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Fig. 1.The  Logan Prototype: Workspace  from a  sess ion exploring shopping behavior a t an online  s tore . Cohorts  can be 
extracted, combined, and fed into queries  where  events  and the ir payloads  are  viewed as  his tograms . 

Abstract— Event processing, analysis, and visualization are increasingly important, and common, problems as telemetry and log 
recording become ubiquitous. We are still learning about the space of ways to both query and see the results of sequential queries 
against event-logged data. In this paper, we discuss our Logan event exploration prototype, which is based on regular-expression 
queries and result histograms; we then discuss the many factors that vary between tools, domains, and datasets -- tradeoffs of factors 
such as session size, cardinality of events, and the presence of event arguments. 
Index Terms—Sequential Data, Interactive Visualization, Regular Expressions

 

1 .  INTR O DUC TIO N 
Event processing is an exciting new area for data analytics and 
visualization. With the rise of telemetry, with increasingly ubiquitous 
logfiles, and with phones that continuously log usage patterns, there 
are increasing numbers and opportunities for data sources based on 
events. 

It is our belief that sequential events constitute a new structure for 
data, as different from other visualization types as, say, graph-oriented 
visualization is from bar chart and line charts. In this new world of 
sequential event visualization and processing, a number of new types 
of visualizations will become not just meaningful, but necessary to 
make sense of the data. There will, of course, be ways to transform 
these new data types into more familiar visualizations: just as we 
might view a tree’s nodes by size on a bar chart, sequential 
visualization will still require classic visualization skills. 

But there is a new thing going here, too: an event-driven dataset 
has a notion of multiple sequences of events; each sequence has 
individual events that are timestamped, associated with particular 
identities (such as sessions, persons, or applications), and labelled. We 
often want to ask questions about series of events and their 

interrelations—how often did one event occur after another, or what 
events followed this first event. We might drive an exploration with 
questions like: 

x What action gets followed by “UNDO” most often? 
x When do people abandon a shopping process? 
x How do people recover from errors? 
x Does a sequence of treatments expose side effects? 
Over the last few years, we have been creating a series of systems 

designed to process events; users query them with a visual regular 
expression builder. Our systems have been used to explore logfile-
based data, from a variety of different applications and usages.  

Application domain makes a substantial difference to the analysis: 
as we explore new types of data, we have learned about new genres of 
questions which suggest different interactions. The fact that this 
discovery process continues suggests that as we learn about more 
problem domains – at this workshop and elsewhere – we will also 
learn about new types of problems. 

In this paper, we try to understand the dimensions of the space of 
event-driven visualization. Just as a visualization for a network must 
be very different if the network is dense or sparse; and a tree 
visualization is different if the tree is deep and narrow, or shallow and 
wide; so too we wish to understand the dimensions along which event 
datasets vary. The dimensions we discuss below are the results of 
explorations from both building prototype designs, and of exploring 
and using these protoypes on datasets; they represent lessons ruefully 
learned, and a variety of approaches as we attempted to build systems 
that provided interesting results from complex event data. 
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In this position paper, we introduce the Logan system, a sequential 
event visualization system based on regular expression queries. We 
show several screens and describe its core usage. We then proceed to 
discuss a broader space of event-based datasets, highlighting how 
varying cardinalities of events and their attributes; lengths of 
sequences; and other attributes make for very different querying 
systems. In this new area, there are opportunities to explore many new 
ways to ask questions of event sequences. 

Fig 2: A two event query: Any event tha t immedia tely precedes  a  
checkout. The his togram of the  resultant actions  is  shown below.  

2 .  THE  LO G AN P R O TO TYP E  
The Logan prototype grew out of our previous work on using regular 
expressions to query and explore sequential datasets [Zgraggen15].  
Logan preserves the basic structure from SQueries; users start 
exploring by specifying a query with a graphical language that 
matches primitive symbols with events in a sequence. Primitives are 
combined together to match longer sequences (and wildcards can be 
used to match very long sequences).   

Many sequences are very complex; as a result, Logan requires that 
users begin with a generic query, which they can use to refine 
further—by adding new clauses before or after, or by constraining a 
result to a single value.  

The results of queries (matching sequences) are summarized 
primarily as histograms and queries can be modified by interacting 
with the histogram to constrain the query. See figures 1-3. While the 
SQueries system was very successful for testing hypothesis on small 
datasets, it suffered from a number of shortcomings that we wished to 
address in the subsequent Logan prototype. We address these design 
changes below. 

Below, we discuss some examples using regular expressions. Each 
alphabetic letter will represent a distinct event (with possibly different 
arguments); thus “ABCD” refers to four different events in a row. 
“A.*B” uses regular expression notation to mean “an A; any number 
of other events; a B.” In the prototype, users do not need to be aware 
of regular expression language since the user interface helps hide the 
complexity associated with specifying regular expressions. 

2.1 Sca lab ility 
We wished to load datasets many orders of magnitude larger than 

was handled in the (S|Qu)eries work. We addressed scalability by 
building the prototype on top of a fast, streaming database engine 
[Chandramouli14] which gives continuous updates as a query is 
performed. In this way, we can maintain a responsive interface, 
updating visualizations of the data as the query is processed through a 
large file. Separate queries can be started even before a query is 

finished. This immediate feedback enables much more rapid 
exploration of the entire dataset [Fisher12] for details on interacting 
with streaming database engines. 

2.2 Works pace  Management and  UI Enhancement 
Several UI enhancements were made to help deal with 

awkwardness that users experienced when interacting with the 
(S|Qu)eries prototype. Namely, we never provided a way of working 
with a GROUP of elements, and each element of a query needed to be 
moved separately. This made managing a single query awkward, with 
manual rearrangement required to make room for other elements of 
the query. In Logan, queries automatically arrange when inserting a 
part of a query into the rest of the query. Layout rules based on where 
the query is dropped enable conjunctions and disjunctions. The entire 
query can then be moved around as a group making organizing the 
workspace easier. 

Regular expressions have some unintuitive aspects for users. For 
example, our users had no trouble understanding that the query A.*B 
matches ADECB. However, we chose to allow our regular expression 
matching to be greedy; thus, AAABBB or AABABABBB would also 
match this sequence. Logan incorporates UI affordances for making it 
easier to express the query “A[^AB]B”, which forces the query to 
match anything except A or B; this better suits users’ expectations. 
 

Fig 3: A comparison of 2 cohorts  (Searchers  and those  who did not 
search – Browsers ). We can see  how they arrived a t the  s ite. 

2.3 Cohorts  
An important capability desired by users was to compare the behavior 
between different cohorts of users (or sessions). This is similar to 
previous work of Krause et al and Malik et al [Krause16, Malik15]. 
Thus if we want to look at how people in one city compared to those 
in another city we could create one cohort for the first set and another 
for the other set. We can then pipe these cohorts into a query and look 
at a histogram to compare these results. The histograms now include 
colors to include those exclusively in one cohort, those in another 
cohort or those in both. See figure 3.  We can construct new cohorts 
by doing Boolean operations of cohorts. When we bring one cohort in 
close proximity with another cohort, a simple Venn Diagram appears 
and users can pull from the intersection, or the combined regions. 
These resultants cohorts are treated as first class cohorts when piped 
to other queries. 



2.4 Blank Sla te  Prob lem: 
In SQueries, many users were confused about where to start initial 
investigations, especially if they had not yet formed a hypothesis about 
which they could explore. 

 Logan provides a good starting point for people who are 
reasonably familiar with the events contained in a log. The opening 
screen presents users with a histogram of known events, making it 
easy to start a query with an event of interest. However, Logan does 
not use a full-on “overview, filter, details on demand” approach.  

That said, we explored abstracting and representing groups of 
sessions by generating a finite state machine that could represent them 
all (and would appropriately leave out sessions that were explicitly 
excluded) [Gahani92]. By representing these sessions using the same 
kind of regular expression language that could generate them in the 
first place, we desired a summary that was amenable to subsequent 
filtering and narrowing down on different parts of the space. Finding 
an effective and efficient way of representing sequences and the 
appropriate level of abstraction is still being explored. Using Logan-
like queries along with summary representations such as those in 
EventFlow [Monroe13a]. 

3 .  P O INTS  IN THE  E VE NT ANALYS IS  S P AC E  
In this section of the paper, we discuss the broader questions of some 
major issues that become clear in our domain. As we have explored 
different logfiles and sets of events, we have found that certain 
behaviors of event-driven systems can dominate discussion. This 
sections acts, in part, as an opportunity to compare Logan with longer-
lived systems such as EventFlow [Monroe13a].  

Different datasets have very different aspects – and those 
differences make for demands on interfaces and interactions. In our 
experience, we have worked with several datasets. One is a series of 
store transactions from the (fictional) online vendor AdventureWorks; 
we paid Mechanical Turk users to “buy” items from the store; another 
is a logfile of user actions in a suite of online visualization tools, 
“AgaVue”; the last is a logfile of user actions in the “SandDance” tool. 
[Drucker15]. 

2.5 Cardina lity o f e vents  
In dealing with event logs, we have seen very substantial differences 
between collection methodologies. At one end are highly-focused logs 
that note very specific events; at the other, logs that have a tremendous 
number of different sorts of events. For example, the AdventureWorks 
dataset only keeps eight different events; AgaVue keeps 30; 
SandDance maintains a similar number. Working with some product 
groups, we have seen some systems that maintain verbose logs that  
log each function entered or exited separately. 

In a system with a smaller cardinality of events, it makes sense to 
(for example) color each of them with a separate color in an overview 
panel. As the number of distinguishable events grows, it become 
increasingly important to have ways to filter or separate them. 
 
Solution Spaces: EventFlow builds an opt-in system; users can select 
the subset of events that seem interesting to them. This has the tradeoff 
that interesting things might be lurking beneath an overview, missed 
because the event wasn’t opted-into; it also allows users to merge 
similar events. Logan allows users to select events from a menu; it 
begins to creak under the weight of too many events. It’s less clear 
what to do when there are hundreds or thousands of types of events. 
Perhaps a separate hierarchy of related events make this more 
manageable. 

2.6 Cardina lity o f a rguments  
Sometimes, the arguments to an event are simple: for example, if a 
medical subject takes a medication at 100 mg or 200 mg daily; or a 
window is moved to (0,0) or (50,100). Other classes of arguments, 
however, can get complex. We have encountered: 

• Situations where the entire meaning of the event is in the 
argument. “CLICK( button)”, for example – while it’s good to know 
the user has clicked, the real underlying event is the fact that the button 
was activated. If there are several different buttons, this becomes very 
important. 

• Situations where the meaning of the event is dependent on 
the argument. For example, in the AgaVue dataset, a “TreeStats” event 
has a number of arguments showing that a user has just created a tree, 
and what sort --  unless it shows zero nodes, in which case the user has 
attempted to create a tree, and failed. 

• Situations where the argument cannot be interpreted without 
another event. For example, the treestats event above means very 
different things if it has a very specific set of parameters (a tree of 
depth 2, and 11 nodes), which corresponds to sample data. 
 
Solution spaces: Logan provides parameter linking, so the user can 
search for occasions when one event shares parameters with a later 
one. (For example, “addData( rows = <VAR>” then matches with 
“showData( rows = <VAR>”).   

2.7 Lengths  of s equences  
A shopping event sequence is reasonably well-defined: a user goes 
though the phase of finding events of interest, then of checking out. 
The sequence for user exploring data might be far longer: a user might 
play with a dataset, save and load it, or try multiple representations.  
An analysis that tests for the presence of reasonably short sequences 
might not be able to scale to a sequence of hundreds or thousands of 
events in a sequence. (One way to reduce that length, of course, is to 
filter out unneeded event types, reducing the cardinality of events at 
the same time.) 

2.8 Sca le  o f Da tas e t 
From both a computational and display view, the scale of the dataset 
is very important: a system oriented around showing each individual 
sequence will require more screen space then a system that, for 
example, only counts sequences that match a given query. Indeed, the 
latter can even be set as a dashboard, with streaming queries showing 
how many sequences currently match the query; as more events show 
up, the count gets updated. 

2.9 In te rva l and  Po in t Events  
Some datasets have logical durations—durations are a first-class 
citizen in EventFlow [Monroe13b]. Durations are a useful abstraction 
for both user operations (“the period during which the chart was 
open”) and for medical scenarios (“the time during which the patient 
was in the hospital.”)  

In a point-oriented system like Logan, durations may be expressed 
as a start-event / end-event pair, and the user can then set a query for 
that pair of events. However, it needs to be done with some caution: a 
sequence like start-end-TARGET-start-end will still match the query 
start-TARGET-end. As a result, a system must have the ability to 
express concepts like “any event that is not an end event.” 

2.10 Orig ins  o f Events  
In any event log, some events come about because the user did a thing; 
others come about in response to a user carrying out an action. (For 
example, “checked into hospital” might be started by a user, but “seen 
by doctor” and “results returned from radiology” are both generated 
by the system; similarly, “user requested new scene” is user-driven, 
while “system rendered updated image” is generated by the system.) 

Solution space: Knowing whether an event was user-driven or 
system-driven can help unpack causality. This is a challenge for the 
log itself: it would be useful to track that “event 23 is a result of 
previous event 21.” 

2.11 Timing  Events  
The notion of a sequence of events is core to this discussion; however, 
time has not yet entered the discussion. Are two events separated by a 



 

second to be represented in the same way as two events separated by 
an hour? Languages need to have ways to express “no less then K 
minutes separate these events” or “these events must be no less then 
K seconds apart.” 
Solution space: Queries that describe sequences can be tagged with 
“no more than” and “no less than” constraints; this gets far more 
complex when reasonably-distant events need to come within a certain 
amount of time. In addition, “session breaking” can be used to separate 
pairs of events that come far apart: it may be presumed that rather than 
the use sitting and waiting for an extended period, they came back 
later to work on a session. 

2.12 Arbitra ry Ordering  
This issue gets even more complex when we look at examples where 
timing is not definite: any system that involves multiple computers 
generating or storing logs, such as a client-server system or a web 
page, has a risk of events getting out of sequence. An event processing 
tool that focuses on sequence over timing can risk getting hung up on 
these events. In particular, in online systems, it is common to see 
“request” and “response” pairs that happen milliseconds apart. It 
might be very important to distinguish that ordering – or completely 
irrelevant. 

Conversely, there are times when we are indifferent as to the 
ordering of two events—we don’t care whether a patient got a 
particular test before or after they went to radiology, as long as the two 
are “roughly simultaneous.”   

 
Solution space: Again, this is an example where tagging the events 
can be helpful--this issue can be reduced as a data cleaning issue when 
the events are labelled with sequence numbers. A query language, 
optimally, would have a way to ask for “roughly simultaneous” 
events. 

4 .  Dis c u s s io n  
In this paper, we have presented a broad perspective on event-driven 
visualization. We discussed the (S|Qu)eries and Logan systems, which 
are designed around a regular-expression approach to queries, and 
which use flow diagrams and histograms to show the transition of 
events through nodes in the expressions.  

Our explorations of data sets have shown a number of different 
types of datasets and data issues that must be handled by event 
querying systems. Some of these issues, such as timestamp issues, 
require some hard thinking about both how to handle a sequential 
query, and how to create the most effective possible logs. Others of 
them reflect on design philosophies of diverse querying systems; 
various systems will explore these aspects very differently from each 
other.  

AC KNO WLE DG ME NTS  
The authors wish to thank Emanuel Zgaggren, who created the first 
version of SQueries and the first implementation of Logan; Alper 
Sarikaya, and Titus Barik have carried out research at Microsoft on 
event logs; Jonathan Goldstein and Badrish Chandramouli created 
Trill, the high-speed streaming processor; and Ben Zorn, Sumit 
Gulwani, and Rishabh Signh, who joined us in research on 
understanding the challenges involved in data cleaning logfiles. 

R E F E R E NC E S  
 

[Chandramouli14] B. Chandramouli, et al. Trill: A high-performance 
incremental query pro-cessor for diverse analytics. In Proc. VLDB 
Endow., 8(4), 401–412, 2014. 
  
[Drucker15] S. Drucker, R. Fernandez, A Unifying Framework for 
Animated and Interactive Unit Visualizations. Microsoft Technical 
Report, 2015. 
 

[Fisher12] Fisher, Danyel, Igor Popov, and Steven Drucker. "Trust me, 
I'm partially right: incremental visualization lets analysts explore large 
datasets faster." Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems. ACM, 2012. 
 
[Gehani92] N. H. Gehani, H. V. Jagadish, O. Shmueli. Composite event 
specification in active databases: Model & implementation. In Proc. 
VLDB, 327–337. VLDB Endowment, 1992. 
 
[Krause16] Krause, Josua, Adam Perer, and Harry Stavropoulos. 
"Supporting iterative cohort construction with visual temporal queries." 
IEEE transactions on visualization and computer graphics 22.1 (2016): 
91-100. 
 
[Malik15] Malik, Sana, Fan Du, Megan Monroe, Eberechukwu 
Onukwugha, Catherine Plaisant, and Ben Shneiderman. "Cohort 
comparison of event sequences with balanced integration of visual 
analytics and statistics." In Proceedings of the 20th International 
Conference on Intelligent User Interfaces, pp. 38-49. ACM, 2015. 
 
[Monroe13a] M. Monroe, et al. Temporal event sequence simplification. 
IEEE Trans-actions on Visualization and Computer Graphics, 19(12), 
2227–2236, 2013. 
 
[Monroe13b] M. Monroe, et al. The challenges of specifying intervals 
and absences in temporal queries: A graphical language approach. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (CHI), 2349–2358. ACM, 2013. 
 
[Zgraggen15] E. Zgraggen, et al. (s|qu)eries: Visual regular expressions 
for querying and exploring event sequences. In Proceedings of the 
SIGCHI Confer-ence on Human Factors in Computing Systems (CHI), 
2683–2692. ACM, 2015. 
 
 
 
 


