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1 Introduction

For two finite graphs G and H, let hom (G, H) denote the number of homomorphisms (adjacency-
preserving mappings) from G to H. Counting homomorphisms between graphs has many inter-
esting aspects.

(a) A large part of extremal graph theory can be expressed as inequalities between various
homomorphism numbers. For example, Turdn’s Theorem for triangles follows from the inequality
(due to Goodman [30]):

hom (K1, H)hom(K3, H) > hom(Ks, H)(2hom(Ky, H) — hom (K1, H)?). (1)

One may wish to obtain a characterization of such inequalities.

(b) Homomorphism numbers characterize graphs: it was proved in [37] that if two graphs G
and G’ have the property that hom(F,G) = hom(F,G’") for every finite graph F', then G and
G’ are isomorphic (one actually needs one additional condition, the condition that both graphs
are twin-free; see Section 2.1 for the definition of this notion). In other words, let us order all
finite graphs in a sequence (Fi,Fy...), and assign to each graph G its profile, the (infinite)
sequence (hom(Fi,G),hom(Fy,G)...); then this sequence characterizes G. (This fact can be
used to prove, for example, the cancellation property of strong multiplication of graphs).

It is often worthwhile to normalize the homomorphism numbers, and consider the homomor-

phism densities
hom(F,G)
O = ygmer <2>
(Thus t(F,G) is the probability that a random map of V(F) into V(G) is a homomor-
phism.) Instead of the profile (hom(Fy,G), hom(Fy, G),...), we can consider the scaled profile
(t(F1,G),t(F2,G),...) of the graph G. Such a normalization was first introduced in [23].

(¢) Partition functions of many models in statistical mechanics can be expressed as graph
homomorphism functions. For example, let G be an n x n grid, and suppose that every node of
G (every “site”) can be in one of two states, “UP” or “DOWN”. The properties of the system
are such that no two adjacent sites can be “UP”. A “configuration” is a valid assignment of
states to each node. The number of configurations is the number of independent sets of nodes
in GG, which in turn can be expressed as the number of homomorphisms of G into the graph H



consisting of two nodes, ”UP” and "DOWN”, connected by an edge, and with an additional loop
at "DOWN?”. To define the thermodynamic functions in physical models, one needs to extend
the notion of graph homomorphism to the case when the nodes and edges of H have weights
(see Section 2.1)).

(d) Suppose that G is a huge graph, and we know the numbers hom(F, G) (exactly or ap-
proximately) for small graphs F. What kind of information can be derived about the global
structure of G? The long-standing Reconstruction Conjecture is equivalent to the assertion that
it is enough to know all numbers hom(F,G) with |V (F)| < |[V(G)] in order to recover the iso-
morphism type of G. The fact that this is unsolved shows the difficulty of this kind of question,
but our interest here is in the case when much less is given: hom(F, G) is only known for very
small graphs F.

This is closely related to an important area of computer science called Property Testing. In
this model, we have a huge graph about which we can obtain information only by taking a small
sample of the nodes and examine the subgraph induced by them. This is equivalent to knowing
the homomorphism densities (2) for graphs F' of small size. What makes the theory of Property
Testing interesting is the fact that from such meager local information nontrivial properties and
parameters of the graph can be inferred.

(f) Increasing sequences of (sparse) graphs generated by some specific random rule of growth
have recently been used to model the Internet; see [8] and references therein. What are the
limiting properties of such graph sequences? To what extent can these properties be derived from
local observation (observing a neighborhood of bounded radius of a few randomly chosen nodes?
This question can be rephrased as follows: To what extent are these properties characterized by
the homomorphism numbers of smaller graphs into the modeling sequence?

The main setup of our studies is the following. If we are given a (large, usually simple) graph
G, we may try to study its local structure by counting the homomorphisms of various “small”
graphs F' into G; and we can study its global structure by counting its homomorphisms into
various small graphs H (called “softcore” weighted graphs; see Section [2.1] for a definition of
softcore). So the scheme to keep in mind is

F—G— H. (3)

According to the above discussion, in the scheme (3), the study of the local structure of G
by “probing from the left with F” is related to property testing, while the study of the global
structure of G by “probing from the right with H” is related to statistical physics. As in statistical
physics, the best choice of graphs H to “probe G from the right” is not simple unweighted graphs
but weighted graphs. Furthermore, besides counting (weighted) homomorphisms into H, it is
also useful to consider maximizing the weight of such homomorphisms, which is again related to
well-studied questions both in statistical physics and graph property testing.

The number hom(F, G), as a function of F' with G fixed, is a graph parameter (a function of
graphs F invariant under isomorphism). Graph parameters arising this way were characterized in
[28]. The necessary and sufficient condition involves certain matrices, called connection matrices,
associated with the graph parameter (see Section 3 for the definition): These matrices must be
positive definite and must satisfy a rank condition. The semidefiniteness condition is in fact
familiar from statistical physics, where it is called reflection positivity.

The scaled profile does not determine the graph: if we “blow up” every node into the same
number of “twins”, then we get a graph with exactly the same scaled profile. It turns out that
this is all: any two graphs with the same scaled profile are obtained from one and the same
graph by blowing up its nodes in two different ways.

Now we come to our main question: What can be said about two graphs whose scaled profiles
are approximately the same? Which properties of a graph G are determined if we only know a
few of the numbers hom(F,G), and even these are only known approximately? This question



turns out to be very interesting and it leads to a number of results, and even more open problems,
leading to quasirandom and generalized quasirandom graphs, and connecting to the ”Property
Testing” research in computer science and to statistical physics.

There is a way to measure the “distance” of two graphs so that they are close in this distance
if and only if they have approximately the same scaled profile [16]. This distance has many nice
properties. On the one hand, important parameters like the triangle density or the fraction of
edges in the maximum cut are continuous (often even Lipschitz) functions in this metric. On the
other hand, a sufficiently large random subgraph of an arbitrarily large graph will be close to the
whole graph with large probability. This fact explains several results in the theory of Property
Testing. Szemerédi’s Regularity Lemma (at least in its weaker but more effective form due to
Frieze and Kannan [29]) can be rephrased as follows: for every € > 0, all graphs with at most
22/=* nodes form an e-net in the metric space of all graphs. In our context, an e-net is defined
as a set of weighted graphs such that, for every graph G, there exists a graph H in the set which
has at most distance € from G.

Once we make the set of all graphs into a metric space, we can make it complete. Is there
any combinatorial meaning of the new points in the completion? Surprisingly, the answer is in
the affirmative, and in fact in more than one way [44] [45]. These limit points can be described
as symmetric measurable functions W : [0,1]?> — [0, 1] modulo measure-preserving transforma-
tions, as reflection positive graph parameters, as random graph models satisfying some natural
compatibility conditions, or as probability distributions of countable graphs with natural sym-
metries (see Chapter 4).

It is an important property of this completion that it is compact, so that every infinite
sequence of graphs has a convergent subsequence. Several arguments in extremal graph theory
and elsewhere can be simplified by going to the limit and thereby getting rid of remainder terms.

We conclude this introduction by mentioning two related bodies of work. There are many in-
teresting question that concern the existence of graph homomorphisms rather than their number
(an example is 4-colorability of a graph), and such questions have been studied quite exten-
sively, especially by the Czech school. These results are described in the recent book by Hell
and Nesetfil [34]. The set of all homomorphisms between two graphs can be endowed with a
topological structure, which turns out to be an important tool in the study of chromatic number.
See the book of Matousek [51], and also the recent papers of Babson and Kozlov [5] 6].

2 Homomorphism numbers

2.1 Unweighted and weighted graphs

A graph is simple if it has no loops or parallel edges. A graph parameter is a function defined on
finite graphs, invariant under isomorphisms. We’'ll talk of a simple graph parameter if it is only
defined on simple graphs. Sometimes it is convenient to think of a simple graph parameter as a
function defined on all graphs with multiple edges (but no loops) that is invariant under adding
parallel edges. A graph parameter ¢ is called multiplicative if ¢(G) = t(G1)t(G2) whenever G is
the disjoint union of G; and G3. We say that a graph parameter is normalized if its value on
K, the graph with one node and no edge, is 1. (Note that if a graph parameter is multiplicative
and not identically 0, then its value on Kj, the graph with no nodes and edges, is 1. The graph
parameter t(-, G) introduced in the introduction is multiplicative and normalized for every graph
G.

Recall that for two (finite) simple graphs F' and G, hom(F, G) denotes the number of homo-
morphisms (adjacency preserving maps) from F to G.

A weighted graph G is a graph with a weight a;(G) associated with each node 7 and a weight
B:;(G) associated with each edge ij. We'll assume (unless otherwise stated) that the weights



a;(G) are positive. The weights 3;;(G) will be real, and most often nonnegative. If the graph G
is understood from the context, we will also use the notation a; and 3;;.

An edge with weight 0 will play the same role as no edge between those nodes, so we could
assume that we only consider weighted complete graphs with loops at all nodes (but this is not
always convenient). A weighted graph is called softcore if it is a complete graph with loops at
each node, and every edgeweight is strictly positive. An unweighted graph is a weighted graph
where all the nodeweights and edgeweights are 1.

For a weighted graph G, we denote by «(G) the sum of its nodeweights. Often it will be useful
to divide all nodeweights by a(G), to get a weighted graph G in which the sum of nodeweights
is 1.

Let F and G be two weighted graphs. To every map ¢ : V(F) — V(G), we assign the weight

homgy(F,G) = ] [Biwyorw (G)] (4)

uveE(F)
(here 0° = 1). We then define

hom(F,G) = Z aghomy(F, G), (5)
¢: V(F)=V(G)

where

ao= [ [esw@]™". (6)

ueV (F)

(A little care is necessary, since the exponential [ﬁ¢(u)¢(v)(G)]’B””(F) may not be well defined;
but it well defined e.g. if the edge weights are positive. This problem will not arise in the cases
we consider.)

We'll use this definition most often in the case when F' is a simple unweighted graph, so that

H Qg (u) (G)

ueV (F)

and

h0m¢, F G H 6(1, u)¢(v )
uwveE(F)

An interesting case is when, in addition, a(G) = 1. Then the nodeweights in G define a
probability distribution on V(G), and the coefficient o is the probability of the random map ¢
(if the images of the nodes of F' are chosen independently). So hom(F,G) is the expectation of
h0m¢ (F’7 G)

We can extend homomorphism densities (2)) to the case when G is a weighted graph with
nodeweights «; and edgeweights §;; by replacing |V (G)| by a(G):

hom(F, G)

a(Gyvm ~ hom(E,G).

t(F,G) =
Let F = {Fy, F,...} denote the set of (isomorphism types of) all simple finite graphs. To
every weighted graph G, we assign its hom-profile (or briefly profile), the (infinite) vector
he = (hom(F;,G), hom(F,,G),...) € R,

Recall that we define the scaled profile of G as the (infinite) vector t¢ = (¢(F1, G), t(Fa, G),...) €
R”. The scaled profile does not determine the graph. For example, if G is an unweighted graph
and G’ is obtained from G by replacing every node by N independent nodes, then

tgr = tg.



More generally, let G be a weighted graph and let u,v € V(G) be twins, i.e., Buw(G) = Bow(G)
for every w € V(G) (note that a,(G) may be different from o, (G)). Merging twins in a
weighted graph does not change its scaled profile. Furthermore, if we multiply all nodeweights
of a weighted graph by the same positive constant, then its scaled profile does not change. If we
merge twins as long as we can, we say that we have performed twin-reduction.

Proposition 2.1 [39] If two weighted graphs have the same scaled profile, then after twin-
reduction one can be obtained from the other by multiplying all nodeweights by the same positive
scalar.

One of our main concerns will be: if we only know a bounded number of entries of the scaled
profile of a graph G, and even this only approximately, to what degree is the graph determined?

From a graph-theoretic perspective, the following variations of homomorphism functions are
perhaps more important: Let inj(F, G) denote the number of homomorphisms that are injective
on the nodes, and ind(F,G), the number of embeddings as an induced subgraph. Finally, let
surj(F, G) denote the number of homomorphisms that are surjective on the nodes.

For weighted graphs, inj(F, G) and surj(F, G) are easily defined by restricting the sum in (5)
to sums over injective and surjective maps, respectively, but the definition of ind(F, G) requires
some care. Here we only consider the case where F' is simple, and G is a weighted graph without
loops. We then define

ind(F,G) = Y ayindg(F,G), (7)
¢: V(F)=V(G)

where the sum goes over all injective maps from V(F) to V(G) and

indg(F,G) = [ Bowew (@ ] = Bowow (@), (8)

uwvEE(F) wEE(F)

with F' denoting the complement of F (again defined to be a simple graph).

Analogously to the hom-profile, we can define the inj-profile and ind-profile of a graph G. It
follows from the identities to be discussed below that any of the profiles determines the others. It
is obvious that the ind-profile determines the graph (look at the largest non-zero entry). It follows
that the inj-profile and hom-profile of a graph also determine the graph (up to isomorphism) [37].
For future reference, we also define the set of simple graph parameters which is the pointwise
closure of the set of all hom-profiles:

To = {t(-) : I(Gy) s.t. t(F) = nan;Ot(F, Gp) Vfinite F'}.

Here we restrict (G,,) to be a sequence of simple graphs. The reason for the subscript on 7 is
that, in our longer paper [16], we will consider a more general class of graph parameters, which
will be denoted by 7. Note also that in [44], the authors used 7 rather than 7; to denote the
smaller class considered here.

2.2 Simple properties

There are some simple identities that hold for homomorphism numbers. If F' is the disjoint union
of two graphs F} and F5, then

hom(F,G) = hom(Fy, G)hom(F», G). (9)
If F' is connected, and G is the disjoint union of two graphs G; and Gs,then

hom(F,G) = hom(F,G1) + hom(F, Gs). (10)



So in a sense it is enough to study homomorphisms between connected graphs.

For two simple graphs G1, G2, we define their categorial product Gy x G5 as the graph with
node set V(G1) X V(G2), in which (i1, 42) is connected to (j1, j2) (41,41 € V(G1), i2,j2 € V(G2))
if and only if i1j; € F(G1) and isjs € E(G3). The definition can be extended to weighted graphs
(possibly with loops) by defining the weight of the node (i1,72) as the product of the weights of
the nodes i; and i9, and the weight of the edge (i1,42)(j1,j2) as the product of the weights of
the edges 7171 and i9js. For this product, we have the identity

hOHl(F, G1 X G2) = hOIIl(F‘7 Gl) . hOIIl(F‘7 Gg) (11)

What about hom(F; x Fy,G)? There is no identity for this number in terms of the notions
introduced so far, but there is one if one also introduces the operation of exponentiation (which
we do not discuss here; see [37]).

For a fixed graph G, identity (9) gives an algebraic relation between the entries of its hom-
profile. It was proved by Whitney [61] that there are no other algebraic relations between these
entries valid for all graphs G. A slightly stronger result was proved in [23]: the projection of Ty
to the coordinates corresponding to any finite set of connected graphs is full-dimensional. This
excludes any other kind of equations (e.g. exponential) between these numbers.

There are simple identities relating homomorphism numbers with the injective and induced
versions. In order to spare the reader from separate provisos for each relation, we restrict
ourselves to the case where both F' and G are simple graphs. If © is any equivalence relation on
V(F), then we denote by F'/© the graph obtained by identifying nodes that belong to the same
class of ©. Note that this may create loops and parallel edges.

We have some easy relations:

hom(F, G) Zlnj (F/O,G) (12)
and
inj(F,G) = Y ind(F',G), (13)
FISF

where the sum runs over graphs F’ D F with the same node set.
From these, we can get reverse relations by Mébius inversion (or inclusion-exclusion):

ind(F,G) = Y (-1)FENEElnj(F', ), (14)
F'DF

and

inj(F,G) = Z,u )Yhom(F/0,G), (15)

where the last sum runs over equivalence relatlons and

k

u(©) = TT ((=01*=0(1a) = 1),

A€o

with the product running over all classes A € O.
We have the following relations describing complementation (as an operation from simple
graphs to simple graphs):

ind(F,G) = ind(F, G), (16)
inj(F,G) = Y _ (-1)FFinj(F, G) (17)
F'CF
and
hom(F,G) = > (=1)F ) hom(F', G). (18)
F'CF



2.3 Examples of homomorphism functions

Example 2.2 (Stars and degrees) Let Sy denote the star with & nodes. Then for any graph
G on n nodes,

hom(Sk,G) = > df ™', (19)
i=1
where di, . ..,d, are the degrees of G. Hence hom(Sy, G)*/(*~1) tends to the maximum degree

of G as k — oo.

Example 2.3 (Cycles and eigenvalues) Let Cj denote the cycle on k nodes, and again let
G be any graph on n nodes. Then

hom(Cy, G) = Z)\f, (20)
i=1
where Aj,...,\, are the eigenvalues of the adjacency matrix of G. Hence hom(Cyy, G)/(2%)

tends to the largest eigenvalue of G as k — oo.

Example 2.4 (Independent sets) Let H be the graph on two nodes, with an edge connecting
the two nodes and a loop at one of the nodes. Then for every simple graph G, hom(G, H) is the
number of independent sets of nodes in G.

Example 2.5 (Colorings) It is easy to see that hom(G, K,) is the number of colorings of the
graph G with ¢ colors. It is well known that for a fixed G, this number is a polynomial in ¢,
called the chromatic polynomial. The chromatic polynomial defines a graph invariant for every
complex number ¢, but this cannot be expressed as the number of homomorphisms into any
graph unless ¢ is a nonnegative integer [27, 28] (cf. Example [3.4).

It is often useful to consider homomorphisms into a fixed graph H as generalized colorings,
where the colors are the nodes of H, and every edge of H imposes a constraint on the coloring
that these two colors cannot be used at adjacent nodes.

Example 2.6 (Maximum cut) Let H denote the looped complete graph on two nodes,
weighted as follows: the non-loop edge has weight 2; all other edges and nodes have weight
1. Then for every simple graph G with n nodes,

log, hom(G, H) — n < MaxCut(G) < log, hom(G, H).

where MaxCut(G) denotes the size of the maximum cut in G. So unless G is very sparse,
log, hom(G, H) is a good approximation of the maximum cut in G.

Example 2.7 (Random graphs) Let G = G(n,p) be a random graph with n nodes and edge-
density p. Then for every simple graph F with k£ nodes,

E(hom(F,G)) = (1 + o(1))n*p!EE) (n — o0).

By a straightforward application of high concentration results, it follows that hom(F, G) is very
close to its expectation with large probability.

Example 2.8 (Partition functions of the Ising model) Let G be any simple graph, and
let T > 0, h > 0, and J be three real parameters. Let H be the looped complete graph on
two nodes, denoted by + and —, weighted as follows: oy = T a_ = e M7 3, = p__,
Bi_ = By, and By /B = €*//T. Then hom(G, H) is the partition function of the Ising
model on the graph G at temperature T" with coupling J in external magnetic field h.



2.4 Homomorphisms into measurable functions

The following construction (which will play an important role later on) generalizes the homo-
morphism function. Every bounded function W : [0,1]> — R defines a graph parameter as
follows: For a finite graph F' on k nodes, let

t(F,W) = / H Wz, x;)dzy ... dog.
0.1% ;e ()

(We can think of the interval [0,1] as the set of nodes, and of the value W(z,y) as the weight
of the edge xy.) While this definition is meaningful for all graphs F, we will mostly use it for
simple graphs.

Tt is easy to see that for every weighted graph G, the graph parameter ¢(-, G) is a special case.
We may assume that V(G) = {1,...,n} and a(G) = 1. Define a function Wg : [0,1]?> — [0,1]
as follows. For (x,y) € [0,1]?, let a and b determined by

a1(G) 4+ a,-1(G) <z < a1 (G)+ -+ aa(G),
a1(G)+ -+ ap_1(G) <y < a1(G) + - + a(G),

and let
Weal(z,y) = Bu(G).

(Informally, W is obtained by replacing the (4, ) entry in the weighted adjacency matrix of G
by a rectangle of size v; x a;, and define the function value on this square as ;;.) Then

t(Fa G) = t(F7 WG)
for every finite simple graph G.

Example 2.9 For an undirected simple graph F, let eul(F) denote the number of eulerian
orientations of F' (i.e., orientations in which every node has the same outdegree as indegree). By
Euler’s theorem, eul(F') = 0 if and only if F has a node with odd degree.

It can be shown [44] that this graph parameter can be represented in the form ¢(-, W), where

W (z,y) = 2cos(2m(xz — y)).

On the other hand, it follows e.g. from Theorem [3.6/ below that eul is not of the form hom(-, G)
with any finite weighted graph G.

3 Connection matrices

3.1 The connection matrix of a graph parameter

A k-labeled graph (k > 0) is a finite graph in which &k nodes are labeled by 1,2,...k. Two
k-labeled graphs are isomorphic, if there is a label-preserving isomorphism between them. We
denote by K} the k-labeled complete graph on k-nodes, and by Oy, the k-labeled graph on k
nodes with no edges.

Let G; and G5 be two k-labeled graphs. Their product G1G> is defined as follows: we take
their disjoint union, and then identify nodes with the same label. Clearly this multiplication is
associative and commutative. For 0-labeled graphs, this notation is in line with our notation for
disjoint union.

The following construction is central to the theory of homomorphisms functions. Let f be
any graph parameter. For every integer k£ > 0, we define the following (infinite) matrix M (f, k).
The rows and columns are indexed by isomorphism types of k-labeled graphs. The entry in the
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Figure 1: A small part of the connection matrix for & = 2. The matrix entries are obtained by
evaluating the parameter on the graph shown.

intersection of the row corresponding to G; and the column corresponding to Go is f(G1G2).
We call the matrices M (f, k) the connection matrices of the graph parameter f (see Figure [1)).

For a simple graph parameter, the above construction causes trouble if we get multiple edges
when gluing the two graphs. In this case, we suppress the edge multiplicities in G;G5 when
defining the entry corresponding to the pair (G, G2).

3.2 The rank of connection matrices

Connection matrices of a graph parameter are infinite matrices and their rank may be infinite.
However, the rank is quite often finite, and if so, this fact has interesting consequences. Let us
denote by rk(f, k) the rank of the k-th connection matrix of the graph parameter f.

We start with several examples of graph parameters for which the rank of connection matrices
is finite. The most important case for us will be when the graph parameter is defined as hom(-, H)
for some fixed weighted graph H. This will be discussed in detail in the next section.

Example 3.1 (Edges) Let e(G) = |E(G)| denote the number of edges in G. Then e(G1G2) =
e(G1) + e(Ga), and so M(e, k) is the sum of two matrices of rank 1. Thus M (e, k) has rank 2,
so rk(e, k) = 2 for all k.

If we restrict e(G) to simple graphs G to get a simple graph parameter €', then the situation
is more complicated: we have

e'(Gng) = e’(Gl) + e/(Gz) — e'(G1 n Gg)

Rewriting e/ (G1 N Ga) as x(G1)Tx(G3) where x(G) is the (g)—dimensional vector with entries
x;7(G) = 1 if G contains an edge joining the labeled vertices ¢ and j and x;;(G) = 0 otherwise,
we see that the matrix whose (G1, G2) entry is ¢’(G1NG2) has rank (’;), implying that rk(e’, k) <

(5) + 2. One can check that this is the exact value.
Example 3.2 (Subgraphs) Let subg(G) denote the number of spanning subgraphs of G, i.e.,

subg(G) = 2¢(%). Then subg(G1G>) = subg(G)subg(Gy), and so M (subg, k) has rank 1. Thus
rk(subg, k) = 1 for all k.
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Again, the version when we only consider simple graphs is more complicated: Let subg’(G)
denote this simple graph parameter. Then
subg'(G'1)subg'(Go)
subg' (G1G») = .
g (G1G) subg’(G1 N Ga)

The first two factors do not change the rank, and the rows of the matrix given by the second
k
factor are determined by the edges induced by the labeled nodes, so it has only 2(5) different
k
rows, implying that rk(subg’, k) < 2(5). Again one can check that this is the exact value.

Example 3.3 (Matchings) Let pmatch(G) denote the number of perfect matchings in the
graph G. It is trivial that pmatch(G) is multiplicative. We claim that its node-rank-connectivity
is exponentially bounded:

Tpmatch(k)§2k-

Let G be a k-labeled graph, let X C [k] = {1,...,k}, and let pmatch(G, X) denote the
number of matchings in G that match all the unlabeled nodes and the nodes with label in X,
but not any of the other labeled nodes. Then we have for any two k-labeled graphs G1, Gs

pmatch(Gng) = Z pmatch(GhXl)pmatch(Gg,Xg).
XlﬂXQZ@, Xlquz[k‘]

This can be read as follows: The matrix M (pmatch, k) can be written as a product NTW N,
where N has infinitely many rows indexed by k-labeled graphs, but only 2* columns, indexed
by subsets of [£],

Ng x = pmatch(G, X),

and W is a symmetric 2¢ x 2F matrix, where

W )1 if X7 =[k]\ X,
XX 0 otherwise.

Hence the rank of M (pmatch, k) is at most 2" (it is not hard to see that in fact equality holds).

Example 3.4 (Chromatic polynomial) We have seen that the number of g-colorings is a
special case of homomorphism functions. This number is the evaluation of the chromatic poly-
nomial chr(G;z) at nonnegative integers q. What about evaluations at other values? It turns
out that these evaluations violate both conditions in Theorem 3.6 below [27]. For every fixed z,
this is a multiplicative graph parameter. To describe its rank-connectivity, we need the following
notation. For k,q € Z, let By, 4 denote the number of partitions of a k-element set into at most
g parts. So By = By, is the k-th Bell number. With this notation,

vk(chr, k) = {B;mc if z is z.x positive integer,

By, otherwise.
Note that this is always finite: if z is a positive integer, then it is bounded by z*, but otherwise
it grows faster than c* for every c. Similar results can be derived for the Tutte polynomial,
where the exceptional values are the hyperbolas in the Tutte plane for which (z —1)(y — 1) is a
positive integer.

Let f be a graph parameter that is not identically 0. Then f is multiplicative if and only if
f(Kp) =1 (Kp is the empty graph) and rk(f,0) = 1. Every multiplicative graph parameter f
satisfies the inequality

rk(f,k+1) > tk(f, k) - tk(f,1). (21)

11



In the most important special case (to be discussed below) when f is a homomorphism function,
a stronger version of property (21) holds: the sequence rk(f, k) is logconvex. We do not know if
this property holds for more general graph parameters.

Finiteness of the rank connectivity function has interesting algorithmic consequences:

Theorem 3.5 [27] If r(f, k) is finite for some k, then f can be computed in polynomial time
for graphs with treewidth at most k.

3.3 Connection matrices of homomorphisms

Homomorphism functions, which are our main concern, provide the most important class of
graph parameters for which connection matrices have finite rank. In fact, connection matrices
can be used to characterize these parameters, as the following theorem of Freedman, Lovasz and
Schrijver shows.

Theorem 3.6 [28] The graph parameter f, defined on graphs with multiple edges but no loops,
is equal to hom(-, H) for some weighted graph H on q nodes if and only if

(a) M(f,k) is positive semidefinite and
(b) tk(f, k) < ¢* for all k.

In terms of statistical physics, this theorem can be viewed as a characterization of partition
functions of models whose degrees of freedom sit on vertices (as opposed to the edge coloring
models considered below). The property that M (f, k) is positive semidefinite is related to the
“reflection positivity” property in statistical physics, and we will call a graph parameter reflection
positive if M(f, k) is positive semidefinite for every k.

The proof of the necessity of the conditions in Theorem [3.6/ is easy and it is instructive to
present it here. (The sufficiency is more involved, and the proof is based on algebraic consider-
ations.)

We need the following notation: For any k-labeled graph G and mapping ¢ : [k] — V(H),
let

homg(GLH) = Y. “homy (G, H), (22)

v V(@) v P
o extends ¢

so that
hom(G,H)= > aghomy(G, H). (23)
¢: [k]—=V (H)

For any two k-labeled graph G; and Go,
hOHl¢(G1G2,H) = hOHl¢(G1,H)hOIn¢(G2,H). (24)

The decomposition (23) writes the matrix M (f, k) as the sum of |V (H)|* matrices, one for each
mapping ¢ : [k] — V(H); (24) shows that these matrices are positive semidefinite and have
rank 1.

In the presence of condition (a), condition (b) in Theorem[3.6/can be replaced by the following
quite different type of condition. To formulate it, we need the notion of a quantum graph, defined
as a formal linear combination of graphs with real coefficients; but the condition concerns only
the existence of a single 2-labeled quantum graph [45]:

(¢) There is a 2-labeled quantum graph go with the following property: if G is a 2-labeled
graph having no edge between the labeled nodes, and G' denotes the graph obtained from G by
identifying the two labeled nodes, then f(goG) = f(G').

In other words, attaching gg at two nodes is effectively the same as identifying the two nodes
(this is why it is called a “contractor” in [45]).

12



Let us conclude with a discussion of the independence of the two conditions in Theorem [3.6.

In Example 3.3/ we saw that the number of perfect matchings in a graph provides an example
for a graph parameter for which the rank of connection matrices grows simply exponentially.
This parameter is also multiplicative, so for £ = 0 the connection matrix is positive semidefinite.
But it is easy to see that for £k = 1, the submatrix indexed by K; and K> is

0 1
(1 o)
which is not positive semidefinite. Thus the number of perfect matchings cannot be represented
as a homomorphism function.

Recalling Examples 3.1 and 3.2, let us define the multigraph parameter f by f(G) =
1/subg’(G) = 274Y) | where G’ is obtained from G by removing duplicate edges. As in Ex-
ample 3.2, the rank of the connection matrix M(f, k) grows as 2(2). Tt is further not hard
to check that M (f,k) is positive semidefinite. The graph parameter f is, in fact, the limit of
parameters of the form hom(-, H): take homomorphisms into a random graph H = G(n,1/2),
with all nodeweights 1/n and all edge-weights 1. But the rank of its connection matrices is finite
but superexponential, so the parameter is not of the form hom(-, H).

This example also illustrates the importance of the condition that f is defined on graphs with
multiple edges for the validity of 3.6l Indeed, for a simple graph G (i.e., if G has no multiple
edges), f(G) = 27¢(%) can be represented as the number of homomorphisms into the graph
K1(1/2), consisting of a single node with a loop, where the node has weight 1 and the loop has
weight 1/2.

The chromatic polynomial (Example [3.4) was another example whose connection matrices
had superexponential rank growth if the variable x was not a nonnegative integer. Here the
reflection positivity condition gives the same condition on x: the k-th connection matrix is
positive semidefinite if and only if either x is a positive integer or k < x + 1. Thus M(chr, k) is
semidefinite for all k if and only if x is a positive integer.

3.4 The exact rank of connection matrices for homomorphisms

How good is the upper bound on the rank given in Theorem [3.67 It can be proved [39] that
equality holds in the “generic” case.

One reason why the upper bound is not always reached are twins. As remarked earlier,
twin-reduction in H does not change the numbers hom(G, H), and so it does not change the
connection matrices (but of course it decreases the upper bounds |V (H)|*). So we may assume
that H is twin-free.

The second reason for rank loss in connection matrices is that if H has a proper automorphism
(a permutation of the nodes that preserves both the nodeweights and edgeweights), then in
formula (22), any two terms defined by a mapping ¢ : [k] — V(H) and ¢o (0 € Aut(H)) are
equal, so the sum of all such terms is still rank 1. So the rank of M (hom(-, H), k) is at most the
number of orbits of the automorphism group of H on ordered k-tuples of its nodes.

Theorem 3.7 [39] Assume that the target graph H is twin-free. Then for every k,
rk(hom(-, H), k) is the number of orbits of the automorphism group of H on ordered k-tuples
of its nodes.

It is worthwhile to formulate two corollaries.

Corollary 3.8 Let H be a weighted graph that has no twins and no automorphisms. Then
rk(hom(-, H),k) = |[V(H)[* for every k.
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Swapping twins 7 and j is “almost” an automorphism: the only additional condition needed is
that a; = a;. In particular, for unweighted graphs the condition that there are no automorphisms
implies that there are no twins.

Our second corollary is in fact an equivalent reformulation of Theorem 3.7 in the framework
of quantum graphs. To state it, we need the following notation: given a weighted graph H, a
k-labeled quantum graph = and nodes i1,...,i; € V(H), we define hom;, ;, (z, H) to be the
number of homomorphisms from = to H such that the labeled nodes are mapped into iy ... ix.

Corollary 3.9 Let H be a weighted graph that has no twins, and let h : V(H)* — R. Then there
exists a k-labeled quantum graph x such that hom;, ; (z, H) = h(i1,...,4) for all é1,...,i €
V(H) if and only if h is invariant under the automorphisms of H.

3.5 Extensions: directed graphs, hypergraphs, semigroups

In Theorem 3.6 we allowed parallel edges in the graphs G, but no loops. Indeed, the represen-
tation theorem is false if G' can have loops: it is not hard to check that the graph parameter

loop(G) = 27 #leops

cannot be represented as a homomorphism function, even though its connection matrix
M (loop, k) is positive semidefinite and has rank 1. To get a representation theorem for graphs
with loops, each loop e in the target graph H must have two weights: one which is used when a
non-loop edge of G is mapped onto e, and the other, when a loop of G is mapped onto e. With
this modification, the theorem remains valid.

The constructions and results above are in fact more general; they extend to directed graphs
and hypergraphs. One new element in the case of directed graphs is the following. For a directed
graph, homomorphism functions can be defined by the same formulas (4) and (5), except that
weights are now assigned to the directed edges of G and H. But there are (at least) two
substantially different ways to define connection matrices.

(1) The easier way is to define k-labeled digraphs similarly, and glue them together just like
we did in the undirected case. The related theorem and proof are precisely the same as above.

(2) The alternative generalization of Theorem [3.6/to directed graphs is a bit more interesting.
(Example 3.13 below is a case when this second theorem applies.) For this, we consider weighted
directed graphs in which the edgeweights can be complex. Such a graph H is called Hermitian if
for every arc uv with (complex) weight (3, the arc vu is also present and has weight B,., = 3., -

For any directed graph D, let D* be the digraph obtained from D by reversing all arcs. For
two k-labeled digraphs D and D’, let DD’ denote, as before, their union with the labeled nodes
identified. For any complex-valued digraph parameter f defined on loopless directed graphs and
for each natural number k, we define the matrix M(f, k) as follows: its rows and columns are
indexed by k-labeled directed graphs, and the entry in position Dy, Dy is f(DiD3).

Theorem 3.10 [40] Let f be a complex valued digraph parameter. Then f = hom(-, H) for
some Hermitian weighted digraph H if and only if f(Ko) = 1 and there exists a d > 0 such that,
for each k >0, M, is positive semidefinite and has rank at most d*.

Note that My is a complex valued matrix. The condition that it is positive semidefinite
includes the condition that it is Hermitian.
There is a common formulation of these results, using semigroups; see [40] for details.

3.6 Edge coloring models

Let G be a finite graph. An edge coloring model or edge model is determined by a finite set C'
and a mapping h : Zg — R4, which we call the node evaluation function. Here C' is the set
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of possible edge colors; for any coloring of the edges, we think of h(a) as the value of a node
incident with a(c) edges with the color ¢ (¢ € C'). In terms of statistical physics, an edge coloring
is a state of the system, and log h(a) is the contribution of a node (incident with a(c) edges with
the color ¢) to the energy of the state. !

To be more precise, for an edge-coloring ¢ : E(G) — C and node v, let ag ,(c) denote the
number of edges e incident with v with ¢(e) = c. So ag» € ZY is the “local view” of node v.
The weight of the assignment ¢ is defined by

w@)= [[ Mas.w),

veV(G)

and the edge coloring parameter, by

col(G, h) = Z w(g).

¢ E(G)—C

(It will be also useful to allow a single edge with no endpoints; we call this graph the circle, and
denote it by (0. By definition, col(O, h) = |C.)

We can define edge-connection matrices that are analogous to the connection matrices defined
before: Instead of gluing graphs together along nodes, we glue them together along edges. To be
precise, we define a k-broken graph as a k-labeled graph in which the labeled nodes have degree
one. (It is best to think of the labeled nodes not as nodes of the graph, but rather as points
where the k edges sticking out of the rest of the graph are broken off.) We allow that both ends
of an edge be broken off.

For two k-broken graphs G; and Ga, we define G7G4 by gluing together the corresponding
broken ends of G; and G3. These ends are not nodes of the resulting graph any more, so G5 G2
is different from the graph G1G2 we would obtain by gluing together G; and G5 as k-labeled
graphs. One very important difference is that while GG is k-labeled, G7G2 has no broken
edges any more, and so it is not k-broken. This fact leads to considerable difficulties in the
treatment of edge models.

For every graph parameter f and integer & > 0, we define the edge-connection matriz M'(f, k)
as follows. The rows and columns are indexed by isomorphism types of k-broken graphs. The
entry in the intersection of the row corresponding to G; and the column corresponding to Gs is
f(G1Gs). Note that for k = 0, we have M (f,0) = M’(f,0), but for other values of k, connection
and edge-connection matrices are different. We say that f is edge reflection positive, it M'(f, k)
is positive semidefinite for every k > 0.

It is easy to see (similarly as in the case of homomorphism functions) that if A : ZE — Ry
and f = col(-, h) is an edge-coloring function, then

rk(M'(f, k) <|CI",

and M'(f, k) is positive semidefinite. Unlike in the case of node-connection matrices, these two
properties are not independent any more:

Proposition 3.11 [57] If f is a multiplicative graph parameter such that M'(f, k) is positive
semidefinite for every k >0, then f(Q) is a nonnegative integer and tk(M'(f,k)) < f(O)*.

The analogue of Theorem 3.6l is even simpler to state (but much more difficult to prove:

Theorem 3.12 [57] A graph parameter f can be represented as f(-) = col(-,h) for some edge
coloring model h if and only if it is multiplicative and edge-reflection positive.

Just as for homomorphism functions, it is natural to ask what determines the rank of con-
nection matrices of edge models. This question seems to lead to difficult algebraic questions in
group representations, and is unanswered at this time.

1For this reason, these models are usually called vertex models in the physics literature.
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3.7 Edge colorings and homomorphisms

The connection between homomorphism functions and edge coloring functions seems to go farther
than analogy, but it is not well understood.

In one direction, edge coloring functions are more general than homomorphism functions.
This connection is easy in the directed case. We can generalize the edge coloring model to
directed graphs in the obvious way. It is easy to see that the directed edge model is more general
than the directed homomorphism model: If we are given a pair H = (a, B) (a € R%, B € C7*4,
with entries a. and By, resp.), then to every homomorphism ¢ : V(G) — [q] we can assign an
edge-coloring in which the edge ij is colored with the pair ¥(ij) = (¢(i), ¢(j)). The evaluation
function at a node v is given as follows: if there is a color ¢ such that all the outgoing edges have
the same first color ¢ and all the incoming edges have the same second color ¢, then the value is

ao [T Buwon .

u: wweE(G)

otherwise, the node evaluates to 0. It is easy to see that an edge-coloring has nonzero weight
only if it comes from a homomorphism, and in that case, the weight of the edge-coloring is the
same as the weight of the corresponding homomorphism.

It is not obvious, but it is true, that undirected edge coloring functions generalize undirected
homomorphism functions [57], at least if complex values are allowed for h. It is not clear which
(real) homomorphism functions can be obtained as edge coloring functions with a real valued h.

In the opposite direction, edge coloring models cannot be translated into node coloring mod-
els (homomorphisms) in general; but there are some nontrivial examples of important graph
parameters that are defined as edge coloring functions, but that can also be represented as ho-
momorphism functions in a nontrivial way. A general understanding of these examples would
be very interesting.

Example 3.13 (Nowhere-zero flows) Let eul(G) = 1if G is eulerian (i.e., all nodes have even
degree), and eul(G) = 0 otherwise. To represent this function as a homomorphism function, let

1/2 1 -1
(i) 2= )
It was noted by de la Harpe and Jones [33] that for the weighted graph H = (a, B) we have
hom(G, H) = eul(G).

This example can be generalized quite a bit. Let I" be a finite abelian group and let S C T°
be such that S is closed under inversion. For any graph G, fix an orientation of the edges. An
S-flow is an assignment of an element of S to each edge such that for each node v, the product
of elements assigned to edges entering v is the same as the product of elements assigned to
the edges leaving v. Let sflo(G) be the number of S-flows. This number is independent of the
orientation.

The choice I' = Zy and S = Zy \ {0} gives the special case above (incidence function of
eulerian graphs). If I' = S = Z, then sflo(G) is the number of eulerian subgraphs of G. Perhaps
the most interesting special case is when |T'| = ¢t and S = I\ {0}, which gives the number of
nowhere zero t-flows.

Surprisingly, this parameter (which is an edge coloring model) can be described as a homo-
morphism function. Let I'* be the character group of I'. Let H be the complete directed graph
(with all loops) on I'*. Let a, := 1/|T'| for each x € I'*, and let

ﬁxx’ = Z X_l(S)X/(S)>

ses

for x, x’ € T'*. Using arguments related to duality transformations of models in statistical physics
(see e.g. [22] and references therein) one can show [28] that this weighted graph H represents
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sflo in the sense that sflo(-) = hom(-, H). The condition on S that it is closed under inversion
can be dropped if we use homomorphisms of directed graphs (Section [3.5)).

In statistical physics, negative—and more generally, complex—nodeweights correspond to
complex magnetic fields, which arise in the well-known Lee-Yang theory of phase transitions
[9, 136, 59]. The next example [57] shows that it is also interesting in our context to extend the
definition of weighted graphs by allowing negative nodeweights (a direction we will not pursue
here except for this example).

Example 3.14 (Matchings revisited) We have seen that the number pmatch(G) of perfect
matchings has exponential rank connectivity but is not reflection positive, and hence it is not a
homomorphism function. However, consider the following weighted graph H,: We take a looped
complete graph on two nodes u and v, and define

and
Blum) =z +1,  Bluv) = B(ov) = 1.
Then the following surprising fact holds:

lin% hom(G, H,) = pmatch(G)

for every graph G.

4 Convergence and limit

4.1 Quasi-random graphs

Quasirandom (also called pseudorandom) graphs were introduced by Thomason [58] and Chung,
Graham and Wilson [19]. These graphs have many properties that true random graphs have.

A sequence (G, : n = 1,2,...) of graphs is called quasirandom with density p (where 0 <
p < 1), if for every simple finite graph F,

t(F,Gpn) = (14 o(1))p P (25)

(this is the asymptotic number of labeled copies of F' in a random graph with edge probability
p). The definition is usually formulated in terms of the number of injections (labeled copies) of
F into G, but the two differ only in lower order terms, which are swallowed by the o(1) in the
definition.

It turns out that (25) implies many other properties that are familiar from the theory of
random graphs; for example, almost all degrees are about pn, almost all codegrees are about
p?n etc. Many of these properties characterize quasirandom graphs, and so these provide many
equivalent ways to define a quasirandom sequence [19, [58]. Quasirandomness is closely related
to Szemerédi’s lemma [55, 56]. One of the most surprising facts proved in [19] is that it is enough
to require the condition about the number of copies of F' for just two graphs, namely K5 (which
just defines the edge density p) and the 4-cycle Cy. This fact can be stated and proved in a
simpler way using the “limit set” 7y defined in Section 2.1:

Theorem 4.1 Ift € Ty satisfies t(Cy) = t(K>)*, then for every simple graph H,

HH) = t(1) P00,
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In other words, t(H) is the expected profile of a random graph G(n,p) with p = t(K5); it is
also the profile of the weighted graph consisting of a single node and a loop with weight p (the
weight of the node does not matter).

To illustrate the power of reflection positivity, we give a proof of this theorem (the proof goes
along the lines of the original, just the details are simpler).

Proof. Let p =t(K>). We first prove the conclusion for stars K ;:
t(Ky ) =p. (26)

Starting with ¢(K 2), let us first consider the connection matrix M (¢, 1) and its 2 x 2 submatrix
formed by the rows and columns corresponding to the graph K7 and K5. Positive semidefiniteness
of this matrix gives t(K7 2) > t(K2)? = p?. On the other hand t(K; 2) < /t(C4) = p? by positive
semidefiniteness of the 2 x 2 submatrix of M(t,2) indexed by Kj 5 and K2, the empty graph on
two nodes. The above two inequalities give ¢(K; 2) = p?, which proves (26)) for j = 2. To prove
the identity for j > 2, we again consider the connection matrix M (¢,1). By the identity we just
established, its 2 x 2 submatrix formed by the rows and columns corresponding to the graph
K; and K3 has 0 determinant. By positive semidefiniteness, the corresponding two rows of the
whole connection matrix M (t,1) are proportional. But this means that

t(K1,j+1) = pt(K ;)

for every j, from which (26) follows by induction.
Next we show that for all complete bipartite graphs Ko ;:

t(Kz;) = p*. (27)

Since t(K22) = t(Cy) = p* by assumption, this is true for j = 2. For general j, it follows just
like (206) from the positive semidefiniteness of the matrix M (t,2).

Now we prove the general case by a similar induction. Let us view the graph H as glued
together from a star K; 4 and a graph £’ on one fewer nodes, along the set 1" of the leaves of the
star, and suppose that we know the assertion for F'. Consider the matrix M (t,d) and its 2 x 2
submatrix formed by the rows and columns indexed by K4 (the graph on d labeled nodes with
no edge) and K 4 (with the leaves labeled). By (26) and (27), this submatrix is singular, and
hence these two rows of the whole matrix are proportional, the second row is p? times the first.
But the graphs F' and H define two elements of these rows above each other, so

t(H) = p™t(F) = ppl BE) — pl B

which proves the theorem. ([

4.2 Convergent sequences

Let (G,) be a sequence of unweighted simple graphs, and assume again that |V (G,,)| = n. We
say that this sequence is convergent, if the sequence t(F,G,,) has a limit for every simple graph
F'. Note that it would be enough to assume this for connected graphs F'.

In the definition, we could replace the homomorphism function by the number of embeddings
(injective homomorphisms), with appropriate normalization. Indeed, the difference between the
number of homomorphisms and embeddings is the number of non-injective homomorphisms,
which is of lower order, so it tends to 0 when divided by n!YV ("I,

We could also replace the homomorphism function by the number of embeddings as induced
subgraphs. Indeed, the number of embeddings can be obtained by summing the numbers of
induced embeddings over all supergraphs (on the same set of nodes). Conversely, the number of
induced embeddings can be expressed in terms of the numbers of embeddings of supergraphs by
inclusion-exclusion.
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Example 4.2 Let G(n,p) be a random graph on n nodes with edge-density p; the sequence
(G(n,p),n=1,2,...) is convergent with probability 1. The limiting simple graph parameter is
given by t(F) = plPU)I,

By definition, every quasirandom graph sequence with density p is also convergent, and the
homomorphism densities into it tend to the same value.

4.3 Finite limits, a.k.a. generalized quasirandom graphs

A generalized random graph G(n; H) is defined by the number n of its nodes and by a weighted
“model” graph H. We assume that V(H) = [¢] and set o, = a;(H) (i = 1,...,¢) and §;; =
Bij(H) (4,7 =1,...,q). We partition [n] into ¢ classes Vi,...,V,, by putting each v € [n] into
Vi with probability a; and connect each pair u € V; and v € V; with probability 5;; (all these
decision are made independently).

A generalized quasirandom graph sequence (G,) with model graph H (or briefly H-
quasirandom sequence) is defined by the property that for every fixed finite graph F,

t(F,G,) — t(F,H) (n — o0).

In other words, the number of homomorphisms of F' into G, is approximately the same as
the expected number of homomorphisms of F' into a generalized random graph G(N, H) on
N = |V(G,)| nodes.

This definition suggests that we should consider the graph H as the “limit” of the H-
quasirandom sequence. The definition of a quasirandom sequence of graphs (with edge-density
p) is equivalent to saying that the sequence converges to K;(p). (Warning: not every convergent
sequence will have a limit of this form!)

In view of the theory of quasirandom graphs, we can ask the following two basic questions
concerning generalized quasirandom graphs:

(a) Is it enough to require the condition concerning the number of copies of F' for a finite set
of graphs F; (depending on « and (3)?

(b) TIs the structure of a generalized quasirandom graph G, similar to a generalized random
graph?

To be more precise, we want that the nodes of G, can be partitioned into ¢ classes Uy, ..., U,
of sizes ain,...,aqn so that the graph spanned by U; is quasirandom with density 3;;, and the
bipartite graph formed by the edges between U; and U; is quasirandom with density 3;;.

The answer to the first two questions is in the affirmative. More precisely, the following
theorems hold.

Theorem 4.3 [43] Let H be a weighted graph with V(H) = [q], nodeweights (a; : i =1,...,q)
and edgeweights (B;; : i,j=1,...,q). Let (G,, n=1,2,...) be an H-quasirandom sequence of
unweighted simple graphs. Then for every n there exists a partition V(Gy) = {Ui,...,Uy) such
that
U] .
(a‘)i_)ai (2213"'7(1)’
V(Gn)l

(b) the subgraph of Gy, induced by U; is a quasirandom graph sequence with edge density By;,
and

c) the bipartite subgraph between U; and U; is a quasirandom bipartite graph sequence with
J
density By;.

Theorem 4.4 [43] Let H be a weighted graph with V(H) = [q]. A sequence (Gn, n=1,2,...)
is H-quasirandom if and only if

t(F,G,) — t(F,H) (t — o)
for every graph F with at most (10g)? nodes.
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4.4 The general limit object
4.4.1 Limits as reflection positive parameters

We now turn to describing limits of general convergent graph sequences.

Let 7o be the set of homomorphism density functions ¢(-, G) defined on simple (unweighted)
graphs, where G is any simple unweighted target graph. Let 7 be the set of all graph parameters
that are pointwise limits of graph parameters in 7y (i.e., its closure in the product topology on
R7). It is not hard to see that 7y would not change if we allowed weighted target graphs with
edge weights between 0 and 1.

The characterization of homomorphism functions (Theorem [3.6)) extends to the limit, at least
for simple graphs:

Theorem 4.5 [44] A simple graph parameter f is in Ty if and only f is normalized, multiplica-
tive and reflection positive.

4.4.2 Limits as measurable functions

Graph parameters in the set 7y can be represented as homomorphism functions into measurable
functions [44]. Let W denote the set of all bounded measurable functions W : [0,1]*> — R such
that W(x,y) = W(y,x) for all z,y € [0, 1]. We also introduce the set

W():{WGWZ OSWSl}.

Theorem 4.6 [44] A simple graph parameter f is in Ty if and only if there is a function W € W,y
such that f =1t(-,W).

This function W is not unique: for example, W (1 — z,1 — y) will define the same graph
parameter. More generally, if ¢ : [0,1] — [0,1] is a measure preserving map (not necessarily
bijective), then

defines the same parameter. The following theorem says that this is all: Let us call functions
Wy, Wy € W equal up to measure preserving transformation if there is a third function W € W
and measure preserving maps ¢1,¢2 : [0,1] — [0, 1] such that W; = W%,

Theorem 4.7 [14] Two functions W1, Wy € W define the same simple graph parameter if and
only if they are equal up to measure preserving transformation.

4.4.3 Limits as distributions over finite and countable graphs

Given any function W € W, and an integer n > 0, we can generate a random graph G(n, W),
called a W-random graph, on node set [n] as follows. We generate n independent numbers
X1,..., X, from the uniform distribution on [0, 1], and then connect nodes ¢ and j with proba-

As a special case, if W is the identically p function, we get “ordinary” random graphs G(n, p).
More generally, if W = Wy for a (finite) weighted graph H, then G(n, Wy ) is a quasirandom
graph with model H.

Theorem 4.8 [44] With probability 1, the graph sequence G(n, W) is convergent, and its limit
is the function W.
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Let us define a random graph model as a distribution G, on simple graphs on [n] , for every
n € Zy. The random graph model G(n, W) defined above has the following three obvious
properties:

(i) The distribution of G, is invariant under relabeling nodes;

(ii) If we delete node n from G, the distribution of the resulting graph is the same as the
distribution of G,,_1;

(iii) for every 1 < k < n, the subgraphs of G induced by [k] and {k+1,...,n} are independent
(as random variables).

It turns out that these three properties characterize the model G(n, W):

Theorem 4.9 [44] A random graph model is of the form G(n,W) for some function W € W
if and only if it satisfies conditions (i), (ii) and (iii). Furthermore, two functions Wy, Wy € W
define the same random graph model if and only if they are equal up to measure preserving
transformation.

We have seen that the limit of ordinary random graphs G(n,1/2) is the function W = 1/2.
It is, however, quite natural to think that the limit of ordinary random graphs should be the
Rado graph (the countable random graph). It turns out that this is also true in the following
sense: For every W € W, we can define a countable random graph G(w, W) on Z,, by choosing
an infinite sequence (Xo, X1, ...) of independent uniform samples from [0, 1], and connecting ¢
and j with probability W (X;, X;). A countable random graph model is a probability distribution
on graphs on Z4 (with the o-algebra generated by cylinders consisting of all graph containing a
given edge).

Theorem 4.10 [48] A countable graph model is of the form G(w, W) if and only if it satisfies (i)
and (iii) above. Furthermore, the countable graph model G(w, W) determines W up to measure
preserving transformation.

Thus it is justified to say that with probability 1, G(n,1/2) converges to the Rado graph
G(w,1/2). A word of caution is warranted here: as an unlabeled graph, G(w, 1/2) is isomorphic
to G(n,1/3) with probability 1. So viewing the Rado graph as an unlabeled graph would
not contain enough information to characterize the limit; we have to view it as a probability
distribution over graphs on a fixed countable set of nodes.

4.4.4 Examples

Example 4.11 Consider the half-graphs H, ,: they are bipartite graphs on 2n nodes
{1,...,n,1',...,n'}, where ¢ is connected to j' if and only if i < j'. It is easy to see that
this sequence is convergent. Indeed, let F' be a simple graph with k£ nodes; we show that the
limit of ¢(F, Hy, ) exists. We may assume that F' is connected. If F' is non-bipartite, then
t(F, Hy,) = 0 for all n, so suppose that F is bipartite; let V(F) = Vi UV, be its (unique)
bipartition. Then every homomorphism of F' into H preserves the 2-coloring, and so the homo-
morphisms split into two classes: those that map V; into {1,...,n} and those that map it into
{1’,...,n'}. By the symmetry of the half-graphs, these two classes have the same cardinality.

Now F' defines a partial order P on V(F'), where u < v if and only if u = v or u € V7,
v € Vo, and uv € E. With respect to this partial order, %hom(F, H, ) is just the number of
order-preserving maps from V(F) to the chain {1,...,n}, and so

hom(F, Hy, ) %hom(F7 H,.)

2F=1¢(F, H,,) =21 —
(F, Hyn) (2n)k nk

is the probability that a random map of V(F) into {1,...,n} is order-preserving. Asn — oo, the
fraction of non-injective maps tends to 0, and hence it is easy to see that 2*~1¢(F, H,, ,,) tends
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to a number 2¥71¢(F), which is the probability that a random ordering of V(F) is compatible
with P. In other words, k;!Qk_lt(F) is the number of linear extensions of P.

However, the half-graphs do not converge to any finite weighted graph. To see this, let Sy
denote the star on k nodes, and consider the (infinite) matrix M defined My ; = t(Sgti—1). If
t(F) = t(F,Gy) for some finite weighted graph G, then it follows from the characterization of
homomorphism functions in [28] that this matrix has rank at most |V (Gp)|; on the other hand,
it is easy to compute that

1
M =
MU o2 (1 1 — 1)

and this matrix (up to row and column scaling, the Hilbert matriz) has infinite rank (see e.g
18)).

One can say, however, that in the limit, we are considering order-preserving maps of the
poset P into the interval [0, 1]; equivalently, adjacency-preserving maps of F' into the infinite
graph with node set [0,1] and edge-set {zy : = < 1/2,y > 1/2,2 <y — 1/2}. More precisely,
the limit is given by the function

W(a,y) = {1, ifoy—k%oryZm—&—%,
0, otherwise.

Example 4.12 (Preferential attachment graphs) Preferential attachment as a paradigm
of generating power law distributions goes back to Yule [60] in 1923. In the context of networks
and graph theory, the idea is usually credited to Barabasi and Albert [7], even though it can
be already found in [53]. For the simplest case of preferential attachment trees, the rigorous
mathematical analysis of these models was first carried out in [50], while the rigorous analysis
of the more general model of Barabasi and Albert was first carried out in [10]. For more general
models of undirected preferential attachment graphs see [20], and for models with directed edges,
see [12]. All these model are sparse models with bounded average degree.

Here we define a preferential attachment graph PAG(n, m) as the random graph with n nodes
and m edges obtained by the following procedure. Fix a set of n nodes, and let vy ... v, be any
ordering of the nodes. We extend this sequence one by one by picking an element of the current
sequence randomly and uniformly, and append a copy of it at the end. We repeat this until 2m
further elements have been added. So we get a sequence vy ... V,V541 - - - Untom.

Now we construct G by connecting nodes v, 42,—1 and v, for k = 1,2,...,m, to get
G(n,m). (Note that G may have multiple edges and loops, which we have to live with for the
time being).

Another way of describing this construction is to view it as adding edges one by one, where
the probability of adding an edge connecting v and v is proportional to the product of the
“degrees”. To be more precise, the probability that the (k + 1)-st edge connects u and v is

2(d(u) + 1)(d(v) + 1)
(n+2k)(n + 2k + 1)
(d(u) +1)(d(u) +2)
(n+2k)(n+2k+1)

if u # v,

if u=w,

where d(u) is the current degree of the node (adding 1 to the degree is needed to start the
procedure at all; adding 2 to the second factor in the case when u = v makes everything come
out nicer).

It can be shown that the limit of preferential attachment graphs PAG (n, en?), with probability
1, is the function W,(z,y) = c(logz)(logy). It is interesting to note that the graphs G(n, W;)
form another (different) sequence of random graphs tending to the same limit W, with probability
1.
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5 The metric space of graphs

5.1 Distances of graphs
In this section, we assume that the graph G (which we probe by F' from the left and by H from

the right) is dense, i.e., the number of edges of G is 2(n?), where n is the number of nodes (the
results are valid but mostly vacuous for sparse graphs). We’ll discuss analogous questions for
sparse graphs (specifically, for graphs with bounded degree) in Section 8!

5.1.1 Matrix norms

For an n x n matrix A, the rectangle norm (also called the cut norm) is defined as

Allg = T Av). 2
[Allo u,vren{%’ﬁ}n‘“ v (28)

This norm is closely related to £, — ¢1 norm, which can be defined by

|Alloos = | max [u'dv|= & max —u'dv (29)
in fact,
Al < 1410 < |4l (30)
For symmetric matrices A, the norm
Al = max [uAu (31)

is simpler to define and is also equivalent to the rectangle norm:
I4llg < 4l < 2] Allp. (32)

A constant factor approximation of the rectangle norm can be computed in polynomial time,
using semidefinite optimization and Grothendieck’s inequality in functional analysis (see [3]).

5.1.2 Labeled graphs on the same set of nodes

Let G and G’ be two graphs on the same set of n nodes. We want to define a notion of distance
between them that reflects structural similarity. A first attempt is to define

1(G, @) = HIBG)AB(E),

(Here the division by n? is just a convenience, so that the distance of two graphs is always
between 0 and 1.) However, this notion is too restrictive: For example, the distance of two
random graphs with the same density is of constant order (with large probability), even though
two random graphs are structurally very similar.

For our purposes, the following distance function will be more useful. For a graph G and
sets S, T C V(G), let eq(S,T) denote the number of edges in G with one endnode in S and the
other in T' (the endnodes may also belong to S NT; so eq(S,S) is twice the number of edges
spanned by S). We define:

1
dD<G7GI) = ﬁ S,’Zgéa\‘/)%G) |6G(Sa T) - BG/(S, T)|
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Note that we are dividing by n? and not by |S| x |T|, so the contribution of a pair S,T is at
most |T| x |S|/n?. Thus small sets of size o(n) play no role when measuring the distance. In
terms of the adjacency matrices A and A’ of G and G’, respectively, this can be expressed as

do(G,G") = —|A- 4

1

Lla-a,

Note that the definition can be extended to the case when G and G’ have edgeweights. Further-

more, by (30) and (32), we could replace the ||.|g norm in the definition by one of the other

matrix norms defined above without distorting the distance by more than a constant factor.
We need to extend this notion to weighted graphs on the same set of nodes. Let G and G’

be weighted graphs with V(G) = V(G’). We assume that G and G’ both have total nodeweight

1, but the weights of individual nodes in G and G’ may be different. Then we define

do(G,G') = Z i (G) — i (G)]

(33)

o 5 [D (@0 (@35(G) - @)y (@) (@)

If the two graphs do not both have total nodeweights of one, then we simply define the distance
dm in terms of the corresponding “normalized” graphs, i.e., we replace «;(G) with «;(G)/a(G),
and similarly for G’.

5.1.3 Unlabeled graphs with the same number of nodes

Now assume that G and G’ are unlabeled unweighted graphs on n nodes. It is natural to define

00(G, @) = mindn(G, &), (34)
leRel
where G and G’ range over all labelings of G and G’ by 1,...,n, respectively (of course, we

could fix the labeling of one of the graphs).

Consider any labeling that attains the minimum in the definition of gg, and identify the nodes
of G and G’ with the same label. In this case, we say that G and G’ are optimally overlaid.

5.1.4 Unlabeled graphs with different number of nodes

To define the distance (in any of the above senses) of two unlabeled graphs with different number
of nodes, say G with n nodes and G’ with n’ nodes, a first idea is to blow up each node of G
into n’ nodes, and each node of G’ into n nodes, so that both graphs now will have nn’ nodes.
An improved version of this idea is to match up the nodes “fractionally”. This also allows us to
extend the notion of distance to weighted graphs.

Let G and G’ be weighted graphs with (say) V(G) = [n], V(G’) = [n/], and assume that the
sum of nodeweights is 1 (just scale the nodeweights of each graph). Let X be a nonnegative
n X n’ matrix such that

i qu - ai(G)
u=1

and

i Xiu = au(G').
=1
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We think of X;, as the portion of node i that is mapped onto node u. We call such a matrix
X a fractional overlay of G and G'. Let X(G,G’) denote the set of all fractional overlays. Note
that for every X € X(G, "),

’
n

>0 Xiu= Z;Oéi(G) =Y (@) =1

i=1 u=1 u=1

(If we view ag and ag as probability distributions, then every X € X (G,G’) is a coupling of
these distributions.)

For each fractional overlay, we construct the following two weighted graphs. The nodes of
G[X] are all pairs (¢,u) where 1 <i <n and 1 <wu <n’. The weight of the node (i, u) is X,
and the weight of the edge ((i,u),(j,v)) is B;;. The other graph G'[XT] is defined similarly,
except that the roles of i and u are interchanged. Now the node sets of G[X] and G'[XT] are
labeled by the same set of pairs (i,u), so their distances are well defined.

Thus we can define the distance of two weighted unlabeled graphs G and G’ (with total
nodeweight 1): .

!/ . !/
(G, G") = Xef‘p(lgﬁ,)dm(G[X],G X

We can express this distance in terms of the original graphs G and G’ by the following

formula:

N\ . . . . _ !
f0(C.C) = min o max 2): XiuXjo(Bi5(G) = Bun (G)|. (35)
(j’,v)eT

Of course, this definition also applies if G and G’ have the same number of nodes; however,
it may give a different value than (34). It is proved in [16] that there is a constant ¢ > 0 such
that

00(G, @) < 00(G, G') < (G, G (36)

(the lower bound is trivial; we do not have an example showing that the exponent 1/4 is needed
in the upper bound). While the definition of gg is more straightforward, the distance dg will
be easier to work with, and we will use mostly the latter distance.

A very special weighted graph is K;(p): a single node with a loop with weight p. For the
random graph G = G(n,p), we have a.s.

o(G,Ki(p)) — 0 (n — 0).

Let (G,) be a sequence of simple graphs. It follows by standard results on quasirandom graphs
that

Proposition 5.1 [19] A sequence (G,,) of graphs is quasirandom if and only if 6q(Gr, K1(p)) —
0 as n — oo.

The following result connects this distance to homomorphism functions.

Lemma 5.2 [44] For any three simple graphs F, G and G’

t(F, G) — t(F,G")| < |E(F)| - 65(G,G").

25



5.2 Szemerédi’s Lemma

For a graph G = (V, E) and two subsets U,W C V we define the “irregularity” of the pair U, W
as the quantity

irreg (U, V) = XCmUz%;(CV|eg(X, Y) —dX|- Y]]

where d is the density d = eq(U,W)/(|U| - |W]). Let twr(e) denote the [1/e%] times iterated
exponential function (the “tower”). With this notation, we can state one version of the Regularity
Lemma:

Lemma 5.3 (Szemerédi Regularity Lemma) For every ¢ > 0 and every graph G = (V, E)
there is a partition P of V into k < twr(e) classes Vi, ..., Vi such that

> rregg(Vi, Vi) < e[V
1<i<j<k

(While this form is perhaps easiest to state and prove, there are equivalent forms that are more
suited for applications. We refer to [35] for a survey, to [55] for connections with quasirandom
graphs, and to [47] for analytic aspects of the Regularity Lemma.)

The appearance of the tower function in the Lemma forbids practical applications (and
unfortunately this bound on the number of parts is not far from best possible, as it was shown
by Gowers [32]). A more reasonable threshold was proved by Frieze and Kannan [29], at the cost
of using a weaker measure of irregularity.

Given a graph G = (V, E) and a partition P = {Vi,...,V;} of V, we define a weighted graph
Gp on V by setting o, (Gp) = 1 and By, (Gp) = dj(u)i(v), Where i(u) is the index of the set V;
containing u and d;; = eq(Vi, V;)/(|Vi||V;]). The edgeweight matrix of Gp is thus obtained from
the adjacency matrix of G by replacing each entry in the block V; x Vj by the average over the
block. In this notation, the result of Frieze and Kannan [29] can be formulated as follows:

Lemma 5.4 (Weak Regularity Lemma) For every e > 0 and every graph G = (V, E), there
exists a partition P of V into k < 22/¢% classes such that do(G,Gp) <e.

The bound on the number of partition classes is still rather large (exponential), but at least
not a tower. Frieze and Kannan show that the partition can be obtained as an “overlay” of only
1/€? sets, so it has a description that is polynomial in 1/e, which in some applications leads to
polynomial time algorithms (see e.g. [2]).

The Weak Regularity Lemma immediately implies the following slight variant:

Lemma 5.5 [16] For every e > 0 and every graph G = (V, E), there is a weighted graph H with
at most [2Y/2°7 nodes such that 6p(G, H) < e.

We note that other versions strengthen the conclusion (of course, at the cost of replacing
the tower function by an even more huge value). Such a “super-strong” Regularity Lemma was
proved and used by Alon and Shapira [4]. It would be interesting to fit the original Regularity
Lemma or one of its applications into this framework.

5.3 Sampling from a graph

The following important fact connecting sampling and graph distance follows from a result in
[2]; see also [16] for a simple proof of (a):

Theorem 5.6 Let G1 and Ga be two graphs on the same set of nodes V, let € = dg(G1,G2),
0 >0, and let S be a random k-subset of V.
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(a) If k > 2P log(2), then with probability at least 1 — 4,
2710 < dn(G4[S], Go[S]) < 4e'/4.
(b) If k > 10'%10g(2/¢)/(*8%), then with probability at least 1 — 4,

_ €
2710 < dn(G41[S], G2[9)]) < 107%.
Using this bound and the (weak) Regularity Lemma, it is not hard to prove the following
theorem, which is the key to several further results.

Theorem 5.7 [16] Let G be a (possibly weighted) graph, e > 0 and k > 23/<° . Let S be a random
subset of V(QG) of size k. Then with probability at least 1 — e, we have (G, G[S]) < €.

Informally, if we take a sample of k points, and blow up each node of this subgraph into
|[V(G)|/k twins, then the resulting graph can be overlayed with G so that the do-distance will
be small.

This theorem can be thought of as a strengthening of the (weak) Regularity Lemma in
two directions. First, it says that the approximating weighted graph can be required to be
unweighted; second, that it can be obtained just by drawing a random sample.

From this theorem, it is easy to deduce the following converse of Lemma [5.2:

Theorem 5.8 [16] Let G, G’ be simple graphs, and let € > 0. Set k = f28/€3], and assume
that for every simple graph F on at most k nodes, we have |t(F,G) — t(F,G")| < 272k Then
o(G,G") <e.

These results allow us to characterize convergent graph sequences:

Theorem 5.9 [16] A graph sequence is convergent if and only if it is Cauchy in the dg metric.

Let F denote the metric space of all finite, simple graphs with the ég metric. It follows
from the above that the completion X of F can be described as follows. Consider the space of
all functions in Wy, with the distance

dn (Ua W) = Sup

‘ W(x,y)dx dy]|.
s,rco ) sxr

Define a new metric by
do(U, W) = inf dg(U?, W),
where ¢ and v range over all measure preserving maps ¢, : [0,1] — [0,1]. Then the elements
of X can be obtained by identifying functions that are at distance 0, and the o metric between
these classes extends the dg metric on graphs.
The above results give various other descriptions of this completion: for example, X is
isomorphic to 7y with the metric

B(t1,12) = sup ﬁm(m —to(F)|  (t1,tr € Tp).

Szemerédi’s Lemma can be used to show that X is compact.

5.4 Testing huge graphs

Imagine that we have a huge graph G; this graph is so large that we cannot describe it completely
in any way. All we can do is sample a bounded number of nodes of G and look at the subgraph
that is induced by them. What can we learn about G?

There are two related, but slightly different ways of asking this question.
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5.4.1 Parameter testing

Parameter testing is easier to state. We may want to determine some parameter of G; say
what is the edge density? How large is the density of the maximum cut? Of course, we will
not be able to determine the exact value of this parameter; the best we can hope for is that if
we take a sufficiently large sample, we can find the approximate value of the parameter with
large probability. To be precise, a graph parameter f is testable, if for every € > 0 there is
a positive integer k such that if G is a graph with at least £ nodes and we select a set X of
k independent uniform random nodes of GG, then from the subgraph induced by them we can

compute an estimate f(G[X]) of f such that

P(|f(G) — f(G[X])| > ¢) <e.

It is an easy observation that we can always use f(G[X]) = f(G[X)).
Using the notions of graph distance and convergence introduced above, we can give a number
of characterizations of testable parameters.

Proposition 5.10 [16] A simple graph parameter is testable if and only if any of the following
equivalent conditions holds.

(a) For every convergent graph sequence (Gy,), the limit of f(G,) exists as n — 0.

(b) For every € > 0 there is an integer ko such that for every k > ko and every graph G on
at least k nodes, a random set X of k nodes of G satisfies

If(G) — E(f(G[X]))] < e.

(¢) f is “essentially” uniformly continuous with respect to the og distance in the following
sense: For every € > 0 there is an €9 > 0 and a positive integer ng so that if G1 and G2 are two

graphs with |V (G;)| > no and dg(G1,G2) < eq, then |f(G1) — f(G2)| < e.

~

(d) There exists a functional f(W) on Wy that is continuous in the rectangle norm, and

~

extends f in the sense that |f(Wg) — f(G)] — 0 if [V(G)| — oc.

If we want to use (c) to prove that a certain invariant is continuous at infinity, then the
complicated definition of the dg distance may cause a difficulty. So it is useful to show that (a)
can be replaced by a weaker condition, which consists of three special cases of (c):

Supplement 5.11 [16] The following three conditions together are also equivalent to the conti-
nuity of f at infinity:

(c.1) For every € > 0 there is an & > 0 such that if G and G’ are two simple graphs on the
same node set and do(G,G’) <€’ then |f(G) — f(G")] <e.

(c.2) For every simple graph G, f(G(m)) has a limit as m — oo, where G(m) denotes the
graph obtained from G by replacing each node by m twins.

(c.3) F(G(m)) = F(G) = 0 if [V(G)] — oc.

Some of the implications between conditions (a)-(d) in the Theorem are easy, some others
follow from the general theory sketched above. To illustrate the use of this theorem, let us
consider the density of the maximum cut:

ﬂ@mmed&zfﬂsx

©SCv(G) n

This parameter is testable: this fact is nontrivial, and its first proof by Goldreich, Goldwasser
and Ron [31] was one of the first important results in Property Testing. Of the conditions above,
(a) and (b) are more or less a reformulation of testability.
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Condition (c), on the other hand, is easy to verify in this case. Let ¢ > 0, and let G; and
G2 be two graphs for which d5(G1,G2) < €. Let us blow up the points of each graph so that
the new graphs G| and G} have the same number N of points and they can be overlaid so that
dn(GY, G4) < e. For any subset S C V(G)) = V(G}), we have

lecy (S, V(G)\ §) = ey (8, V(G) \ 8)| < eN?,

and hence
|f(GY) — f(Gy)] < e

To complete the proof, one must argue that |f(G%) — f(G;)| is small, which is not hard (and is
not given here).

Condition (d) can also be directly verified: we can extend the definition of a maximum cut
to functions W € W in a natural way:

JW) = Z]/S/[()’l]\sw(x,y)dwdy.

sclo,1

Then it is easy to check that this functional is continuous in the norm ||.||g, and extends f.

5.4.2 Property testing

Instead of estimating a numerical parameter, we may want to determine some property of G:
Is G 3-colorable? Is it connected? Does it have a triangle? The answer will of course have
some uncertainty. A precise definition was given by Goldreich, Goldwasser and Ron [31], who
also proved several fundamental results about this problem. There are in fact several ways to
formalize this question. For this exposition, we take the following.

As for parameter testing, we specify an ¢ > 0 and want to find a positive integer k (depending
on ¢) with the following property. We select k independent uniform random nodes of G, and
from the subgraph induced by them we compute a guess X € {YES, NO}. Ideally, we want
that if the graph does have the property, our guess should be YES with large probability, and
if the graph does not have the property, then we should guess NO with large probability. But
this is too much to ask. Suppose that we have two graphs that can be obtained from each other
by changing a very tiny fraction of the edges, but one has the property, and the other does not.
Then a sample induced subgraph from one graph will have almost the same distribution as a
sample (of the same size) from the other, and so our guess for the two graphs will be almost the
same.

A graph property P is testable, if our guess satisfies the following: if a graph has the property
in a robust way so that changing at most en? edges in any way it still has the property, we must
guess YES with probability at least 1 — ¢; similarly, if changing at most en? edges in any way
the obtained graph does not have the property, then we must guess NO with probability at least
1 — €; in the grey area inbetween, we can guess arbitrarily. In other words, whatever we guess,
we should be able to change at most en? edges to make out guess right.

Remark 5.12 While changing a small number of edges is the most natural way to formalize
that there is a “nearby” graph with the property, we have seen that the rectangular distance is
often better behaved. One is tempted to define that a property is weakly testable, if for every
€ > 0 there is a k such that for every graph G on at least k£ nodes we can make a guess based on
a sample induced subgraph of size k such that with probability at least 1 —e&, there is a graph G’
such that do(G, G’) < € and our guess is right for G’. But this notion is not very interesting due
to the fact that every graph property is weakly testable. This is an easy application of Theorem
5.7 above.
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Among the many results on graph property testing, let us quote a surprisingly general recent
result of Alon and Shapira [4]. A graph property is called hereditary, if it is inherited by induced
subgraphs.

Theorem 5.13 [4] Every hereditary graph property is testable.

They in fact obtain a stronger result, which can be cast in the framework of parameter
testing. For a hereditary graph property P, define the distance from the property as d(G,P) =
D(G,P)/|V(G)|?, where D(G,P) is the minimum number of edges we need to change in G to
obtain a graph with property P. Alon and Shapira proved:

Theorem 5.14 [4] The distance from a hereditary graph property is testable.

This theorem has a reasonably short proof using graph limits, see [47].

6 Partitions and homomorphisms into small graphs

6.1 Ground state energy

In Section 4/ we defined convergence of a graph sequence G, in terms of the homomorphism num-
bers from small graphs F' to G,, (“convergence from the left”). But there are many applications
where one wants to study homomorphisms from G,, into a small graph H. This naturally raises
the question whether suitably normalized homomorphism numbers hom(G,,, H) converge if G,,
is convergent from the left.

Consider a graph G on n nodes, and a softcore graph H on ¢ nodes. (Recall that H is called
softcore if all edge weights are strictly positive.) Then loghom(G, H) typically grows like the
number of edges in G. For dense graphs, it therefore seems natural to consider the quantity

1
2 loghom(G, H). (37)

This quantity is closely related to a weighted maximum cut problem on G. Indeed, let B =
(Bij)i<i,j<q be a symmetric matrix with real entries. We then define the ground state energy of
the “model” B on the graph G as

1
£(G,B) = —  max B . 38
( ) n2 ¢: V(G)—q] WEZE(G) P(u)o(v) (38)

For large n, the quantity defined in (37) is well approximated by the ground state energy.

Lemma 6.1 Let G be an unweighted graph with n nodes, and let H be a softcore graph with
a(H)=1. Let a = min; ay (i). Let B be the matriz of logarithms of the edgeweights of H. Then

_ log(1/a) < loghom(G, H)

E(G.B) - “EL < B0

< &(G, B).

(Note that the upper bound on loghom(G, H)/n? does not depend on the nodeweights of H,
and in the lower bound, only the error term does.)

Proof. Note that 2
max hom, (G, H) = e” £(G,B)
¢: V(G)—V(H)
Thus we have
hom(G, H) =Y aghomy (G, H) <> (e EGB) — nEG.B),
¢ ¢
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and
hom(G, H) > max aghom, (G, H) > amen E(GB),

From these bounds the Lemma follows. O

Example 6.2 As a special case, consider the graph H consisting of two nodes of weight 1/2,
with loops of weight 1 at each, and connected by an edge of weight e (the base of the natu-
ral logarithm). Then n2&(G, H') is the size of the maximum cut in G, which we denote by
MAXCUT(G). By Lemma 6.1,

loghom(G, H) — n < MAXCUT(G) < loghom(G, H).

Since MAXCUT(G) > |E(G)|/2, this gives a very good approximation of the maximum cut.
More generally, for a fixed H, computing (G, H) is a weighted multiway cut problem.

Our next theorem states that convergence from the left implies convergence of the ground
state energies. Its proof uses the notion of fractional partitions, a notion we will need at several
places in this section: a fractional partition of a set V into ¢ classes (briefly, a fractional g-
partition) is a g-tuple p = (p1,...,pq) of functions from V' to [0,1] such that for all z € V, we
have p1(z) + - -+ pg(x) = 1. (Later in this section, we will apply this definition also to the case
when V = [0, 1], when we tacitly assume that the functions p; are measurable.) We will use the
notation Pd, for the set of probability distributions on [g], i.e., the set of vectors a = (a1, ..., ay)
such that a; > 0 and ), a; = 1, and the notation Sym, for the set of ¢ x ¢ symmetric matrices.

Theorem 6.3 [16] Let g be a positive integer, let B € Sym,,
of simple graphs. Then E(Gy, B) is a convergent sequence.

and let G, be a convergent sequence

As a simple illustration of the usefulness of Proposition [5.10/ and its Supplement 5.11, we
sketch the proof. Indeed, let us consider the quantity

1
£(G.B)=— > Biwew)
uwvEE(G)

where ¢ is a map from V(G) to [¢]. Identifying these maps with partitions P = (V4,...,V;) of
V(G) and using the definition of the dg metric, we immediately see that

[€4(G. B) = £4(G', B)| < ¢*||B||odr(G, G")

whenever G and G’ are simple graphs on the same set of nodes, which verifies the condition (c.1)
of Supplement 5.11.
The condition (c.2) is not hard to verify either: Define the energy of a fractional g-partition

p of V(G) as .
gp(G,B) = ﬁ Z Z pi(u)pj(v)Bij. (39)

weE(G) i,5€[q]

Then £(G(k), B) = max, £,(G, B) where the maximum runs over all fractional partitions such
that all p;(u)’s are multiples of 1/k. We claim that the maximum is attained for fractional
partitions which are {0,1} valued, so that £(G(k), B) = £(G, B) for all k. It is clear from the
above description that £(G(k), B) > £(G, B), so the only thing we need to show is a matching
upper bound on £(G(k), B). Consider a fractional partition p maximizing €,(G, B), and a fixed
node v € V(G). Then &,(G, B) is a linear function of the vector (pi(u),...,pq(u)), implying
that the maximum over all these vectors is obtained at a vertex of the simplex Pd,. Applying
this procedure to all nodes u € V(G), this gives the desired inequality £(G(k), B) < (G, B),
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and hence the equality of £(G(k), B) and £(G, B) for all k. The condition (c.2) therefore holds
trivially. The verification of condition (c.3) is even easier.

Let us finally note that the limiting ground state energy of a convergent sequence can be
expressed explicitly. Indeed, for W € W, and a symmetric ¢ X ¢ matrix B, let

EOW.B) —max 2 3 B, W ) dedy (40)
” 1 0,1]2

where the maximum runs over fractional g-partitions of [0,1]. Then we have the following
theorem.

Theorem 6.4 [16] Let (G,) be a convergent sequence, and let W € Wy be its limit. Let H be a
softcore graph, and let B be the matriz of logarithms of the edgeweights of H. Then

. loghom(G,, H) .
lim —=—————~ = lim &(G,,B)=E&(W,B).
n—oo |V (Gp)|? e ( ) ( )

6.2 Entropy and free energy

In addition to the ground state energy and the closely related quantity (37), we will consider the
so-called “pressure” or “free energy” of the model H on G, defined as

PG H) =L ~log hom(lG, H) (41)

where n lb the number of nodes in G and =G is obtained from G by multiplying the edge weights
of G by =

To dlscuss the convergence of the free energy, we need the notion of the entropy of fractional
partitions. Let p = (p1, ..., pq) be a fractional partition of a finite set V. Then the entropy of p

is defined as
H(p) = ‘V‘ ZZPz ) log pi(u).
ueV i=1

Theorem 6.5 [16] Let q be a positive integer, let H be a softcore weighted graph, and let (G,,)
be a convergent sequence of simple graphs. Then P(G,,H) is a convergent sequence.

If G,, converges to a function W € W, the limiting free energy can again be expressed as
an explicit function of W. To this end, let us define the entropy of a fractional g-partition p of

[0,1] as
/ Zpl )log p;(x) da,

and the entropy of the H colorings of the hmlt graph W as
1
P(W, H) = max(H(p +Zh / pi(x)de+ 5 Y By o V@) dudy), (42)
0,1 i,j )
where the maximum goes over all fractional g-partitions of [0,1], h; = loga,;(H) and B;; =

log 3;;(H).

Theorem 6.6 [16] Let (G,) be a convergent sequence of simple graphs, and let W € W, be its
limit. Let H be a weighted softcore graph. Then

lim lloghom(lGn, H)=P(W, H).
n

n—oo N

This theorem can be proved using Proposition 5.10 and its Supplement 5.11) in a way similar
to (but more involved than) the proof of Theorem [6.3.
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6.3 Factor graphs

Let G be a weighted graph and let P = (V4,...,V},) be a partition of V(G). The factor graph
(or briefly factor) H(G,P) is the weighted graph on [¢] with nodeweights

a(GVI]) _ 2uev, wl(G)

ou(H(G,P)) = e = S,

and edges weights
B (H(G,P)) = 2uevivev; 2u(G)w(G)Bun (G)
N ’ a(GVi))a(G[V5])
Note that H(G, P) is invariant under scaling the nodeweights of G.
In the special case when G is unweighted, this definition specializes to

| A
az(H(Gap)) = |V(G)|’

and Vi)
- _ecVi,Vj

PGP = Yy Wl

Here eq(V;,V;) denotes the number of edges uv € E(G) with v € V; and v € V}; note that we
allow ¢ = j, in this case e(V;,V;) is twice the number of edges spanned by V;.

We denote by gq(G) the set of factors of G with ¢ nodes. Note that by our definition the
factors are labeled graphs, but since permuting the nodes of a factor also gives a factor, we would
not loose information by forgetting the labeling. We can consider S;(G) as a subset of Ra*(a+1)

We extend these definitions to functions U € Wy. Let P be a g-partition of [0,1]; we then
define a weighted graph H (U, P) on V(H(U,P)) = [q], where node ¢ has weight

ai(H(U,P)) = A(Vi),
and edge 75 has weight

B, (H (U, P)) = W)lw) /V | Uy

(If A(Vi)A(V}) = 0, then we define 3;;(H(U,P)) = 0.) We call the graph H(U,P) a factor of U,
and use the symbol gq(U ) to denote the set of all factors of U with ¢ nodes.

Note that the knowledge of the factors of G is enough to recover the ground state energies of
G. Indeed, in terms of the factors of G, the ground state energy defined in (38)) can be expressed
as

q
5(G7B) = max Z aiajBinij, (43)

(a,X)qu (G) i,j=1

where a = (a1,...,a4) and X = (Xi;)1<i j<q-

6.4 Fractional factor graphs

The set §q(G) is typically a very large finite set, which makes it difficult to work with. It will
be convenient to introduce a fractional version of factors.

Let G be a weighted graph. For every fractional partition p = (p1,. .., pg) of V(G), we define
the fractional factor G, as the graph with nodeweights

> uev(c) Pi(w)au(G)
(@) 7

ai(Gp) =
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and edgeweights
B (G,) = 2ouvey Pil1)p;(V)0n(G)aw (G)Bun (G)
a;i(Gp)a;(Gp)
Let S;(G) denote the set of all fractional factors of G with ¢ nodes. Then S,(G) is a closed set;

it is not convex in general.
We also extend these notions to functions. Let U € Wy and let p = (p1, ..., py) be a fractional

partition of [0,1]. Set a;(p) = fol pi(z) dz. Then we define

ai(Uy,) = ai(p),

and
1

ai(p)e(p)

Let S;(U) denote the set of all fractional factors of U with ¢ nodes. For a weighted graph G
and a vector a € Pd,, let ga(G) denote the set of all weighted adjacency matrices of all factors
of G with nodeweights a1, ...,aqs. So S4(G) is the set of all pairs (a, B) with B € B,(G). The
sets B, (G), EG(U ) and B, (U) are defined analogously.

We clearly have that 0 < Bij(Up) < 1 whenever U € W,. Furthermore, it is not hard to see
that for U € Wy, the set S;(U) is closed in the obvious topology of weighted labeled graphs on
g nodes.

5 (U,) = [PV ) ey

Lemma 6.7 [16] For every U € Wy, the set Sq(U) is the closure of gq(U).

(The two sets are not equal in general.)
For every weighted graph G, S;(G) is again a closed connected set. Obviously, S;(G) contains

g‘E'A’q(G)7 but it is not its closure in general (since the latter is a finite set). It is not hard to see
that for every weighted graph G,

S54(G) = 8,(We) = 8,(Wa). (44)

Clearly §q(G) is a finite subset of these infinite sets. But it can be shown that it is not much
smaller:

Lemma 6.8 [16] If ¢ is the largest nodeweight in G, then for every H € Sy(G) there is an
H' € §,(G) such that 6p(H, H') < 4¢* /c.

Most of the time, we will work with the fractional versions, which are much easier to handle.

6.5 Microcanonical ground state energy, a.k.a. multiway cut problems

We have seen that convergence of the sequence (G,) implies convergence of the free energies
and ground state energies. But the converse does not hold. To get convergence of (G,,) from
the convergence of the ground state energies, we will need a finer measure than ground state
energy, where the sizes of the partition classes are also taken into account (in physics terms, this
could be called the “microcanonical version” of the ground state energy). We will see that this
quantity also contains a number of frequently studied graph parameters.

For a finite set S, ¢ > 1 and a € Pd,, let a® denote the set of all maps ¢ : S — [g] such that

671 (1) — sl S]] <1 (45)
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for every ¢ € [¢]. (In other words, we prescribe the proportions of elements of S mapped onto
each i € [g], as closely as possible.) For a simple graph G and a softcore graph H with node
weights one, we then introduce microcanonical homomorphism numbers

hom,(G,H) = Z homy (G, H).

¢)EQV(G)

The microcanonical ground state energies and free energies of the model B on a graph G with n
nodes are then defined as

~ 1
EGB) = o5 max D, By, (46)
ijeE(G)
and 1 1
Pa(G, B) = ~loghom, (-G, H) (47)
respectively.

The ground state energy &, contains a number of important graph parameters as special

cases. If
« 1 0
¢g=2, a= <1 B a) and B = (O 0) (48)

then &,(G, B) corresponds to the densest subgraph on o|V(G)| nodes. If

¢=2 a= Gg) and B = (01 _01> (49)

then —&,(G, B) is the minimal bisection; if we replace here B by —B, then &,(G,B) is the
mazimal bisection. For q¢ > 2, we get multiway cut problems in a similar way.

The free energy P, is a finer measure. For example, in the case (48)), P.(G, B) will pick
out the density of an induced subgraph that is not necessarily the maximum, but for which the
number of induced subgraphs with this density is large, at the cost of some loss in density.

The use of (45) is cumbersome and in some cases it leads to unpleasant discontinuities; it
will be much more convenient to work with a fractional version. We formulate our definition for
a weighted graph G. Then for all a € Pd, and B € Sym, we define

£(GB) =max) Y a(@(@Bul@) Y nwn By, (50
r u,weV(G) i,5€[q]

where p ranges over all fractional g-partitions of V(G) such that

Z oy (G)pi(v) = a;.

ueV(QG)

We also extend the notion of microcanonical ground state energy to functions. For every W &€
W, a € Pdy, and B € Sym,, we define

EW.B) = max 33 By [ piadps ()W (wp) do (51)

where p ranges over fractional ¢g-partitions of [0, 1] with a;(p) = a; for all i. It is easy to see that

&.(G,B) =&,(Wg, B).
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Using a result from [2], it follows easily that for every simple graph G on n nodes and every
matrix B,

~ 6q3
E.G.B) G5y < L 62

The notion of the microcanonical free energy for functions is defined analogously: for every
W € Wy, a € Pdy, and B € Sym,, we define

W (@, y)pi(e)p; (v) da dy) (53)

pa(p)=a

1
P.(W,B) = max (H(p) +52 By [
,J

0,1]2

where p ranges over fractional ¢-partitions of [0, 1] with a;(p) = a; for all 4.

6.6 Convergence from the right

Our goal is to give a characterization of convergent graph sequences in terms of partition infor-
mation, specifically the sets S;(G) and the functions &,(G, B). Recall that for two sets A, B in
a metric space (X, d), the Hausdorff distance is defined as

d™(A, B) = max(sup inf d(z,y), sup inf d(z,v)).
r€AYEB zeBYEA

It turns out that the following three types of information about two graphs G, G’ are equiv-
alent: (1) G and G’ are close in the dg distance; (2) S,(G) and S,(G’) are close in the d'f
distance for every ¢ up to a certain bound, and (3) |£,(G, B) — &,(G’, B)| is small for all a € Pd,
and B € Sym, for every q up to a certain bound.

The exact statement is the following:

Theorem 6.9 [16] (a) For two simple graphs G,G’ and a € Pd,,
dii (84(G), 84(G")) < 60(G, @)
(b) For two simple graphs G,G’, a € Pd, and B € Sym,,
€a(G, B) = E(G', B)| < ¢*68(8,(G), 54(G")).
(¢c) Let G, G’ be two simple graphs, and suppose that

52

o(G,B) = &,(G',B)| < ——
(G, B) ~ £(G' B < g
forallg<4-220/ g ¢ Pd, and B € Sym,. Then ég(G,G") <e.

Similar statements hold for the microcanonical free energy, see [16].

6.7 Summary: convergence criteria

The following theorem summarizes several equivalent conditions for a sequence of (dense) graphs
to be convergent:

Theorem 6.10 [16] Let (G,) be a sequence of simple graphs with |V(G,)| — oo. Then the
following are equivalent:

(a) For every simple graph F, t(F,G,) is convergent.
b) The sequence (G,) is Cauchy in the dq metric.

(
(c) For every q > 1, the sequence S,(Gy,) is Cauchy with respect to the Hausdorff metric d:it.
(d) For every ¢ > 1, a € Pd, and B € Sym,, the sequence E,(Gy, B) is a Cauchy sequence.
(

e) For every ¢ > 1, a € Pdy and B € Sym,, the sequence ﬁa(Gn, B) is a Cauchy sequence.
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We can also characterize convergent graph sequences in terms of Szemerédi partitions.

Supplement 6.11 [16] The following two conditions are also equivalent to conditions (a)—(e)
in Theorem 16.10:

(f) For every k > 1 there is an ny > 1 such that if n,m > ny, then G, and G, have weak
Szemerédi k-partitions P and P’ with error 2/\/logk such that do(H(G,, P), H(Gm, P')) <
2/y/1ogk.

(g) For every k > 1 there is an ng > 1 such that if n,m > ny, then G,, and G, have strong
Szemerédi k-partitions P and P’ with error 1/log™ k such that do(H(Gn,P), H(Gm,P')) <
1/log" k.

A convergent sequence has a limit W € Wy by Theorem 4.6. The conditions in Theorem
6.10/ can be rephrased to characterize the convergence to this limit:

Theorem 6.12 [16] For a sequence (G,) of simple graphs with |V (G,)| — oo, and for any

W e Wy, the following are equivalent:
(a) For every simple graph F, t(F,G,) — t(F,W).
(b) 6o(Gn, W) — 0.
(c) For every ¢ > 1, Sy(Gy) — S;(W) in the Hausdorff metric diit.
(d) For every ¢ > 1, a € Pd, and B € Sym,, £,(Gn, B) — E.(W, B).
(e) For every g > 1, a € Pd, and B € Sym,, Po(Gr, H) — Pou(W, B).

One can define Szemerédi partitions for the limit objects W € W, (see [45]), and then
formulate analogues of (f) and (g) in Supplement [6.11 describing the convergence to the limit.

7 Homomorphisms and extremal graph theory

7.1 Inequalities between homomorphism numbers

We have mentioned in the introduction that many results in extremal graph theory can be
expressed as algebraic inequalities between homomorphism densities. Every algebraic inequality
that holds for all finite graphs also holds for simple graph parameters in the closure 7 (and
of course vice versa). So for example, Goodman’s Theorem (1) is equivalent to saying that for
every simple graph parameter ¢t € 7,

H(K3) > t(Ky)(2t(K2) — 1). (54)

By multiplicativity, every algebraic inequality is equivalent to a linear inequality. For example,
(1)) is equivalent to
t(K3) > 2t(K2Ka) — t(K3).

The positive semidefiniteness of the connection matrix (reflection positivity) implies linear and
nonlinear inequalities between the values of a simple graph parameters t € 7 for “small” graphs.
In fact, Theorem 4.5 says that every (say, algebraic) inequality between the values of simple graph
parameters t € 7y is a consequence of multiplicativity and reflection positivity.

Let us describe some of these derivations. Fix a simple graph parameter ¢t € 7y. If v = (vg)
is any real vector with finite support, indexed by k-labeled graphs, then

v M(t,k)v >0 (55)

gives a linear inequality between the values ¢(F).
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Probably all linear inequalities can be obtained by taking nonnegative linear combinations
of inequalities (55). However, the (infinitely many) inequalities (55) and their consequences are
not so easy to understand, and we formulate some special inequalities.

Trivial linear inequalities are that if H; is a subgraph of Hy (not necessarily on the same set
of nodes), then

t(F1) > t(Fy). (56)

For any two graphs H; C Hs on the same set of nodes, the expression

Z (=) FENED hom (F, @)

FICFCF,

counts (by inclusion-exclusion) the number of homomorphisms of F; into G that map the edges
in E(Fy) \ E(F1) onto non-adjacent pairs. This number is nonnegative, which implies that for
every x € S,
Y (~nEENE®IY R Q) > 0. (57)
F1CFCF;

If we fix V(F) =V with |V| =k, then ¢(F) can be considered as a setfunction on (’2“) elements.
Then (57) can be used to show that this setfunction is supermodular, i.e., it satisfies

t(Fl UFQ)—Ft(FlﬂFQ) Zt(Fl)ﬂt(Fg). (58)

We leave it to the reader as an exercise to derive these inequalities from (55)).

Semidefiniteness of the connection matrix can also be formulated in terms of nonlinear in-
equalities (nonnegativity of certain determinants). One of these is worth mentioning. Let G be
a k-labeled graph, then for ¢t € 7y, we have

t{GG) > t(G)2
As special cases, we mention that for the path P; on 3 nodes,

t(P3) > t(K>)? (59)
and

t(Cy) > t(Ps)2. (60)

7.2 Re-proving some results in extremal graph theory

Let us start with deriving (54)). By (57),
t(K3) — 26(Ps) + t(K2Kq) > 0,

Using multiplicativity, we have (K + K1) = t(K2)t(Ky) = t(K3). Furthermore, by (59) we
have t(P3) > t(K3)?. This implies (54).

We can derive the following theorem of Moon and Moser [52] in a similar way: Let G be a
graph with n nodes, and let N,. denote the number of complete subgraphs with r nodes. Then

NT+1 1 2 Nr
> — . 1
N, —7~2—1<r N, " (61)

Using that N, = t(K,, G)n" /r!, this inequality can be expressed in the following simpler form:
For every t € Ty,
t(KT-H)

e <

+1. (62)
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This shows that (54) is a special case, and the derivation of (54) above can be extended.
The (simplest, asymptotic) case of the Kruskal-Katona theorem,

t(K3)? < t(K3)®, (63)

also follows. One uses multiplicativity to write it as t(K3)? < t(K3)t(K2K2); by monotonicity, it
suffices to prove the stronger inequality #(K3)? < t(K3)t(Cy); which then follows by considering
the following submatrix of Ms:

<t(K2) t(K3))

t(K3) t(Ca)

7.3 A 2-dimensional projection

Perhaps the most basic question about inequalities between homomorphism densities concerns
edges and triangles. What are the possible pairs (t(Ks, G),t(K3,G))? If we disregard number
theoretic conditions like these numbers must be rational, we can ask: What are the possible
pairs (¢(K3),t(K3)), where t € To? In other words, what is the projection 7y of 7y onto the
2-dimensional plane determined by the density of edges and density of triangles?

5 Kruskal-Katona

1

Goodman

o~ A2 33 374 1
- Bollobas

Figure 2: The region of possible edge densities and triangle densities. (The concave arcs are
distorted to make the qualitative properties more visible.)

The answer to this questions turns out quite complicated and is only partially solved. Figure
2| describes the set 7. The upper boundary curve is given the edge-density is given by the
Kruskal-Katona Theorem (63):

23 =y
(and this is tight for all densities). The lower bound is more complicated. Inequality (54) gives a
parabola that is a lower bound. However, this is only tight for special values of the edge-density:
t(K3) =1—1/k, k =1,2,.... For these values, a Turdn graph (complete k-partite graph with
equal color classes) gives equality. Bollobés [11] proved that in the intervals between these values,
the lower boundary is above the chord. A conjecture for the curve was formulated in [42]: An
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extremal graph in the interval 1 — 1/k < #(K3) <1 —1/(k+ 1) is a complete (k + 1)-partite
graph with £ — 1 equal color classes. The size of the two special color classes must be optimized
to make sure that the density of triangles is minimized, subject to the given edge density. For
the interval 1/2 < t(K2) < 2/3, the optimization yields the cubic curve

9y? — 18zy + 8z — 322 4 62° = 0.

This case was proved by Fisher [24]; a recent proof by Razborov [54] uses methods quite closely
related to those described in this paper. The conjecture was proved in [42] if ¢(K5) was in a
small neighborhood of any one of the special values 1 — 1/k. The general case is open.

One should add that this conjecture is all that is needed to describe 7 it is easy to see that
between two points of 7 the plane on a vertical line, the whole interval is contained in 7.

8 Graphs with bounded degree

Fix a positive integer D, and consider (as the middle graph G in (3) only graphs in which all
degrees are at most D. The normalization ¢(F, G) we used before does not make sense any more,
since (if G is large) the probability that a random mapping from a given F' is a homomorphism
is very small.

How to normalize hom(F, G) in this case? Let n = |V(G)| and k = |V(F)|. If F is not con-
nected, then hom(F, G) is just the product of the numbers hom(F’, G), where F” is a connected
component of F', so we may restrict our attention to the case when F' is connected; then there
is the following rather obvious upper bound:

hom(F,G) < n-DF L.

So it makes sense to consider
hom(F,G)

n

(Since we consider D and F fixed, it does not seem to help to divide by D*¥~1.)

8.1 Convergence for graphs with bounded degree

Let (G1,Ga,...) be a sequence of graphs whose degrees are uniformly bounded by D. We say
that this sequence is locally convergent, or just convergent, if 7(F,G,,) tends to a limit for every
connected graph F'.

There is another way to define this. Given a graph G with all degrees bounded by D, and
a positive integer 7, let Sg(v,r) denote the neighborhood of node v with radius . We consider
Sa(v,r) as a rooted graph (where v is its root). For fixed D and r, there is a finite number of
possible neighborhoods, and we can make a statistic of these: we denote by vg(N,r) the fraction
of nodes v € V(QG) for which Sg(v, ) 2 N. Then vg is a probability distribution on all possible
r-neighborhoods.

For bounded degrees, it is easy to see that the probability distributions vg, (+,r) tend to
a limit distribution for all > 0 if and only if G,, converges in the sense defined above. The
convergence of the probability distributions v, (+,7) can therefore be used as an alternative
characterization of convergent sequences (G1,Ga, ... ) of graphs with degrees bounded by D.

This notion of convergence was introduced implicitly by Aldous [1], and explicitly by Ben-
jamini and Schramm [17]. It was extended to the case of bounded average degree by Lyons
[49]. The limit object has several descriptions, the strongest is due to Elek [21]: A continuous
graphing is an infinite graph on [0, 1] that has the following structure: we take a finite number
of continuous measure preserving involutions ¢i,...,¢x : [0,1] — [0,1], and connect every
x € 10,1] to every ¢;(x) (i =1,...,N) such that z # ¢;(x) by an edge.
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Every graphing defines a probability distribution on countable graphs with bounded degree
with a specified root: we pick a uniform random point z in [0, 1], and consider the connected
component of the graphing containing x, with root . This yields the description of the limit by
Benjamini and Schramm.

8.2 Left and right convergence

The theory of convergence of graphs with bounded degree is much less satisfactory than the
analogous theory of dense graphs described above. In particular, the “right” notion of distance
and a powerful analogue of Szemerédi’s Lemma are missing. But there are some nontrivial facts,
relating homomorphisms into a large graph to homomorphisms from it, which can be thought of
as analogues of some results in Section 6.

Let us start with an example.

Example 8.1 Consider the sequence of cycles C,,. It is trivial that this is convergent, but the
numbers hom(C,, K3) alternate between 0 and 2.
But in a sense parity is all that goes wrong. Let us consider the subsequence C5, of even

cycles. Then for any graph H,
k

hom(Can, H) = 3 A",
i=1

where Ay > --- > )\ are the eigenvalues of H. Hence
hom(Cy,,, H)Y/ ™) — A,

It is perhaps more usual to take the logarithm here, to get the sequence ﬁ loghom(Cs,,, H) (in
statistical physics, this parameter is called the free energy or pressure of the H-colorings of Cy,, ).
This sequence is convergent for every H, and the limiting parameter is log A1 (H).
The sequence of odd cycles behaves similarly, but the limit parameter a(H) =
2n+1 loghom(Csy, 41, H) is a bit more complicated to describe: a(H) is the logarithm of
largest eigenvalue of its non-bipartite components (a(H) = —oo if H is bipartite).

lim

Based on this example, let us consider a convergent sequence (G,,) of graphs with bounded
degree, and ask for which graphs H the numbers

P(Gy, H) = loghom(G,,, H)

V(G)l

converge.
Before discussing this further, let us rewrite the right hand side using M&bius inversion. Let

(G H) = > (=)D VHoghom(G[V], H).

VCcV(G)
Then d(F.G
loghom(G, H) Z (G Z H|1(()|,)1/)(Fa H), (65)
VCV(Q) F ’

where the sum goes over all finite simple graphs F' and ind(F, G) is the number of embedding of
F into GG as an induced subgraph. We thus have shown that

PG =3 WW, H) (66)
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where )

Tind(F, G) = |V(G)|md(F’ G). (67)
Recall that the numbers ind(F, G) can be obtained from the homomorphism numbers hom(F, G)
by Mobius inversion (see (14) and (15)). If G,, is convergent in the sense that the normalized
homomorphism numbers 7(F,G,,) are convergent for all | then the numbers 7,q4(F, G,,) are
convergent as well; let 7i,q(F, G,,) — 7(F). One might therefore hope that convergence of the
sequence G, implies convergence of the free energies ﬁ(Gn,H ), with the limit given by the
infinite sum

Pir,H) =Y WTE?;',MF, H). (68)
. !

It is clear, however, that this cannot be true in general; an easy counterexample is the example
G, = C), discussed above. But it turns out that we can prove the convergence under suitable
conditions on H and the maximal degree D of the graphs G,,.

Theorem 8.2 [15] If (G,) is a sequence of graphs with all degrees bounded by a constant D,
and (G,,) is convergent, then P(G,, H) has a limit for every unweighted target graph H in which
all degrees are at least (1 — 55)|V(H)|.

The conceptually most transparent proof of the theorem (with a slightly worse constant)
proceeds by proving uniform convergence of the expansion (68) using the method of cluster
expansions. As stated, the theorem can be proven using Dobrushin’s uniqueness theorem for
uniform H-colorings on G,,.

The cluster expansion proof also gives an analogue of Theorem [8.2] for weighted graphs (see
[15]) and allows to prove that convergence from the right for weighted graphs implies convergence
from the left. In fact, we only need convergence from the right for graphs H that are small
perturbations of completely looped complete graphs with edge weights 1 to conclude that G, is
convergent from the left.

Theorem 8.3 [15] If (G,) is a sequence of graphs with all degrees bounded by a constant D,
and P(Gy, H) is convergent for every weighted graph H which is a looped complete graph with
all edgeweights arbitrarily close to 1, then (G,,) is convergent.
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