
Deciding Linear Disjointness of Finitely Generated FieldsJ�orn M�uller-Quade and Martin R�otteler�Institut f�ur Algorithmen und Kognitive SystemeUniversit�at Karlsruhe, Germanymuellerq@ira.uka.deAbstractThe behaviour of two �eld extensions with respect to eachother can be described by the notions of linear disjointnessand freeness. This paper gives methods for e�ectively de-ciding linear disjointness and freeness for �elds lying undera �nitely generated �eld k(X) = Quot(k[X1; : : : ; Xs]=I(X)).Furthermore the methods developed can be used to decidefor two given �elds if there exists a �eld over which they arelinear disjoint. This �eld (if it exists) is always the intersec-tion of the two �elds given. Thus we are able to computethe intersection of �nitely generated �elds which are lineardisjoint.All methods used rely on a correspondence from (pairsof) �elds to ideals namely the ideal of syzygies of the gener-ators of one �eld which have coe�cients lying in the other�eld. We thereby generalize existing correspondences associ-ating single �elds or �eld extensions to ideals. Our contribu-tion concludes with an outlook to the problem of computingthe intersection of �elds in more general situations.1 IntroductionMost algorithms for function �elds make use of constructivemethods from ideal theory by associating a certain ideal tothe �eld in question. The �rst correspondence of �elds andideals, which allowed to exploit Gr�obner basis techniques forproblems concerning function �elds, was given by Sweedlerin his work on the return of the killer tag variables [10]. Thepaper [10] adapts the ideas of Shannon and Sweedler [9]from k-algebras to �elds. These methods were improved andimplemented by Kemper [5]. An approach for sub�elds ofrational function �elds working without tag variables was�rst presented at [2], improved in [7], and then generalizedto arbitrary function �elds in [8].All algorithms developed so far dealt with single function�elds or single �eld extensions. In this paper we will asso-ciate ideals to pairs of �elds. To make this correspondencee�ective we use both approaches mentioned above. Idealsassociated to pairs of �elds enable us to study the mutual�supported by a fund of the Lehrstuhl Prof. Dr. Th. Beth

behaviour of �eld extensions. The properties we will focuson are linear disjointness and freeness.The �elds k(x), k(y), and k(z) considered in this pa-per are generated over a �eld k of constants and are con-tained in a �eld k(X) which is a �eld of rational functionson a variety, i. e., the quotient �eld of a ring of polynomialsmodulo the prime ideal I(X). For all statements concern-ing constructibility the �elds k(x); k(y); k(z), and k(X) areassumed to be �nitely generated over a computable �eld k.The following de�nition is consistent with [6] and di�ersfrom the more general view in [3].De�nition 1 Let k(x) and k(y) be extensions of a �eld k(z)both contained in a �eld k(X).1. The �eld k(x) is said to be linear disjoint from k(y)over k(z) i� every �nite subset of k(x) linearly indepen-dent over k(z) is still linearly independent over k(y).2. The �eld k(x) is called free from k(y) over k(z) i� ev-ery �nite subset which is algebraically independent overk(z) remains algebraically independent over k(y).Unless explicitly stated otherwise the �elds in discussionobey the following relations:k(X)k(x;y)
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PP k(x) \ k(y)k(z)kGiven two �elds k(x), k(y) we de�ne the ideal Jk(x)=k(y)of all syzygies the generators of k(x) have over the �eld k(y).For �elds �nitely generated over a computable �eld k the�rst part of this paper will give an e�ective construction forJk(x)=k(y). In the special case of k(y) � k(x) methods from[8] will be applied for a shortcut computation of Jk(x)=k(y).Furthermore we will see that for �nitely generated �eldsthe question whether two �elds k(x) and k(y) are free overa �eld k(z) can be decided by inspecting the transcendencedegrees of the extensions k(x)=k(z) and k(x;y)=k(y). Thesedegrees can be computed using the corresponding syzygy1



ideals and the degrees are equal i� k(x) and k(y) are freeover k(z).If two �elds k(x) and k(y) are linear disjoint overk(z) one can think of the extensions k(z)(x)=k(z) andk(y)(x)=k(y) as being similar. The correspondence between�elds and ideals will make this intuition more precise: Bothextensions are performed by a set fxg of generators and thesyzygy ideals of these generators over k(y) and k(z) respec-tively have equal reduced Gr�obner bases i� k(x) and k(y)are linear disjoint over k(z).Furthermore we show that the existence of a �eld k(z)over which the �elds k(x) and k(y) are linear disjoint impliesk(z) = k(x)\k(y). In this case the intersection of the �eldsk(x) and k(y) can be computed using the ideal Jk(x)=k(y).The methods presented thus not only allow to decide for�nitely generated �elds k(x) and k(y) if there exists a �eldk(z) over which they are linear disjoint, but also to computethis �eld k(z).Finally we give an outlook to another important ques-tion concerning extensions k(x)=k(z) and k(y)=k(z) namelycomputing k(x) \ k(y) in cases without linear disjointness.We will focus on separable extensions of function �elds inone variable since we can give an additional criterion then.2 The Ideal of Syzygies of the Field GeneratorsGiven �elds k(x) and k(y) lying over a �eld of constants andboth being contained in some �eld k(X) we formally de�nethe syzygy ideal mentioned in the introduction.De�nition 2 Let k(x) and k(y) be �elds lying over a �eldk of constants and let fxg, fyg denote the sets of genera-tors of k(x) and k(y) over k respectively. Furthermore letSx2fxgfZxg be a set of variables and k(y)[Z] be the ring ofpolynomials in these variables over the �eld k(y). Then theideal Jk(x)=k(y) � k(y)[Z] of all algebraic relations of the setfxg over k(y) is de�ned ashfx� Zxjx 2 fxggi \ k(y)[Z]:The ideal hfx� Zxjx 2 fxggi used in the de�nition canalso be viewed as a syzygy ideal, namely Jk(x)=k(x) repre-senting the trivial extension k(x)=k(x).The next lemma is the basis for the properties of thesyzygies ideal which are used in the following.Lemma 3 The ideal Jk(x)=k(y) equals the kernel of the spe-cialization homomorphism	x : k(y)[Zx1 ; : : : ; Zxr ]! k(y)(x);Zx 7! x:Proof: We show thatf(y;Z) 2 hfx� Zxjx 2 fxggi \ k(y)[Z] i� f(y;x) = 0:\)" This is obvious.\(" To prove this implication we make use of a formulatransformation which will also play an important rôle in theproofs of Lemma 5 and Proposition 8. Using a multi index� the polynomial f can be written asf(y;Z) =X� ��Z� =X� �� rYi=1 Z�ixi :

Substituting Zxi by xi = (Zxi + (xi � Zxi)) we arrive atf(y;x) =X� �� rYi=1(Zxi + (xi � Zxi))�i = 0from which we would like to conclude f(y;Z) 2hfx� Zxjx 2 fxggi\k(y)[Z]: Expanding the product we getonly one term of the sum not divisible by (xi�Zxi) for somei. With qj� 2 k(x;Z) suitably chosen we get:f(y;x) =X� ��  rYi=1 Z�ixi + rXj�=1 qj� (xj� � Zxj� )! = 0:This is equivalent tof(y;x) = f(y;Z) +X� �� rXj�=1 qj� (xj� � Zxj� ) = 0which immediately yields a representation of f(y;Z)in hfx� Zxjx 2 fxggi and we can conclude f(y;Z) 2hfx� Zxjx 2 fxggi \ k(y)[Z]:Let us �rst consider cases where one of the �elds is the�eld k of constants. Let k(x) be given as a �eld of rationalfunctions on a variety X, i. e., as the quotient �eld of a ringof polynomials k[X1; : : : ; Xs] modulo a prime ideal I(X).Then the ideal Jk(x)=k equals fp(ZX1 ; : : : ; ZXs)jp 2 I(X)g.In particular if k(x) is a rational function �eld the idealJk(x)=k is h0i.If the �eld k(x) is given as a sub�eld of a �eld k(X)of rational functions on a variety X, the ideal Jk(x)=k canbe computed using tag variables. For this purpose we �rstintroduce another ideal. Using this construction it is im-portant to distinguish between the free polynomial ringk[X1; : : : ; Xs] sometimes also written as k[X] and the co-ordinate ring k[X] = k[X]=I(X).De�nition 4 Let the �eld k(x) be a sub�eld of k(X) =Quot(k[X1; : : : ; Xs]=I(X)) �nitely generated over a �eld kand let X1; : : : ; Xs denote the residue classes of the vari-ables X1; : : : ; Xs modulo I(X). Furthermore letx1 = n1(X1; : : : ; Xs)d1(X1; : : : ; Xs) ; : : : ; xr = nr(X1; : : : ; Xs)dr(X1; : : : ; Xs)be one possible representation of the generators of k(x) interms of the X1; : : : ; Xs | the generators of k(X). For newvariables Zx1 ; : : : ; Zxr , the variables X1; : : : ; Xs (in shortX), and d = d1(X) � : : : �dr(X) | the product of the denom-inators | we de�ne the ideal Tk(x) as(hn1(X)� d1(X)Zx1 ; : : : ; nr(X)� dr(X)Zxr i+ I(X)) : d1:The above ideal is well de�ned as the next lemma will givea characterization which is independent of the particularchoices made in De�nition 4.Lemma 5 The ideal Tk(x) is the kernel of the specializationhomomorphism k[X1; : : : ; Xs][Z]! k(X)Zxi 7! xi; Xi 7! Xi:2



Proof: We show that f(X;Z) 2 Tk(x) is equivalent tof(X;x) = 0.\)": Let f be an element of Tk(x). Then there is a � 2 INsuch thatd�f 2 (hn1(X)� d1(X)Zx1 ; : : : ; nr(X)� dr(X)Zxr i+ I(X)) :This implies the existence of q 2 I(X); u0; : : : ; ur 2 k[X][Z]with d�f = u0 +Pri=1 ui � (ni(X) � xidi(X)) and hence(d�f)(X;x) = 0. Because of d(X;x) not lying in I(X) weget f(X;x) = 0.\(": Given f(X;Z) with f(X1; : : : ; Xs;x) = 0. Theconstant \0" is understood as an element of k(X) :=Quot(k[X]=I(X)), i. e., it is represented as uv with u 2 I(X)and v 62 I(X). For the computations to come we �x the rep-resentation of the xi in the Xj to the representation usedin De�nition 4 thereby eventually changing the result off(X;x) to ~u~v with ~u 2 I(X) and ~v 62 I(X). As I(X) is aprime ideal and ~v is not in I(X) the above condition can bewritten as f(X;x) 2 I(X). Using multi indices �; � we writef analogously to Lemma 3 asf(X;Z) =X�;� ��;�X�Z� =X�;� ��;�X� rYi=1 Z�ixi :Substituting the Zxi with xi written as Zxi + (xi � Zxi)results inf(X;x) =X�;� ��;�X� rYi=1(Zxi + (xi � Zxi))�i 2 I(X):We expand the product and get only one term of the sumnot divisible by (xi � Zxi ) for some i. Hence with suitablychosen qj� 2 k[Z][x] the above formula reads:X�;� ��;�X� rYi=1 Z�ixi + rXj�=1 qj� (xj� � Zxj� )! 2 I(X):Using distributivity the last condition can be written as:f(Z;X) +X�;� ��;�X� rXj�=1 qj� (xj� � Zxj� )! 2 I(X):Multiplication with d� for some � 2 IN clears the denomi-nators resulting from the specialization of Z to x and withsuitably chosen ~qj� we have:d�f +X�;� ��;�X� rXj�=1 ~qj� (nj� � dj�Zxj� )! 2 I(X):Therefore d�f 2 Tk(x) and due to the saturation with d weget f 2 Tk(x) as desired.This characterization of the tag variable ideal shows therelation of Tk(x) to the ideals of De�nition 2. The ideal Tk(x)lies in the ring k[X][Z] whereas the ideal Jk(x)=k(y) is de�nedin k(y)[Z]. For Tk(x) we change the ring k[X] to k[X] =k[X]=I(X) hence changing the ideal Tk(x) to Tk(x) + I(X).Then looking at what these ideals generate in k(X)[Z] weget from Lemma 3 and Lemma 5 the equation�Tk(x) + I(X)� � k(X)[Z] = Jk(x)=k(x) � k(X)[Z]:

The advantage of the ideal Tk(x) is the possibility to com-pute a Gr�obner basis with respect to a term order obey-ing X1; : : : ; Xs � Zx1 ; : : : ; Zxr since the X1; : : : ; Xs can betreated as variables. This enables us to compute the ideal ofall syzygies the generators have over the �eld k of constantsby elimination (Theorem 1 [5]).Corollary 6 With the notions of De�nition 4 we get:Jk(x)=k = Tk(x) \ k[Zx1 ; : : : ; Zxr ]This method can be extended to compute the ideal Jk(x)=k(y)for �elds k(x) and k(y) �nitely generated over the �eld ofconstants. One �rst computes the ideal of algebraic relationsof the set fxg [ fyg over k, i. e., the ideal Jk(x;y)=k usingtag variables and then specializes each tag variable Zy withy 2 fyg to the generator y it stands for.Proposition 7 Let �y denote the specialization homomor-phism�y : k[Zx1 ; : : : ; Zxr ; Zy1 ; : : : ; Zym ]!k[Zx1 ; : : : ; Zxr ](y);Zyi 7!yithen Jk(x)=k(y) = 
�y �Jk(x;y)=k�� :Proof: The inclusion \�" is obvious with Lemma 3 as allelements of 
�y �Jk(x;y)=k�� evaluate to zero when the Zxiare substituted by the xi. To show the inclusion \�" wetake a syzygy p 2 Jk(x)=k(y). Clearing the denominators ofp gives a polynomial ~p 2 k[x][Z] replacing the xi of ~p by Zxiwe get a syzygy ~p(Zx1 ; : : : ; Zxr ; Zy1 ; : : : ; Zym) which mustbe an element of Jk(x;y)=k. The polynomial �y(~p) di�ersfrom p only by a constant factor. Thus p 2 
�y �Jk(x;y)=k��.For the case of k(x) being an extension of k(y) we canexpress the generators of k(y) in terms of the x1; : : : ; xr.In this case an alternative characterization of the idealJk(x)=k(y) already exists and one can take a computationalshortcut [8]. The main advantage of this approach is theindependence of the number of variables involved from thenumber of generators of k(y).Proposition 8 Let k(y) � k(x) be �elds �nitely gener-ated over k and let the generators y1; : : : ; ym of k(y) overk be expressed in x = x1 : : : ; xr as y1 = n1(x)d1(x) ; : : : ; ym =nm(x)dm(x) . Let Z denote Zx1 ; : : : ; Zxr then we de�ne an idealI = Dn1(Z)� n1(x)d1(x) d1(Z); : : : ; nm(Z)� nm(x)dm(x) dm(Z)E andfor d = d1(Z) � : : : � dm(Z) we get:Jk(x)=k(y) = �Jk(x)=k + I� : d1:Proof: The ideal I used in the construction of Proposition 8depends on the representation of the generators of k(y) inthe x1; : : : ; xr. One result of this proof will therefore bethe independence of �Jk(x)=k + I� : d1 from that particularchoice. Following Lemma 3 we have to show thatf(y;Z) 2 �Jk(x)=k + I� : d1 i� f(y;x) = 03



\)" Let f be an element of �Jk(x)=k + I� : d1. Then thereexists a � 2 IN such that d�f 2 I + Jk(x)=k and this impliesd�f(y;x) = 0. Since d(x) 6= 0 we get f(y;x) = 0.\(" Given f 2 k(y)[Z] with f(y;x) = 0 we have to takeinto account that this \0" is an element of k(x). Thus ifwe represent the generators of k(y) in x1; : : : ; xr and thensubstitute all xi by their corresponding variables Zxi we getf(y(Z);Z) = uv with u 2 Jk(x)=k and v 62 Jk(x)=k. Fixing therepresentation of the generators of k(y) in x1; : : : ; xr to therepresentation used in Proposition 8 the value of f(y(Z);Z)may be changed to ~u~v with ~u 2 Jk(x)=k and ~v 62 Jk(x)=k.Hence f(y(Z);Z) = ~u~v is a rational function in Z vanishingat Zxi = xi. Multiplying f(y(Z);Z) with a suitable c 2k[y(Z)] we get ~f = c � f 2 k[y(Z)][Z]. Rewriting ~f(y(Z);Z)we get the condition that~f(y1(x)+ (y1(Z)� y1(x)); : : : ; ym(x)+ (ym(Z)� ym(x));Z)is a rational function in Z vanishing at Zxi = xi. Thisfunction can also be written with multi indices �; � asX�;� ��;�Z� rYi=1(yi(x) + (yi(Z)� yi(x)))�i :Analogously to the proof of Lemma 3 we expand the prod-uct and �nd only one term of the sum not divisible by(yi(Z) � yi(x)) for some i. Thus for suitably chosen qj� 2k[y;y(Z);Z] we have thatX�;� ��;�Z� rYi=1 yi(x)�i + rXj�=1 qj� (yj� (Z)� yj� (x))!vanishes at Zxi = xi. And therefore~f +X�;� ��;�Z� � rXj�=1 qj� (yj� (Z)� yj� (x))also vanishes at Zxi = xi. For an � 2 IN chosen large enoughmultiplication with d(Z)� can clear the denominators of thelast formula. Henced(Z)� � ~f + d(Z)� �X�;� ��;�Z� � rXj�=1 qj� (yj� (Z)� yj� (x))is a polynomial vanishing at Zxi = xi thus it is an elementof Jk(x)=k. As the last formula represents a polynomial in Zthere are suitable ~qj� 2 k[y;Z] such that the above elementof Jk(x)=k can be written asd(Z)� � ~f +X�;� ��;�Z� � rXj�=1 ~qj� (nj� (Z)� yj� (x)dj� (Z)):Hence d(Z)� � ~f is an element of the ideal ~I + Jk(x)=k where~I � k[y][Z] is de�ned by~I := �n1(Z)� n1(x)d1(x) d1(Z); : : : ; nm(Z)� nm(x)dm(x) dm(Z)� :Clearly ~I � k(y)[Z] = I. Viewing ~f 2 k[y][Z] as an elementof k(y)[Z] we may divide by the above chosen c 2 k[y] andget f = c�1 ~f 2 �Jk(x)=k + I� : d1

Three examples will show how the syzygy ideal looks indi�erent situations.Example 9 1. If k(x) is a rational function �eld weknow Jk(x)=k to be h0i. Furthermore if the �eldk(y) is a sub�eld of k(x) generated by polynomi-als y1; : : : ; ym the ideal Jk(x)=k(y) can | accord-ing to Proposition 8 | be written down directly ashy1(x)� y1(Z); : : : ; ym(x)� ym(Z))i.For C(a2 + b2; ab) � C(a; b) we get the correspondingideal 
a2 + b2 � (Z2a + Z2b ); ab� ZaZb�.2. For C(a2+b2ab ) � C(ab ) we have (a=b)2+1a=b = a2+b2ab , andfollowing Proposition 8 we get DZ2ab � Z ab (a=b)2+1a=b + 1Ewhich is the ideal generated by the minimal polynomialof ab over C(a2+b2ab ).3. Let C(a; b; c) denote Quot(C[a; b; c]= habc� 1i). Con-sider the sub�elds C( b2a2+ab3+cb2 ; ab) and C(ab ). Thenthe ideal JC( b2a2+ab3+cb2 ;ab; ab )=C is�Z b2a2+ab3+cb2 (Z2ab Zab + Z2ab � 1)� Zab�and the ideal JC( b2a2+ab3+cb2 ;ab)=C( ab ) thus equals�Z b2a2+ab3+cb2 (a2b2 Zab + Z2ab � 1)� Zab� :For an ideal I the saturation I : d1 is e�ective ([1] Al-gorithm idealdiv2) and so is the problem of representing a�eld element in some generators [10, 5, 8]. Thus the idealsof De�nition 4 and Proposition 8 can be achieved throughGr�obner basis computations.Corollary 10 Let the �elds k(x); k(y) be �nitely generatedover a computable �eld k and contained in a �eld k(X) =Quot(k[X1; : : : ; Xs]=I(X)). Then the ideal Jk(x)=k(y) can becomputed e�ectively.Summarizing what is said above we list the properties wewill refer to later.Corollary 11 For �elds k(x); k(y); k(z) �nitely generatedover k the following conditions hold.1. k(y)[x] ' k(y)[Zx1 ; : : : ; Zxr ]=Jk(x)=k(y).2. k(y)(x) ' Quot �k(y)[Zx1 ; : : : ; Zxr ]=Jk(x)=k(y)�.3. dim(Jk(x)=k(y)) equals the transcendence degree ofk(y)(x) over k(y).4. The monomials of k(y)[Zx1 ; : : : ; Zxr ] not reduciblemodulo a �xed Gr�obner basis of Jk(x)=k(y) form a basisfor k(y)[Zx1 ; : : : ; Zxr ]=Jk(x)=k(y) as a vector space overk(y).5. For k(z) � k(x) the coe�cients of a reduced Gr�obnerbasis of Jk(x)=k(z) generate k(z).4



Proof: With Lemma 3 we can directly conclude the points1. and 2. of the corollary. To prove point 3. we follow theproof of Lemma 2 in [8]. The ideal Jk(x)=k(y) is prime, andhence every maximally independent set S modulo Jk(x)=k(y)has dim(Jk(x)=k(y)) elements and the residue classes of theelements of S form in fact a maximal algebraic independentset over k(y) ([1] Proposition 7.26 and Lemma 7.25). Point4. is obvious from point 1. The property stated as point 5.is shown by Lemma 3 in [8] and the remark directly belowit.3 Deciding Freeness of Finitely Generated FieldsLemma 12 Let k(x)=k(z) and k(y)=k(z) be extensions of�elds �nitely generated over a �eld k of constants. Thenk(x) is free from k(y) over k(z) if and only if the transcen-dence degree of k(x)=k(z) equals the transcendence degree ofk(y;x)=k(y).Proof: Assume the transcendence degree of k(y;x)=k(y)to be smaller than the transcendence degree of k(x)=k(z).Then a transcendence basis of the extension k(x)=k(z) doesnot remain algebraically independent over k(y) contradict-ing k(x) being free from k(y). The case that the transcen-dence degree of k(y;x)=k(y) is larger than the transcen-dence degree of k(x)=k(z) is impossible.The next result will give a criterion based on the idealsassociated to the �eld extensions of Lemma 12.Proposition 13 Let k(x)=k(z) and k(y)=k(z) be exten-sions of �elds �nitely generated over a �eld k of constants.Then the following conditions are equivalent:1. dim(Jk(x)=k(z)) = dim(Jk(x)=k(y)).2. dim(Jk(y)=k(z)) = dim(Jk(y)=k(x)).3. The �eld k(x) is free from k(y) over k(z).Proof: Obvious from Lemma 12 and point 3. of Corol-lary 11.4 Deciding Linear Disjointness of Finitely Gener-ated FieldsFirst we recall two criteria given in [6] Chapter X x 5.Lemma 14 1. k(x) is linear disjoint from k(y) over k(z)i� every �nite subset of k[x] which is linearly indepen-dent over k(z) remains so over k[y].2. k(x) is linear disjoint from k(y) over k(z) i� there isa basis b of k[x] as a vector space over k(z) which islinearly independent over k[y].Equipped with these and Corollary 11 we are able tostate the main result of this section.Proposition 15 Let the �elds k(x) and k(y) be �nitelygenerated over a �eld k of constants. Then the followingconditions are equivalent:1. There exists a �eld k(z) with k(x) and k(y) being lineardisjoint over k(z).2. There exists a unique �eld k(z) with k(x) and k(y) be-ing linear disjoint over k(z) and k(z) = k(x) \ k(y).

3. Jk(x)=k(y) = Jk(x)=k(z) � k(y)[Z].4. Jk(y)=k(x) = Jk(y)=k(z) � k(x)[Z].Proof: \1:) 2:" Suppose k(z) < k(x)\k(y) Then there ex-ist elements from k(x)\k(y) linearly independent over k(z)but not independent over k(x) \ k(y). These elements arealso elements of k(x) which are linearly independent overk(z) but not linearly independent over k(y). Hence k(x)cannot be linear disjoint from k(y) over k(z).\2:) 1:" This is obvious.\3: ) 1:" The coe�cients of a reduced Gr�obner basisare elements of the smallest �eld possible since one couldhave started the Buchberger algorithm with a generatingset having coe�cients from this �eld and the algorithmdoes not need any �eld extensions. Thus the equationJk(x)=k(y) = Jk(x)=k(z) � k(y)[Z] implies that these idealshave equal reduced Gr�obner bases. If we have equal reducedGr�obner basis for the ideals Jk(x)=k(y) and Jk(x)=k(z) �k(y)[Z]we also have equal vector space bases for the extensionsk(y)(x)=k(y) and k(x)=k(z). Thus we can conclude thelinear disjointness of k(x) and k(y) with point 2. fromLemma 14.\1: ) 3:" Is proven via not 3: implies not 1: We haveJk(x)=k(z) � k(y)[Z] � Jk(x)=k(y) and if these ideals are notequal they have di�erent Gr�obner bases. Since the idealscontain each other they also have di�erent initial ideals.Thus we have monomials which can be reduced modulo aGr�obner basis of Jk(x)=k(y) but cannot be reduced modulo aGr�obner basis of Jk(x)=k(z) � k(y)[Z]. According to point 4.of Corollary 11 we have a vector space basis of the extensionk(x)=k(z) which does not remain linearly independent overk(y). This contradicts point 2. of Lemma 14 and thereforethe �elds k(x) and k(y) are not linear disjoint.\4: , 1:" This follows from the property of linear disjoint-ness being symmetric (see [6] Chapter X x 5).One interesting aspect of this result is the possibility tocompute a generating set for the ideal Jk(y)=k(z) withoutknowing k(z) if the �elds k(x) and k(y) are linear disjoint.Since we are able to extract the �eld k(z) from the idealJk(y)=k(z) we can compute the intersection of linear disjoint�elds.Corollary 16 Let the �elds k(x) and k(y) be �nitely gen-erated over a �eld k of constants and linear disjoint overtheir intersection. Then the set of coe�cients of a reducedGr�obner basis of Jk(x)=k(y) generates k(x) \ k(y)Proof: We have seen that the coe�cients of a reducedGr�obner basis of Jk(x)=k(y) (= Jk(x)=k(y)\k(x)) must be con-tained in k(x) \ k(y). The coe�cients even generate this�eld according to point 5. of Corollary 11.The methods developed above can also be applied to con-structively answer the slightly more general question: Giventwo �elds k(x); k(y) does there exist a �eld k(z) � k(y) suchthat k(z)(x) and k(y) are linear disjoint over k(z)?k(x;y)
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Corollary 17 For the �elds k(x); k(y) �nitely generatedover k let fcg denote the set of coe�cients of a reducedGr�obner basis of Jk(x)=k(y). Then k(x; c) is the minimal�eld lying over k(x) such that k(x; c) and k(y) are lineardisjoint.Example 18 As in Example 9 let C(a; b; c) denoteQuot(C[a; b; c]= habc� 1i). Again we consider the sub-�elds C( b2a2+ab3+cb2 ; ab) and C(ab ) and ask whether theyare linear disjoint over some �eld k(z). The idealJC( b2a2+ab3+cb2 ;ab)=C( ab ) was already computed to be�Z b2a2+ab3+cb2 (Z2ab + a2b2 Zab � 1)� Zab� :The generating set given already forms a reduced Gr�obnerbasis. Thus there is only one coe�cient (62 C) gen-erating the �eld C(a2b2 ). With methods from [10, 5, 7]it is easy to check that C(a2b2 ) � C( b2a2+ab3+cb2 ; ab) andhence C( b2a2+ab3+cb2 ; ab) \ C(ab ) = C(a2b2 ). Thus the �eldsC( b2a2+ab3+cb2 ; ab) and C(ab ) are linear disjoint over C(a2b2 ).5 An Outlook to the Intersection of FunctionFieldsIn this section we show some cases where the methods de-veloped so far allow the computation of the intersection oftwo �elds even in the absence of linear disjointness. But wealso want to point out that intersecting �elds is a di�culttask.First we need some aid from Galois theory.Lemma 19 For �elds k(x); k(y) lying over k(z) let the ex-tension k(x)=k(z) be �nite and Galois. Then k(x) and k(y)are linear disjoint over k(x) \ k(y).Proof: From [6] Chapter VIII Theorem 1.12. we knowthat the Galois group of the extension k(x)=k(x)\k(y) is arestriction of the Galois group of k(x;y)=k(y). From this wecan conclude that the extensions have equal degree and canbe performed by adjoining identical roots. Looking at thesyzygy ideals of this set of roots and applying Proposition 15linear disjointness follows.In the context of Lemma 19 Lang uses the words \It issuggestive to think of the opposite sides of a parallelogram[in a diagram of �elds] as being equal." We think this per-fectly describes the situation of linear disjointness. We willuse Lemma 19 to decide in some cases if the intersection oftwo �elds lies transcendentally under their compositum.Proposition 20 Let k(x) and k(y) be function �elds in onevariable over a �eld k of characteristic zero and let k(c) bethe �eld generated by the coe�cients of a reduced Gr�obnerbasis of Jk(x)=k(y). Then at least one of the following condi-tions hold:1. The normal closure K of k(x; c) over k(x) equalsthe normal closure of k(x; c) over k(c) and the �eldk(x) \ k(y) is the �xed �eld of the group generated byAut(K=k(x)) [ Aut(K=k(c)).2. The �elds k(x) and k(y) are linear disjoint.3. The �eld k(x) \ k(y) lies algebraically over k.

Proof: We show that if neither 2. nor 3. hold point 1.must be true. Given a situation where k(x) and k(y) arenot linear disjoint and the �eld k(x)\k(y) lies algebraicallybelow k(x) and k(y). Let K denote the normal closure ofk(x; c) over k(c) and L denotes the normal closure of k(x)over k(x) \ k(y).K k(x;y)
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k k kk(x) \ k(y)The �eld k(x; c) is linear disjoint from k(y) and minimal(over k(x)) with this property as Corollary 17 says. Fur-thermore by Lemma 19 L is linear disjoint from k(y) andL\k(x; c) is linear disjoint from k(y) according to Proposi-tion 5.1 in Chapter X of [6]. But we have L\k(x; c) � k(x; c)since k(x; c) was minimal. The normal closure of k(x) overk(x) \ k(y) thus lies over k(x; c) and therefore equals thenormal closure of k(x; c) over k(c). Hence K = L and weare in the situation of point 1.The intersection of function �elds in one variable of char-acteristic zero can therefore either be computed with meth-ods from Galois theory (point 1. of Proposition 20) or themethods developed here can be applied to �nd the inter-section (points 2. and 3.). Example 22 demonstrates allsituations mentioned in Proposition 20. To apply Galoistheory to the intersection problem the Galois groups mustbe known as subgroups of the automorphism group of thenormal closure in question. It is not su�cient to know theisomorphism class of the Galois group. The following Propo-sition shows how a Galois group can be found in a suitablerepresentation.Proposition 21 For �nitely generated �elds k(x) and k(y)let k(x)=k(y) be a �nite Galois extension with Galois groupG � Aut(k(x)). Then the idealshZx1 � �(x1; : : : ; xr); : : : ; Zxr � �(x1; : : : ; xr)i for � 2 Gare exactly the associated primes of Jk(x)=k(y) � k(x)[Z].Proof: It is easy to see that one associated primeof Jk(x)=k(y) � k(x)[Z] must be hZx1 � x1; : : : ; Zxr � xri.From Proposition 13.10' in [4] we know that allprimes lying over Jk(x)=k(y) are conjugated by the Ga-lois group. In particular the associated primes ofJk(x)=k(y) � k(x)[Z] are all on the same Galois orbit ashZx1 � x1; : : : ; Zxr � xri. Thus they are exactly the idealshZx1 � �(x1; : : : ; xr); : : : ; Zxr � �(x1; : : : ; xr)i for � 2 G.Another di�culty in applying Galois theory is to recog-nize in�nite groups from their generators as Aut(K=k(x))[Aut(K=k(y)) may no more be �nite. Note that the auto-morphisms need not be linear.Example 22 To illustrate Proposition 20 we consider thefollowing univariate �elds.1. What is the intersection of C(x2) and C(x2 + x)?The syzygy ideal JC(x2;x2+x)=C is
�Z2x2+x + 2Zx2Zx2+x � Z2x2 + Z3x2�and JC(x2+x)=C(x2) therefore equals6




�Z2x2+x + 2x2Zx2+x � (x2)2 + (x2)3�. The coef-�cient of Zx2+x is x2 which is not contained inC(x2 + x) hence the coe�cients do not generate theintersection of C(x2) and C(x2 + x). This implies thatthere exists no �eld over which C(x2) and C(x2 + x)are linear disjoint. A short computation shows thatboth extensions C(x)=C(x2) and C(x)=C(x2 + x)have the same normal closure namely C(x) as bothextensions are Galois. Applying Proposition 21we get JC(x)=C(x2+x) = 
x2 + x� Z2x � Zx� =hZx � xi \ hZx � (�x+ 1)i and the Galois group ofC(x)=C(x2+x) can be read o� as fx 7! x; x 7! �x+1g.The Galois group of C(x)=C(x2) is fx 7! x; x 7! �xgand jointly these Galois groups generate an in�nitegroup of automorphisms as it contains x 7! x+1. Theonly rational functions invariant under x 7! x+ 1 areconstants and hence C(x2) \ C(x2 + x) = C.2. Compute the intersection of C(x2) and C(x3 + x).The syzygy ideal JC(x2;x3+x)=C equals
2Z2x2 + Zx2 � Z2x3+x + Z3x2�. Substituting thevariable Zx2 by x2 we get JC(x3+x)=C(x2) =
2(x2)2 + x2 � Z2x3+x + (x2)3�. The coe�cientsgenerate C(x6 + 2x4 + x2) which can easily be recog-nized as being a sub�eld of C(x2) as well as C(x3+ x).The �elds given are thus linear disjoint over the �eldjust computed and with Corollary 16 we concludeC(x2) \ C(x3 + x) = C(x6 + 2x4 + x2).3. Calculate the intersection of C(x2) and C(x3 + x2).Computations as above show that C(x2) and C(x3 +x2) are not linear disjoint. The coe�cients ofJC(x3+x2)=C(x2) generate C(x2). Furthermore theextension C(x)=C(x2) is Galois but the extensionC(x)=C(x3 + x2) is not. Thus these extensions havedi�erent normal closures and following Proposition 20we get C(x2) \ C(x3 + x2) = C.6 ComputationsThis section shows some computations done with MapleV.4 on a Sun UltraSparc with 166MHz. The two exampleswe give are chosen from invariant theory.As a �rst example we consider the dihedral groups D2nand their invariant �elds. As abstract groups they are de-�ned by D2n := f�; � : �n = � 2 = 1; �� = ��1gand they admit the faithful two-dimensional irreducible rep-resentations given by� 7�! � !n 00 !n�1 � ; � 7�! � 0 11 0 �where !n denotes a primitve n{th root of unity.Using Lemma 19 we know C(a; b)h�i and C(a; b)h�i to belinear disjoint. Thus the �eld C(a; b)h�;�i can (for each n)be computed by intersecting the �eldsC(a; b)h�i = C(an; bn; ab)and C(a; b)h�i = C(a+ b; ab):

For calculating these intersections we applied Proposi-tion 7 and Corollary 16. We got the well known generatorsan + bn and ab for C(a; b)h�;�i.
0

1

2

3

4

5

6

7

8
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