherthan the unknown element are denoted by LIFT t where t is a member of the enumeratedtype.The presence of lifting makes proofs in HOL signi�cantly more di�cult, as well asobscuring the intuitive meaning of what would otherwise be quite a clear semantics. Theproblems lie deeper than simply having the operators LIFT and UNLIFT scattered throughthe proof, although the unpleasantness of that should not be understated.To get a lifted output at a particular time, circuit elements normally need lifted inputsat that time (or in the case of a delay block, at the previous time). For example thefollowing might be true of an inverter:(in t = LIFT x) =) (INV(in) t = LIFT(:x))Unfortunately, theorems like the above are very inconvenient to use, because theycannot be used as (unconditional) rewrite rules. It is tempting to use instead theoremsof the form:INV (LIFT o in) t = LIFT (:(in t))

Here `o' represents function composition. This theorem is a consequence of the �rsttheorem above, but the reverse is not true because the second theorem assumes thatthe output is lifted at all times rather than just at the current instant. For a circuitwithout loops, this might be adequate, because one would normally assume that inputsare lifted. However if the circuit contained loops (presumably with one or more units ofdelay incorporated) it would be impossible to prove using theorems of the second formthat the output is lifted for all time. It is therefore necessary to use theorems of the�rst form. The proof then becomes possible | however it is still necessary to perform anontrivial proof by induction that a circuit has a lifted output at all times.7.8 Experience with the HOL-ELLA systemThe current version of the HOL-ELLA system has abandoned the semantics with lifting,largely because of the greater complexity of the proofs. In fact, it seems from discussionswith ELLA's designers that in any case, the semantics of the simulator should not beregarded as a model implementation, and that the new HOL-ELLA semantics may moreaccurately re
ect their original intentions.Work is still in progress on the new version (with a lifting-free semantics) of the HOL-ELLA system. The pretty-printer and some parts of the translator have not yet beenupdated to work with the changed de�nitions of the semantic constants.Case studies so far undertaken are the parity checker discussed above, a proof of equiv-alence of two ELLA texts (parallel and recursive formulations of an n-bit adder), and theveri�cation against its functional speci�cation of an elaborate 6-bit counter. The lastproof has been performed in both versions of the ELLA semantics, and consequently pro-vides real experience to justify the claims above that the version without lifting makesproofs signi�cantly easier.Work is currently under way on more complex case studies: proving a
oating-pointsquare root chip correct with respect to a speci�cation in terms of real numbers, andproving correctness of a simple microprocessor.8 Embedding SilageThe goal of this section is to motivate and sketch the embedding of Silage in HOL so thatit can be compared to the embeddings of VHDL and ELLA. All the embeddings conferlogical meanings on speci�c programs, but what sets the HOL-Silage approach apartfrom the others is the emphasis on a formal account of the language de�nition itself. Thissection is partly based on material from the de�nition of the HOL-Silage subset [8] andits summary [9].Section 8.1 introduces transformational design of Silage programs, the motivationfor the HOL-Silage project. The language is introduced in Section 8.2 by way of theparity checker example. Section 8.3 shows how Silage de�nitions can be treated as HOLpredicates, and then Section 8.4 sketches how this treatment enables transformation designto be rendered as theorem proving in HOL. Sections 8.5 and 8.6 sketch the formal de�nitionand how it has been mechanized as an ML program respectively. Finally, Section 8.7

summarizes the achievements so far, and points to future goals.8.1 Transformational designThe design process used in practice at IMEC is to develop a Silage program using asoftware simulator [30], and then to synthesize for a particular architecture | bit-serialor microcoded | with one of the CATHEDRAL synthesis systems [23].Silicon compilers such as CATHEDRAL can cope mechanically with all the details ofmapping a Silage program's high-level behavioural description to a low-level imple-mentation, but they cannot currently �nd an implementation that is best in terms ofclock-rate or area. To obtain high performance, designers need to transform their initialSilage programs into tuned programs, that express the same behaviour but have a betterperformance against a particular silicon compiler and architectural requirements. Thereare several reports of experience of transformational design using Silage [22, 32, 35].At present the only way to check that the initial and tuned programs have the samebehaviour is to use simulation.The goal of the HOL-Silage project is to obtain an interactive system that under theguidance of the designer can mechanically prove that the initial and tuned programs havethe same behaviour. The idea is to embed Silage programs as HOL terms, and representtransformational design as proof of equations in HOL.A formal de�nition is essential if Silage programs are to be represented by HOL terms,but no formal de�nition of the full Silage language exists,1 although there is an informalreference manual [17] and there are compiler manuals [27, 30]. Therefore the �rst task inthe project has been to write down a formal de�nition of a subset of the IMEC dialect ofSilage.Given a transformation rendered as a HOL theorem, simulation results from the initialand tuned programs should in principle be the same, so design time is saved becauseonly one simulation is necessary. This claim is made only tentatively, pending practicalexperience, because it depends on factors beyond the scope of the project, such as whetherexisting IMEC tools, such as the simulator and synthesis system, correspond correctly tothe formal de�nition. One hopes that future languages will be designed using formaldescriptions from the start, so that compilers can be programmed in styles suitable forformal veri�cation.Other projects on transformational design have constructed systems programmed fromscratch [5, 6]. The advantage of building a system for transformational design on top ofan LCF-style theorem prover like HOL [10], in which programs are represented by theirlogical meaning and transformations can only be obtained by logical inference, is thatthen there is no fear that programming errors can lead to invalid transformations.8.2 The Parity Checker in SilageSilage is not intended to be used at the register transfer level in which the structuraldescription of the parity checker is given, but the circuit makes a �ne introduction to1Personal communication with Paul Hil�nger, January 1992.

Silage constructs:func PARITY_SIL(in : Bool)out : Bool =l1; l2; l3; l4; l5 : Boolbeginl1 = !l2;out@@1 = false;l2 = out@1;l3 =if in �! l1 || l2 fi;l4@@1 = false;l4 = true;l5 = l4@1;out =if l5 �! l3 || l4 fi;end;The function PARITY SIL has one input and one output, signals in and out respectively.The type Bool represents single bits | written true and false. The �ve signals l1,: : : , l5 are declared to be internal to the circuit. The body of the function is a set ofde�nitions for the internal and output signals | the order in which they are listed doesnot matter.A signal is an in�nite stream of samples, indexed by time. Time is modelled by theintegers | negative times are used only to initialize delays. There are two basic kinds ofde�nition. An initialization such as out@@1 = false says that at time �1 the sampleon signal out is to be false. An equation such as l1 = !l2 says that for all non-negativetimes, signal l1 equals the pointwise negation (operator !) of signal l2.The conditional expression if eC �! eT || eF fi is the signal whose samples are drawnfrom signal eT or eF , depending pointwise on the Boolean signal eC . The multiplexersfrom the parity circuit are expressed as conditionals.Delays are expressed using the notation e@n, which is the signal denoted by expressione, but delayed by n units of time. The two registers in the parity circuit have beenexpressed as the Silage delay expressions out@1 and l4@1, and have been initialized byde�ning the samples on out and l4 at time �1 to be false.There are two special kinds of expression in Silage, exempli�ed in the initializationout@@1 = false. A selector, such as out, is an expression that can appear on the left-hand side of an equation or initialization; variables are selectors, but constants or delaysare not. A manifest expression, such as 1 or false, is one that is computable to a constantat compile-time; the time and sample expressions in an initialization must be manifest.8.3 Silage de�nitions as HOL predicatesTime is identi�ed with the integers, int, and we use the HOL variable t to stand for times.The type of signals with samples of type � is given by a type abbreviation:Signal(�) def= int! �The HOL variables A and B are used for signals. To interpret the parity checker in HOL,constants are needed to interpret Silage negation, conditional, and delay | SIGNOT,COND and in�x <> respectively:

(SIGNOT A) t def= : (A t)(COND AC AT AF) t def= (AC t ! AT t j AF t)(A<>n) t def= A(t� n)Manifest expressions are turned into signals that have the same sample at all times:VAL x t def= xA Silage equation asserts that two signals have the same samples for all non-negativetimes. (A � B) t def= 8t � 0: A(t) = B(t)Given these constants, the parity checker is interpreted as a HOL predicate PARITY_SILWIth the following de�ning equation:8inout:PARITY_SIL(in; out) def=(9l1 l2 l3 l4 l5:l1 � (!l2)^(out(�1) = F)^l2 � (out<>1)^l3 � (SIGCOND in l1 l2)^(l4(�1) = F)^l4 � VAL(T)^l5 � (l4<>1)^out � (SIGCOND l5 l3l4))The original description [12] of the parity checker consists of a primitive recursivefunction specifying the desired behaviour, the circuit shown in Section 6, and a proof thatthe circuit has the behaviour speci�ed by the function. Just as the ELLA implementationcan be proved in HOL to meet the original speci�cation (Section 7.5), the analogousproperty can be proved of the Silage implementation. The proof is routine, and makesuse of equational laws about the delay operator, <>.8.4 Transformation in HOLTransformational design will be illustrated with a digital �lter example suggested by HansSamsom of IMEC.func F1(x : Nat)y : Nat =beginy@@1 = 0;y@@2 = 0;y = x+ (w1� y@1) + (w2� y@2)end;

Each output sample on y is computed by adding to the input sample on x the previoustwo outputs, weighted by constants w1 and w2. Let us assume the multiplications canbe cheaply computed by shifting and then the bottleneck in the circuit is the need tocompute two additions in series during each cycle.This circuit can be tuned by de�ning a new signal, z, to be the sum of the present andprevious outputs. The two additions can then be computed in parallel:func F2(x : Nat)y : Nat =z : Nat;beginz@@1 = 0;z = (w1� y) + (w2� y@1);y@@1 = 0;y@@2 = 0;y = x+ z@1;end;It is straightforward to prove these two functions to be equivalent | the theorem` F1 = F2has been proved in HOL, where F1 and F2 are constants standing for the interpretation inHOL of these two function de�nitions.The point of this example is to show how a transformation can be formalized as a HOLtheorem. The example shows simple veri�cation of a given transformation | a future goalof the project is to support experimental discovery of a tuned program, by incrementaltransformation from an initial program.8.5 The formal de�nitionThe method of Structural Operational Semantics (SOS) [28, 31] is used to formalize thetype-checking and translation processes for Silage. Existing descriptions of Silage[17, 27, 30] make the concrete syntax precise using BNF rules, but leave semantic issuessuch as type-checking or executability informal and partly vague.The de�nition consists of three parts: BNF rules determine the abstract syntax; SOSstatic semantics rules determine the well-typed and well-formed expressions and de�ni-tions; denotational semantics rules map de�nitions into HOL terms. Existing Silagetexts de�ne the concrete syntax precisely, so it has not been rede�ned.The de�nition will be illustrated by a discussion of the semantic treatment of initializa-tions whose abstract syntax takes the form e1@@e2 = e3, where each ei is an expression.Here is the static semantics rule:` e1) �; ~a1 (Sel 2 ~a1) ` e2) Nat; ~a2 (Man 2 ~a2) ` e3) �; ~a3 (Man 2 ~a3)` e1@@e2 = e3 okThe predicate on the bottom says that the initialization is well-formed, and the rule saysthat this is so just when the three predicates on the top line hold, each of the form` e) �; ~a, pronounced `expression e has type � and attribute list ~a'. An attribute a

records information about an expression; for instance, the attributesMan and Sel indicatewhether an expression is manifest or a selector respectively. The rule above requires thatexpressions e1 and e3 have the same type, �, that e2 is numeric, that e1 is a selector, andthat e3 and e2 are manifest expressions. The Silage texts attempt to use BNF rules toassert type and well-formedness conditions; the SOS rules used here are more lucid andprecise.Here is the denotational semantics:[[e1@@e2 = e3]] def= [[e1]](�[[e2]]M) = [[e3]]MIf � is a phrase of abstract syntax, [[�]] is its translation into the HOL logic. Any well-formed expression, such as e1, can be translated to a signal, written [[e1]]. A manifestexpression, such as e2, can also be interpreted as a scalar in HOL, written [[e2]]M. Thepredicate requires that the signal denoted by e1 have the sample denoted by e3 at negativetime e2.One can prove properties of the de�nition itself | a bene�t of formalizing the transla-tion process itself. For instance:Theorem. If expression e has type �, its translation [[e]] is a HOL term of type Signal[[�]],where [[�]] is the translation of type � as a HOL type.Such a metatheorem about the language de�nition can be proved by hand, which isfeasible given the simplicity of Silage, but tedious.8.6 Mechanization of the de�nitionThe formal de�nition discussed in the previous section exists as a mathematical de�nitionon paper. It is good for the de�nition to be independent of any machine implementation,for then it is suitable for scrutiny by interested parties, such as compiler writers or users,to determine whether it matches tools already in existence, or even to serve as a precisereference standard.The prototype HOL-Silage system is a shallow embedding of the formal de�nition inHOL. Silage syntax is embedded as ML types, and the static and denotational semanticsrules are embedded as ML functions. The top-level of the system allows Silage functionde�nitions to be interpreted mechanically as HOL constant de�nitions.A deep embedding of Silage, in which the static and denotational semantics are rep-resented as HOL operations, would enable metatheorems such as the one at the end of theprevious section to be proved mechanically. Such an embedding has not been attemptedbecause shallow embedding is su�cient to support transformational design, and is simplerthan a deep embedding.The mechanization is partly within ML and partly within the logic, and hence is notimmediately amenable to mechanical proof. Even so, the existence of an independentde�nition helps in three ways to increase our con�dence in the HOL-Silage system.First, the likelihood of error has been reduced by structuring the program in exactlythe same way as the de�nition. For instance, there is a polymorphic ML type � Exp,such that a value of the type represents the abstract syntax tree (AST) of a Silageexpression, whose nodes are labelled with values of type �. As a matter of notation, if eis a Silage expression, let e, of type void Exp, be the AST corresponding to e tagged

with no information.2 Corresponding exactly to the static and denotational semantics arethe following two ML functions:checkExp : void Exp! (Type� Attrib list) ExpsigExp : (Type� Attrib list) Exp! termwhere Type, Attrib and term are the ML types of Silage types, Silage attributes andHOL terms respectively.Second, the formal de�nition can be used to document precisely the behaviour of themechanization. For instance, the two functions above can be speci�ed as follows:� If expression e is well-typed, evaluation of checkExp(e) returns an AST labelledwith the type and attribute information derivable for e.� If expression e is not well-typed, evaluation of checkExp(e) fails by raising an ex-ception.� If expression e is well-typed, evaluation of sigExp(checkExp(e)) returns the HOLterm [[e]].Third, properties proved by hand about the de�nition carry over to the mechanization.For instance, the theorem mentioned at the end of Section 8.5 assures us that the term[[e]], constructed in the HOL system by sigExp, will always be well-typed.8.7 Achievements and goalsThe Cambridge part of the HOL-Silage project has produced a formal de�nition of asubstantial subset of the IMEC one, and mechanized it within the HOL system. Severalexamples drawn from a previous study of Silage transformations [22] have been provedcorrect in HOL. The formal de�nition is a basis for work in progress at IMEC, by Catia An-gelo and Hans Samsom, on cataloguing the Silage transformations that arise in practice,and animating transformations using a windowing system. The goal is a system basedon HOL for conducting transformations, but needing little knowledge of the underlyingtheorem prover, so as to be suitable for users whose primary interest is circuit design.9 Embedding VHDLThis section starts with an overview of the semantics developed for VHDL. This is work inprogress, and as such is not capable of the advanced reasoning displayed in the overviewsof the HOL-ELLA and HOL-Silage systems just presented.The following de�nitions will be used in discussing VHDL and the way it is embeddedin HOL:Event: A change in the value of a signal.2The ML type void contains just one value and therefore no information.

Transaction: The value that a signal should take on at a particular time in the future.A transaction may (or may not) be converted into an event at that time.Point of computation: The point at which a particular collection of transactions isprocessed.Process: A VHDL concurrent statement equipped with a set of signal names, or sensi-tivity list, guarding its activation.Simulation cycle: The evaluation of all the processes in a program at a particular pointof computation.The simulation loop of VHDL can be broken down into two distinct phases after theinitialization step has been completed. These are the top-level simulation loop and asimulation cycle. The simulation loop is responsible for moving the simulation forwardto the next collection of transactions to process, while a simulation cycle is performedeach time around the loop to schedule transactions for the future. Only the
avour of thesemantics is discussed here. The interested reader is directed to [34] for a more completeexposition.The semantics has been written as a collection of transition relations, in the style of [31],which describe the simulation algorithm and the interaction of various VHDL statementswith that algorithm. The emphasis has been on a single simulation cycle, and work isnow under way to describe the top-level simulation loop, of which a simulation cycleis a constituent part. The following box contains `pseudo-code' describing the top-levelsimulation loop:while transactions remain to be processedgo to nearest point of computation with transactions to processupdate the state from the current transactionsdetermine which updates represent eventsperform a simulation cycle based on new state and eventsend whileThe �rst step is to move forward to the nearest interesting point of computation (i.e.,one where there are transactions to process), and set the current time to be the physicaltime unit associated with that point of computation. The state of the signal values isthen updated by those that they are supposed to take on during the present point ofcomputation. Next the signals for which this update represents a change in value, orevent, are determined. A simulation cycle is then performed based on the new state ofthe world. The cycle is then repeated until there are no more transactions to process.Note that whilst the phrase `point of computation' can often be understood to meana time slice, a point of computation is more than that within the context of VHDL'sparticular simulation model. One could, for instance, say that the points of computationP1 through Pn represent the time units 1 through n. Alternatively, they could represent1 through n �-delays between two major time units.The concept of �-delay is the way in which VHDL deals with 0-delay signal assignments.During each iteration through the simulation loop a static state of the world is used and

transactions are scheduled to be performed at some future time point. This schedulingapplies to any transaction, whether it is to occur at a delay o�set zero units from now, orat some larger one. The delay around the simulation loop in zero time is called a �-delay.An individual � does not, therefore, represent a quanti�able unit of time. Rather it issimply a simulator artifact.An individual simulation cycle can be summarized as:determine which processes are active based on current eventsrun the active processes in paralleljoin all activated process' scheduled transactions into a collective wholeThe cycle starts with the activation of those processes that are sensitive to any of thecurrent events. These active processes are then run in parallel. During their execution,each process schedules transactions to be processed in the future by the evaluation ofsequential statements. When all the processes have terminated, the separate futures aregathered into an amalgamated view of future behaviour.The semantics of small subset of VHDL called Femto-VHDL is embedded in HOL usinga new tool developed by Tom Melham [26]. It includes concurrent process statements,simple sequential statements and general Boolean expressions. The syntax is describedin the logic as a recursive type [25]. Process statements are the outermost level, andcontain sequential statements which may make use of Boolean expressions. Given thisrather terse summary of syntax, our running example would take on the following formin Femto-VHDL. It should be noted that the design has been somewhat simpli�ed. Theregister and inverter in series between out and l1 have been removed to be replaced bya single unit-delay inverter, doing away with signal l2. If this were not done, the devicewould have caused VHDL simulators to loop in �-time after 1 nanosecond had elapsed.process (inp,l1,outp)beginif inp then l3 <= transport l1 after 0 ns;else l3 <= transport outp after 0 ns;end if;end process;process (l5,l3,l4)beginif l5 then outp <= transport l3 after 0 ns;else outp <= transport l4 after 0 ns;end if;end process;process (outp) begin l1 <= transport (not outp) after 1 ns; end process;process (l4) begin l5 <= transport l4 after 1 ns; end process;Each of the process statements should be viewed as running concurrently with the othersif it is activated by an event on its sensitivity list (e.g., (inp,l1,out) in the �rst process).

The signals in and out have been renamed to inp and outp to avoid clashes with VHDLreserved words.As mentioned earlier, the responsibility of the simulation cycle is to schedule transac-tions to be processed in the future. This scheduling can be demonstrated by `running' theexample in a symbolic fashion through the simulation cycle algorithm (using some specialpurpose theorem proving tools). A starting state for the simulation cycle is given; thismust include the current time, the values of the signals, the signals for which there areevents and the currently scheduled transactions to the system. Then mechanized proofcan be used to deduce in HOL what transactions result from the execution of a simulationcycle. So, if the environment is represented as a triple in HOL:env ="(now,{(`l1`,l1),(`l3`,l3),(`l4`,T),(`l5`,T),(`inp`,inp),(`outp`,outp)},{`inp`})"where the �rst element is a variable representing the current time, the second is a set ofsignal value pairs representing the current state of the signals (all the signals except `l4`and `l5` have variables as values), and the third is a set containing the names of thesignals for which there is currently an event. We may execute the example in HOL givensome initial transactions trans, and ask what new transactions trans' this environmentwould cause to be scheduled.The result is the following statement in HOL after simpli�cation with facts about thesemantics: trans' = (inp ! (POST `l3` l1 trans now)j (POST `l3` outp trans now))ZIP transPOST is a function which given a signal name, the value that signal is supposed to takeon, some initial transactions and the time at which the assignment is supposed to takeplace will pre-emptively schedule the signal in question to take on the speci�ed valueat the speci�ed time by adding it to the running transactions. Pre-emption means thatany transactions previously scheduled on the signal at times after the one in question areremoved when the current transaction is added.ZIP is used to collect the transactions scheduled by each active process into a collectiveview of future activity. It does this by performing a simple set union at any given pointof computation on the sets of signal-value pairs that it �nds there. In our example, wesee that only one process is actually activated, as all the other processes returned transunchanged.The result is as expected, namely an event on `inp` will cause `l3` to take on thevalue l1 (the inverted value of `outp` 1 nanosecond ago) if the value inp is a changefrom false to true. Otherwise it takes on the value outp. Note that the toggling of `inp`does not immediately cause a value to be output on `outp`. One would have to gothrough another iteration of the simulation loop in �-time to see that result. This can bedemonstrated by changing our starting environment env to be:

env ="(now,{(`l1`,l1),(`l3`,l3),(`l4`,T),(`l5`,T),(`inp`,inp),(`outp`,outp)},{`l3`})"meaning that the toggling of `inp` represented a change from false to true.`Running' the example yields the result (again after simpli�cation):trans' = (POST `outp` l3 trans now) ZIP transAgain, this is as expected. The signal `outp` takes on the value l3 one �-step from now.It is unfortunate that iterating through the simulation loop must currently be done byhand. This will change in the near future, and symbolic execution of Femto-VHDL pro-grams in HOL will allow the comparison of two texts purporting to be the same behaviourgiven properties of equivalence currently under development.10 ConclusionsSemantics for subsets of three widely di�ering hardware description languages have beendescribed. Each formal semantics is represented in higher order logic and supportedmechanically by the HOL theorem-proving system. The three studies suggest that higherorder logic is su�ciently expressive to conveniently represent the semantics of a widevariety of hardware description languages, and that the HOL system is
exible enough tosupport di�erent project aims. The three studies cover both operational and denotationalstyles of semantics.The following table is a rough comparison of the intended applications of the threeprojects. Each embedding is marked as deep or shallow, that is, whether the syntax ofthe language is embedded as a HOL or ML type respectively. The columns list threeapplications. The primary applications for each project are marked with a � symbol,and secondary applications are marked with a � symbol. The � indicates that provinglanguage properties is an aim of the HOL-Silage project, but the proofs are not intendedto be done mechanically in HOL. Language Program ProgramProperties Veri�cation TransformationELLA (shallow) � �Silage (shallow) � � �VHDL (deep) � � �In all three systems, a mechanism to map between the concrete syntax of an HDLprogram and its logical representation is important, but any program to do so is necessarilya non-secure piece of software in the sense that it cannot be directly veri�ed by theoremproving in HOL. In the HOL-ELLA and HOL-VHDL systems, the risk of errors in theparser or pretty-printer is minimized by generating them automatically using tools inthe HOL system. The input for the parser generator is a speci�cation of the context-free syntax of the language and a set of action symbols for building the parse tree. Thepretty-printer generator has a pretty-printing meta-language in which the layout can be

described. The pretty-printer provides a means of viewing a HOL term representing anHDL text in the concrete syntax of the HDL. This is useful, as it gives feedback to theuser on whether the parsing and semantic translation have produced something that theuser expects. In the HOL-ELLA system, semantic constants correspond approximatelyto non-terminals in the syntax of ELLA, and hence it is easy to pretty-print HOL termsrepresenting ELLA text as the ELLA text. At present, the HOL-Silage system has aparser programmed in ML and structured exactly according to the formal de�nition ofSilage, but it has no pretty-printer. For the examples dealt with so far, this has beenno great loss because there is such a simple correspondence between a Silage programand its logical interpretation. Work is in progress at IMEC to link the HOL system withthe Cornell Synthesizer Generator. The latter would provide parsing and pretty-printing,as well as managing the application of Silage transformations.There are some basic issues about semantics which a�ect the `correctness' of the formalembedding. Having de�ned a semantics for a language, one must consider whether thesemantics re
ects the intention of the language designers. This is di�cult to judge if nosemantics were de�ned previously. Where another de�nition of semantics exists one mayneed to verify a correspondence between the semantics. With conventional notations,there is also the problem that a user may assume a certain meaning from the syntaxirrespective of the formal semantics. One reason why the formal semantics of Silage waswritten up as a mathematical document, independent of the machine implementation,was so it could be shown to Silage experts to question whether the post hoc semanticsre
ected what had been implemented in existing tools.The projects described here illustrate some of the bene�ts of designing a language witha formal semantics. Quite subtle `inconsistencies' in the informal semantics of a language(as de�ned by the compiler/simulator) can have very signi�cant e�ects on the formalsemantics. An example of this is the behaviour of the ELLA CASE statement with respectto the unknown value (Section 7.7). A formal semantics can provide a precise speci�cationfrom which the implementors of compilers and simulators for the language can work.Finally, it should not be forgotten that hardware can be directly described in logicwithout using any HDL and this representation is likely to be the easiest one to reasonabout. An important research topic, dual to the approach taken here, is to develop CADtools such as simulators and synthesizers that act directly on logic representations andthereby avoid the need for the kind of e�ort described in this paper [2, 18, 21]. In themeantime it is essential for HDLs to be modelled in logic if theorem-proving is to beapplicable to hardware design.AcknowledgementsRichard Boulton, John Harrison and John Herbert were supported by a SERC/DTI grantHOL Veri�cation of ELLA Designs (IED project 1129). Andrew Gordon was supportedby the CHEOPS project: Higher Order Logic supported design for Complex Data Pro-cessing Systems, (Esprit Basic Research Action 3215 managed by IMEC: Inter-universityMicro-Electronics Centre, Belgium). John Van Tassel was supported by grant numberAFOSR-91-0246 from the United States Air Force O�ce of Scienti�c Research entitled

Veri�cation of VHDL Designs. All three projects make use of theorem proving toolswritten by Dr Tom Melham.References[1] R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel, `The HOL Veri�cation ofELLA Designs', in Proceedings of the International Workshop on Formal Methods inVLSI Design, Miami, January 1991.[2] A. J. Camilleri, `Simulating Hardware Speci�cations within a Theorem-ProvingFramework', International Journal of Computer Aided VLSI Design, 2 (3), pp. 315{337, 1990.[3] A. Church, `A Formulation of the Simple Theory of Types', The Journal of SymbolicLogic, Vol. 5 (1940), pp. 56{68.[4] Computer General Electronic Design, `The ELLA Language Reference Manual, Issue4.0', 5 Greenways Business Park, Bellinger Close, Chippenham, Wiltshire, SN15 1BN,England, 1989.[5] J. Darlington, P. Harrison, H. Khoshnevisan, L. McLoughlin, N. Perry, H. Pull,M. Reeve, K. Sephton, L. While, S. Wright. `A Functional Programming Environ-ment Supporting Execution, Partial Evaluation and Transformation', in PARLE 89Parallel Architectures and Languages Europe, volume 365(1) of Lecture Notes in Com-puter Science, Springer-Verlag, 1989.[6] G. Durrieu, K. Kessaci, and M. Lemâ�tre. `Transe: An Experimental TransformationAssistant Software for Digital Circuit Design', in R. Sharp and J. Staunstrup, editors,Workshop on Designing Correct Circuits, Lyngby, January 1992.[7] D. Genin, P. Hil�nger, J. Rabaey, C. Scheers, and H. de Man. `DSP Speci�cationusing the Silage language', in IEEE International Conference on Acoustics, Speechand Signal Processing, pp. 1057{1060, April 1990.[8] A. D. Gordon, `A Mechanised De�nition of Silage in HOL', Internal Report, ESPRITBRA 3215, Computer Laboratory, University of Cambridge, 1992.[9] A. D. Gordon, `The Formal De�nition of a Synchronous Hardware-Description Lan-guage in Higher Order Logic', Submitted for publication, January 1992.[10] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, `Edinburgh LCF: A MechanisedLogic of Computation', volume 78 of Lecture Notes in Computer Science, Springer-Verlag, 1979.[11] M. J. C. Gordon, `Why Higher-Order Logic is a Good Formalism for Specifying andVerifying Hardware', in Formal Aspects of VLSI Design, edited by G. J. Milne andP. A. Subrahmanyam, North Holland, 1986.

[12] M. J. C. Gordon, `HOL: A Proof Generating System for Higher-Order Logic', inVLSI Speci�cation, Veri�cation and Synthesis, edited by G. Birtwistle and P. A.Subrahmanyam, Kluwer, 1988.[13] M. J. C. Gordon, `Mechanizing Programming Logics in Higher Order Logic', in Cur-rent Trends in Hardware Veri�cation and Automated Theorem Proving , edited by G.Birtwistle and P. A. Subrahmanyam, Springer-Verlag, 1989.[14] F. K. Hanna and N. Daeche, `Speci�cation and Veri�cation using Higher-Order Logic:A Case Study', in Formal Aspects of VLSI Design: Proceedings of the 1985 EdinburghWorkshop on VLSI, edited by G. J. Milne and P. A. Subrahmanyam, North-Holland,1986, pp. 179{213.[15] F. K. Hanna and N. Daeche, `Dependent Types and Formal Synthesis', inMechanizedReasoning and Hardware Design, edited by C. A. R. Hoare and M. J. C. Gordon,Prentice-Hall International Series in Computer Science, Prentice-Hall, 1992.[16] P. N. Hil�nger, `Silage, a High-Level Language and Silicon Compiler for Digital SignalProcessing', in IEEE Custom Integrated Circuits Conference CICC{85, pp. 213{216,Portland, Oregon, May 1985.[17] P. N. Hil�nger, `Silage Reference Manual', Computer Science Division, University ofCalifornia, Berkeley, December 1987.[18] W. A. Hunt, Jr., `The Mechanical Veri�cation of a Microprocessor Design', in FromHDL Descriptions to Guaranteed Correct Circuit Designs, edited by D. Borrione,North Holland, 1987.[19] W. A. Hunt, Jr. and B. C. Brock, `A Formal HDL and its Use in the FM9001Veri�cation', in Mechanized Reasoning and Hardware Design, edited by C. A. R.Hoare and M. J. C. Gordon, Prentice-Hall International Series in Computer Science,Prentice-Hall, 1992.[20] Institute of Electrical and Electronics Engineers, `IEEE Standard VHDL LanguageReference Manual', IEEE Press, New York, 1988.[21] M. Leeser, `Using Nuprl for the Veri�cation and Synthesis of Hardware', in Mech-anized Reasoning and Hardware Design, edited by C. A. R. Hoare and M. J. C.Gordon, Prentice-Hall International Series in Computer Science, Prentice-Hall, 1992.[22] P. Lippens, `De�ning Control Flow from an Applicative Speci�cation', Internal Re-port, Philips Research Laboratories, Eindhoven, December 22, 1988.[23] H. de Man, J. Rabaey, P. Six, and L. Claesen, `Cathedral{II: A Silicon Compiler forDigital Signal Processing', IEEE Design and Test, 3(6):73{85, December 1986.[24] T. F. Melham, `Using Recursive Types to Reason about Hardware in Higher OrderLogic', in The Fusion of Hardware Design and Veri�cation: Proceedings of the IFIPWG 10.2 Working Conference, Glasgow, July 1988, edited by G. J. Milne, North-Holland, 1988, pp. 27{50.

[25] T. F. Melham, `Automating Recursive Type De�nitions in Higher-Order Logic', inCurrent Trends in Hardware Veri�cation and Automated Deduction, edited by G.Birtwistle and P. A. Subrahmanyam, Springer-Verlag, 1988.[26] T. F. Melham, `A Package for Inductive Relation De�nitions in HOL', in Proceed-ings of 1991 International Workshop on the HOL Theorem Proving System and itsApplications, IEEE Computer Society Press, 1991.[27] Mentor Graphics Corporation, Wilsonville, Oregon, `DSParchitect DFL User's andReference Manual', December 1991.[28] R. Milner, M. Tofte, and R. Harper, `The De�nition of Standard ML', MIT Press,Cambridge, Mass., 1990.[29] J. D. Morison and M. G. Hill, `A Formal De�nition of the Static Semantics of ELLA'sCore', Report No 91024 Royal Signals and Radar Establishment, August 1991.[30] L. Nachtergaele, `User Manual for the S2C Silage to C Compiler', IMEC, Leuven,March 22, 1990.[31] G. Plotkin, `A Structural Approach to Operational Semantics', Technical Re-port DAIMI FN-19, Computer Science Dept., Aarhus Univ., September 1981.[32] J. G. Samsom, L. J. M. Claesen, and H. J. de Man, `Correctness Preserving Trans-formations on the Hough Algorithm', in CompEuro 92, The Hague, May 4{8, 1992.[33] V. Stavridou, S. M. Eker, and S. Aloneftis, `FUNNEL: A CHDL with Formal Se-mantics', preprint 1991.[34] J. P. Van Tassel, `A Formalisation of the VHDL Simulation Cycle', Technical Re-port 249, University of Cambridge Computer Laboratory, March 1992.[35] I. Verbauwhede, `VLSI Design Methodologies for Application-Speci�c Cryptographicand Algebraic Systems', PhD Thesis, Catholic University, Leuven, July 1991.

