Experience with embedding hardware description
languages in HOL

Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert,
John Van Tassel

University of Cambridge Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge, CB2 3QG, England.

Abstract

The semantics of hardware description languages can be represented in higher order logic.
This provides a formal definition that is suitable for machine processing. Experiments are
in progress at Cambridge to see whether this method can be the basis of practical tools
based on the HOL theorem-proving assistant. Three languages are being investigated:
ELLA, SILAGE and VHDL. The approaches taken for these languages are compared and
current progress on building semantically-based theorem-proving tools is discussed.

Keyword Codes: F.4.1; B.7.2; 1.2.3
Keywords: Mathematical Logic; Integrated Circuits, Design Aids;
Deduction and Theorem Proving.

1 Introduction

Hardware can be directly specified in the notation of mathematical logic [11, 14, 18], but
this form is unacceptable to many designers and is also unsuitable for input to CAD tools
such as simulators and circuit synthesizers. The work described here aims to support
the use of conventional hardware description languages (HDLs) within a general theorem-
proving environment. The approach taken is semantic embedding in higher order logic
(13, 19], and the theorem-proving infrastructure is provided by the HOL system [12].
Three languages are being investigated by separate teams: ELLA (by Boulton, Harrison
and Herbert), SILAGE (by A. Gordon) and VHDL (by Van Tassel). The HOL-ELLA
project [1] is the largest effort and has been running longest. The other two projects have
benefited from experience and tools arising from early experiments with ELLA. Note that
none of the three languages considered has a formal semantic specification; constructing
suitable specifications is a major part of each of the projects.

The three projects surveyed here all have different goals. The aim of the HOL-ELLA
project was originally to explore the combination of conventional CAD tools (namely the
ELLA simulator) with formal proof (namely HOL). The intention was to build a hybrid

system combining HOL and ELLA. This hybrid would then be used to explore design
methodologies that mixed conventional methods with formal methods. As the project
evolved, the emphasis shifted to the embedding of ELLA in HOL; the current goal is
to produce a self-contained prototype design environment entirely within HOL. This is
being driven by two examples: a simple real time controller and a floating-point square-
root chip. The designs for these will be expressed in ELLA and then be verified against
specifications written directly in logic.

The aim of the HOL-SILAGE project, which is part of the ESPRIT CHEOPS project,
a collaboration between Cambridge, IMEC in Leuven, and Philips in Eindhoven, is to
formalize the semantics of SILAGE and to use the result to validate SILAGE-to-SILAGE
transformations. Eventually it is hoped to implement a transformation manager that
will permit users to prove new transformations prior to their being added to a library.
Current work (in collaboration with Catia Angelo of IMEC) concentrates on using the
SILAGE semantics to prove correct examples from practical applications of SILAGE at
IMEC.

The aim of the HOL-VHDL project is to explore the possibility of providing a formal
semantics for a subset of VHDL that formalizes the spirit of the existing informal se-
mantics. It is eventually hoped to use the semantics for a variety of purposes, including
the validation of algebraic laws for manipulating VHDL processes. However, the current
initial phase of the work is concentrating on finding a tractable semantics.

The general technique of embedding a conventional notation, such as a hardware de-
scription language, in a mechanized formal system, such as HOL, offers several possible
benefits:

e formal definition of the semantics of various notations;

mechanized support for syntax and type checking;

a framework for establishing metatheorems about the notation (such as consistency);

support for formal proof about programs;
e derivation of proof rules for notation (such as equational transformations);

e verification of compilers.

The most important part of doing a formal embedding is the definition of semantics.
The HDLs presented here do not have a fully defined formal semantics. The few HDLs
which have been designed with semantics as the primary consideration (e.g., Funnel [33])
are not part of CAD environments, and are not yet used in practical applications.

In defining a formal semantics for the HDLs, it may only be possible to give a semantics
for a subset of the notation. There is often a balance between obtaining a useful subset of
the notation and having a tractable formal semantics. A wider subset might be covered
by re-defining the intended meaning of some constructs so that the formal semantics
remains tractable. This departure from the ‘correct’ semantics must be treated carefully
(cf., Section 7.7).

HOL is a foundational system which means that one can define new constants in a
way that does not affect the logical consistency of the system. This is important as it
means the embedding of an HDL can be achieved using these definitions rather than by
introducing arbitrary axioms to describe the semantics.

The organization of the paper is as follows. Higher order logic is briefly reviewed
in Section 2. In Section 3, the similarities and differences between the three hardware
description languages are discussed. Section 4 discusses the general principles of semantic
embedding. Section 5 gives an overview of the projects. The circuit used to illustrate the
semantic embeddings of the three languages is described in Section 6. Sections 7, 8 and 9
outline the embeddings of ELLA, SILAGE and VHDL, respectively. Finally, in Section 10
the lessons learned so far are discussed.

2 Higher order logic

Higher order logic is a generalization of first-order logic that allows variables to range over
functions and predicates. There are many kinds of higher order logic, but they all impose
some kind of type discipline on the use of functions and predicates (types are required to
avoid inconsistency). Higher order logics differ in the sophistication of the type system
they provide. One of the simplest type systems is due to Church [3] and is similar to
the programming language type disciplines found in functional languages like ML and
Miranda. This is the system that underlies the work described here, but knowledge of
the details will not be needed. More elaborate type systems supporting ‘dependent types’
and ‘subtypes’ are sometimes used for hardware specification [15, 21] and provide, at a
cost, greater expressive power. However, simple types are adequate for the needs of this
paper (though it is probable that some notational improvement would be possible if more
sophisticated types were available).

Standard predicate calculus notation will be used. In higher order logic there is a
single syntactic class of terms. There is no need (as there is in first-order logic) for a
separate class of formulae, because these can be identified with Boolean-valued terms.
The constants T and F denote ‘true’ and ‘false’, respectively. Predicates will be identified
with Boolean valued functions. If P is a predicate, then P(x) means ‘@ has property P’.
Often the brackets will be omitted and just P x will be written. If ¢, ¢; and ¢, stand for
Boolean terms, and t[z] stands for some Boolean term containing the variable z, then:
-t means ‘not t’, t; A ty means ‘t; and t5’, t; V ty means ‘t; or ty’, t; = 15 means
‘t; implies to’, V. t[z] means ‘for all x it is the case that t[z]|’, Jz. t[z] means ‘for some
x it is the case that t[z]” and ez. t[z] (a notation due to Hilbert) denotes an arbitrarily
chosen value a such that t[a] (if no such value exists then an arbitrary value is chosen).
The epsilon operator is generally very useful for denoting terms known to exist without
introducing additional constant symbols. If ¢; and ¢; are terms of the same type, then
t, =ty means ‘t; equals t,’(i.e., t; and ¢y denote the same value), in the case that ¢; and
ty are functions, this means that they produce the same result when applied to the same
arguments (this is called eztensionality). The special notation Az. ¢t denotes the function,
which is sometimes written informally as x — ¢, that maps an argument a to the result
of substituting a for x in t. For example, Az. = + 1 denotes the successor function (i.e.,

n +— n+ 1). The notation: (t — ¢, | t2) means the conditional ‘if ¢ then ¢, else ¢, .

3 Comparison of HDLs

The three languages ELLA, SILAGE and VHDL differ along several dimensions, including
intended applications, underlying behavioural model and generality. This makes it hard
to compare them. Furthermore, the work on embedding each language has been done
by different people having different stylistic tastes in writing formal specifications, and
has been driven by different project aims. This section compares the three hardware
description languages, while Section 5 gives an overview of the projects.

3.1 Size and style of languages

ELLA [4, 29] is not especially big for an industrial-strength language, but is considerably
larger than the toy languages often used in research into formal methods and computer
language semantics. The language is mostly functional in style though there are some
imperative features. These require some notion of state within the semantics, whereas
for the purely functional subset it is possible to give a semantics in terms of types and
functions.

SILAGE [7, 16, 17] is a small dataflow language designed for specifying digital signal
processing (DSP) devices. There are several dialects of SILAGE and no agreed standard;
the HOL-SILAGE project deals with the IMEC dialect. The language is declarative in
style. A program is an unordered series of equations specifying the values of signals.

VHDL [20] is a large HDL. In syntax it is reminiscent of Ada, but the similarity ends
there. There are two main classes of statements in the language: concurrent and sequen-
tial constructs. Architectural elements are made up of concurrent statements that contain
sequential statements. The syntax is in the style of an imperative programming language.
The VHDL tools use an event-driven simulator, or interpreter. An operational-style se-
mantics is therefore particularly suitable for VHDL, whereas both ELLA and SILAGE lend
themselves to denotational techniques.

3.2 Level of abstraction

ELLA takes a fairly high-level view of hardware, though designs can be described at
various levels of abstraction. The ability to declare new datatypes makes this easy.
VHDL can be used to describe hardware from a high level to a low level. The ideal
design cycle would see VHDL used to describe the high-level behaviour of a system and
throughout the expansion of the design into an implementation.
SILAGE programs can be thought of as signal flow graphs, and are intended to be free
of any architectural commitment.

3.3 Application areas of each language

ELLA is intended as a general-purpose hardware description language, and has the nec-
essary infrastructure to support this. The language takes a structural view of hardware

where designs are built up from components which are declared as functions or macros.
VHDL is, like ELLA, meant to be used as a general-purpose language. Each is intended
to support design from initial specification to implementation.
SILAGE is intended for high-level descriptions of DSP circuits in areas such as image
processing or cryptography. SILAGE is not meant for low-level description of circuits; such
descriptions of SILAGE programs are intended to be synthesized automatically.

3.4 Differences in timing models

The ELLA language has a timing model based on an implicit, universal time base. Time is
discrete and has a beginning. All variables in ELLA texts represent sequences over time.
Special constructs such as the DELAY operator refer explicitly to time. The ELLA timing
model can be represented in HOL using natural numbers, and signals as functions from
these natural numbers to the type of the data. For components with state it is possible
to specify initial values.

The IMEC dialect of SILAGE also makes use of a global clock, and all signals are
produced in phase at the same rate. SILAGE expressions denote infinite arrays of sample
values, indexed by time. Time is represented by the integers. Computation starts at time
0, and negative times are used only to initialize delays. Multirate and aperiodic signals
can be expressed in other dialects but are not present in IMEC SILAGE, and hence not
dealt with in HOL-SILAGE.

VHDL makes use of a non-decreasing global clock which begins at time 0. Because it
is event-driven in nature, VHDL’s clock does not advance in regular discrete time steps.
Instead, it moves forward on demand to the nearest collection of events.

4 Semantic embedding
There are two approaches to embedding HDLs in logic:

(1) Represent the abstract syntax of HDL programs by terms, then define within the
logic semantic functions that assign meanings to the programs.

(2) Only define semantic operators in the logic and arrange that the user-interface parse
input from HDL syntax directly to semantic structures, and also print semantic
representations in HDL syntax.

These two approaches will be referred to as deep embedding and shallow embedding,
respectively. An embedding is deep or shallow depending on whether the syntax of the
HDL is represented by a HOL type or ML type respectively. Each of these has advantages
and disadvantages. The advantage of deep embedding is that it allows reasoning about
classes of programs, since one can quantify over syntactic structures [24]. Setting up HOL
types of abstract syntax and semantic functions can be a lot of work. The advantage
of shallow embedding is that this work is avoided; the interface handles the mapping
between HDL programs and their semantic representations. Since this mapping is outside
the logic it is not subject to the rigour of mechanized formal specification and proof,

and so the resulting system is less secure. Furthermore, it is not possible to directly
state theorems about classes of programs, since program structures are not represented
in the logic (e.g., variables ranging over programs are not available). However, it may
be possible to formulate general results at the semantic level by proving properties of
semantic operators (this is what is being done for SILAGE), but there may be results that
can only be expressed by saying that all HDL programs of a certain form have a particular
property.

Both the HOL-ELLA and the HOL-SILAGE projects are using shallow embedding: only
the semantics is represented in the HOL logic. The HOL-VHDL project uses deep embed-
ding, since it aims to model in the logic the VHDL simulation cycle, which is represented
by an interpreter on program texts.

The approach to the semantics of ELLA and SILAGE is quite similar; they are both
given ‘denotationally’, but the denotations of ELLA programs are functions, whereas the
denotation of SILAGE programs are relations. However, in both cases the meaning of a
program is couched in terms of infinite sequences of values, representing signals. The
semantics of VHDL, on the other hand, is quite different. This is completely operational
and consists in a formalization within higher order logic of an idealized VHDL simulator.
Reasoning about VHDL is conducted by reasoning about runs of the simulator.

5 Overview of projects

There are different concerns when it comes to embedding different HDLs in HOL. The
original aim of the HOL-ELLA project was to explore the combination of conventional
CAD tools with a mechanical theorem prover. The emphasis has shifted towards the
embedding of ELLA in HOL, but the original aims have had a significant influence on the
choice of the subset of the ELLA language in use.

Since the project is industrially oriented, the subset chosen was quite substantial. A
declarative (functional) subset was selected since this made the embedding in HOL more
tractable. However, many of the more complex language structures left out of the sub-
set (e.g., sequences) can be thought of as abbreviations of longer texts and might be
transformed into the subset (see [29]).

Since the connection between conventional tools and theorem proving techniques was
being investigated, the HOL style of definition was closely adhered to so that the applica-
bility of known techniques to a real hardware description language could be investigated.
This, together with the difficulties of formally supporting a substantial subset of a real
hardware description language led to the use of a shallow embedding in which ELLA
declarations become HOL definitions.

Shallow embedding has the disadvantage that only specific ELLA texts can be reasoned
about formally because ELLA texts are not explicitly represented in the logic. However,
it is still possible to prove generic properties of ELLA constructs below the declaration
level. One advantage of transforming ELLA declarations into HOL definitions is that they
can be freely mixed. In particular, behavioural specifications can either be given in ELLA
and translated or can be written directly in HOL. Shallow embedding is simpler than deep
for large languages, since it avoids building infrastructure for the syntax of the language

within the logic.

The semantics in HOL was originally written to reflect very accurately the behaviour
of the industrial compiler and simulator for ELLA. However, with the change of emphasis
of the project the semantics has been simplified to make formal reasoning easier. The
cost is a minor inconsistency between the semantics and the behaviour of the ELLA
simulator. The ELLA designers have indicated that the new semantics accurately reflects
their original intention.

The eventual goal of the HOL-SILAGE project is to build an interactive system to
manage source-to-source meaning-preserving transformations of SILAGE programs. There
being no existing formal semantics, a substantial subset of SILAGE has been defined using
set theory and logic. The HOL-SILAGE subset contains all the IMEC dialect, except that
the type system is much simplified, and many arithmetic, bitwise and vector operations
are omitted. This policy was adopted because examples of program transformations at
IMEC have exclusively dealt with control flow rather than with details of arithmetic. The
definition has been mechanized as an ML program mapping SILAGE syntax into the HOL
logic. Experiments are under way to see how the HOL system can be used alongside the
IMEC simulator and synthesizers to support transformational design of SILAGE programs.

The goals of the VHDL project are twofold. The first one is to develop a tractable
semantics for a subset of VHDL. The second is to make use of the semantics to reason
about VHDL programs. Support will be offered for reasoning about properties of indi-
vidual VHDL programs, as well as for proofs involving two VHDL texts purporting to be
equivalent.

VHDL is a radically different language from both ELLA and SILAGE. Its semantics, even
at the informal level, is specified by the way different language constructs interact with
the VHDL simulation engine. This lends itself to a more operational style of semantics
than those used in the other two projects. This particular style is advantageous in that
it will allow us to work with general classes of VHDL programs, and to derive useful laws
about their operation. It also lends itself well to capturing the intuition behind the way
VHDL users actually think about their programs. A side effect of developing the semantics
of VHDL in this manner is the specification of what constitutes a VHDL simulator. This
can then be used as a design document for language implementors.

At the current stage of development, only an individual iteration of the simulation loop
has been formalized. Work is under way to incorporate this individual simulation cycle
with a more complete view of the VHDL simulation engine. Nevertheless, it is possible
to make use of the single iteration to give a flavour of the kind of reasoning involved in
embedding VHDL in HOL.

6 An example circuit

The example described in this section is based on the example in [12]. It is not claimed
to be typical of real design, but is merely intended to illustrate the HOL semantics for
the three hardware description languages. The example is a bit-serial parity checker. Its
design is shown in the schematic diagram below.

in

11 12

ONE MUX

REG 13 | 14

S

out

This works by storing the parity of the sequence input so far in the lower of the two
registers. Each time ¢rue is input at in, this stored value is complemented. Registers
are assumed to ‘power up’ in a state in which they are storing false. The second register
(connected to ONE) initially outputs false and then outputs true forever. Its role is just to
ensure that the device works during the first cycle by connecting the output out to the
device ONE via the lower multiplexer. For all subsequent cycles out is connected to 13 and
so either carries the stored parity value (if the current input is false) or the complement
of this value (if the current input is true).

7 Embedding ELLA

In ELLA, designs are built up from components which are declared as functions or macros
(essentially parameterized functions). These can be implicitly connected together by func-
tion application. Constructs are also present which allow the designer to make connections
between components explicitly.

7.1 ELLA text for the parity checker

The following is a complete specification in ELLA of the parity checker. This gives a
flavour of the language; the example is explained in more detail below.

TYPE bit = NEW (hi | lo).

FN INV = (bit: in) -> bit:

CASE in
OF lo: hi,

hi: lo
ESAC.

FN MUX = (bit: cntl inl in2) -> bit:

CASE cntl
OF hi: ini,

lo: in2
ESAC.

FN REG = (bit) -> bit: DELAY(lo, 1).

FN PARITY_IMP = (bit: in) -> bit:
BEGIN
MAKE INV: 11,
MUX: 13 out,
REG: 12 15.
JOIN (in, 11, 12) -> 13,
hi -> 15,
(15, 13, hi) -> out,
out -> 12,
12 -> 11.
OUTPUT out
END.

The first line of the text is a type declaration. All types used in ELLA have to be
declared explicitly; there are no primitive types. In the above example the basic type is
declared as a two-valued enumerated type bit, which has the values hi and lo. Intuitively
this corresponds to the two possible logic levels on a wire. Note however that an ELLA
datatype is an abstract object and the nature of its mapping onto a wire or wires is not
defined as part of the ELLA text — as a matter of policy ELLA abstracts away from such
low-level implementation details.

The ELLA text then defines four different circuit blocks, respectively an inverter, a
2-to-1 multiplexer, a D-type latch or ‘register’, and finally a complete parity checker.

ELLA includes no logic gates or other circuit elements as primitive. The definitions
of INV and MUX illustrate one of the main tools for constructing such gates, namely the
CASE statement. This is interpreted like a CASE statement in an Algol-like programming
language. For example, the CASE statement in the definition of INV says that if the input
is 1o then give the output hi, and if the output is hi give the output lo.

All elements built from such primitives are delay-free. The REG element introduces time
delays using the DELAY primitive. The declaration of REG simply says that the output has
value 1o at time zero, and thereafter the input delayed by one time unit.

The most complex declaration is the last one, specifying how the entire circuit is con-
structed from the above-mentioned elements. The MAKE statement declares names for the
instances of each sub-element; for example 11 represents the only inverter, while 13 and
out are both multiplexers. The JOIN statement specifies, as its name suggests, how the
parts are then connected.

In a JOIN statement the names of the elements have a dual role. When they appear on
the left of an arrow, they represent the output of that element; conversely on the right of
an arrow, they represent its input. Then the arrow simply specifies how the output of an
element or elements is connected to the input of others. For example out -> 12 means
connect the output of the multiplexer out to the input of the register 12.

The component ONE, which appears in the description of the circuit in Section 6, is not
used in the ELLA description. Instead the value hi is used directly as an input.

7.2 The semantics of ELLA in HOL

ELLA constructs are translated into HOL via a shallow embedding which reflects the
intended meaning of constructs in the ELLA subset. The subset is quite substantial, but
avoids parts of ELLA which do not have a simple functional semantics. Note that there is
no formal semantics of ELLA against which to judge this embedding — the main point of
reference is the ELLA simulator, but this is imperfect in various respects. Since ELLA is
embedded in logic by means of conservative extension, the semantics is at least consistent
in the sense of not leading to logical contradiction.

The terms of HOL produced by the translation are pure logical terms, but include
various semantic constants which are constructed using HOL’s definitional mechanisms.
Although it is possible (and often necessary as part of a proof of correctness) to expand
these constants into their primitive logical meanings, the constants are useful in main-
taining a close syntactic link between an ELLA text and the result of translation into
HOL.

This makes the translation process simpler and more modular, keeps the size of the
resulting HOL more manageable, and most importantly allows an approximate inverse
mapping back to ELLA, allowing the pretty-printing of HOL terms as ELLA text. This
last consideration justifies the independent existence of semantic constants which simply
correspond to things like equality, which already have a name in HOL.

Before launching into an examination of the semantics of the parity checker in the
HOL-ELLA system, a few points are in order about the general scheme.

ELLA types are modelled using corresponding type definitions in higher order logic.
These are not primitive in HOL, but are made available in terms of primitive types using
a procedure written by Tom Melham [26].

These primitive types may be built up into composites, which may be thought of as
representing collections of wires such as buses. These are modelled as lists or tuples in
HOL, depending on precise structural details. These will not feature in our example, so
will not be discussed further.

Time in ELLA is modelled by the natural numbers starting at zero. A type synonym
time is provided for the type of natural numbers, but this is purely surface syntax, so
all the HOL theory of natural numbers applies to time — for example it is possible to
perform proofs by induction to show that a certain property holds for all time.

A signal in ELLA is simply represented as a function from time into the corresponding
type of values. Such signals are the objects which are generally manipulated in a HOL
proof of correctness: higher-order logic places no inconvenient restrictions on their use.
In the example which follows, the reader may simply identify ‘wire’ with ‘function from
time to bit’.

7.3 Translating CASE statements
The definition of the INV block is translated into the following piece of HOL:

‘ INV in = CASE in[OF[(CONST lo,SIGNAL hi); (CONST hi,SIGNAL 1lo)]](ex.T)

Although not especially readable, the correspondence with the ELLA text should be
fairly clear. The semantic constant CONST essentially corresponds to equality, so CONST 1o
means 1S equal to lo. The semantic constant SIGNAL takes a constant and generates a
signal which has that value for all time. The CASE and OF constants behave in the way
one would expect: when applied to a signal x, the entire CASE statement means: look at
the list of pairs given as an argument to OF, and try applying the first element of each
pair to the signal x at the current time. For instance, if the CONST lo predicate returns
true, it means that the signal has value 1o at the current time. For the first predicate
which succeeds, the output is the second element of the corresponding pair. If none of
them succeed, the output is the term at the end (£x.T), the unknown value.

The unknown value is discussed in more in more detail in Section 7.7, but it is not
important for this example because every signal has either value hi or 1o at any time,
so the default clause of the case statement is never reached. This can be proved in HOL
using a theorem returned by the type definition package, and using this fact as well as
expanding with the definitions of the semantic constants, the following theorem can be
proved, which specifies in pure HOL the behaviour of the inverter:

Vin t. INV(in) t = (in t = 1lo) — hi | lo

This may be read as: the output of the inverter, given the input in, at time t is either
hi or 1o when the signal in at that time is 1o or hi, respectively. Clearly this reflects the
intended meaning of the inverter.

7.4 Translating delays

The semantics of delays is quite simple. The subset of ELLA handled by the HOL-ELLA
system allows only unit delays, and these are implemented by a semantic constant DELAY1
which has the following property:

Vin t. DELAY1(in)(t + 1) = in(t)

The above theorem states that the output of the delay element at time ¢+ 1 is equal to
its input at time ¢. The behaviour at time zero is specified in a slightly involved way, but
it is fairly easy to prove that the output of REG has value 1o at time zero, as requested in
the declaration.

7.5 Translating arbitrary networks

The MAKE and JOIN statements in ELLA allow more or less arbitrary connections between
functional blocks. This means that it is not possible in general to translate the ELLA
into a HOL function — HOL functions are all total, and so cannot reflect unrealizable
configurations like wiring the input and output of a (zero-delay) inverter together.

The HOL-ELLA system therefore uses the e-operator. Intuitively, a network is rep-
resented as the choice term meaning some function which has the appropriate property,
namely the property of satisfying a set of equations representing connections. Internal
wires are represented as existentially quantified variables, as is conventional in hardware
verification in pure HOL.

This means that no restrictions are placed on the translation process, nor any proof
obligations involved in making the translation go through. However it leaves some work to
do in HOL afterwards to show that the resulting block does represent a realizable function
(and indeed, this may be impossible, but that would be indicative of a design error such
as wiring outputs together).

There do exist various proof tools which provide automatic support for the process.
Some of these tools are specific to the HOL-ELLA system, whereas others are common to
hardware verification in pure HOL. A good example is unwinding (removal of existentially
quantified ‘internal wires’). In particular, most sensible circuits without loops can be
reduced to an equivalent functional form without user proof effort.

The case of the parity checker is slightly more complex since it does feature a loop.
However the output at time ¢ is only fed back as an input at time £+ 1, so it is a relatively
straightforward exercise to define a primitive recursive function in HOL and prove it is
the unique function satistying the constraints. This shows that the e-term representing
the parity checker is equal to this function.

The result is a pure HOL function representing the parity checker. This can then be
proved in HOL against its specification using standard methods.

7.6 Proof methodology in the HOL-ELLA system

The general objective of the HOL-ELLA project is to investigate how formal verification
can be merged with existing CAD tools. Although this is notionally tied to ELLA, the
lessons learned and proof tools written have had wider application.

Since most hardware engineers are unfamiliar with the formal details of logical proof, it
was felt to be worth exploring the possibility of working with an ELLA representation of
the underlying logic. This is the rationale behind incorporating an ELLA pretty-printer
into the system. However it seems unlikely that ELLA offers the expressive power to state
many desirable properties of a specification. (On the other hand it should be possible to

use the system to justify, with respect to our semantics, the correctness of appropriate
ELLA transformations.)

In the case studies so far undertaken, the usual method is to eliminate the semantic
constants and generally simplify to a logical term representing the implementation. This
is then proved correct with respect to a specification (also a pure logical term) just as in
normal hardware verification in pure HOL. The simplification is assisted by various proof
procedures.

7.7 Lifting

ELLA features an unknown value, which is denoted by ? in ELLA texts. This is encoded
in the HOL translation using the s-operator applied to a predicate which is always true.
This seems to be appropriate in that it represents an unknown value of the appropriate
signal type. However this does not entirely reflect the behaviour of the ELLA simulator
in all contexts.

In a CASE statement, ‘choosers’ (that is, the set of values of a given type to be matched
against) may be written as a type name. This matches any value of the relevant type,
including the unknown value. However a chooser consisting of an explicit enumeration
of all the values of a type does not match the unknown value. This means that in this
context, the unknown value really behaves like an extra value in the relevant type.

This is not possible to implement in the straightforward interpretation of the unknown
value explained above, because although an e-term is an unknown value of a given type,
it 2s known (to be more precise, is provable in HOL) that it is equal to one of the possible
values of that type.

Because of this mismatch, the first version of the HOL-ELLA system used a more elab-
orate semantics featuring lifting. This means that for every type declared in ELLA, the
type in the HOL translation consists of one special unknown value denoted by UU and all
the values corresponding to a straight implementation of the ELLA type. Values other
than the unknown element are denoted by LIFT t where t is a member of the enumerated
type.

The presence of lifting makes proofs in HOL significantly more difficult, as well as
obscuring the intuitive meaning of what would otherwise be quite a clear semantics. The
problems lie deeper than simply having the operators LIFT and UNLIFT scattered through
the proof, although the unpleasantness of that should not be understated.

To get a lifted output at a particular time, circuit elements normally need lifted inputs
at that time (or in the case of a delay block, at the previous time). For example the
following might be true of an inverter:

(in t = LIFT x) = (INV(in) t = LIFT(—x))

Unfortunately, theorems like the above are very inconvenient to use, because they
cannot be used as (unconditional) rewrite rules. It is tempting to use instead theorems
of the form:

INV (LIFT o in) t = LIFT (—(in t))

Here ‘o’ represents function composition. This theorem is a consequence of the first
theorem above, but the reverse is not true because the second theorem assumes that
the output is lifted at all times rather than just at the current instant. For a circuit
without loops, this might be adequate, because one would normally assume that inputs
are lifted. However if the circuit contained loops (presumably with one or more units of
delay incorporated) it would be impossible to prove using theorems of the second form
that the output is lifted for all time. It is therefore necessary to use theorems of the
first form. The proof then becomes possible — however it is still necessary to perform a
nontrivial proof by induction that a circuit has a lifted output at all times.

7.8 Experience with the HOL-ELLA system

The current version of the HOL-ELLA system has abandoned the semantics with lifting,
largely because of the greater complexity of the proofs. In fact, it seems from discussions
with ELLA’s designers that in any case, the semantics of the simulator should not be
regarded as a model implementation, and that the new HOL-ELLA semantics may more
accurately reflect their original intentions.

Work is still in progress on the new version (with a lifting-free semantics) of the HOL-
ELLA system. The pretty-printer and some parts of the translator have not yet been
updated to work with the changed definitions of the semantic constants.

Case studies so far undertaken are the parity checker discussed above, a proof of equiv-
alence of two ELLA texts (parallel and recursive formulations of an n-bit adder), and the
verification against its functional specification of an elaborate 6-bit counter. The last
proof has been performed in both versions of the ELLA semantics, and consequently pro-
vides real experience to justify the claims above that the version without lifting makes
proofs significantly easier.

Work is currently under way on more complex case studies: proving a floating-point
square root chip correct with respect to a specification in terms of real numbers, and
proving correctness of a simple microprocessor.

8 Embedding SILAGE

The goal of this section is to motivate and sketch the embedding of SILAGE in HOL so that
it can be compared to the embeddings of VHDL and ELLA. All the embeddings confer
logical meanings on specific programs, but what sets the HOL-SILAGE approach apart
from the others is the emphasis on a formal account of the language definition itself. This
section is partly based on material from the definition of the HOL-SILAGE subset [8] and
its summary [9].

Section 8.1 introduces transformational design of SILAGE programs, the motivation
for the HOL-SILAGE project. The language is introduced in Section 8.2 by way of the
parity checker example. Section 8.3 shows how SILAGE definitions can be treated as HOL
predicates, and then Section 8.4 sketches how this treatment enables transformation design
to be rendered as theorem proving in HOL. Sections 8.5 and 8.6 sketch the formal definition
and how it has been mechanized as an ML program respectively. Finally, Section 8.7

summarizes the achievements so far, and points to future goals.

8.1 Transformational design

The design process used in practice at IMEC is to develop a SILAGE program using a
software simulator [30], and then to synthesize for a particular architecture — bit-serial
or microcoded — with one of the CATHEDRAL synthesis systems [23].

Silicon compilers such as CATHEDRAL can cope mechanically with all the details of
mapping a SILAGE program’s high-level behavioural description to a low-level imple-
mentation, but they cannot currently find an implementation that is best in terms of
clock-rate or area. To obtain high performance, designers need to transform their initial
SILAGE programs into tuned programs, that express the same behaviour but have a better
performance against a particular silicon compiler and architectural requirements. There
are several reports of experience of transformational design using SILAGE [22, 32, 35].
At present the only way to check that the initial and tuned programs have the same
behaviour is to use simulation.

The goal of the HOL-SILAGE project is to obtain an interactive system that under the
guidance of the designer can mechanically prove that the initial and tuned programs have
the same behaviour. The idea is to embed SILAGE programs as HOL terms, and represent
transformational design as proof of equations in HOL.

A formal definition is essential if SILAGE programs are to be represented by HOL terms,
but no formal definition of the full SILAGE language exists,! although there is an informal
reference manual [17] and there are compiler manuals [27, 30]. Therefore the first task in
the project has been to write down a formal definition of a subset of the IMEC dialect of
SILAGE.

Given a transformation rendered as a HOL theorem, simulation results from the initial
and tuned programs should in principle be the same, so design time is saved because
only one simulation is necessary. This claim is made only tentatively, pending practical
experience, because it depends on factors beyond the scope of the project, such as whether
existing IMEC tools, such as the simulator and synthesis system, correspond correctly to
the formal definition. One hopes that future languages will be designed using formal
descriptions from the start, so that compilers can be programmed in styles suitable for
formal verification.

Other projects on transformational design have constructed systems programmed from
scratch [5, 6]. The advantage of building a system for transformational design on top of
an LCF-style theorem prover like HOL [10], in which programs are represented by their
logical meaning and transformations can only be obtained by logical inference, is that
then there is no fear that programming errors can lead to invalid transformations.

8.2 The Parity Checker in SILAGE

SILAGE is not intended to be used at the register transfer level in which the structural
description of the parity checker is given, but the circuit makes a fine introduction to

!Personal communication with Paul Hilfinger, January 1992.

SILAGE constructs:

func PARITY_SIL(in : Bool)out : Bool =
11,12,13,14,15 : Bool

begin
11 = 112;
out@@1 = false;
12 = out@1;

13 =if in — 11 || 12 fi;
14QQ@1 = false;

14 = true;

15 = 14Q1;

out =if 15 — 13 || 14 fi;
end;

The function PARITY_SIL has one input and one output, signals in and out respectively.
The type Bool represents single bits — written true and false. The five signals 11,
..., 15 are declared to be internal to the circuit. The body of the function is a set of
definitions for the internal and output signals — the order in which they are listed does
not matter.

A signal is an infinite stream of samples, indexed by time. Time is modelled by the
integers — negative times are used only to initialize delays. There are two basic kinds of
definition. An initialization such as out@@l = false says that at time —1 the sample
on signal out is to be false. An equation such as 11 = 12 says that for all non-negative
times, signal 11 equals the pointwise negation (operator !) of signal 12.

The conditional expression if ec — e || ep f£1i is the signal whose samples are drawn
from signal e; or ey, depending pointwise on the Boolean signal ec. The multiplexers
from the parity circuit are expressed as conditionals.

Delays are expressed using the notation e@n, which is the signal denoted by expression
e, but delayed by n units of time. The two registers in the parity circuit have been
expressed as the SILAGE delay expressions out@1 and 14@1, and have been initialized by
defining the samples on out and 14 at time —1 to be false.

There are two special kinds of expression in SILAGE, exemplified in the initialization
out@@] = false. A selector, such as out, is an expression that can appear on the left-
hand side of an equation or initialization; variables are selectors, but constants or delays
are not. A manifest expression, such as 1 or false, is one that is computable to a constant
at compile-time; the time and sample expressions in an initialization must be manifest.

8.3 SILAGE definitions as HOL predicates

Time is identified with the integers, int, and we use the HOL variable t to stand for times.
The type of signals with samples of type 7 is given by a type abbreviation:

Signal(r) ©int > 7

The HOL variables A and B are used for signals. To interpret the parity checker in HOL,
constants are needed to interpret SILAGE negation, conditional, and delay — SIGNOT,
COND and infix <> respectively:

(SIGNOT A)t = - (At)
(COND AcATAF)t (Act — Art | Ap t)
(aon)t & At —n)

Manifest expressions are turned into signals that have the same sample at all times:

VAL xt & &

A SILAGE equation asserts that two signals have the same samples for all non-negative
times.

(A~B)t ¥ vt>0. at) =B(t)

Given these constants, the parity checker is interpreted as a HOL predicate PARITY_SIL
WIth the following defining equation:

Vinout.

PARITY_SIL(in,out
(3111213 14 15.
11~ (112)A
(out(—1) =F)A
12 ~ (out<>1) A
13 ~ (SIGCOND in1112) A
(14(—=1) =F)A
14 ~ VAL(T) A
15 ~ (14<>1) A
out ~ (SIGCOND 151314))

)<

The original description [12] of the parity checker consists of a primitive recursive
function specifying the desired behaviour, the circuit shown in Section 6, and a proof that
the circuit has the behaviour specified by the function. Just as the ELLA implementation
can be proved in HOL to meet the original specification (Section 7.5), the analogous
property can be proved of the SILAGE implementation. The proof is routine, and makes
use of equational laws about the delay operator, <>.

8.4 Transformation in HOL

Transformational design will be illustrated with a digital filter example suggested by Hans
Samsom of IMEC.

func Fy(x : Nat)y : Nat =

begin
y@@1 = 0;
yQ@2 = 0

y=x+ (w1l x yQ1) + (w2 x y@2)
end;

Each output sample on y is computed by adding to the input sample on x the previous
two outputs, weighted by constants wl and w2. Let us assume the multiplications can
be cheaply computed by shifting and then the bottleneck in the circuit is the need to
compute two additions in series during each cycle.

This circuit can be tuned by defining a new signal, z, to be the sum of the present and
previous outputs. The two additions can then be computed in parallel:

func Fo(x : Nat)y : Nat =

z : Nat;
begin
z@@Q1 = 0;
z = (wl xy)+ (w2 x y@1);
y@Q@l = 0
yQ@2 = 0;
y = x + z@Ql;
end;

It is straightforward to prove these two functions to be equivalent — the theorem

FF=Fy

has been proved in HOL, where F; and F; are constants standing for the interpretation in
HOL of these two function definitions.

The point of this example is to show how a transformation can be formalized as a HOL
theorem. The example shows simple verification of a given transformation — a future goal
of the project is to support experimental discovery of a tuned program, by incremental
transformation from an initial program.

8.5 The formal definition

The method of Structural Operational Semantics (SOS) [28, 31] is used to formalize the
type-checking and translation processes for SILAGE. Existing descriptions of SILAGE
(17, 27, 30] make the concrete syntax precise using BNF rules, but leave semantic issues
such as type-checking or executability informal and partly vague.

The definition consists of three parts: BNF rules determine the abstract syntaz; SOS
static semantics rules determine the well-typed and well-formed expressions and defini-
tions; denotational semantics rules map definitions into HOL terms. Existing SILAGE
texts define the concrete syntax precisely, so it has not been redefined.

The definition will be illustrated by a discussion of the semantic treatment of initializa-
tions whose abstract syntax takes the form e;@Qe, = e3, where each e; is an expression.
Here is the static semantics rule:

Fel = o041 (Se] € &1) F es = Nat,ao (MELH € &2) Fes = o,a3 (MELH € 63)
F e1@QQey = e30k

The predicate on the bottom says that the initialization is well-formed, and the rule says
that this is so just when the three predicates on the top line hold, each of the form
e = o0,a, pronounced ‘expression e has type o and attribute list a’. An attribute a

records information about an expression; for instance, the attributes Man and Sel indicate
whether an expression is manifest or a selector respectively. The rule above requires that
expressions e; and ez have the same type, o, that ey is numeric, that e; is a selector, and
that e; and e, are manifest expressions. The SILAGE texts attempt to use BNF rules to
assert type and well-formedness conditions; the SOS rules used here are more lucid and
precise.

Here is the denotational semantics:

[e1@@e; = &3] © [er](—[e2]™) = [es]

If ¢ is a phrase of abstract syntax, [¢] is its translation into the HOL logic. Any well-
formed expression, such as e;, can be translated to a signal, written [e;]. A manifest
expression, such as ey, can also be interpreted as a scalar in HOL, written [ex]™. The
predicate requires that the signal denoted by e; have the sample denoted by ez at negative
time es.

One can prove properties of the definition itself — a benefit of formalizing the transla-
tion process itself. For instance:
Theorem. If expression e has type o, its translation [e] is a HOL term of type Signal[o],
where [o] is the translation of type o as a HOL type.

Such a metatheorem about the language definition can be proved by hand, which is
feasible given the simplicity of SILAGE, but tedious.

8.6 Mechanization of the definition

The formal definition discussed in the previous section exists as a mathematical definition
on paper. It is good for the definition to be independent of any machine implementation,
for then it is suitable for scrutiny by interested parties, such as compiler writers or users,
to determine whether it matches tools already in existence, or even to serve as a precise
reference standard.

The prototype HOL-SILAGE system is a shallow embedding of the formal definition in
HOL. SILAGE syntax is embedded as ML types, and the static and denotational semantics
rules are embedded as ML functions. The top-level of the system allows SILAGE function
definitions to be interpreted mechanically as HOL constant definitions.

A deep embedding of SILAGE, in which the static and denotational semantics are rep-
resented as HOL operations, would enable metatheorems such as the one at the end of the
previous section to be proved mechanically. Such an embedding has not been attempted
because shallow embedding is sufficient to support transformational design, and is simpler
than a deep embedding.

The mechanization is partly within ML and partly within the logic, and hence is not
immediately amenable to mechanical proof. Even so, the existence of an independent
definition helps in three ways to increase our confidence in the HOL-SILAGE system.

First, the likelihood of error has been reduced by structuring the program in exactly
the same way as the definition. For instance, there is a polymorphic ML type « Exp,
such that a value of the type represents the abstract syntax tree (AST) of a SILAGE
expression, whose nodes are labelled with values of type «. As a matter of notation, if e
is a SILAGE expression, let e, of type void Exp, be the AST corresponding to e tagged

with no information.? Corresponding exactly to the static and denotational semantics are
the following two ML functions:

checkExp : void Exp — (Type x Attrib list)Exp
sigExp : (Type X Attrib list)Exp — term

where Type, Attrib and term are the ML types of SILAGE types, SILAGE attributes and
HOL terms respectively.

Second, the formal definition can be used to document precisely the behaviour of the
mechanization. For instance, the two functions above can be specified as follows:

e If expression e is well-typed, evaluation of checkExp(e) returns an AST labelled
with the type and attribute information derivable for e.

e If expression e is not well-typed, evaluation of checkExp(e) fails by raising an ex-
ception.

e If expression e is well-typed, evaluation of sigExp(checkExp(e)) returns the HOL
term [e].

Third, properties proved by hand about the definition carry over to the mechanization.
For instance, the theorem mentioned at the end of Section 8.5 assures us that the term
[e], constructed in the HOL system by sigExp, will always be well-typed.

8.7 Achievements and goals

The Cambridge part of the HOL-SILAGE project has produced a formal definition of a
substantial subset of the IMEC one, and mechanized it within the HOL system. Several
examples drawn from a previous study of SILAGE transformations [22] have been proved
correct in HOL. The formal definition is a basis for work in progress at IMEC, by Catia An-
gelo and Hans Samsom, on cataloguing the SILAGE transformations that arise in practice,
and animating transformations using a windowing system. The goal is a system based
on HOL for conducting transformations, but needing little knowledge of the underlying
theorem prover, so as to be suitable for users whose primary interest is circuit design.

9 Embedding VHDL

This section starts with an overview of the semantics developed for VHDL. This is work in
progress, and as such is not capable of the advanced reasoning displayed in the overviews
of the HOL-ELLA and HOL-SILAGE systems just presented.

The following definitions will be used in discussing VHDL and the way it is embedded
in HOL:

Event: A change in the value of a signal.

2The ML type void contains just one value and therefore no information.

Transaction: The value that a signal should take on at a particular time in the future.
A transaction may (or may not) be converted into an event at that time.

Point of computation: The point at which a particular collection of transactions is
processed.

Process: A VHDL concurrent statement equipped with a set of signal names, or sensi-
tivity list, guarding its activation.

Simulation cycle: The evaluation of all the processes in a program at a particular point
of computation.

The simulation loop of VHDL can be broken down into two distinct phases after the
initialization step has been completed. These are the top-level simulation loop and a
simulation cycle. The simulation loop is responsible for moving the simulation forward
to the next collection of transactions to process, while a simulation cycle is performed
each time around the loop to schedule transactions for the future. Only the flavour of the
semantics is discussed here. The interested reader is directed to [34] for a more complete
exposition.

The semantics has been written as a collection of transition relations, in the style of [31],
which describe the simulation algorithm and the interaction of various VHDL statements
with that algorithm. The emphasis has been on a single simulation cycle, and work is
now under way to describe the top-level simulation loop, of which a simulation cycle
is a constituent part. The following box contains ‘pseudo-code’ describing the top-level
simulation loop:

while transactions remain to be processed
go to nearest point of computation with transactions to process
update the state from the current transactions
determine which updates represent events
perform a simulation cycle based on new state and events
end while

The first step is to move forward to the nearest interesting point of computation (i.e.,
one where there are transactions to process), and set the current time to be the physical
time unit associated with that point of computation. The state of the signal values is
then updated by those that they are supposed to take on during the present point of
computation. Next the signals for which this update represents a change in value, or
event, are determined. A simulation cycle is then performed based on the new state of
the world. The cycle is then repeated until there are no more transactions to process.

Note that whilst the phrase ‘point of computation’ can often be understood to mean
a time slice, a point of computation is more than that within the context of VHDL’s
particular simulation model. One could, for instance, say that the points of computation
P, through P, represent the time units 1 through n. Alternatively, they could represent
1 through n d-delays between two major time units.

The concept of d-delay is the way in which VHDL deals with 0-delay signal assignments.
During each iteration through the simulation loop a static state of the world is used and

transactions are scheduled to be performed at some future time point. This scheduling
applies to any transaction, whether it is to occur at a delay offset zero units from now, or
at some larger one. The delay around the simulation loop in zero time is called a J-delay.
An individual ¢ does not, therefore, represent a quantifiable unit of time. Rather it is
simply a simulator artifact.

An individual simulation cycle can be summarized as:

determine which processes are active based on current events
run the active processes in parallel
join all activated process’ scheduled transactions into a collective whole

The cycle starts with the activation of those processes that are sensitive to any of the
current events. These active processes are then run in parallel. During their execution,
each process schedules transactions to be processed in the future by the evaluation of
sequential statements. When all the processes have terminated, the separate futures are
gathered into an amalgamated view of future behaviour.

The semantics of small subset of VHDL called Femto-VHDL is embedded in HOL using
a new tool developed by Tom Melham [26]. It includes concurrent process statements,
simple sequential statements and general Boolean expressions. The syntax is described
in the logic as a recursive type [25]. Process statements are the outermost level, and
contain sequential statements which may make use of Boolean expressions. Given this
rather terse summary of syntax, our running example would take on the following form
in Femto-VHDL. It should be noted that the design has been somewhat simplified. The
register and inverter in series between out and 11 have been removed to be replaced by
a single unit-delay inverter, doing away with signal 12. If this were not done, the device
would have caused VHDL simulators to loop in d-time after 1 nanosecond had elapsed.

process (inp,l1,outp)

begin
if inp then 13 <= transport 11 after O ns;
else 13 <= transport outp after 0 ns;
end if;

end process;

process (15,13,14)

begin
if 15 then outp <= transport 13 after O ns;
else outp <= transport 14 after 0 ns;
end if;

end process;

process (outp) begin 11 <= transport (not outp) after 1 ns; end process;

process (14) begin 15 <= transport 14 after 1 ns; end process;

Each of the process statements should be viewed as running concurrently with the others
if it is activated by an event on its sensitivity list (e.g., (inp,11,o0ut) in the first process).

The signals in and out have been renamed to inp and outp to avoid clashes with VHDL
reserved words.

As mentioned earlier, the responsibility of the simulation cycle is to schedule transac-
tions to be processed in the future. This scheduling can be demonstrated by ‘running’ the
example in a symbolic fashion through the simulation cycle algorithm (using some special
purpose theorem proving tools). A starting state for the simulation cycle is given; this
must include the current time, the values of the signals, the signals for which there are
events and the currently scheduled transactions to the system. Then mechanized proof
can be used to deduce in HOL what transactions result from the execution of a simulation
cycle. So, if the environment is represented as a triple in HOL:

env =
"(nOW,{(‘lll,ll),(‘13‘,13),(‘14‘:'1'),(‘15‘,T):(‘inplainp)’
(‘outp‘,outp)},{‘inp‘})"

where the first element is a variable representing the current time, the second is a set of
signal value pairs representing the current state of the signals (all the signals except ‘14 °
and ‘15¢ have variables as values), and the third is a set containing the names of the
signals for which there is currently an event. We may execute the example in HOL given
some initial transactions trans, and ask what new transactions trans’ this environment
would cause to be scheduled.

The result is the following statement in HOL after simplification with facts about the
semantics:

trans’ = (inp — (POST ‘13¢ 11 trans now)
| (POST ‘13‘ outp trans now))
ZIP trans

POST is a function which given a signal name, the value that signal is supposed to take
on, some initial transactions and the time at which the assignment is supposed to take
place will pre-emptively schedule the signal in question to take on the specified value
at the specified time by adding it to the running transactions. Pre-emption means that
any transactions previously scheduled on the signal at times after the one in question are
removed when the current transaction is added.

ZIP is used to collect the transactions scheduled by each active process into a collective
view of future activity. It does this by performing a simple set union at any given point
of computation on the sets of signal-value pairs that it finds there. In our example, we
see that only one process is actually activated, as all the other processes returned trans
unchanged.

The result is as expected, namely an event on ‘inp‘ will cause ‘13° to take on the
value 11 (the inverted value of ‘outp‘ 1 nanosecond ago) if the value inp is a change
from false to true. Otherwise it takes on the value outp. Note that the toggling of ‘inp°
does not immediately cause a value to be output on ‘outp‘. One would have to go
through another iteration of the simulation loop in d-time to see that result. This can be
demonstrated by changing our starting environment env to be:

env =
”(nOW,{(‘lj-‘,11),(‘13‘,13)’(‘14‘,T)’(‘15"T),(‘inp‘,inp)’
(‘outp®,outp)},{‘13‘})"

meaning that the toggling of ‘inp‘ represented a change from false to true.
‘Running’ the example yields the result (again after simplification):

trans’ = (POST ‘outp‘ 13 trans now) ZIP trans

Again, this is as expected. The signal ‘outp‘ takes on the value 13 one d-step from now.

It is unfortunate that iterating through the simulation loop must currently be done by
hand. This will change in the near future, and symbolic execution of Femto-VHDL pro-
grams in HOL will allow the comparison of two texts purporting to be the same behaviour
given properties of equivalence currently under development.

10 Conclusions

Semantics for subsets of three widely differing hardware description languages have been
described. Each formal semantics is represented in higher order logic and supported
mechanically by the HOL theorem-proving system. The three studies suggest that higher
order logic is sufficiently expressive to conveniently represent the semantics of a wide
variety of hardware description languages, and that the HOL system is flexible enough to
support different project aims. The three studies cover both operational and denotational
styles of semantics.

The following table is a rough comparison of the intended applications of the three
projects. Each embedding is marked as deep or shallow, that is, whether the syntax of
the language is embedded as a HOL or ML type respectively. The columns list three
applications. The primary applications for each project are marked with a e symbol,
and secondary applications are marked with a o symbol. The % indicates that proving
language properties is an aim of the HOL-SILAGE project, but the proofs are not intended
to be done mechanically in HOL.

Language Program Program
Properties Verification Transformation
ELLA (shallow) . o
SILAGE (shallow) * o o
VHDL (deep) . ° o

In all three systems, a mechanism to map between the concrete syntax of an HDL
program and its logical representation is important, but any program to do so is necessarily
a non-secure piece of software in the sense that it cannot be directly verified by theorem
proving in HOL. In the HOL-ELLA and HOL-VHDL systems, the risk of errors in the
parser or pretty-printer is minimized by generating them automatically using tools in
the HOL system. The input for the parser generator is a specification of the context-
free syntax of the language and a set of action symbols for building the parse tree. The
pretty-printer generator has a pretty-printing meta-language in which the layout can be

described. The pretty-printer provides a means of viewing a HOL term representing an
HDL text in the concrete syntax of the HDL. This is useful, as it gives feedback to the
user on whether the parsing and semantic translation have produced something that the
user expects. In the HOL-ELLA system, semantic constants correspond approximately
to non-terminals in the syntax of ELLA, and hence it is easy to pretty-print HOL terms
representing ELLA text as the ELLA text. At present, the HOL-SILAGE system has a
parser programmed in ML and structured exactly according to the formal definition of
SILAGE, but it has no pretty-printer. For the examples dealt with so far, this has been
no great loss because there is such a simple correspondence between a SILAGE program
and its logical interpretation. Work is in progress at IMEC to link the HOL system with
the Cornell Synthesizer Generator. The latter would provide parsing and pretty-printing,
as well as managing the application of SILAGE transformations.

There are some basic issues about semantics which affect the ‘correctness’ of the formal
embedding. Having defined a semantics for a language, one must consider whether the
semantics reflects the intention of the language designers. This is difficult to judge if no
semantics were defined previously. Where another definition of semantics exists one may
need to verify a correspondence between the semantics. With conventional notations,
there is also the problem that a user may assume a certain meaning from the syntax
irrespective of the formal semantics. One reason why the formal semantics of SILAGE was
written up as a mathematical document, independent of the machine implementation,
was so it could be shown to SILAGE experts to question whether the post hoc semantics
reflected what had been implemented in existing tools.

The projects described here illustrate some of the benefits of designing a language with
a formal semantics. Quite subtle ‘inconsistencies’ in the informal semantics of a language
(as defined by the compiler/simulator) can have very significant effects on the formal
semantics. An example of this is the behaviour of the ELLA CASE statement with respect
to the unknown value (Section 7.7). A formal semantics can provide a precise specification
from which the implementors of compilers and simulators for the language can work.

Finally, it should not be forgotten that hardware can be directly described in logic
without using any HDL and this representation is likely to be the easiest one to reason
about. An important research topic, dual to the approach taken here, is to develop CAD
tools such as simulators and synthesizers that act directly on logic representations and
thereby avoid the need for the kind of effort described in this paper [2, 18, 21]. In the
meantime it is essential for HDLs to be modelled in logic if theorem-proving is to be
applicable to hardware design.

Acknowledgements

Richard Boulton, John Harrison and John Herbert were supported by a SERC/DTI grant
HOL Verification of ELLA Designs (IED project 1129). Andrew Gordon was supported
by the CHEOPS project: Higher Order Logic supported design for Complex Data Pro-
cessing Systems, (Esprit Basic Research Action 3215 managed by IMEC: Inter-university
Micro-Electronics Centre, Belgium). John Van Tassel was supported by grant number
AFOSR-91-0246 from the United States Air Force Office of Scientific Research entitled

Verification of VHDL Designs. All three projects make use of theorem proving tools
written by Dr Tom Melham.

References

1]

[10]

[11]

R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel, ‘The HOL Verification of
ELLA Designs’, in Proceedings of the International Workshop on Formal Methods in
VLSI Design, Miami, January 1991.

A. J. Camilleri, ‘Simulating Hardware Specifications within a Theorem-Proving
Framework’, International Journal of Computer Aided VLSI Design, 2 (3), pp. 315—
337, 1990.

A. Church, ‘A Formulation of the Simple Theory of Types’, The Journal of Symbolic
Logic, Vol. 5 (1940), pp. 56-68.

Computer General Electronic Design, ‘The ELLA Language Reference Manual, Issue
4.0’, 5 Greenways Business Park, Bellinger Close, Chippenham, Wiltshire, SN15 1BN,
England, 1989.

J. Darlington, P. Harrison, H. Khoshnevisan, L. McLoughlin, N. Perry, H. Pull,
M. Reeve, K. Sephton, L. While, S. Wright. ‘A Functional Programming Environ-
ment Supporting Execution, Partial Evaluation and Transformation’, in PARLE 89
Parallel Architectures and Languages Europe, volume 365(1) of Lecture Notes in Com-
puter Science, Springer-Verlag, 1989.

G. Durrieu, K. Kessaci, and M. Lemaitre. ‘Transe: An Experimental Transformation
Assistant Software for Digital Circuit Design’, in R. Sharp and J. Staunstrup, editors,
Workshop on Designing Correct Circuits, Lyngby, January 1992.

D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and H. de Man. ‘DSP Specification
using the Silage language’, in IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 1057-1060, April 1990.

A. D. Gordon, ‘A Mechanised Definition of Silage in HOL’, Internal Report, ESPRIT
BRA 3215, Computer Laboratory, University of Cambridge, 1992.

A. D. Gordon, ‘The Formal Definition of a Synchronous Hardware-Description Lan-
guage in Higher Order Logic’, Submitted for publication, January 1992.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth, ‘Edinburgh LCF: A Mechanised
Logic of Computation’, volume 78 of Lecture Notes in Computer Science, Springer-
Verlag, 1979.

M. J. C. Gordon, ‘Why Higher-Order Logic is a Good Formalism for Specifying and
Verifying Hardware’, in Formal Aspects of VLSI Design, edited by G. J. Milne and
P. A. Subrahmanyam, North Holland, 1986.

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

23]

[24]

M. J. C. Gordon, ‘HOL: A Proof Generating System for Higher-Order Logic’, in
VLSI Specification, Verification and Synthesis, edited by G. Birtwistle and P. A.
Subrahmanyam, Kluwer, 1988.

M. J. C. Gordon, ‘Mechanizing Programming Logics in Higher Order Logic’, in Cur-
rent Trends in Hardware Verification and Automated Theorem Proving, edited by G.
Birtwistle and P. A. Subrahmanyam, Springer-Verlag, 1989.

F. K. Hanna and N. Daeche, ‘Specification and Verification using Higher-Order Logic:
A Case Study’, in Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh
Workshop on VLSI, edited by G. J. Milne and P. A. Subrahmanyam, North-Holland,
1986, pp. 179-213.

F. K. Hanna and N. Daeche, ‘Dependent Types and Formal Synthesis’, in Mechanized
Reasoning and Hardware Design, edited by C. A. R. Hoare and M. J. C. Gordon,
Prentice-Hall International Series in Computer Science, Prentice-Hall, 1992.

P. N. Hilfinger, ‘Silage, a High-Level Language and Silicon Compiler for Digital Signal
Processing’, in IEEE Custom Integrated Circuits Conference CICC-85, pp. 213-216,
Portland, Oregon, May 1985.

P. N. Hilfinger, ‘Silage Reference Manual’, Computer Science Division, University of
California, Berkeley, December 1987.

W. A. Hunt, Jr., “The Mechanical Verification of a Microprocessor Design’, in From
HDL Descriptions to Guaranteed Correct Circuit Designs, edited by D. Borrione,
North Holland, 1987.

W. A. Hunt, Jr. and B. C. Brock, ‘A Formal HDL and its Use in the FM9001
Verification’, in Mechanized Reasoning and Hardware Design, edited by C. A. R.
Hoare and M. J. C. Gordon, Prentice-Hall International Series in Computer Science,
Prentice-Hall, 1992.

Institute of Electrical and Electronics Engineers, ‘IEEE Standard VHDL Language
Reference Manual’, IEEE Press, New York, 1988.

M. Leeser, ‘Using Nuprl for the Verification and Synthesis of Hardware’, in Mech-
anized Reasoning and Hardware Design, edited by C. A. R. Hoare and M. J. C.
Gordon, Prentice-Hall International Series in Computer Science, Prentice-Hall, 1992.

P. Lippens, ‘Defining Control Flow from an Applicative Specification’, Internal Re-
port, Philips Research Laboratories, Eindhoven, December 22, 1988.

H. de Man, J. Rabaey, P. Six, and L. Claesen, ‘Cathedral-II: A Silicon Compiler for
Digital Signal Processing’, IEEE Design and Test, 3(6):73-85, December 1986.

T. F. Melham, ‘Using Recursive Types to Reason about Hardware in Higher Order
Logic’, in The Fusion of Hardware Design and Verification: Proceedings of the IFIP
WG 10.2 Working Conference, Glasgow, July 1988, edited by G. J. Milne, North-
Holland, 1988, pp. 27-50.

[25]

[26]

[27]

28]

T. F. Melham, ‘Automating Recursive Type Definitions in Higher-Order Logic’, in
Current Trends in Hardware Verification and Automated Deduction, edited by G.
Birtwistle and P. A. Subrahmanyam, Springer-Verlag, 1988.

T. F. Melham, ‘A Package for Inductive Relation Definitions in HOL’, in Proceed-
ings of 1991 International Workshop on the HOL Theorem Proving System and its
Applications, IEEE Computer Society Press, 1991.

Mentor Graphics Corporation, Wilsonville, Oregon, ‘DSParchitect DFL User’s and
Reference Manual’, December 1991.

R. Milner, M. Tofte, and R. Harper, ‘The Definition of Standard ML’, MIT Press,
Cambridge, Mass., 1990.

J. D. Morison and M. G. Hill, ‘A Formal Definition of the Static Semantics of ELLA’s
Core’, Report No 91024 Royal Signals and Radar Establishment, August 1991.

L. Nachtergaele, ‘User Manual for the S2C Silage to C Compiler’, IMEC, Leuven,
March 22, 1990.

G. Plotkin, ‘A Structural Approach to Operational Semantics’, Technical Re-
port DAIMI FN-19, Computer Science Dept., Aarhus Univ., September 1981.

J. G. Samsom, L. J. M. Claesen, and H. J. de Man, ‘Correctness Preserving Trans-
formations on the Hough Algorithm’, in CompFEuro 92, The Hague, May 4-8, 1992.

V. Stavridou, S. M. Eker, and S. Aloneftis, ‘FUNNEL: A CHDL with Formal Se-
mantics’, preprint 1991.

J. P. Van Tassel, ‘A Formalisation of the VHDL Simulation Cycle’, Technical Re-
port 249, University of Cambridge Computer Laboratory, March 1992.

[. Verbauwhede, “VLSI Design Methodologies for Application-Specific Cryptographic
and Algebraic Systems’, PhD Thesis, Catholic University, Leuven, July 1991.

