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Abstract

The behaviour of two field extensions with respect to each
other can be described by the notions of linear disjointness
and freeness. This paper gives methods for effectively de-
ciding linear disjointness and freeness for fields lying under
a finitely generated field k(X) = Quot(k[X1, ..., X]/I(X)).
Furthermore the methods developed can be used to decide
for two given fields if there exists a field over which they are
linear disjoint. This field (if it exists) is always the intersec-
tion of the two fields given. Thus we are able to compute
the intersection of finitely generated fields which are linear
disjoint.

All methods used rely on a correspondence from (pairs
of) fields to ideals namely the ideal of syzygies of the gener-
ators of one field which have coefficients lying in the other
field. We thereby generalize existing correspondences associ-
ating single fields or field extensions to ideals. Our contribu-
tion concludes with an outlook to the problem of computing
the intersection of fields in more general situations.

1 Introduction

Most algorithms for function fields make use of constructive
methods from ideal theory by associating a certain ideal to
the field in question. The first correspondence of fields and
ideals, which allowed to exploit Grobner basis techniques for
problems concerning function fields, was given by SWEEDLER
in his work on the return of the killer tag variables [10]. The
paper [10] adapts the ideas of SHANNON and SWEEDLER [9]
from k-algebras to fields. These methods were improved and
implemented by KEMPER [5]. An approach for subfields of
rational function fields working without tag variables was
first presented at [2], improved in [7], and then generalized
to arbitrary function fields in [8].

All algorithms developed so far dealt with single function
fields or single field extensions. In this paper we will asso-
ciate ideals to pairs of fields. To make this correspondence
effective we use both approaches mentioned above. Ideals
associated to pairs of fields enable us to study the mutual
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behaviour of field extensions. The properties we will focus
on are linear disjointness and freeness.

The fields k(x), k(y), and k(z) considered in this pa-
per are generated over a field k of constants and are con-
tained in a field k(X)) which is a field of rational functions
on a variety, i. e., the quotient field of a ring of polynomials
modulo the prime ideal I(X). For all statements concern-
ing constructibility the fields k(x), k(y), k(z), and k(X)) are
assumed to be finitely generated over a computable field k.

The following definition is consistent with [6] and differs
from the more general view in [3].

Definition 1 Let k(x) and k(y) be extensions of a field k(z)
both contained in a field k(X).

1. The field k(x) is said to be linear disjoint from k(y)
over k(z) iff every finite subset of k(x) linearly indepen-
dent over k(z) is still linearly independent over k(y).

2. The field k(x) is called free from k(y) over k(z) iff ev-
ery finite subset which is algebraically independent over
k(z) remains algebraically independent over k(y).

Unless explicitly stated otherwise the fields in discussion
obey the following relations:
k(X)
|

Given two fields k(x), k(y) we define the ideal Jix)/k(y)
of all syzygies the generators of k(x) have over the field k(y).

For fields finitely generated over a computable field k the
first part of this paper will give an effective construction for
Ji(x)/k(y)- In the special case of k(y) < k(x) methods from
[8] will be applied for a shortcut computation of Jy(x/k(y)-

Furthermore we will see that for finitely generated fields
the question whether two fields k(x) and k(y) are free over
a field k(z) can be decided by inspecting the transcendence
degrees of the extensions k(x)/k(z) and k(x,y)/k(y). These
degrees can be computed using the corresponding syzygy



ideals and the degrees are equal iff k(x) and k(y) are free
over k(z).

If two fields k(x) and k(y) are linear disjoint over
k(z) one can think of the extensions k(z)(x)/k(z) and
k(y)(x)/k(y) as being similar. The correspondence between
fields and ideals will make this intuition more precise: Both
extensions are performed by a set {x} of generators and the
syzygy ideals of these generators over k(y) and k(z) respec-
tively have equal reduced Grobuner bases iff k(x) and k(y)
are linear disjoint over k(z).

Furthermore we show that the existence of a field k(z)
over which the fields k(x) and k(y) are linear disjoint implies
k(z) = k(x)Nk(y). In this case the intersection of the fields
k(x) and k(y) can be computed using the ideal Jj(x)/k(y)-
The methods presented thus not only allow to decide for
finitely generated fields k(x) and k(y) if there exists a field
k(z) over which they are linear disjoint, but also to compute
this field k(z).

Finally we give an outlook to another important ques-
tion concerning extensions k(x)/k(z) and k(y)/k(z) namely
computing k(x) N k(y) in cases without linear disjointness.
We will focus on separable extensions of function fields in
one variable since we can give an additional criterion then.

2 The Ideal of Syzygies of the Field Generators

Given fields k(x) and k(y) lying over a field of constants and
both being contained in some field k(X) we formally define
the syzygy ideal mentioned in the introduction.

Definition 2 Let k(x) and k(y) be fields lying over a field
k of constants and let {x}, {y} denote the sets of genera-
tors of k(x) and k(y) over k respectively. Furthermore let
Ume{x}{Zﬂﬂ} be a set of variables and k(y)[Z] be the ring of

polynomials in these variables over the field k(y). Then the
ideal Jyxy/n(y) © k(Y)[Z] of all algebraic relations of the set
{x} over k(y) is defined as

({z = Za|z € {x}}) N k(y)[Z].

The ideal ({z — Z,|z € {x}}) used in the definition can
also be viewed as a syzygy ideal, namely Jy(x)/k(x) repre-
senting the trivial extension k(x)/k(x).

The next lemma is the basis for the properties of the
syzygies ideal which are used in the following.

Lemma 3 The ideal Ji(x)/k(y) equals the kernel of the spe-
cialization homomorphism

Uy : k(Y)[Z’M Yot Zﬂfr] - k(Y)(X):
Zy T
Proof: We show that
F(3.2) € {{z - Zlo € {x}}) N k(¥)[Z] iff F(y,x) = 0.

“=" This is obvious.

“«<" To prove this implication we make use of a formula
transformation which will also play an important réle in the
proofs of Lemma 5 and Proposition 8. Using a multi index
v the polynomial f can be written as

fr.2) =Y oz = o ] 22
v v i=1

Substituting Z,, by z; = (Zz, + (z; — Z,)) we arrive at
f(yu X) = Zau H(Zzl + (xz - Zm,-))ui =0
v i=1

from which we would like to conclude f(y,Z) €
({z — Z.|z € {x}})Nk(y)[Z]. Expanding the product we get
only one term of the sum not divisible by (z; — Z,,) for some
i. With ¢;, € k(x,Z) suitably chosen we get:

Fy.x) =) (H ZHE 4+ ai, (g, — Zm;,)) =0.

ju=1

This is equivalent to

Fy,%) = f0,2)+ D> _aw Y a5, (w5, — Za;,) =0

Ju=1

which immediately yields a representation of f(y,Z)
in ({x— Z;|z € {x}}) and we can conclude f(y,Z) €
({z Zulo € {x}}) N k(y)[Z, .

Let us first consider cases where one of the fields is the
field k of constants. Let k(x) be given as a field of rational
functions on a variety X, i.e., as the quotient field of a ring
of polynomials k[Xi,...,X;] modulo a prime ideal I(X).
Then the ideal Jy(x)x equals {p(Zx,,...,Zx,)|p € I(X)}.
In particular if k(x) is a rational function field the ideal
Jk(x)/k is (0)

If the field k(x) is given as a subfield of a field k(X)
of rational functions on a variety X, the ideal Jj(x);r can
be computed using tag variables. For this purpose we first
introduce another ideal. Using this construction it is im-
portant to distinguish between the free polynomial ring
E[X1,...,X,] sometimes also written as k[X] and the co-
ordinate ring k[X] = k[X]/I(X).

Definition 4 Let the field k(x) be a subfield of k(X) =
Quot (k[ X1, ..., Xs]/IU(X)) finitely generated over a field k

and let X1,..., X, denote the residue classes of the vari-
ables X1,..., Xy modulo 1(X). Furthermore let

ni
ry =
1

d

LX)
LX)

71,. nr(yh...,fs)
— oo gyilbp = ———""—_
X1,. )

- dr(fl,---,Xs

be one possible representation of the generators of k(x) in
terms of the X1,..., Xs — the generators of k(X). For new
variables Zy,, ..., 2z, , the variables X1,...,Xs (in short
X), andd =di(X)-...-d,(X) — the product of the denom-
inators we define the ideal Ty (x) as

(11(X) — d1(X)Zoy ..y 1a(X) — do(X)Z, ) + 1(X)) 1 4.

The above ideal is well defined as the next lemma will give
a characterization which is independent of the particular
choices made in Definition 4.

Lemma 5 The ideal Ty (x) is the kernel of the specialization
homomorphism

KX, ... X.][Z] = k(X)



Proof: We show that f(X,Z) € Ty is equivalent to
f(X,x)=0.

“=": Let f be an element of T} (xy. Then thereis a p € N
such that

P f € (m(X) — di(X)Za, o mr(X)
This implies the existence of g € I(X), uo, . .., u, € k[X][Z]
with d*f = wo + Y, ui - (n:i(X) — x:di(X)) and hence
(d" f)(X,x) = 0. Because of d(X,x) not lying in I(X) we
get f(X,x)=0.

“e”: Given f(X,Z) with f(X1,...,Xs,x) = 0. The
constant “0” is understood as an element of k(X) :=
Quot(k[X]/I(X)), i.e., it is represented as £ with u € I(X)
and v € I(X). For the computations to come we fix the rep-
resentation of the z; in the X; to the representation used
in Definition 4 thereby eventually changing the result of
f(X,x) to £ with @ € I(X) and & € I(X). AsI(X) is a
prime ideal and ¥ is not in I(X) the above condition can be
written as f(X, x) € I(X). Using multi indices p, v we write
f analogously to Lemma 3 as

1.2 = Y X7 = Yok [ 22
ks % i=1

Substituting the Z,, with z; written as Z,, + (z; — Za;)
results in

FXx) =Y au X [ [(Zes + (@i = 22,))" € 1(X).

v i=

We expand the product and get only one term of the sum
not divisible by (z; — Z5,) for some i. Hence with suitably
chosen g;, € k[Z][x] the above formula reads:

Zau,uxu (H Zru: + Z qj, ('Tju - ij,, )) € I(X)
v i=1

Jv=1

Using distributivity the last condition can be written as:

F(Z,X)+ ) e, X" (Z a4, (€5, = Za,, )> € 1(X).

Jv=1

Multiplication with d” for some n € N clears the denomi-
nators resulting from the specialization of Z to x and with
suitably chosen g;, we have:

df + Zau,,,X“ (Z Gj., (0, —dj, Zs;, )) e1(X).
v

Jv=1

Therefore d" f € Tj(x) and due to the saturation with d we
get f € Ty x) as desired. [

This characterization of the tag variable ideal shows the
relation of Ty (x) to the ideals of Definition 2. The ideal T}
lies in the ring k[X][Z] whereas the ideal Jj(x),1(y) is defined
in k(y)[Z]. For Tjyx) we change the ring k[X] to k[X] =
E[X]/I(X) hence changing the ideal T x) to Thx) + I(X).
Then looking at what these ideals generate in k(X)[Z] we
get from Lemma 3 and Lemma 5 the equation

(Tie) +1(X)) - k(X)[Z] = Jeiy/nie) - K(X)[Z].

dr(X)Zz,) +1(X)).

The advantage of the ideal T}« is the possibility to com-
pute a Grobner basis with respect to a term order obey-
ing X1,...,Xs > Z,,,...,Z,, since the X1,..., X, can be
treated as variables. This enables us to compute the ideal of
all syzygies the generators have over the field &k of constants
by elimination (Theorem 1 [5]).

Corollary 6 With the notions of Definition 4 we get:
Tkayk = Ty N[ Zoy s ooy Za, ]

This method can be extended to compute the ideal Ji(x)/x(y)
for fields k(x) and k(y) finitely generated over the field of
constants. One first computes the ideal of algebraic relations
of the set {x} U {y} over k, i.e., the ideal Jy(x y)/r using
tag variables and then specializes each tag variable Z, with
y € {y} to the generator y it stands for.

Proposition 7 Let &, denote the specialization homomor-
phism

(ﬁy : k[ZTlv 'aZfﬂrvzylv'--aZym]_ﬂc[ZT/la' R Zﬂ?r](Y)a

Zy; —yi

then
Jh(x)/k(y) = <<I>y (Jk(x,y)/k)>'

Proof: The inclusion “D” is obvious with Lemma 3 as all
elements of <¢'y (Jk(x,y)/k» evaluate to zero when the Z,,
are substituted by the z;. To show the inclusion “C” we
take a syzygy p € Ji(x)/k(y)- Clearing the denominators of
p gives a polynomial p € k[x][Z] replacing the z; of p by Z,,
we get a syzygy P(Zeyy- -y Zuyy Zyy - - -y Zy,,) which must
be an element of Jy(xy)/x- The polynomial ®,(p) differs

from p only by a constant factor. Thus p € <¢'y (Jk(x,y)/k) >
[

For the case of k(x) being an extension of k(y) we can
express the generators of k(y) in terms of the z1,...,z,.
In this case an alternative characterization of the ideal
Jr(x)/k(y) already exists and one can take a computational
shortcut [8]. The main advantage of this approach is the
independence of the number of variables involved from the
number of generators of k(y).

Proposition 8 Let k(y) < k(x) be fields finitely gener-
ated over k and let the generators yi,...,ym of k(y) over

n(x)

k be expressed in X = T1...,Tr aS Y1 = TG0 Ym =
%. Let Z denote Zy,,...,Z;, then we define an ideal
I = <n1(Z)— 1, (Z), ..., m(Z) - Z:((:))dm(z)> and
ford=d\(Z)-... dm(Z) we get:

Jh)/hiy) = (Jk(x)/k + I) 1 d™.

Proof: The ideal I used in the construction of Proposition 8
depends on the representation of the generators of k(y) in
the z1,...,z,. One result of this proof will therefore be
the independence of (Jk(x)/k + I) : d*° from that particular
choice. Following Lemma 3 we have to show that

fv.2) € (Jopoyu + 1) : d° iff f(y,x) =0



“=" Let f be an element of (Jk(x)/k + I) : d®°. Then there
exists a 7 € IN such that d"f € I 4+ Jy(x);, and this implies
d" f(y,x) = 0. Since d(x) # 0 we get f(y,x) =0.

“<” Given f € k(y)[Z] with f(y,x) = 0 we have to take
into account that this “0” is an element of k(x). Thus if
we represent the generators of k(y) in z1,...,z, and then
substitute all z; by their corresponding variables Z,, we get
f(y(Z),Z) = £ with u € Jy(x)/x and v & Jy(x)/x- Fixing the
representation of the generators of k(y) in z1,...,z, to the
representation used in Proposition 8 the value of f(y(Z), Z)
may be changed to % with 4@ € Jye and 0 & Jy(x)/k-

Hence f(y(Z),Z) = L is a rational function in Z vanishing
at Z,;, = zi. Multiplying f(y(Z),Z) with a suitable ¢ €
k[y(Z)] we get f = c- f € k[y(Z)][Z]. Rewriting f(y(Z),Z)
we get the condition that

Flyr (00 + W1(Z) = 91(%)),- - Yom (%) + (Y (Z) =y (%)), Z)

is a rational function in Z vanishing at Z,, = xz;. This
function can also be written with multi indices p, v as

Zauuz H Uz

Analogously to the proof of Lemma 3 we expand the prod-
uct and find only one term of the sum not divisible by
(yi(Z) — yi(x)) for some i. Thus for suitably chosen g;, €
kly,y(Z),Z] we have that

Yz (Hw(X) +Zq]u(uh(z y]-u<x))>

vanishes at Z,;, = x;. And therefore

FHY oY a5, (45 (2)
v

jo=1
also vanishes at Z,, = x;. For an € IN chosen large enough
multiplication with d(Z)" can clear the denominators of the
last formula. Hence

(i (Z) — yi(x)))"".

— 5, (%))

d(Z)" - f +d(Z)" - 5. (%))

Zau /e Z 4. (y5. (Z

Jv=1

is a polynomial vanishing at Z,, = x; thus it is an element
of Jy(x)/k- As the last formula represents a polynomial in Z
there are suitable g;, € k[y, Z] such that the above element
of Jr(x)/x can be written as

f"‘zf’uuz Z‘hp nj, (Z

Jjv=1

— i, (X)dj, (2)).
Hence d(Z)" - f is an element of the ideal T + Jk(x)/k Where
I C k[y][Z] is defined by
n1(x) N (%)
Z),... m(Z) ).
dl(x)d1( ), dm(x)d (Z)
Clearly I - k(y)[Z] = I. Viewing f € k[y][Z] as an element

of k(y)[Z] we may divide by the above chosen ¢ € k[y] and
get

I:= <n1 (Z) — s (Z) —

f=c'fe (Jk(x)/k +I) :d™

(]
Three examples will show how the syzygy ideal looks in
different situations.

Example 9 1. If k(x) is a rational function field we
know Jywyk to be (0).  Furthermore if the field
k(y) is a subfield of k(x) generated by polynomi-
als y1,...,ym the ideal Jyx)/ky) can — accord-
ing to Proposition 8 be written down directly as

(W1 (%) = y1(Z), -, ym () = ym(Z))).
For C(a® + b%,ab) < C(a,b) we get the corresponding

ideal (a® +b° — (Z; + Z}),ab — ZaZs).

ab
following Proposition 8 we get <Z2% —Zs % + 1>
which is the ideal generated by the minimal polynomial
of 3 over C(a2‘;b2 ).
3. Let C(a,b,c) denote Quot(Cla, b, c]/ (abc —1)). Con-

sider the subfields C(m,ab) and C(%). Then
the ideal J b2 18

o a24ab3 fcb2’ b, §)/C

2
2. For C(%) < C(%) we have % = M, and

<Z b2 (ZQEZ(LPJ + Zzb - 1) - Z(Lb>
Zrariyeaz P

and the ideal JC(,,,2+{,I;,23+¢52 ,ab)/C(2)

2
<Z b2 (a_ZZaPJ+Z2b_1)_Zab>-
a2+4ab34cb2 b

For an ideal I the saturation I : d*° is effective ([1] Al-
gorithm IDEALDIV2) and so is the problem of representing a
field element in some generators [10, 5, 8]. Thus the ideals
of Definition 4 and Proposition 8 can be achieved through
Grébner basis computations.

thus equals

Corollary 10 Let the fields k(x), k(y) be finitely generated
over a computable field k and contained in a field k(X) =
Quot(k[X1,..., X]/I(X)). Then the ideal Jy(x)/ny) can be
computed effectively.

Summarizing what is said above we list the properties we
will refer to later.

Corollary 11 For fields k(x),k(y), k(z) finitely generated
over k the following conditions hold.

K] = k() Zos
2. k(y)(x) ~ Quot (k(y)[Zzl Yo

3. dim(Jy(x)/k(y)) equals the transcendence degree of
k(y)(x) over k(y).

4. The monomials of k(y)[Zzy,...,Zz.] not reducible
modulo o fized Grobner basis of Jyx)/k(y) form a basis
for k(¥)[Zzy - Ze ]/ Jex)/k(y) @S @ vector space over

k(y).

5. For k(z) < k(x) the coefficients of a reduced Gribner
basis of Ji(x)/k(=) generate k(z).

s Za | Ty /1y -

s Ze ) Tk k() -



Proof: With Lemma 3 we can directly conclude the points
1. and 2. of the corollary. To prove point 3. we follow the
proof of Lemma 2 in [8]. The ideal Jj(x)/x(y) is prime, and
hence every maximally independent set S modulo J(x)/k(y)
has dim(Jy(x)/k(y)) elements and the residue classes of the
elements of S form in fact a maximal algebraic independent
set over k(y) ([1] Proposition 7.26 and Lemma 7.25). Point
4. is obvious from point 1. The property stated as point 5.
is shown by Lemma 3 in [8] and the remark directly below
it. [

3 Deciding Freeness of Finitely Generated Fields

Lemma 12 Let k(x)/k(z) and k(y)/k(z) be extensions of
fields finitely generated over a field k of constants. Then
k(x) is free from k(y) over k(z) if and only if the transcen-
dence degree of k(x)/k(z) equals the transcendence degree of

k(y,x)/k(y)-

Proof: Assume the transcendence degree of k(y,x)/k(y)
to be smaller than the transcendence degree of k(x)/k(z).
Then a transcendence basis of the extension k(x)/k(z) does
not remain algebraically independent over k(y) contradict-
ing k(x) being free from k(y). The case that the transcen-
dence degree of k(y,x)/k(y) is larger than the transcen-
dence degree of k(x)/k(z) is impossible. n

The next result will give a criterion based on the ideals
associated to the field extensions of Lemma 12.

Proposition 18 Let k(x)/k(z) and k(y)/k(z) be exten-
sions of fields finitely generated over a field k of constants.
Then the following conditions are equivalent:

1. dim () /k(a)) = AM(Jr)/00y)) -
2. dim(Jy(y)/k(z)) = dim(Jr(y)/nx))-
3. The field k(x) is free from k(y) over k(z).

Proof: Obvious from Lemma 12 and point 3. of Corol-
lary 11. ]

4 Deciding Linear Disjointness of Finitely Gener-
ated Fields

First we recall two criteria given in [6] Chapter X § 5.

Lemma 14 1. k(x) is linear disjoint from k(y) over k(z)
iff every finite subset of k[x] which is linearly indepen-
dent over k(z) remains so over kly].

2. k(x) is linear disjoint from k(y) over k(z) iff there is
a basis b of k[x] as a vector space over k(z) which is
linearly independent over kly].

Equipped with these and Corollary 11 we are able to
state the main result of this section.

Proposition 15 Let the fields k(x) and k(y) be finitely
generated over a field k of constants. Then the following
conditions are equivalent:

1. There exists a field k(z) with k(x) and k(y) being linear
disjoint over k(z).

2. There ezists a unique field k(z) with k(x) and k(y) be-
ing linear disjoint over k(z) and k(z) = k(x) Nk(y).

3 Jee)/ky) = Tr(x)/k(=) k(y)[Z].
4 Jryy/kex) = Jriy)/k(z) - k(x)[Z].

Proof: “1. = 2.” Suppose k(z) < k(x)Nk(y) Then there ex-
ist elements from k(x) Nk(y) linearly independent over k(z)
but not independent over k(x) N k(y). These elements are
also elements of k(x) which are linearly independent over
k(z) but not linearly independent over k(y). Hence k(x)
cannot be linear disjoint from k(y) over k(z).
“2. = 1.” This is obvious.
“3. = 1.” The coefficients of a reduced Grdbner basis
are elements of the smallest field possible since one could
have started the Buchberger algorithm with a generating
set having coefficients from this field and the algorithm
does not need any field extensions. Thus the equation
Jee)/ky) = Jrx)/k(z) © k(y)[Z] implies that these ideals
have equal reduced Grobner bases. If we have equal reduced
Grébner basis for the ideals Jy(x)/k(y) and Ji () k(2 -k (Y)[Z]
we also have equal vector space bases for the extensions
k(y)(x)/k(y) and k(x)/k(z). Thus we can conclude the
linear disjointness of k(x) and k(y) with point 2. from
Lemma 14.
“l. = 3.” Is proven via not 3. implies not 1. We have
Je) k) - K(Y)Z] C Jex)/key) and if these ideals are not
equal they have different Grobner bases. Since the ideals
contain each other they also have different initial ideals.
Thus we have monomials which can be reduced modulo a
Grdobner basis of Jy(x)/k(y) but cannot be reduced modulo a
Grébner basis of Jy(x)/k(z) - k(¥)[Z]. According to point 4.
of Corollary 11 we have a vector space basis of the extension
k(x)/k(z) which does not remain linearly independent over
k(y). This contradicts point 2. of Lemma 14 and therefore
the fields k(x) and k(y) are not linear disjoint.
“4. & 1.7 This follows from the property of linear disjoint-
ness being symmetric (see [6] Chapter X § 5). n
One interesting aspect of this result is the possibility to
compute a generating set for the ideal .Jy(y)/x(,) without
knowing k(z) if the fields k(x) and k(y) are linear disjoint.
Since we are able to extract the field k(z) from the ideal
Jr(y)/k(z) We can compute the intersection of linear disjoint
elds.

Corollary 16 Let the fields k(x) and k(y) be finitely gen-
erated over a field k of constants and linear disjoint over
their intersection. Then the set of coefficients of a reduced
Grébner basis of Jrx)/k(y) generates k(x) Nk(y)

Proof: We have seen that the coefficients of a reduced
Grébner basis of Jy(x)/k(y) (= Jr(x)/k(y)nk(x)) Must be con-
tained in k(x) N k(y). The coefficients even generate this
field according to point 5. of Corollary 11. [

The methods developed above can also be applied to con-
structively answer the slightly more general question: Given
two fields k(x), k(y) does there exist a field k(z) < k(y) such
that k(z)(x) and k(y) are linear disjoint over k(z)?

(x,y)

\
z)/

k(y)

X, Z

k
k( —
k(x)< >k(

k(x) Nk(y)



Corollary 17 For the fields k(x),k(y) finitely generated
over k let {c} denote the set of coefficients of a reduced
Grébner basis of Jyx)/k(y)- Then k(x,c) is the minimal
field lying over k(x) such that k(x,c) and k(y) are linear
disjoint.

Example 18 As in FEzample 9 let C(a,b,c) denote
Quot(Cla, b, c]/ (abc —1)).  Again we consider the sub-

fields C(m,ab) and C(§) and ask whether they

are linear disjoint over some field k(z). The ideal

JC(02+az§+nb2 ab)/C() was already computed to be

2
<Z b2 (Zzb+a_Zab1)Zab>-

T 2
a24ab3 fcb2 b

The generating set given already forms a reduced Gréobner
basis.  Thus there is only one coefficient (¢ C) gen-

erating the field C(‘;—s) With methods from [10, 5, 7]

it is easy to check that C(Z—j) C C(m,ab) and
hence C(

2 2
o ab) N (%) = C(4z). Thus the fields
C(

b2 a . L o2
st ab) and C(3) are linear disjoint over C(3z).

5 An Outlook to the Intersection of Function
Fields

In this section we show some cases where the methods de-
veloped so far allow the computation of the intersection of
two fields even in the absence of linear disjointness. But we
also want to point out that intersecting fields is a difficult
task.

First we need some aid from Galois theory.

Lemma 19 For fields k(x), k(y) lying over k(z) let the ez-
tension k(x)/k(z) be finite and Galois. Then k(x) and k(y)
are linear disjoint over k(x) Nk(y).

Proof: From [6] Chapter VIII Theorem 1.12. we know
that the Galois group of the extension k(x)/k(x)Nk(y) is a
restriction of the Galois group of k(x,y)/k(y). From this we
can conclude that the extensions have equal degree and can
be performed by adjoining identical roots. Looking at the
syzygy ideals of this set of roots and applying Proposition 15
linear disjointness follows. u

In the context of Lemma 19 LANG uses the words “It is
suggestive to think of the opposite sides of a parallelogram
[in a diagram of fields] as being equal.” We think this per-
fectly describes the situation of linear disjointness. We will
use Lemma 19 to decide in some cases if the intersection of
two fields lies transcendentally under their compositum.

Proposition 20 Let k(x) and k(y) be function fields in one
variable over a field k of characteristic zero and let k(c) be
the field generated by the coefficients of a reduced Gréobner
basis of Ji(x)/k(y)- Then at least one of the following condi-
tions hold:

1. The normal closure K of k(x,c) over k(x) equals
the normal closure of k(x,c) over k(c) and the field
k(x) N k(y) is the fized field of the group generated by
Aut(K/k(x)) U Aut(K/k(c)).

2. The fields k(x) and k(y) are linear disjoint.
3. The field k(x) N k(y) lies algebraically over k.

Proof: We show that if neither 2. nor 3. hold point 1.
must be true. Given a situation where k(x) and k(y) are
not linear disjoint and the field k(x) Nk(y) lies algebraically
below k(x) and k(y). Let K denote the normal closure of
k(x,c) over k(c) and L denotes the normal closure of k(x)
over k(x) Nk(y).

K. k(x,y)

y
\ o /
/

k(x) Nk(y)

The field k(x, ¢) is linear disjoint from k(y) and minimal
(over k(x)) with this property as Corollary 17 says. Fur-
thermore by Lemma 19 L is linear disjoint from k(y) and
LNk(x,c) is linear disjoint from k(y) according to Proposi-
tion 5.1 in Chapter X of [6]. But we have LNk(x, ¢) > k(x,c)
since k(x,c) was minimal. The normal closure of k(x) over
k(x) N k(y) thus lies over k(x,c) and therefore equals the
normal closure of k(x,c) over k(c). Hence K = L and we
are in the situation of point 1.

- ko, ©)

\

k)

[

The intersection of function fields in one variable of char-
acteristic zero can therefore either be computed with meth-
ods from Galois theory (point 1. of Proposition 20) or the
methods developed here can be applied to find the inter-
section (points 2. and 3.). Example 22 demonstrates all
situations mentioned in Proposition 20. To apply Galois
theory to the intersection problem the Galois groups must
be known as subgroups of the automorphism group of the
normal closure in question. It is not sufficient to know the
isomorphism class of the Galois group. The following Propo-
sition shows how a Galois group can be found in a suitable
representation.

Proposition 21 For finitely generated fields k(x) and k(y)
let k(x)/k(y) be a finite Galois extension with Galois group
G < Aut(k(x)). Then the ideals

,xr)) for o € G

(Zyy —o(X1, ..y 20), .o Za, — o (14 . ..

are ezactly the associated primes of Jy(x)/k(y) - k(x)[Z].

Proof: It is easy to see that one associated prime
of Jyux)/ky) * kE(x)[Z] must be (Zy, —x1,..., 2, — Tr).
From Proposition 13.10’ in [4] we know that all
primes lying over .Jy(x)/ky) are conjugated by the Ga-
lois group. In particular the associated primes of
Jex)/k(y) - k(x)[Z] are all on the same Galois orbit as

21 — T1y...,Za,. — Tr). Thus they are exactly the ideals
(Zy, —o(x1,.. .y Tr), .y Zo, —0(T1,...,2)) for c €EG. m

Another difficulty in applying Galois theory is to recog-
nize infinite groups from their generators as Aut(K/k(x)) U
Aut(K/k(y)) may no more be finite. Note that the auto-
morphisms need not be linear.

Example 22 To illustrate Proposition 20 we consider the
following univariate fields.

1. What is the intersection of C(2*) and C(x® 4+ z)?

The SYzYqy ideal Je (22 22 42)/C 18
(=222, +2Z,2 2,2, — Zos + Zio)
and Je (22 42)/02) therefore equals



(—Z32+m +22°Z,n,, — ()% + ($2)2> The coef-
ficient of Z,2,, is x> which is not contained in
C(x® + z) hence the coefficients do not generate the
intersection of C(2?) and C(z* + ). This implies that
there ezists no field over which C(z*) and C(z> + z)
are linear disjoint. A short computation shows that
both extensions C(z)/C(x?) and C(z)/C(z> + z)
have the same normal closure namely C(z) as both
extensions are Galois. Applying Proposition 21
we get JC(T)/C(7‘2+T) = <.’132 +x — Zg — ZT> =
(Ze —2) N (Zy — (—x + 1)) and the Galois group of
C(x)/C(x*+x) can be read off as {x +— z,2 — —x+1}.
The Galois group of C(x)/C(z?) is {x > z,2 = —x}
and jointly these Galois groups generate an infinite
group of automorphisms as it contains © — x + 1. The
only rational functions invariant under x — x + 1 are
constants and hence C(2*) N C(z* + z) = C.

2. Compute the intersection of C(z*) and C(z® + z).
The sYzygy ideal Je (2?28 42)/C equals
<2Z32 + Z,2 — Zingz + Z:’2>. Substituting  the
variable Z,» by x® we get Je(@dta)/C@2) =
<2(.7:2)2 +z% - Zingz + (1‘2)3> The coefficients
generate C(z® + 2z* + x°) which can easily be recog-
nized as being a subfield of C(z?) as well as C(z> + ).
The fields given are thus linear disjoint over the field

Just_computed and with C’orollary‘ 16 we conclude
Cz))NC(z* +z) = C(2° + 22* + 22).

3. Calculate the intersection of C(z?) and C(z® + z?).
Computations as above show that C(z*) and C(z® +
z%) are not linear disjoint. The coefficients of
Jo(et 122y /02y generate C(z®).  Purthermore the
extension C(zx)/C(2*) is Galois but the extension
C(x)/C(2® + «?) is not. Thus these extensions have

different normal closures and following Proposition 20
we get C(z*) N C(x* 4+ 2%) = C.

6 Computations

This section shows some computations done with MAPLE
V.4 on a Sun UltraSparc with 166MHz. The two examples
we give are chosen from invariant theory.

As a first example we consider the dihedral groups Da,,
and their invariant fields. As abstract groups they are de-
fined by

Dy, :={o,7:0" = 2= 1,07 = 071}

and they admit the faithful two-dimensional irreducible rep-
resentations given by

wn 0 01
g — 0 UJn71 , T —> 10

where w,, denotes a primitve n th root of unity.
Using Lemma 19 we know C(a, b)(? and C(a, b){™ to be

linear disjoint. Thus the field C(a,b)(™™) can (for each n)
be computed by intersecting the fields

C(a, b)) = C(a™,b", ab)

and
C(a,b)” = C(a +b,ab).

For calculating these intersections we applied Proposi-
tion 7 and Corollary 16. We got the well known generators
a™ 4+ b"™ and ab for C(a,b)" ™.

8
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Figure 1: Timings for the dihedral groups Da,,.

Figure 1 shows the timings in seconds for n = 1,...,100.
In this data we observe a subexponential growth of running
time in the parameter n.
Another interesting family of groups is given by the (gen-
eralized) quaternion groups
Qan :={o,7:0" = 2rt=10" = o'}

which admit the faithful two-dimensional irreducible repre-
sentations given by

w0 (0
7 0wt 07 i 0 )

Applying the method above we can compute the field
C(a,b)?*" by intersecting the fields

C(a, b)) = C(a®,b>", ab)

and ‘ ‘ ‘
C(a,b)\” = C(a®b + ab®,a® — b*,a* +b*).

The timings for our algorithm in this case are shown in
Figure 2.

16000

14000

12000 -

10000 -

8000 -

6000

4000 -

2000 -

Figure 2: Timings for the quaternion groups Qu4,. For n =
13 the running time already was 53 310s.

7 Conclusions

Given two fields k(x) and k(y) lying over a field k(z) we
can decide by means of Griébner basis techniques whether



k(x) is free resp. linear disjoint from k(y) over k(z). Fur-
thermore the methods presented allow to compute a field
k(z) over which two given fields are linear disjoint if such a
field exists. This field must be the intersection of the two
fields given. Hence the intersection problem can be solved
effectively in this situation even though the problem of in-
tersecting finitely generated fields seems to be very difficult
in general.
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