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M5tion estinlati~n is a very impQriant problem irl 
dynamic scene attatysis. Although it is easier to estimate 
motion ~ararneters frown 3D data than from 21) images, 
it is not trivial~ sauce the 3D data we have are almost 
always corrupted by noise, A comparative study on 
motion estimation from 3D line segments is presented. 
Two representations of Ike segments and two represen- 
tations o~rotat~on are ~e~~~~~~~~ f?rirh ~~~~~~~~ represen- 
ratioas of fine segments apld rotaf~o~, a ~~~~~ber of 
methods for rnot~o~ estimation are ~re.~e~ied~ ~~~~ud~ng 
the extended Kalman filter, a genera/ minimization 
process and the singular value decomposition. These 
methods are compared using both synthetic and real data 
obtained by a trinocular stereo. It is observed that the 
extended Kalman filter with the rotation axis representa- 
tion of rotat~o~l is preferable_ Note that a@ ~~ethods 
d~s&~sed cafa be directly a~~~~ed to 30 point data. 
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Motion analysis is 8 very important research field in 
Computer Vision and Robotics. Its a~~~~cations include 
mobile robot navigation, scene segmentation and wortd 
model construction I. Until recently, most research 
efforts were directed towards motion analysis of a 
sequence of monocular images’.“. With the develop- 
ment of 

P 
assive stereo vision systems” and range finder 

systems-, some work related to motion analysis from 
3D data has recently emerged. 

The motion analysis problem is usually divided into 
two sub~rob~ems: correspondence of p~~~~~~~~~ and 
estimation of motion. Typically used primitives are 
points, line segments and planar patches. For the 
correspondence problem the reader is referred to 
References 1; 6--9. Although it is easier to estimate 
motion parameters from 3D data than from 2D 

(monocu~ar~ images, it is not trivial since the 3D data 
we have are almost always corrupted by noise. A 
number of methods are proposed to combat the noise, 
To our knowledge, no work has been carried out to 
compare those methods. We believe that this work is 
important for researchers working on motion analysis 
to choose an appropriate approach based on effi- 
ciency, accuracy and robustness. In this paper, we 
present a ~rn~ara~iv~ study of different methods of 
determining motion from correspondences of 3D line 
segments. For the problem of dete~jnjn~ motion from 
3D point correspondences, the reader is referred to 
References 7, 8, 10 and 11. Also, a method to 
determine motion from planar patches is presented by 
Faugeras and Herbert’. 

The paper is organized as folfows. First, two repre- 
sentations for line segments are presented, and the 
problem we address is fo~rn~~ated~ Second, representa- 
tions of motion are described. Third, we show how to 
estimate motion using the extended Kalman filter, 
minimization techniques and a singular value decom- 
position technique. Finally we provide the results of 
our comparative study on different methods, 

In this section, we give two representations c5f 33 line 
segments and the transformation of line segments 
under rigid motion. Finally, we formalize the problem 
we should solve. 

3D fine segments tan be feconstrncfed from stereo’ or 
extracted from range data. A common approach is to 
represent a 3D line segment I!, by its endpoints, noted 
as M, and Mz. Equivalently, L can be represented by 
two vectors (I, m), I is the non-normalized direction 
vector of L and M, the midpoint of L, that is: 



formed segment parallel to the segment in the second 
view which yields12: 

Figure I. 3D line representation 

Besides the geometric parameters, the uncertainty is 
also manipulated in our stereo system. Suppose that W, 
and W, are the covariance matrices of Iwl and iM;!, 
respectively, and suppose that M, and Mz are indepen- 
dent, we can compute the covariance matrix of (I, m) as 
follows: 

WI. = 
[ 

w,+wz (WI - W,)/Z 

(W,- W,)/2 (W, + W&4 I 

I’riRi=O and l’o.(m’-Rm-t)=O (5) 

‘We shall use these two equations to compute the 
motion parameters. If we note: 

I’YRI 
f(P, x) = 

I’ ,: (m’ - Rm - t) 1 

Equation (5) becomes: 

f(P, xl = 0 (7) 

where x = [I“, m’, I’ T, m‘ T] T (the superscript ’ denotes 
the transpose of a vector or a matrix) is a 12 
dimensional vector which we call measurement vector, 
and p is one of the motion parametrizations described 
below. In filtering terminology, p is called state vector. 
So our problem can be formulated as follows: 

Given n measurement vectors: xl, x2, . . ., x,, 
i.e. given a noisy system: 

f(p, Xi)=O, fori=l, . . ., n, 

which is a 6 x 6 matrix. 
We can also represent a 3D line segment by its 

infinite supporting line. There are a number of ways to 
represent a 3D line, one of which is to represent the 
line by two vectors (u, d), where u is its unit direction 
vector, the norm of d gives the distance from the origin 
to the line, and the direction of d is parallel to the 
normal n of the plane containing the line and the origin 
(see Figure 1). We can compute (u, d) from the above 
representation (1. m). Indeed, we have: 

u = l///l]/ and d = unm = (I~~m)//jl/i (3) 

where A is the cross product. In reality, m may be any 
point on the line. As we see later, we use this 
representation to derive an analytical solution of 
motion. 

We should point out that segments addressed in this 
article are oriented, which is obtained in stereo through 
the information about the intensity contrast. 

Recover the motion parameters p. 

(2) 

3D line segment transformation 

If a 3D line segment undergoes a rigid displacement 
(R, t) (see below) and if we use the first representation 
(see equation (l)), let (I, m) be the parameters before 
transformation and (I’, m’), those after transformation, 
the following relations hold: 

I’=RI and m’=Rm+t (4) 

As we know that a segment can be differently 
segmented in successive views, and that its direction is 
relatively more stable, we insist on having the trans- 

MOTION REPRESENTATION 

Any rigid motion can be uniquely decomposed into a 
rotation around an axis passing through the origin of 
the coordinate system, and a translation. The transta- 
tion is supposed after the rotation. A translation can be 
simply represented by a 3D vector t = [I,. t.,, tJT. A 
rotation can be represented by a 3 x 3 matrix R called 
the rotation matrix, which is an orthogonal matrix 
satisfying: 

RRrzz I (8) 

where I is the 3 x 3 identity matrix. This representation 
gives a simple way of representing a 3D rotation, but 
leads to a high dimensional space of constraints. 
Several other representations of rotation are 
available’“, and we present here two of them: using the 
rotation axis and using a quaternion. 

Using the rotation axis 

A rotation can be defined as a three dimensional vector 
r = [a b c]“ whose direction is that of the rotation axis 
and whose norm is equal to the rotation angle. 

For convenience, we note e as the antisymmetric 
matrix defined by v. More precisely, if v = [X y z]‘? then 

(9) 

In fact, for any three dimensional vectors u and v, we 
hve unv=iiv. 
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The relation between R and r is the following 
Rodrigues formula: 

R=8=I,+f(B)i:+g(~)i” w-9 

where 8 = &‘+ 6’+ c* is the rotation angle, f(8) = sin 
B/6? and g(B) = f I- cos @)/@“. 

Thus, the parameter vector p in equation (7) is in this 
representation a six dimensionaf vector, noted as s: 

r 
s= il t- 

(11) 

Quaternions have been found useful in robotics and 
vision i3. A quaternion q can be considered as being 
either a 4-dimensional vector [A0 A, A2 h7]r or as a 
pair (a, r>, where fy is a real number equal to Ati, 
and y is the vector [Ai hz ASIT. We define the 
multiplication x of two quaternions q and q’ as follows: 

qxq’=(tucu’-r.r’,ayt+ff’r+yi\r’) (12) 

The conjugate and the magnitude of a quaternion q are 
defined as follows: 

A real number x is identified with the quaternion (x, 0) 
and a 3D vector Y is identified with the quaternion 
@, v). 

A rotation can then be represented by two quater- 
nions q = (a, y) and -4, with IqI = 1. The relation 
between this representation and the rotation axis one 
is: 

LL = cos (8/Z) and y = sin (612) u wt 

where 0=:jjrlj and u= r/llrll. Note that there are 
two quaternions for one rotation. It is not surprising 
since a rotation of angle 0 around an axis u is the same 
as a rotation of angle 2~-8 around the axis -u. 
Usually, the rotation angle between two successive 
views does not go beyond V, so we can impose that the 
first element 1y of a quaternion q must be positive. 
Thus the mapping between rotation and quaternion is 
unique under this new constraint. 

The relation between R and a unit quaternion 
q = [A(), A,, A?]’ is given as follows: 

The product Rv can be identified as the product of 
quaternions: 

Rv=qxvxq w9 

Thus, the parameter vector p in equation (7) is in this 

representation a 7-dimensional vector, noted as sy: 

under the constraint /q/ = I. 

(171 

At this point, we have two parametrizations for a 
rotation. In this section, we give the first derivatives of 
the rotation matrix with respect to each of its paramet- 
rizations, which are used in the methods described 
below. More precisely, we are interested in computing 
the derivative of Rv with respect to r and that with 
respect to q, where v = [u. vl VJ is an arbitrary 3D 
vector. 

The derivative of Rv with respect to r is: 

itRv cos (@) -f(8) sin (8) - 28g(8) 
-= 
ar @ 

(i;v)r7‘+ ~’ (i(h)) CT 

-f(@)f+g(@)(-(iG)++fr.v)Ij--vr’). 081 

where ffrt) and g{B) have the same defj~itions as 
above _ 

We define E(R, v) to be the 3 x 3 matrix t?Rv/dr, 
The derivative of Rv with respect to q is simpler. 

Indeed, we have: 

where 

We define e(R, v) to be the 3 x 4 matrix ijRvl3q. 
The derivative of f(p, x) (see equation (6)) with 

respect to s can be easify computed as follows: 

af(PY 4 i’E(R, I) 0 
-=: 

f&i -I’E(R, m) -if 1 
and the derivative of f(p, x) with respect to s4 is: 

The tilde ‘*’ above is defined as in equation (9). 

ESTIMATING MOTION USING EXTENDED 
KALMAN FILTER 

The Kalman filter is a powerful tool to deal with a 
linear noisy system. The reader is assumed familiar 
with the fitter equations. (For detaifs of this filter, the 
reader is referred to References 15 and 16.) 
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However, the KaJman filter is not directly applicable 
to our problem, because equation (7) is non-linear. So 
we use th so-called extended Kalman filter”-” i e 7 . ., we 
first linearize equation (7), then we apply the Kalman 
filter to the linearized system. The linearized system is 
as foltowsi: 

Pi = Pi-1 W) 

yi = Mif?i + Wj (24) 

where 

y; = -f&L, . a;) + 
af(_iii- I 3 a;) 

iJP 
h-t 

w, = (?f(h--l, ai) 
I ax 

(Xj-%i) 

Pi-i is the current estimate of P before processing the 
linearized system, and fj is the current measurement. 
The derivative of f(P. x) with respect to p can be 
computed using either equation (21) or equation (22), 
What we need to compute yet is the derivative of f(p, x) 
with respect to x, which is the same for both motion 
parametrizaticns: 

af(p, x) 
-= 

2X 

0 -(E> 0 

-i’R &i+t-iii’ f’ 1 
(2.5) 

The expectation and the covariance of the new 
measurement noise wi are easily derived from that of Xi 
as: 

The new estimate is generally better than the previous 
one, but more time is needed to compute rhe weight- 
ing. We have not implemented the weighted least- 
squares technique using the general minimization 
algorithms. However, we note that the EKF presented 
in the previous section can be considered as a recur- 
sive implementation of the weighted least-squares 
technique. 

E[w;] = 0 and W, “~E[wjw~] = ANALYTICAL SOLUTION: SVD 

where hi is the covariance matrix of xi* ff we suppose 
that the matched segments Li and L: are independent, 
then: 

An important remark is that when we use the quater- 
nion to represent the rotation, we have added the con- 
straint //q/1 = 1. i.e. q7’q = t in equation (7) as an 
additional measurement. 

ESTIMATING MOTION USING 
MINIMI~AT~ON 

We can restate the motion estimation problem as a 
minimization problem, i.e.: 

i [m-L x,)‘f(p, Xi,] 
,=I 

Here x;:‘=,[f(p, x,)7’f(p, Xj)J is called the objective 
function in the minimization problem which is denoted 
by 9(p), i.e.: 

B(p) = x:‘_=l[{l;:\, RIi)“(E: 2% Rlj) + 

(1:~~,{rn:-Rm,-t))“‘(l::(m:-Rmi-t))] (26) 

There exist many routines in mathematica1 libraries 
(like NagZO) ta minimize S(p) with or without con- 
straints. The minimization process can be speeded up if 
we also supply the first derivations, which can be easily 
obtained using equation (21) or (22). 

We can adopt the weighted least-squares method to 
take into account the uncertainty of measurements. 
That is, we first use the general minimization algor- 
ithms to obtain a better estimate of motion by 
minimizing the simple criterion {equation (26)). Then 
we compute the covariance of f(p, xi) using the first 
order approximation, denoted by W,. We again use the 
minimization algorithm to obtain a new estimate by 
minimizing: 

In this section, we present an analytical method to 
recover the motion parameters. The second representa- 
tion of line segments (see equation (3)) and 
the quaternion representation of rotation are used. 
Faugeras and Hebert* have already proposed an 
analytical method from point and plane correspond- 
ences. The method described here is directly inspired 
from theirs. 

The relation between a line segment (u, d) and the 
transformed line segment (u’, d’) is: 

u’=Rn (28) 

d’=Rd+u’,,T,t (29) 

The first one is evident, while the second one can be 
easily verified using the definition of d: 

= R(u urn) + u’ it = Rd + u’ 4 t (30) 

Due to the fact that the orientation of a segment is 
more conservative than other parameters (for example, 
d or m), we divide the motion determination problem 
into two subproblems: 

1. Determine first the rotation using equation (28) 
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2. Determine then the transfation using equation (29) 
under the following criterion: 

where R” is the rotation matrix recovered in the first 
step. 

By using equation (Vi), we can restate the minimization 
problem of equation (31) in quaternion notation as: 

subject to the constraint [q\ = 1. l-km X is the 
quaterni~n multiplication. I3y multiplying each term in 
equation (33) with 1 q i2, we get 

(341 

From the definition of the product of two quaternions, 
we can express u: X q-q X ui as a linear function of q. 
Indeed, there exists a matrix Ai such that: 

%.Z:Xq-qX@j=Afq 

where 

I 0 
A;= 

fUj-- u:y 
-(tQ- u:) (iii+ 6:) li 

Then, equation (33) can be further restated as: 

(35) 

(36) 

where A = &A’A, and lfql/ = 1. The matrix A can be 
computed incrementally. 

Since A is a symmetric matrix, the s~l~ition to this 
problem is the four dilnensional vector qmin corres- 
ponding to the smallest eigenvalue of A. 

We can determine translation using the standard 
minimization technique. Let the derivative of equation 
(32) with respect to t be zero, we have: 

that is 

EKF-AXIS Rotation axis 
EKF-QUAT Quaternion 
MIN.AXIS Rotation axis 
MIN.QUAT Qu~t~r~i~~n 
EIGEN Quatemion 

Extended Kalman filter 
Extended Kalman filter 
Gauss-Newton minimiz. 
Seq. quad. ~r~~rarnrn~ng 
Singular vatue decomp. 

If (~~=~u~~u~~~~ is a full rank matrix, we have c~plic~t~y 
the translation vector: 

If not, t is unrecoverable. It can be shown that (x’;=, 
tii(tiii:)‘) is atways of full rank if two of u:(i= 1 . . . n) 
are different tnotl-parallels. 

~XPE~~ME~TAL RESULTS 

The objective of our comparative study is to i~v~stj~a~e 
the a~p~icab~~ity of different methods to stereo data. 
Both synthetic and reaI stereo data are used to compare 
the methods described in the preccd~ng sections. For 
simplicity, we use some abbreviations to refer to 
different methods (see Table 1). Note that we have not 
implemented the weighted least-squares method in 
using the genera1 minimization techniques. 

Results with synthetic data 

The synthetic data we used contain 26 segments, One 
of the endpoints of each segment is fixed as the centre 
of a sphere with radius 100 units. The other endpoints 
are on the surface of the sphere. We choose them so 
that the sphere surface is quasi-uniformity sample by 
them. In other words, the orientation of segments are 
uniformly distributed in the space. Thus we obtain a set 
of noise free 3D line segments in one position, Then we 
apply a motion, which equals fO.4, 0.2, 0.5, 200.0, 
-150,0,3~.~~~under the rotation axis representations 
to this set and we obtain another set. Finally, indepen- 
dent Gaussian noise with mean zero and standard 
deviations cr,, cY and CT, is added to the 3D co- 
ordinates of each endpoint in x, y and z directions to 
obtain the noisy m~asurements~ 

Before going through the experimental results, it is 
useful to examine the shape of the objective function of 
the minimization (equation f26)). The noise level of the 
measurements is: gX= yy== 2, cZ =6. Figure 2 dis- 
plays the objective function for two matches of noisy 
line segments fn = 2 in equation (25)), In Figure 2a, the 
objective function is pfotted with respect to the x and z 
components of the rotation vector while fixing the 
translation at [200.0, -150.0, 3o0.0]T and the y 
component of the rotation vector at 0.2. The x and z 
components, r, and r,, vary around their real vafues, 
i.e. -1.66~.V~2.4 and -1S~r,%2.5. In Figure 2b, 
the objective function is plotted with respect to the 
XI and z components of the translation vector while 
fixing the rotation at jO.4, 0.2, Ct.SfT and the y 
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b b 

Figure 2. Objective function for two matches of noisy Figure 3, Objective function for ten matches of noisy 
line segments line segments 

component of the translation vector at -150.0. The x 
and z components, Ix and t,, vary around their real 
values, i.e. -6~.O~t,~~l~.O and -5OO.OSt,S 
1000.0. Figure 3 shows the same thing as Figure 2, 
except the objective function is computed using ten 
matches (n = 10). 

From those drawings, we see that the objective 
function with respect to the rotational parameters is 
smooth, and that it has only one local minimum in a 
rather wide range near the true value. This implies that 
in an iterative minimization procedure we can find the 
good solution if we start with an initial guess not ver~j 
far from the true value, as we can observe later. If the 
initial guess differs from the real value about 0.6 
radians in each direction (about 60 degrees of differ- 
ence in rotation angle), the iterative minimization 
procedure can be expected to converge to the good 
solution, The objective function with respect to the 
translational parameters is also smooth, and it has only 
one minimum. This implies that we can always find the 
good solution even if the initial guess in translation is 
very bad. The difference between the objective func- 
tions plotted in Figures 2 and 3 is that the later is more 
symmetric in different directions than the former. This 
is to say that the effects of Gaussian errors in 
measurements can be reduced by using more m.easure- 
merits, and we can expect that more data used, better 
estimation can be obtained. 

In the following, motion error is given in two parts: 
rotation error and translation error. If we use the 
rotation axis representation, let r be the real rotation 

a 

parameter ([0.4, 0.2, OS]’ in our case) and e be the 
estimated rotation parameter, then the rotation error is 
defined as: 

e, = 1) r - ti 11/11 r (I X 100% (40) 

If we use the ~uaternion representations we first 
transform it into the rotation axis representation, and 
then compute the error in the same way. Similarly, the 
translation error is defined as: 

e, = j/t - i l/,/l/ t // X 100% (41) 

where t is the real translation parameter ([200.0, 
- 150.0, 300.0]T in our case) and 2 is the estimated one. 

Since the system is nonlinear, recursive methods may 
give different solutions (even a wrong solution) with 
different initial estimates. Figures 4 and 5 show the 
motion errors of the four recursive methods with 
respect to different initial estimates. The noise level of 
the measurements is: ox =uY = 2, u, =6. In EKF- 
AXIS and EKF-QUAT, five iterations of EKF are 
applied. In MIN-AXIS and MIN-QUAT, usually more 
than 30 iterations are needed to get a stable solution. 
The abscissa coordinates (from -25 to 25) correspond 
to different initial estimates. More precisely, the 
abscissa i corresponds to the initial estimate: 

[0.4 0.2 0.5 200.0 -150.0 300.017 

+ i[O.O5 0.05 0.05 15.00 15.00 15.00]7 
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19.0 
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-25 -20 -I5 -10 -5 0 5 10 15 20 25 

Initial estimates 

Figure 4. Comparison between EKF-AXIS, EKF- 
QU.4 T, MIN-AXIS and MIN-QUAT: error in rotation 
versus different initial estimates. l : EKF-AXIS; 0: 
EKF-QUAT; +: MIN-AXIS; 0: MIN-QUAT 

For example, the abscissa -5 corresponds to the initial 
estimate [0.15, -0.05, 0.25, 125.0, -225.0, 225.01’. 
The errors are the average of 20 tries. From all these 
results, we can say that these methods (except MIN- 
QUAT) converge in a rather wide range (from -12 to 
12 for EKF methods, i.e. from [-0.2, -0.4, -0.1, 20, 
-330, 12O]r to [l.O, 0.8, 1.1, 380, 30, 4801T). We find 
also that the methods using the quaternion representa- 
tion (especially MIN-QUAT) is less stable than the 
methods using the rotation axis representation. The 
instability of the EKF-QUAT method can be observed 
at i = 7, but it is not as serious as that of MIN-QUAT. 
We observe also this instability of the quaternion 

-25 -20 -15 -10 -5 0 5 10 15 20 25 

Initial estimates 

Figure 5. Comparison between EKF-AXIS, EKF- 
QUAT, MIN-AXIS and MIN-QUAT: error in transla- 

Figure 6. Comparison: error in rotation versus uz 

tion versus different initial estimates. l : EKF-AXIS; 
while ux and uy are fixed at 1. a: EKF-AXIS; 0: 

0: EKF-QUAT; +: MIN-AXIS; 0: MIN-QUAT 
EKF-QUAT; +: MIN-AXIS; 0: MIN-QUAT; A: 
EIGEN 

Table 2. Comparison of different methods: user time 
and motion error 

Methods 

User time Rot. error Trans. error 

(second) f%) (%) 

MIN.QUAT 122.8 17.73 1.17 
MIN-AXIS 57.7 17.73 1.17 
EKF-QUAT 29.7 14.91 1.15 
EKF-AXIS 27.7 14.26 1.16 
EIGEN 0.07 20.72 1.12 

representation in other experiments ’ . Another remark 
is that if MIN-AXIS and MIN-QUAT do not diverge, 
they give exactly the same solution. 

Table 2 shows the comparison on run time (on SUN 
3/60 workstation), rotation error and translation error 
versus different methods. The results are the average of 
ten tries. Two line segment correspondences are used. 
The EKF is iterated five times. cr, = (T\,= 2, u, = 6. 
From Table 2, we observe that using a general 
minimization routine is very time expensive (for 
example, 122.8 seconds for MIN-QUAT. This is 
because more than 30 iterations are needed to get a 
stable solution) and that the EIGEN method is very 
efficient. EKF gives smaller motion errors than other 
methods with a reasonable run time. This is expected, 
since EKF takes into account the different uncertainty 
distribution of measurements and the others treat 
equally each measurement and each component of a 
measurement. Another remark is that using the 
quaternion representation is more time consuming than 
using the rotation axis representation. This is for two 
reasons: 

1. The quaternion representation has one parameter 
more than the rotation axis representation. 

2. There is a constraint for the quaternion representa- 
tion, and in EKF-QUAT we add this constraint as an 
additional measurement. 
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0 2 4 6 8 10 12 I.4 16 18 20 

Deviation in direction z 

Figure 7. Comparison: error in translation versus rz 
while a, and LT~ are fixed at I. @: EKF-AXIS; 0: 
EKF-QUAT; +: MIN-AXIS; 0: MIN-QUAT; A: 
EIGEN 

One can expect that the weighted least-squares method 
using general minimization techniques gives the best 
estimation, but it would take more time than MIN- 
QUAT or MIN-AXIS. 

Figures 6 and 7 show the motion error while the 
standard deviation in z direction (gZ) varies from 1 to 
20 and a, and gY are fixed at 1. The initial estimate 
for the recursive methods are all zero. Five iterations of 
EKF are applied. The error is the average of ten tries. 
Two correspondences are used. We can observe that 
error in rotation varies almost linearly with the 
deviation gZz, but the slopes of the curves correspond- 
ing to EKF-AXIS amd EKF-QUAT are much smaller 
than the others. This shows the advantage to take into 
account the uncertainty; especially when the uncer- 
tainty distribution is not uniform. MIN-QUAT gives the 
same error as FIN-AXIS, but it diverges when a, 
becomes big. From Figure 7, we see that all methods, 
except EIGEN, give almost the same error in transla- 
tion. 

Results with real data 

Up to now, the experiments we have carried out used 
only the synthetic measurements with the same uncer- 
tainty distribution. However, the uncertainty in 3D 
positions of line segments obtained by stereo triangula- 
tion varies with the distance. It increases with its 
distance to the cameras. Furthermore, the uncertainty 
of a reconstructed 3D point is different in different 
coordinate directions: a nearby point has a fairly 
compact uncertainty; a distant point has a bigger 
uncertainty in the range than in the horizontal and 
vertical directions. In this section, we compare the 
different methods using real data. 

Figures 8 and 9 are two stereo frames constructed by 
our mobile robot in two different positions. Each figure 
contains two pictures. Figures 8a and 9a are the 
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a b 
Figure 8. (a) Front and (b) top views of the first 30 
scene 

- ,+ .- II 
a b 
Figure 9. (a} Front and fb) top views of the second 30 
scene 

projections of the 3D scene on a plane perpendicular to 
the ground plane in front of the cameras (called front 
view) and Figures 8b and 9b are the projections on the 
ground plane (called top view). The triangle in each 
frame represents the optical centres of the cameras of 
our trinocular stereo system. There is a large displace- 
ment between these two positions (about 10 degrees of 
rotation and 7.5 centimetres of translation). We applied 
the EKF-AXIS on these two scenes using 10.5 corres- 
pondences (recovered by the algorithm described in 
Reference 9). After two iterations of EKF, the motion 
parameter is given as [-5.26e-03, -1.64e-01, 
1.45e-03, 3.09e+-02, -1.52e+OO, 689efOZ]r. The 
translation is in millimetres. The result is shown in 
Figure 10. We applied the estimated motion on the first 
scene and superimposed the transformed scene (in 
dashed lines) on the second scene (in solid lines). The 
displacement between the two positions can be recog- 
nized from the shift of the triangle. 

Five arbitrary correspondences are used to compare 
the different methods. The initial estimate is zero for 

Figure 10. Superposition of two scenes with the result of 
EKF-AXIS using 105 line segment correspondences 



Figure 1 I, Superposition of two scenes with the result of 
MIN-AXIS using 5 correspondences 

Figure 12. Superposition of two scenes with the result of 
EKF-QiJAT using 5 correspondences 

the four recursive methods. Three iterations of EKF 
are applied in EKF-AXIS and EKF-QUAT. The result 
of EKF-AXIS is shown in Figure 11, that of EKF-QUAT 
in Figure 12, that of MIN-AXIS in Figure 13 and that of 
EIGEN in Figure 14. MIN-QUAT gives exactly the 
same result as MIN-AXIS. All these results is compared 
with the above one and is displayed in Table 3. We 
arrive that the EKF is much better than the others 

Figure 13. Superposition of two scenes with the result of 
~Z~-AXIS using 5 ~orres~unden~e.~ 

Figure 14. Superposition of two scenes with the result qf 
EIGEN using 5 correspondences 
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Table 3. Comparison using the real data 

Methods Roturion wror Translation error 

EKF-AXIS 2.25 1.77 
EKF-QUAT 2.32 1.37 
MIN-AXIS 34.09 22.78 
MIN.QUAT 34.09 22.78 
EIGEN 53.48 37.74 

when 3D data come from stereo. The reason is that the 
EKF takes into account that the fact that 3D measure- 
ments from stereo have different error distribution, and 
the others do not. 

CONCLUSION 

In this paper we have presented a number of methods 
for determining 3D motion from 3D line segment 
correspondences. Two representations of 3D fine 
segments and two representations of rotation were 
described. With different representations of 3D line 
segment and rotation, we showed how to determine 
motion using the extended Kalman filter, a general 
minimization process, and the singular value decom- 
position. These methods have been compared using 
both synthetic data and real data obtained by a 
trinocular stereo. Due to space limitations, only part of 
the results were provided in this paper (see Reference 1 
for further details), 

From our experiments, we observe that: 

I. 

2. 

3 _ . 

4. 

5. 

6. 

7. 

Uncertainty on measurements should be taken into 
account, especially when measurements have dif- 
ferent uncertainty distributions. 
When measurements have small uncertainty (less 
than 2% of segment length), general minimization 
algorithms give the best results. But when the 
uncertainty becomes larger, the general minimiza- 
tion algorithms do not give better results than EKF. 
Furthermore, they are more time consuming. 
In the general minimization algorithm or EKF, 
using the quaternion representation is more time 
consuming and does not give better results than 
using the rotation axis representation. On the 
contrary, we observed that using the quaternion 
representation is less stable. 
Recursive methods require an initial guess of the 
solution. When the initial estimate is far from the 
true one. recursive methods may give a wrong 
solution. In our experiments, we observe that the 
recursive methods can converge to the true solution 
when the initial estimate varies in a wide range from 
the true one. 
Using an iterated extended Kalman filter can reduce 
the effects of non-linearity. Even when few corres- 
pondences are available, EKF converges to the true 
estimate after only five or six iterations. 
Using the quaternion representation of rotation, we 
can use the singular value decomposition to obtain 
the analytical solution of motion. The method is 
efficient and does not need an initial motion 
estimate. However, the result is not very significant. 
EKF can incorporate new measurements incremen- 
tally. 



We conclude that the extended Kalman filter with the 
rotation axis representation is preferable, especially 
when measurements have different distribution of 
uncertainty like in stereo. The EKF-QUAT also gives 
good results, but it is more time consuming and less 
stable than the EKF-AXIS. 

We note that all methods presented in this paper can 
be directly applied to 3D point data. In that case, at 
least three 3D point correspondences (non-collinear) 
are needed. Every three non-collinear points can form 
two non-parallel segments. 
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