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Abstract

We consider sequences of graphs (G,,) and define various notions of convergence related
to these sequences including “left convergence,” defined in terms of the densities of homo-
morphisms from small graphs into Gy, and “right convergence,” defined in terms of the
densities of homomorphisms from G,, into small graphs.

We show that right convergence is equivalent to left convergence, both for simple graphs
G, and for graphs (G,, with nontrivial nodeweights and edgeweights. Other equivalent
conditions for convergence are given in terms of fundamental notions from combinatorics,
such as maximum cuts and Szemerédi partitions, and fundamental notions from statisti-
cal physics, like energies and free energies. We thereby relate local and global properties
of graph sequences. Quantitative forms of these results express the relationships among
different measures of similarity of large graphs.
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1 Introduction

Growing sequences of graphs arise naturally in many contexts, both fundamental and applied.
How do we characterize and classify such sequences? In particular, under what conditions do
such sequences converge to something non-trivial and yet sufficiently universal to be conceptually
meaningful? A considerable part of graph theory and combinatorics in the past fifty years has
been devoted to classifying large, but finite graphs. But, surprisingly, until the work here, there
was not a general theory for sequences of dense graphs that grow without bound. This paper is
the second of two papers in which we develop a theory of convergent sequences of dense graphs;
see [B] for an announcement of some of these results.

Our theory draws heavily on perspectives and results from both combinatorics and statisti-
cal physics. We will therefore explain our results in both languages, and provide examples of
relevance to both fields.

Consider a dense sequence of simple graphs (G,,) such that the number of nodes in G,, goes
to infinity with n (where, as usual, a graph is simple if it has no loops and no multiple edges,
and dense means that the average degree grows like the number of vertices in GG},). In this paper
we will consider several natural notions of convergence for such a sequence—some motivated by
combinatorics and others by statistical physics. Our main result will be a theorem showing that
many of these notions of convergence are equivalent. These equivalences allow simple proofs of
many of the fundamental results in combinatorics, and also provide a framework for addressing
some previously unapproachable questions, see e.g. [B]. These equivalences also help to unify
central notions of combinatorics, discrete optimization, and statistical physics.

From the point of view of combinatorics, our theory can be viewed as a substantial generaliza-
tion of the theory of quasirandom graphs, which are sequences of graphs that “look like” random
graphs . Obviously, there are many ways in which one could make this precise, but interestingly,
many natural ways in which a sequence of graphs could be defined to be quasirandom turn out
to be equivalent [, .

Here we prove similar equivalences for the notion of convergent graph sequences. In fact,
most of the equivalences for quasirandom graphs are immediate corollaries of the general theory
developed here and in our companion paper [@]. A notable exception is the spectral representation
of quasirandom graphs: while it turns out that convergence of the spectrum is implied by our
other conditions of convergence, it is not equivalent in our general setting. Indeed, already in
the setting of generalized quasirandom graph sequences considered in [B] neither the knowledge
of the limiting spectrum of the adjacency matrices nor the knowledge of the limiting spectrum
of the Laplacians is enough to characterize the sequences.

From the viewpoint of physics, our results show that convergence of various thermodynamic

quantities, notably microcanonical free energies or ground state energies for all so-called “soft-



core” models, is equivalent to convergence of apparently more local graph properties, as defined

below.

1.1 Equivalent Notions of Convergence

The first notion of convergence for a sequence (G,,) we consider is what we call “left convergence”.
It was introduced in the companion of this paper [@] and is a way of characterizing a large graph
G in terms of the number of copies of a small graph F' that are contained in G. Given two simple
graphs F' and G, we denote the number homomorphisms from F' to G by hom(F, G). Let t(F, Q)
be the probability that a random map ¢ : V(F) — V(G) is a homomorphism,

tF,G) = hom(F, G), (1.1)

1
’V(G)||V(F)|
where V(G) and V(F') are the set of vertices in G and F', respectively. We then called a sequence
(G,) of simple graphs left-convergent if the “homomorphism densities” t(F, G,,) converge for all
simple graphs F'.

Instead of testing a graph sequence (G,,) with homomorphisms “from the left,” i.e., with
homomorphisms from a small graph F' into the graphs (G,,), one might want to test (G,,) with
homomorphisms “from the right,” i.e., one might want to consider the homomorphisms from G,,
into some small graph H. For this to be interesting, we have to work with weighted graphs, i.e.,
graphs H with nodeweights «;(H) > 0 for the nodes ¢ € V(H) and edgeweights f3;;(H) € R for
the edges ij € E(H). A simple graph can be considered as a weighted graph with all nodeweights
and edgeweights equal to 1. The homomorphism number from a simple graph G into a weighted

graph H is then defined as

hom(G,H) = Z H Qg(u) (H H ﬁ¢> )o(v) (H ), (1.2)

¢V (G)—V (H) ueV(G) weE(G

where E(G) denotes the set of edges in G. We will often restrict ourselves to so-called “soft-core”
graph, i.e., complete graphs H with all loops present, strictly positive nodeweights «;(H) > 0,
and strictly positive edgeweights §;;(H) = B;;(H) > 0

For soft-core graphs H, these homomorphism numbers “from the right” typically grow or fall
exponentially in the number of edges of G. Since the number of edges in a sequence of dense
graphs grows like the square of the number of nodes, it seems natural to define a sequence (G,,)
of graphs to be right-convergent if —|2 In hom(G,,, H) converges for every soft-core graph H.
For reasons explained below, we will call such a sequence naively right-convergent.

Naive right convergence turns out to be interesting from both a combinatorics and a statistical
physics point of view. Indeed, as we will see below, the convergence of ( VGIE In hom(G,,, H) for

a certain graph H on two nodes is equivalent to the convergence of the densfcy of the largest cut



in (G,; and right convergence is equivalent to the convergence of the density of the largest cut
in weighted multiway cut problems. From the viewpoint of physics, the homomorphism number
hom(G, H) is just the canonical partition function of a suitable soft-core model on the graph
(G; one might therefore guess that naive right convergence corresponds to the convergence of
the free energies of these models, but due to our normalization, it actually corresponds to the
convergence of ground state energies, see Section 223 below.

In contrast to the notion of left convergence, which corresponds to the convergence of local
properties like the density of triangles or the density of 4-cycles, naive right convergence thus
corresponds to convergence of global properties like the density of the largest cut and the ground
state energies of suitable soft-core models. This raises the question whether the a priori quite
different notions of left- and right convergence are equivalent, the starting point of this paper.
While it turns out that left convergence is not equivalent to naive right convergence (hence
the term naive), a strengthened condition involving homomorphisms for which the number of
vertices in G, that map onto a given ¢ € V(H) is restricted to be a given fraction of V(G,,) gives
equivalence.

In addition to left and right convergence, we consider several other natural notions of conver-
gence, all of which turn out to be equivalent. Among these notions is that of convergence in a
suitably defined metric, a concept already considered in [@]. Another one concerns partitions and
the graphs obtained from taking “quotients” with respect to these partitions. More precisely,
given a partition P = (V4,...,V,) of a graph G, we define the g-quotient G/P as the weighted
graph on [¢] with edgeweights (;; given by the edge density between V; and V; (in the theory of
Szemerédi partitions, the graph G/P is often called a cluster graph). For two graphs G and G’
on at least ¢ nodes, we may then want to know how close the sets of ¢-quotients of these two
graphs are. Measuring similarity in terms of Hausdorff distance, this leads to a fourth notion of
convergence, convergence of quotients.

In addition to the above four notions, we will be interested in several notions of convergence
motivated by statistical physics. We will in particular ask under which conditions on a sequence
of graphs (G,,) the ground state energies and free energies of finite spin systems defined on G,
are convergent. We also address the same question for the so-called microcanonical ground state
energies and free energies. We will show that left convergence of (G,,) implies convergence of the
ground state energies and the free energies of all “soft-core” finite spin systems on (G,,), and we
will show that both convergence of the microcanonical ground state energies, and convergence

of the microcanonical free energies are equivalent to left-convergence.

1.2 The Limit Object

Given the equivalence of the above six notions of convergence, one might want to ask whether

a convergent sequence has a natural limit object, in terms of which the limiting homomorphism



densities, quotients, free energies, etc. can be expressed.

We start with an example, the random graph sequence (G(n,p)), where as usual G(n, p) is
the graph on n nodes in which any two nodes are connected independently with probability p. It
is not hard to see that t(F,G(n,p)) converges to p/Z)! with probability one. Interestingly, this
limit can be written as the homomorphism density of a finite weighted graph. Indeed, defining
the homomorphism densities of a weighted graph G with nodeweights o;(G) > 0 and f;;(G) € R

by
hom(F, G)

k )

HE.G) = ==
G

(1.3)

where £ is the number of nodes in the simple graph F, and ag = ),y () @i(G) is the total
nodeweight of G, we clearly have that p#()| = ¢(F, Gy), where Gy is the graph with one node, a
loop at this node, and weight p for the loop (the node weight is irrelevant in this case, and can,
e.g., be set to 1). This raises the question of which graph sequences have a limit that can be
expressed in terms of a finite, weighted graph, which in turn leads to the notion of generalized
quasirandom graphs, studied in detail in [8].

For a left-convergent sequence of simple graphs, the limit cannot be expressed in terms of a
finite graph in general. Given that one of our equivalences is convergence in metric, one might
therefore want to define the limit in the usual abstract way by identifying sequences which are
Cauchy. But it turns out that there is a much more natural limit object in terms of measurable,
bounded, symmetric 2-variable functions, which we call graphons.

It was already observed by Frieze and Kannan [@] that functions of this form are natural
generalizations of weighted graphs (they proved a Regularity Lemma for this generalization). Of
more relevance for us is the work of Lovasz and Szegedy [A], who showed that the limit points of
left-convergent graph sequences can be identified with graphons, in the sense that given a left-
convergent sequence (G,,), there exists a graphon W such that the limit of the homomorphism
densities can be expressed in terms of suitably defined homomorphism densities of W.

The notion of a graphon is useful in an even wider setting, and will, in particular, allow us to
find simple expressions for the limit objects corresponding to the various notions of convergence
considered in this paper. Moreover, most of the statements of our main theorems, Theorem X
and 29 below, have a natural formulation for sequences of uniformly bounded graphons W,, € W,
with proofs which turn out to be much cleaner than the corresponding direct proof of these
theorems in terms of graphs. Indeed, many of the technical details of this paper concern rounding
techniques which reduce Theorem P8 and 29 to the corresponding statements for sequence of
graphons. It turns out that this approach naturally gives not only the equivalence of the above
notions for sequences of simple graphs but also for sequences of weighted graphs, see Section 24
for the precise statements.

The organization of this paper is as follows. In the next section, we define our main concepts



and state our results; first for sequences of simple graphs, and then for sequences of weighted
graphs. The analogues of these concepts and results for graphons are presented in the Section B,
and proved in Section B. In Section B we give the details of the rounding procedures needed
to reduce the results of Section B to those of Section B. In our final section, Section B, we
discuss weaker notions of convergence, in particular convergence of the spectrum of the adjacency
matrices, including an example that shows that the convergence of spectra is not sufficient for

convergence from the left.

2 Convergent Sequences of Graphs

2.1 Definitions

We start by recalling the definition of left-convergence.

Definition 2.1 ([@]) A sequence (G,,) of simple graphs is called left-convergent if the homomor-
phism densities ¢(F, G,,) converge for all simple graphs F.

Next we formalize the definition of right-convergence in terms of homomorphism for which
the number of vertices in G that map onto a given i € V(H) is restricted to be a given fraction.
To this end, we label the nodes of H as 1,...,q, and define Pd, to be the set of vectors a € R,
for which ), a; =1 and a; > 0 for all i € [¢]. Given a probability distribution a € Pd,, we set

(@) = {0:V(G) = s o7 (DI —alV@)| <1 foral iclg}.  (21)
and define a constrained version of the homomorphism numbers by
homa(G,H) = > [ Bowew (H). (2.2)
$€Qa(G) weE(G)

Note the absence of the factors a;(H) corresponding to the nodeweights. These would be es-
sentially the same for each term, and are not carried along. This quantity is natural from the
viewpoint of statistical physics: it is the microcanonical partition function on G of a model

characterized by the weights in H, at fixed “particle densities” specified by a.
Definition 2.2 A sequence (G,,) of simple graphs (G,,) is called right-convergent if

m In hOHla(Gn, H)

converges for every soft-core graph H and every probability distribution a on V(H), and it is

called naively right-convergent if

1
——Inhom(G,, H
V(Gn)? ( )

converges for every soft-core graph H.



Example 2.3 (Max-Cut) Let H be the weighted graph on {1,2} with nodeweights oy (H) =
as(H) = 1 and edgeweights [11(H) = Sw(H) = 1 and f12(H) = e (where e is the base of
the natural logarithm). The leading contributions to hom(G, H) then come from the maps
¢ : V(G) — {1,2} such that the bichromatic edges of ¢ form a maximal cut in G. Using the

fact that there are only 2/V(%)! mappings, we get that
Inhom(G, H) In2
maxcut(G) < W < maxcut(G) + m,

where maxcut(G) is the density of the largest cut, i.e., the number of edges in this cut divided
by |V(G)|?>. This implies, in particular, that for a naively right-convergent sequence (G,,), the

density of the largest cut is convergent.

Next we define the metric introduced in [A]. It is derived from the so-called cut-norm, and
expresses similarity of global structure: graphs with small distance in this metric have cuts of
similar size. This is easily made precise for two simple graphs G and G’ on the same set V' of

nodes, where we define

6@(5, T) eG/<Sa T)
do(G,G") = —
D( ) ) S{rjlﬂ%)\(/ ’V|2 ’V’Z 9
with eg(S,T') denoting the number of edges in G that have one endpoint in S, and one endpoint
in 7" (with edges in S NT counted twice).
But some care is needed when G and G’ have different nodesets. Here we use the notion of
fractional overlays, see [@] for a motivation of our definition. We will give the definition in the

more general case where both G and G’ are weighted graphs.

Definition 2.4 ([@]) Let G, G’ be weighted graphs with nodeset V' and V| respectively. For
ieVandue V' let u; = a;(G)/ag and ), = a,(G")/ag. We then define the set of fractional
overlays of G and G’ as the set X' (G, G") of probability distributions X on V' x V’ such that

> Xi=m forall i€V and » Xy =y, forall ueV,

ueV’ eV
and set
/ — 3 . . .. JE— /
G = ity 5| 3 XXin(Bs(@) = Bl )] 23
(j0)eT

One of the main results of [@], and one of the main inputs needed for this paper, is the statement
that left convergence is equivalent to convergence in the metric dg.

Another notion of convergence which we will also show to be equivalent is the convergence
of “quotients”. The quotients of a simple graph G are defined in terms of the partitions P =

{Vi,...,V,} of its node set by contracting all nodes in a given group to a new node, leading to

8



a weighted graph G /P on ¢ nodes. More precisely, we define G/P as the weighted graph on [¢]

with weights
Vil ea(Vi, Vj)
V(@) Vil - Vil

The quotient graph G/P thus has nodeweights proportional to the sizes of the classes in P, and

a;(G/P) = and Bij(G/P) = (2.4)

edgeweights that are equal to the edge densities between the corresponding classes of P. We
denote the set of quotients obtained by considering all possible partitions of V' (G) into ¢ classes
by gq(G). Since a quotient G/P € S\q(G) can be characterized by ¢+ ¢ real numbers (the node-
and edgeweights of G/P), we may consider the set SA'(,(G) as a subset of R7T7*, It might therefore
seem natural to consider two ¢g-quotients as close if their ¢; distance on R9+4* is small. But for
our purpose, the following distances between two weighted graphs H, H' on ¢ labeled nodes are

more useful:

W(H, H') = Z ‘O‘z Bl]( ) o;(H')a;(H')Bi;(H')

(ovpr)?

Z’ - >‘ (2.5)

i€[q]

i,j€[q]

and

(avmr)? (ovpr)?

do(H,H') = sup
S,TClq]

/

Z(@i(H)aj(H)ﬁij(H) a;(H")a;(H') By (H )‘ Z‘ OézH’)

€S
JjeT

i€[q]
(2.6)
Let (X, d) be a metric space. As usual, the Hausdorff metric d™f on the set of subsets of X is
defined by
d"(s, 8" = max{sup inf d(x,y), sup inf d(z, y)} (2.7)
zes yes’ zes YeS
Definition 2.5 A sequence (G,,) of simple graphs has convergent quotients if for all ¢ > 1, the

sequence of sets of quotients gq(Gn) is a Cauchy sequence in the Hausdorff distance d:!f.

In addition to the four notions of convergence defined above, we will also consider convergence
of the free energies and ground state energies of certain models of statistical physics. The models
we will be concerned with are so-called soft-core spin systems with finite spin space. They are
defined in terms of a finite set [q] = {1,...,q}, a symmetric ¢ X ¢ matrix J with entries in R
(we denote the set of these matrices by Sym, ) and a vector h € R?. A “spin configuration” on
a simple graph G is then given by a map ¢ : V(G) — [¢], and the energy density of such a spin

configurations is defined as

1 2
5¢(G,J,h)=—|v<G)| > hot) ~ iGIR > Jswot)- (2.8)

ueV(G) weE(Q)

Here h; has the meaning of a generalized magnetic field, describing the preference of the “spin”

¢(u) to be aligned with i € [¢], and J;; represents the strength of the interaction between the

9



spin states 4, j € [q]. Note that we divided the second sum by |V (G)|? to compensate for the fact
that, in a dense graph, the number of edges grows like the square of the number of nodes. Our

normalization therefore guarantees that the energy density stays bounded uniformly in the size

of V(G).
As usual, the partition function on a simple graph G is defined as
Z(G, Jh)y= Y e V@G (2.9)
$:V(G)—[q]

and the free energy and ground state energy per node are defined as

~ 1

F(G,J h)=— InZ(G, J, h), 2.10

and
EG, J,h) = mi Es(G,J h), 2.11
( ) ¢:V(G1)n il s( ) ( )

respectively. We will often leave out the qualifier “per node”, and refer to the quantities F (G, J, h)
and é\(G, J,h) as free energy and ground state energy of the model (J, h) on G. More specifically,
J is called the coupling constant matrix, and h is called the magnetic field, and the model
(J,h) will be referred to as the soft-core model with spin state [q], coupling constant matriz J
and magnetic field h. We are also interested in the so-called microcanonical versions of these

quantities, defined as

Z(G ) = Y (- V(G)NE(G, 1,0)), (2.12)
€N (G)
- 1
FulG,J) = ————1In Za(G, J 2.13
(&) =~y %(G ) (2.13)
and
(G, J) = ¢£:I(lc) &4(G, J,0). (2.14)

In this microcanonical version, the magnetic field A would only add a constant, and therefore we

do not consider it.

Example 2.6 (The Ising Model) The simplest model that fits into our framework is the so-
called Ising model: it has spin configurations ¢ : V(G) — {—1,+1}, and the energy density of a

spin configuration ¢ is defined as

1

5¢(G, J, h) - —W

1
Z K%Cbu—m Z [P,

weE(G) ueV(G)

where K and p are real parameters. Note that this fits into our scheme by setting Jy o = §q§¢’
and hy = po.

10



Definition 2.7 Let (G,) be a sequence of simple graphs. We say that (G,) has convergent
ground state energies and free energies if g (Gy, J,h) and F (Gy, J, h) converge for all ¢, all h € R?
and all J € Sym,, respectively. Similarly, we say that (G,,) has convergent microcanonical ground
state energies and free energies if £u(Gp, J) and Fa(G,,, J) converge for all ¢, all a € Pd, and all
J € Sym,, respectively.

2.2 Main Results for Sequences of Simple Graphs

The main results of this paper are summarized in the following theorems, except for the results
concerning the limiting expression for the ground state energy and free energy, which require

some additional notation and are stated in Theorem B71 in Section B3 below.

Theorem 2.8 Let (G,) be a sequence of simple graphs such that |V(G,)| — o0 as n — 0.
Then the following statements are equivalent:

(i) The sequence (G,,) is left-convergent.

(ii) The sequence (G,) is a Cauchy sequence in the metric 0.

(iii) The quotients of (G,) are convergent in the Hausdorff distance di.

(iv) The sequence (Gy,) is right-convergent.

(v) The microcanonical ground state energies of (Gy,) are convergent.

(vi) The microcanonical free energies of (G,) are convergent.

Conditions (i) and (ii) were shown to be equivalent in [@]. Extending Example B33, it is easy
to see that conditions (iv) and (v) are equivalent (see Lemma B2 for a quantitative relation).
Note finally that statements (iii) — (vi) implicitly contain a parameter g, referring to the number
of classes in a partition, or the number of nodes in the soft-core graph under consideration. One
might therefore ask whether the equivalence of (iii) — (vi) holds separately for each ¢. While this
is true for the equivalence of (iv) and (v), our proofs suggest that this is not the case for the
equivalence of (iii) and (v) or (vi).

In contrast to the notions of convergence discussed in Theorem I8, convergence of the energies
and free energies &(G,, J,h) and F(G,,J,h) (and naive right convergence) are not equivalent
to left convergence, see Example B3 for a counterexample. But left convergence does imply
convergence of the energies and free energies, as well as naive right convergence. It also implies

convergence of the spectrum. This is the content of our second theorem.

Theorem 2.9 Let (G,,) be a left-convergent sequence of simple graphs such that |V (G,)| — oo
as n — 0o. Then the following holds:

(i) The sequence (G,) is naively right-convergent.

(ii) The ground state energies of (G,) are convergent.

(i11) The free energies of (G,) are convergent

11



(iv) The spectrum of (G,) is convergent in the sense that if Ap1 > Ana > -+ 2> Ay jv(a,)| @re
the eigenvalues of the adjacency matriz of Gy, then |V(G,)|*An; and |V(Go)| ™ AnvGo)+1—i

converge for all v > 0.

These theorems, as well their analogues for sequences of weighted graphs, Theorems 14 and
P13 below, are proved in Section B, except for the statement about spectra, which is proved in

Section B.

2.3 Ground State Energies, Maximum Multiway Cuts, and Quotients

In this section, we discuss the combinatorial meaning of our results, in particular the relation
between ground state energies and generalized max-cut problems on one hand, and the relation
between ground state energies and quotients on the other.

We start with the former. To this end, we insert (E3) into (EZ), leading to

~ 1 2
—&(G,J,h) = max (— how) + A5 Jo(u U). (2.15)
6V (C)>d] |V(G)| u;(:G) B(u) |V(G)’2 MGZE%G) (u)p(v)
Let us first consider the case of zero magnetic field. For the special case where ¢ = 2,

Ji; = %(1 —d;;) and h = 0, the ground state energy of this model can easily be calculated, giving

o~

that —&(G, J,0) is just equal to the density of the largest cut,

o ec(S,V'\ )
-£(G,J,0) = max —————=
( ) scvc)  |V(G)]?
For general ¢ and J, we obtain a natural generalization to weighted multiway cuts. As in
Example B33, the solution to this weighted multiway cut problem gives a good approximation to

log hom (G, H) for general soft-core graphs H. More precisely, if 8;;(H) = e*/i7, then

1 ~ 1
Gp hom(G, H) = ~€(G,10) + O<W>’ (2.16)

with the implicit constant in the error term depending on the nodeweights of H, see Lemma B
below. As a consequence, naive right convergence is equivalent to convergence of the ground
state energies for models without magnetic fields.

1

Turning to non-zero magnetic fields, even the simplest case ¢ = 2 and J;; = 3(1 — d;;) leads

to a problem which, while quite natural from a combinatorial point of view, to our knowledge
has not been studied in the literature. Taking, e.g., h; = pud;; with u € R, we get the following

generalization of the standard max-cut problem:

~

B eq(S,V\ 5) 5]
~E(G, ) = e ( V(G “|V(G)|)'
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This problem interpolates, to some extent, between the standard max-cut problem (where the
size of S is ignored) and the max-bisection problem (where the size of S is prescribed exactly).
We will call it the “biased max-cut problem”, and the generalization to arbitrary ¢, J and h the
“biased weighted multiway cut problem”.

Considering finally the microcanonical ground state energies,
~ 2
—&(G,J) = ——— max Jow)b(o) 2.17
(G, J) VG )wz $(u)(v) (2.17)

we are faced with a multiway max-cut problem where the number of vertices in ¢~'({i}) is

constrained to be approximately equal to a;|V (G)|.

Remark 2.10 If we leave out the convergence of microcanonical free energies, whose combina-
torial significance is less clear, the theorems proved in this paper (together with Example B3
below) lead to the following interesting hierarchy of max-cut problems: the weakest form of con-
vergence is that of naive right convergence, which is equivalent to the convergence of the density
of the largest weighted multiway cut (ground state energies with zero magnetic field). The next
strongest notion is that of convergence of biased weighted multiway cuts (ground state energies
with non-zero magnetic field). The strongest is that of convergence of the weighted multiway
cuts with prescribed proportions for the different parts of the cut (microcanonical ground state
energies). The remaining notions of convergence (left convergence, convergence in metric, con-
vergence of quotients, and right convergence) are equivalent to the convergence of the weighted

multiway cuts with arbitrary prescribed proportions.

Turning finally to the relation between quotients and ground state energies, let us note that
any map ¢ contributing to the right hand side of (Z13) defines a partition P = (V4,...,V,) of
V(G): just set V; = ¢7'({i}). As a consequence, we can rewrite g(G J,h) as

£(G,J,h) = — max (Zal Vhi +Zo¢z H)y(H)J; ) (2.18)

HeS,(G) by

This relation shows that the consideration of quotients is quite natural when analyzing weighted
multiway cut problems (a.k.a. ground state energies). It also immediately gives that convergence
of quotients implies convergence of the ground state energies. The corresponding relation for the
microcanonical ground state energies is more complicated due to the fact that a quotient H

contributing to &,(G, J) has nodeweights which are only approximately equal to the entries of a.

Remark 2.11 Together with the concept of the cut-metric introduced in (23), quotients also
allow for a very concise formulation of Szemerédi’s Regularity Lemma [[3], at least in its weak
form of Frieze and Kannan [@. In this formulation, the Weak Regularity Lemma states that
given £ > 0 and any simple graph G, we can find a ¢ < 4" and a quotient H € S\'(](G) such
that 0n(G, H) < ¢, see [A] for details.
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2.4 Extension to Weighted Graphs

Although Theorem P8 and 2 are stated for simple graphs, it turns out that the proofs of most
of these statements hold more generally, namely for any sequence (G,,) of weighted graphs such

that (G,,) has uniformly bounded edgeweights and no dominant nodeweights in the sense that

amax<Gn)

— 0 as n — oo, (2.19)
agq

n

where amax(G) = max;ey (q) o6 (G).

We use the symbols «(G) and S(G) to denote the vector of nodeweights and the ma-
trix of edgeweights of a weighted graph G. Recall that ag = >, a;(G), and set awi(G) =
min;ey(c) 05 (G) and Buax(G) = maxyjepq) |8i(G)]. We say that a sequence (Gy,) has uniformly
bounded edgeweights if sup,, Bumax(Grn) < oc.

We generalize the homomorphism numbers hom (G, H) to the case where both G and H are

weighted. Assume thus that H is soft-core, with
a(H)=e" and B;(H)=e*, (2.20)

and that G is a general weighted graph. Setting ,,(G) = 0 if uv is not an edge in G, we then
define

hom(G H) = >0 en( D au@haw + D aulG)an(G)BulG) e ) (2:21)

6V (G)—V (H) uweV(G) uweV (G)

an expression which reduces to (I72) if G is simple.

Remark 2.12 This notation allows us to express partition functions as homomorphism numbers

of weighted graphs: For every simple graph G
Z(G,J,h) =hom(G', H),

where G’ is obtained from G by weighting its edges by 1/|V(G)|.

Recall that we defined the metric iy for general weighted graphs. Let H be a soft-core graph
with nodeset [g], and let a € Pd,. For a weighted graph G, we then set

0a(Q) = {(p V(@) = g ‘ S au@) - aiag‘ < amax(G)}, (2.22)
ucp~({i})
and define
hom, (G, H) Z exp( Z au(G)ozv(G)BUU(G)J¢(u)¢(v)), (2.23)
?€Qa(G) u,veV(G)

where J is again related to the edgeweights of H by (EZ20).
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To generalize the notion of quotients to a weighted graph G, let us again consider a partition
P = (V1,...,V,) of the nodeset of G. We then define the quotient G/P to be the weighted graph
with nodeset [¢] and weights

a . u G v G uv G
aG/P) = "2 and By(G/P) =Y (Oé)GO[éngéc):[‘i/ }( ) (2.24)
ueV; @ J
veV;

where agpy;) = >,y @u(G) is the total weight of the partition class V;. As before, we call G/P
a g-quotient of G if P is a partition of V(G) into ¢ classes, and denote the set of g-quotients of
a given graph G by S,(G).

To define a soft-core spin model on G, let [¢] = {1,...,q}, let h € R%, let J be a symmetric
¢ % ¢ matrix with entries in R, and let ¢ : V(G) — [¢]. We then generalize the definition (EZ3) to

G - > QPG (225)

ag a?,

Eo(G T h) =~ >

ueV(G) u,veV(G)

The partition function, free energy, and ground state energy of the model (J, h) on the weighted
graph G are then defined in the same way as in the unweighted case, see equations (24), (210)
and (ZI). Similarly, the microcanonical partition functions, free energies and ground state
energies on a weighted graph G are again defined by (E12), (E13) and (2Id). Note by definition,
the energies (E223), and hence also the partition functions, free energies and ground state energies,

are invariant under rescaling of the nodeweights of G.

Example 2.13 (The Inhomogeneous Ising Model) Recall the Ising model from Exam-
ple A, with spin space {—1, +1}, coupling constants J, » = %(ﬁgb’ and magnetic fields hy, = pe.
When defined on a simple graph, it is often called a “homogeneous model” because the coupling
constants and magnetic fields are constant. But if we take the graph G to be weighted with
edgeweights (,,(G) (but still unit nodeweights), the model becomes an “inhomogeneous Ising

model,” with energy density

1 1
g(ﬁ(GaJaH):_W Z Kuv¢u¢v_— Z ﬂ¢ua

weE(G) |V(G)| ueV(G)

where the coupling constants, K,, = Kf.,(G), represent variations due to inhomogeneities in

the underlying crystal structure.

Just as for simple graphs, a sequence (G,) of weighted graphs with uniformly bounded
edgeweights is called left-convergent if t(F,G,,) converges for every simple graph F. A sequence
(G,) of weighted graphs is called right-convergent if

Inhom, (G, H)
g
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converges for every soft-core graph H and every probability distribution a on V(H), and it is

called naively right-convergent if
Inhom(G,,, H)

2
OéGn

converges for every soft-core graph H.
The following theorems generalize Theorems 8 and 29 to weighted graphs.

Theorem 2.14 Let (G,,) be a sequence with uniformly bounded edgeweights and no dominant
nodeweights. Then the following statements are equivalent:

(i) The sequence (G,,) is left-convergent.

(ii) The sequence (G,) is a Cauchy sequence in the metric 0.

(iii) The quotients of (G,) are convergent in the Hausdorff distance di.

(v) The microcanonical ground state energies of (G,,) are convergent.

If in addition of, /|V(G,)| — oo, then the following is also equivalent to the statements
above:

(iv) The sequence (Gy,) is right-convergent.

If the assumption of no dominant nodeweights is replaced by the stronger assumption that all
nodes have weight one and |V (G,,)| — oo, then the following is also equivalent:

(vi) The microcanonical free energies of (G,) are convergent.

Theorem 2.15 Let (G,,) be a left-convergent sequence of weighted graphs with uniformly bounded
edgeweights. Then:

(i) If (Gn) has no dominant nodeweights and o, /|V(G,)| — oo, then the sequence (G,,) is
naively right-convergent.

(i1) If (G,) has no dominant nodeweights, then the ground state energies of (Gy) are conver-
gent.

(iii) If all nodes have weight one and |V (G,)| — oo, then the free energies of (Gy) are
convergent.

() The spectrum of (Gy) is convergent in the sense that if A1 > Apa > -+ 2> Ay jv(Gy)| are
the eigenvalues of the adjacency matriz of Gy, then |V (G,)|""Ani and |V(Gn)| ™ A jvicn)+1-i

converge for all i > 0.

As pointed out earlier, the equivalence of the first two statements in Theorem T4 was proved
in the first part of this paper [@]. Here our main focus is on establishing the equivalence of
convergence in metric with the other notions of convergence, i.e., the equivalence of (ii) through
(vi). Let us note that the additional condition needed for the equivalence of (vi) with the
remaining statements is not merely a technical condition. In fact, not all left-convergent sequences
of graphs lead to convergent microcanonical free energies if we allow non-constant nodeweights,

see Example E4 in Section B.
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Remark 2.16 The reader may notice that none of our theorems assumed that the sequence (G,,)
is dense (in the sense that the edge density é Zu’vev(cn) ay(Gr)ay(Gr) Buy (Gy) is bounded from
below by a constant). That does not mean, however, that our theorems say very much for non-
dense sequences. Indeed, if the edge density of G, tends to zero, then most of the statements
of the theorem become trivial: the ground state energies and free energies, as well as their
microcanonical counterparts tend to zero, the homomorphism density ¢(F,G,) of every simple
graph tends to zero, etc.

A similar remark applies to disordered spin systems: while our results for the free energies
require that the nodeweights are one, they do not require that ,,(G,) has a definite sign. But
if m > uwev () Puv(Grn) tends to zero (which will happen with probability one if, e.g., Bu,
is chosen i.i.d. from {—1,+1}), then the limiting free energies are zero as well. This is due to
the fact that we have chosen the ferromagnetic normalization |V (G,,)|~2 for the energy &, per

node, rather than the “spin-glass” normalization |V (G,,)|~*/2.

Remark 2.17 Let H be a soft-core graph on ¢ nodes, and let a € Pd,. Extending Example P73,
it is easy to see

[V (Gn)l

mhoma(G H) _ & jy 4 O(—z").

aZ, aZ,
with J given by (EZ) (see Lemma BT for a quantitative relation). This shows why right-
convergence is equivalent to the convergence of the microcanonical ground state energies if
o, /V(Gn)| = oc.
On the other hand, if we consider sequences (G,) with o, /|V(G,)| — ¢ for some ¢ € (0, c0),
then

Inhom, (G, H)
ag

1 ~
= —E}"a(G, cJ) +o(1),
and right-convergence becomes equivalent to the convergence of the microcanonical free energies.
The least interesting case is the case g, /|V(G,)| — 0. In this case,

Inhom, (G, H)
V(G

and the homomorphism numbers hom, (G, H) do not contain any interesting information about

=logq + o(1).

G, as n — oo.

3 Convergent Sequences of Graphons

In this section, we discuss the generalization of the concepts and results of the last section to

graphons, already mentioned in Section .

Definition 3.1 A graphon is a bounded measurable function W : [0,1]?> — R which is symmet-
ric, i.e., W(z,y) = W(y,z) for all (z,y) € [0,1]>.
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We denote the subset of graphons with values in some bounded interval I by W;.

3.1 Graphons as Limits of Left-Convergent Graph Sequences

Let W € W, and let F be a simple graph with V(F') = {1,...,k}. Following [8], we then define
the homomorphism density of W as

aﬂqu/‘ [ Wi =) dae (3.1)
0.1 e E(r)

It is not hard to see that this definition extends the definition of homomorphism densities from
graphs to graphons. Indeed, let G be a weighted graph on n nodes, and let [;,..., I, be consec-
utive intervals in [0, 1] of lengths a4 (G)/ag, ..., a,(G)/ag, respectively. We then define W to

be the step function which is constant on sets of the form I,, x I, with
Wa(z,y) = Buw(G)  if  (z,y) € I, x I, (3.2)

Informally, we consider the adjacency matrix of GG, and replace each entry (u,v) by a square of
size o, (@), (G)/aZ with the constant function 8,, on this square. With the above definitions,
we have that t(F, G) = t(F, Wg).

Let (G,) be a sequence of weighted graphs and W, a graphon. We say that G,, — W if
t(F,G,) — t(F,W) for every simple graph F. Generalizing the results of [H] to weighted graphs

the following was shown in [H]:

Theorem 3.2 For every left-convergent sequence (G,) of weighted graphs with uniformly
bounded edgeweights there exists a W € W such that G,, — W. Conversely, for every W € W
there exists a sequence (G,,) of weighted graphs with uniformly bounded edgeweights such that
G, —W.

3.2 The Metric Space of Graphons

We will need several norms on the space of graphons. In addition to the standard L., L1 and Lo
norms of a graphon W (denoted by ||W ||, ||[W |1, and ||W ]|, respectively), we need the cut-norm
introduced in [@]. It is defined by

[Wlo=sup W(z,y)dzdy|,

S,TC[O,l]) SxT

where the supremum goes over measurable subsets of [0, 1].
There are several equivalent ways of generalizing the definition of the distance 5 to graphons,

see [@]. Here, we define the cut-distance of two graphons by

0n(U,W) = inf |U — W?q (3-3)
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where the infimum goes over all invertible maps ¢ : [0,1] — [0, 1] such that both ¢ and its
image are measure preserving, and W¢ is defined by W?(x,y) = W(¢(z), #(y)). It is not hard
to show that this distance indeed extends the distance of weighted graphs, in the sense that
n(G,G") = oo(Wg, W) where W is the step function defined in (B3). We will use the
notation on(G, W) = on(We, W) for a weighted graph G and graphon W.

Similar construction can be applied to the L, norm on W, and we can define distance
S,(U,W) = infy |U — W?||,. (We will need this construction only near the end of the paper
for p=2.)

It is not hard to check that 05 satisfies the triangle inequality, so after identifying graphons
with distance zero, the space (W, ) becomes a metric space, denoted by W. The subspace
corresponding to the graphons in Wy will be denoted by WI. It was shown in [[] that the space
17\2[0,1] is compact. This immediately implies that for any bounded interval I, the metric space
VNVI is compact as well.

One of the main results of our companion paper [@] is the following theorem.

Theorem 3.3 ([@]) Let I be a bounded interval, and let (W,,) be a sequence of graphons with
values in 1.

(i) t(F,W,) is convergent for all simple graphs F if and only if (W,,) is a Cauchy sequence
i the metric og.

(ii) Let W be an arbitrary graphon. Then t(F,W,) — t(F, W) for all simple graphs F if and
only if op(W,, W) — 0.

In particular, it follows that G,, — W if and only if 0q(Wg, , W) — 0. We call two graphons
W and W' weakly isomorphic if t(F, W) = t(F,W’) for every simple graph F. It follows from
Theorem B33 that this is equivalent to on(W, W’) = 0. The results of [B] imply a further equivalent
condition: there exists a third graphon U such that W = U? and W’ = UY for two measure-
preserving functions ¢, : [0, 1] — [0, 1].

By the compactness of WI, any Cauchy sequence of graphons W,, € Wy has a limit W € Wy,
but this does not guarantee uniqueness. Indeed, every graphon weakly isomorphic to W could
serve as the limit graphon. It follows from the discussion above that this covers all the non-

uniqueness, in other words, the limit is unique as an element of W;.

3.3 Quotients and Approximations by Step Functions

We call a function W : [0,1]*> — [0, 1] a step function, if [0,1] has a partition {Si,..., Sk} into
a finite number of measurable sets, such that W is constant on every product set S; x S;. It
can be seen that every step function is at cut-distance zero from Wy for some finite, weighted

graph G. Graphons, as limits of finite graphs, can thus be approximated by step functions in
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the cut-distance. One way to find such an approximation is as follows: Given a graphon W € W
and a partition P = (Vi,...,V,) of [0, 1] into measurable sets, we define a finite, weighted graph
W/P on [q] by setting

1

a(W/P)=AVo),  and  By(W/P) = yomsms |

W(z,y)dx dy
(if A(Vi)A(V;) = 0, we define §;;(W/P) = 0), and the corresponding function Wp by
q
We(z,y) = > Bij(W/P)loev, Lyev;. (3.4)
ij=1

We call the graph W/P a g-quotient of W, and use §q(W) to denote the set of all g-quotients of
W.

It is not hard to check that the averaging operation W — Wp is contractive with respect to

the norms || - [|1, || - |2 and || - ||z on W,
Welly <IWll,  IWella < [[W]2 and  [[Wp]lo < [W][o. (3:5)

The following theorem is an extension of the Weak Regularity Lemma [@] from graphs to

graphons and states that every graphon can be well approximated by a step function.

Theorem 3.4 LetU € W and k > 1.

(i) There ezists a partition P of [0,1] into at most k measurable parts such that

IU = Upllo < \/ i

(ii) There ezists a ¢ < k and a quotient H € S ) such that

\F Iu

The first statement of the theorem gives an approximation of a graphon by step functions

and is essentially due to Frieze and Kannan [@]. Indeed, with a slightly worse constant, it follows
from Theorem 12 of [@. In the above form, the first statement of the theorem is proved in
Section I below. The second statement gives an approximation by a finite, weighted graph,
a factor U/P € gq(U ), and can easily be seen to be equivalent to the first. Stronger versions of
the regularity lemma for graphons, in particular a version of the original Szemerédi lemma, can
be found in [A, [M].

We will also need a fractional version of ¢-quotients with which it will be easier to work.

First, a fractional partition of a set [0,1] into ¢ classes (briefly, a fractional g-partition) is a
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g-tuple of measurable functions py,...,p, : [0,1] — [0,1] such that for all z € [0,1], we have
p1(x) + -+ py(z) = 1. Given a fractional g-partition p = (p1,...,p,) of [0, 1], we then set

o) = [ ()

and define U/p to be the weighted graph on [g] with weights

ai(U/p) = ai(p) and B;;(U/p) = pi(@)pi(y)U(z,y)dxdy.  (3.6)

1
ai(p)e(p) /[0,1}2

If ai(p)e(p) =0, we set 5;;(U/p) = 0. We call U/p a fractional g-quotient of U and denote the
set of these fractional ¢g-quotients by S,(U).

3.4 Energy, Entropy and Free Energy

Recall the definition (Z38) of the energy density of spin configuration ¢ : V(G) — [¢] on a
simple graph G. Such a spin configuration defines a partition P = (Vi,...,V,) of V(G) via

~1({i}). In terms of this partition, we can rewrite the energy of the configuration ¢ as
Es(G, J h) = |V |Z Z |2 ZJU Z Lyevi Loev, LuveE(G)-
ueV(G) u,veV(Q)

Our attempt to generalize this form to graphons leads to the following definitions: Given a
graphon W, an integer ¢ > 1, a matrix J € Sym, and a vector h € R, we define the energy of a
fractional q-partition p of [0, 1] as

E,(W, J, h) Zh/

[0, 1]

dx—ZJm/ pi()p; (Y)W (z,y) dz dy. (3.7)

[0,1)2
The ground state energy of the model (J,h) on W is then defined as

E(W, J,h) = inf &,(W, J, ), (3.8)
P

where the infimum runs over all fractional g-partitions of [0,1]. The most important energy

measure for us will be the microcanonical ground state energy, given by

EAW.J)= inf &,(V,J.0) (3.9)

palp)=a

where the infimum now runs over all fractional g-partitions [0, 1] such that a(p) = a. Note that

E(W,J.h) = inf <8a(W, n-Y ah) (3.10)
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As we will see in Theorem B2, the definitions (B8) and (BH) are not only natural analogues of
the corresponding definitions for finite graphs, but they are also the correct limiting expressions
of the ground state energies of convergent graphs sequences.

The definition of the free energy of graphs ((E10) and (E13)) does not carry over to graphons

in a direct way. In fact, there is no natural notion of homomorphism numbers from a graphon
W into a finite graph H, which is related to the fact that hom(G, H) is not invariant under
blow ups of its first argument (where, as usual, the blow up of a weighted graph G' on n nodes
is the graph G[k] on kn nodes labeled by pairs iu, i € V(G), u = 1,...,k, with edgeweights
Biujv(G[k]) = Bi;(G) and nodeweights a;,,(G[k]) = a;(G)). To circumvent this difficulty, we
define the free energy of a graphon W by a variational formula involving the entropy of a fractional

g-partition p of [0, 1],

1
Ent(p) :/ Ent(p(x))dz with  Ent(p sz ) 1n p;(x (3.11)
0
In terms of this entropy we define the free energy of the model (J,h) on W as
F(W, J, h) = inf (&,(W, J,h) — Ent(p))7 (3.12)
p

where the infimum again runs over all fractional g-partitions of [0,1]. The microcanonical free

energy is defined analogously:

Fa(W, J) = 1(n)f (SP(W, J,0) — Ent(p)) (3.13)
pa(p)=a
where the infimum again runs over all fractional ¢-partitions of [0, 1] such that a(p) = a. Note
that again
FOW.Jh) = it (FalWe) = aihy). (3.14)

While the definitions (B12) and (B13) may seem unintuitive from a mathematical point of view,
they are quite natural from a physics point of view. Ultimately, the most convincing justification
for these definitions is again given by our results, which prove that the limiting expressions of

the free energies of a convergent sequence of graphs are given by (B12) and (B13).

3.5 Equivalent Notions of Convergence

Next we state the graphon version of the main result of this paper, Theorem ER. It gives several

equivalent properties characterizing convergence in the space of graphons.

Theorem 3.5 Let [ be a bounded interval, and let (W,,) be a sequence of graphons in Wr. Then

the following statements are equivalent.
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(i) For all simple graphs F, the sequence of homomorphism densities t(F, W) is convergent.
(ii) (W) is a Cauchy sequence in the cut-metric on.

(iii) For every q > 1, the sequence (S;(W,,)) is Cauchy in the Hausdorff distance d.

(iv) The sequence (Eo(Whn, J)) is convergent for all ¢ > 1, all a € Pd,, and all J € Sym,.

(v) The sequence (Fa(Wy,J)) is convergent for all ¢ > 1, all a € Pdy, and all J € Sym,.

The reader may notice that the analogue of statement (iv) of Theorem IR, i.e., right conver-
gence of the sequence (W,,), is missing in the above theorem. This is because there is no natural
notion of homomorphism numbers from a graphon W into a finite graph H, as explained above.
Condition (iv) here corresponds to condition (v) in Theorem I8, which (as remarked earlier) is
easily seen to be equivalent to condition (iv) in Theorem PZ3.

Finally, taking into account the representations (B0) and (Bd), we immediately get the
following corollary of Theorem BZ3.

Corollary 3.6 Let I be a bounded interval, and let (W,,) be a sequence of graphons in Wy. If
t(F,W,) — t(F,W) for some W € W and all simple graphs F, then E(W,, J,h) — E(W, J, h)
and F(Wy, J,h) — F(W, J, h) for allq > 1, h € RY, and J € Sym,.

By this corollary, the convergence of the energies £(W,,, J, h) and free energies F(W,,, J, h) is
necessary for the convergence of the homomorphism densities ¢(F, W,,), but it is not sufficient. In
fact, it is not that hard to construct two graphons W and W' which have different homomorphism
densities, but for which E(W, J,h) = EW', J h) and F(W, J,h) = F(W' J h) for all ¢ > 1,
h € R, and J € Sym,, see Example B in Section B below.

3.6 Limit Expressions for Convergent Sequences of Graphs

Our next theorem states that the limiting quantities referred to in Theorems P14 and EZ13 are

equal to the corresponding objects defined for graphons.

Theorem 3.7 Let W € W, and let G, be a sequence of weighted graphs with uniformly bounded
edgeweights, and no dominant nodeweights. Let F' be a simple graph, let ¢ > 1, a € Pd,, and
J € Sym,, and let H be a soft-core weighted graph with Bi;(H) = e*"s. If 6o(Gyn, W) — 0, then

t(F

) )—>t(FW)
d(S,(G ) Sy (W) —
Ea(Go, ) —

J,h) —

) = Ea(W, )

£(G, E(W, J,h).
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If, in addition, o, [|V(Gy)| — oo, then

1
———Inhom,(G,, H) — E(W,J)
g

—%lnhom(Gn,H) — E(W, J,0).

OéGn

If, in addition, all nodes in G,, have weight one, then

FalGr, J) = Fa(W, J)
F(Gy, J,h) = F(W, J,h).

We illustrate the last theorem and the expression (BI2) for the limiting free energy in a few
simple examples: first the standard ferromagnetic Ising model on a general convergent sequence
of simple graphs, next the particularly simple special case in which the convergent sequence
is just a sequence of complete graphs, and finally an example of a so-called disordered Ising
ferromagnet. We end this section with a general result on the free energy of disordered spin

systems.

Example 3.8 (Ising Model on Convergent Graphs Sequences) Consider the inhomoge-
neous Ising model of Example with K > 0 (called the ferromagnetic Ising model), and
assume that G, is a sequence of simple graphs such that G,, — W from the left. By Theo-
rems B3 and B2, the free energy F (Gy, J, h) converges to the free energy F(W, J, h) defined in

(B12). Expressing the fractional partitions pi(z) as 5(1 +m(z)), we rewrite this expression as

F(W, J,h) = inf (—g/W(x,y)m(:c)m(y)d:cdy—,u/m(:c)dx

mi]0,1]—[—1,1]
N / %(1 + m(x))ln(%(l +m(2))) + / %(1 —m(@)) 1“(%(1 - m(x))))

where the infimum goes over all measurable functions m : [0,1] — [—1, 1].

Example 3.9 (Curie-Weiss Model) Next we specialize to the case where G,, = K, the com-
plete graph on n nodes. In the physics literature, the Ising model on this graph is known as the
mean-field Ising model, or as the Curie-Weiss model. For the complete graph, the frequencies
t(-, K,) are easily calculated: ¢(F, K,) = 1+ O(1/n), implying that K, converges to the con-
stant function 1 from the left. By Theorems B33 and B74, the free energies F (K., J, h) therefore

converge to

1 11—
+mln(l—Hn)—l— m

K
F(1,J,h) = inf (——mZ—um—i—

me[—1,1] 2

In(1 — m)> —In2.
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It is not hard to see that the infimum is in fact a minimum, and that the minimizer obeys the
equation
m = tanh(Km + p),

which is the well know mean-field equation for the “order parameter” m. For p = 0, this equation

has either one or three solutions, depending on whether K <1 or K > 1. The largest solution,
M(K) = max{m: m = tanh(Km)},

is called the magnetization, and both m = M(K) and m = —M (K) are minimizers for the free
energy. It is not hard to see that M (K) = 0 for K € [0,1], and that for K > 1, the function
K — M(K,0) is real analytic function which takes values that lie strictly between 0 and 1. As
a consequence, the free energy in zero magnetic field, F(1, K,0) is an analytic function of K on

both (0,1) and (1, 00), with a singularity (called a phase transition) at K = 1, and
F(1,J,0)=—In2 if K<I1 and  F(1,J,0) < —In2 if K >1.

We will use this fact later to give a counterexample showing that not all left-convergent sequences

of graphs lead to convergent microcanonical free energies if we allow non-constant nodeweights.

The function m(z) in Example B3R is the inhomogeneous analogue of this order parameter
m, and more generally, the fractional partitions p;(x) in (BI2) represent inhomogeneous order

parameters for a soft-core spin system with spin space [q].

Example 3.10 (Disordered Ising Ferromagnets) Our next example concerns the Ising
model on a simple graph G with non-constant coupling constants. Writing the varying cou-
pling constants as Kf,,, this can clearly be modeled in our framework by moving from the
simple graph G to a weighted graph G’ with nodeweights one and edgeweights (.,(G’) = Buv.
To be specific, let us assume that the weights (,, are chosen i.i.d. from some probability dis-
tribution with bounded support and expectation /3. It is quite easy to show that whenever the
original sequence G, is left-convergent with G,, — W, then the sequence G/, is left-convergent
with probability one and G’ — BW. Thus

F(G., J h) = F(BW, J,h) = F(W,3J,h)  with probability 1.

In order to interpret this result, let us first consider the case where the distribution of (,, is
symmetric and S = 0. This represents a so-called spin-glass, and our result only expresses
the well-known fact that, with the normalization chosen in equations (E8) and (24), the free
energy of a spin glass is zero. For nontrivial results in spin glasses, one would need to scale
Jswew by 1/4/]V(G)] rather than 1/|V(G)|. If 3 is positive, the model describes a so-called
disordered ferromagnet, and the above identity expresses the fact that, provided that the coupling
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asymmetry is strong enough, a disordered ferromagnet on a sequence of dense graphs has the
same thermodynamic limit as a homogeneous ferromagnet on the same graph sequence, except

for a rescaling of the coupling constant.

As our next proposition shows, the above result holds for arbitrary soft-core spin systems

with finite spin space.

Proposition 3.11 Let (G,) be a sequence of simple graphs, and let (G)) be a sequence of
weighted graphs with V(G!) = V(G,), E(G)) = E(G,), nodeweights one, and edgeweights
Bu(Gh) = X&Z), where Xq(ﬁ) are real valued i.i.d. random variables with compact support and
expectation . Letq>1, heRY, J € Sym,,
Then ]-A"(G’n, J, h) converges with probability one, and

and assume that ]?(Gn, BJ,h) converges as n — .

lim ﬁ(G;, J,h) = lim }/:(Gn, BJ, h) with probability 1.

n—oo n—0o0

Note that the proposition only requires that F (G, BJ,h) is convergent, a condition which is
weaker than left convergence of the original sequence (G,,).

The proof of the proposition gives a similar statement for an arbitrary function from the set
of graphs into R which is invariant under graph isomorphisms and continuous with respect to the
cut-metric. As a consequence, an analogue of the above proposition holds, e.g., for the ground
state energies (G, J, h).

4 Proof of Theorem B3

The equivalence of (i) and (ii) was proved in [@]. In fact, the following quantitative form is true

((a) was proved in [A] and (b) was proved in [@]).

Theorem 4.1 Let U W € W and C = max{L, |W|x, || U]/}
(a) Let F be a simple graph, then

[H(F,U) = t(F,W)| < 4|E(F)|CIPHI=ton (U, W),
(b) Suppose that for some k > 1,
HEU) —t(F,W)| <374

for every simple graph F' on k nodes. Then
22C
Vlogy k-

This theorem should motivate the rest of the section, where we prove quantitative forms of the

6D(U7 W) S

main implications among (ii)—(v). We start with some preliminaries.
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4.1 Preliminaries

4.1.1 More on Distances for Weighted Graphs

Recall that the g-quotients of a graphon U are weighted graphs on ¢ nodes with total nodeweight
one. We will often identify these weighted graphs with a point (a, X) € Rq+q2, where a € R?
is the vector of nodeweights, and X € Sym, is the matrix of edgeweights of the quotient under
consideration.

To work with quotients, we will use several different distances on weighted graphs. In addition
to the distances d; and dp introduced in (233) and (E3), we use the fo-norm of a weighted graph

H,
1/2

ai(H)a;(H)
IHz = Wal=| a—gjﬁz‘j(H)2
i,jEV(H) H
and the /5 distance between two weighted graphs H and H’ with the same nodeset and identical
nodeweights,
1/2
! 1 ! 2
do(H, H') = — | >~ ai(H)ay(H)(8(H) = By(H)) | . (4.1)
H \ijev

Note that for two weighted graphs with the same nodeset and identical nodeweights, these
distances are related to the corresponding norms on graphons by di(H, H') = |[Wy — Wx||1,
dg(H, H,) = ||WH — WH/H2 and dD(H, H,) = HWH — WH’”D-

For a fixed a € Pd,,, it will be convenient to introduce on Sym,, the inner product

<X7 Y>a = Z aianij}/;j7 (4-2)

ij=1
and the corresponding norms

n

1/2
IXr = 3 adol, e = (COF and XLao = [ o Xl (1
wi=1 ;gT
Note that with these definitions, we have
1
Sl X llar < [ Xllao < [Xlar < 1X]laz < [[ Xl (4.4)

Note also that for two weighted graphs H, H" with the same nodeweights o;(H) = «;(H’) and
edgeweights B(H) = X, f(H') = X', the above norms allow us to express the distances intro-
duced in (E3) and (E) as

di(H,H) = | X = X'||a1, do(H,H')=||X —X'||lag, and do(H,H) =X — X'|lan,

where a is the vector with components a; = «;(H)/ag = «;(H'")/ag. We will make repeated

use of this representation in this paper.
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4.1.2 Fractional and Integer Quotients

We start by discussing the relationship between fractional and integer quotients. Let U € W,
let ¢ > 1, and let a € Pd,. In addition to the sets S,(U) and gSZ(U) introduced in Section B3,
we need the set Sa(U) of quotients H € S,(U) with a(H) = a, and similarly for Sa(U), as well
as the sets Bo(U) = {X € Sym,_ : (a, X) € §,(U)} and B.(U)={X € Sym,: (a,X) € gq(U)}.

Note that these sets are invariant under measure preserving bijections ¢ : [0,1] — [0, 1].
Indeed, for any such ¢, let U?(z,y) = U(p(z), ¢(y)) and p?(z) = p(é(x)). Then U/p = U?/p?,
implying that S,(U) = S,(U?). In a similar way, one proves that §q(U) = gq(U‘f’), B.(U) =
Ba(U?) and Ba(U) = Ba(U?).

The next lemma states that the set of quotients S,(U) is compact in the topology induced
by the metric d; defined in (E33).

Lemma 4.2 Let U € W and ¢ > 1. Then (S,(U),d) is compact.

Proof. Let Hy, Hy,--- € S§,(U). Then there are fractional partitions pt), p® ... of [0, 1] such
that H, = U/p™. For each i € [q], let (™ be the measure on the Borel sets of [O ] Wlth density
function p. By going to a subsequence, we may assume that the sequence ( ( ): n =
1,2,...) is convergent for every i € [q] and rational interval D. Let p;(D) be its limit. From
the fact that ugn) < X (the Lebesgue measure), it follows that p; extends to all Borel sets as a
measure, and that this measure is absolutely continuous with respect to A. Hence the function
pi = dp;/dX\ is well defined. It also follows that 0 < p; < 1 almost everywhere and that
> pi(x) = 1 for almost all z. So changing the p; on a set of measure 0, we get a fractional
partition p = (p1,. .., pg) of [0, 1].

Let ¢ > 0. Let P be a partition of [0, 1] into rational intervals such that ||U — Up||; < /3.
Then

‘/01 @) W)U () de dy 41 pi(x )m(y)U(:c,y)dxdy)
‘/[0 e P w) (UG, ) = Up(a,y) ) dudy
+| /W A" @) () = pi()ps(y) ) Uplir, ) da dy
| [ o) (U - e s ]

The first and third terms on the right hand side are bounded by ||U — Up||1/3; the middle term
will be less than /3 if n is large enough, since if D is a step of P, then

[ AP @de= [ poyas



by the construction of p;. Since a;(U/p™) = u2([0,1]) — w;([0,1]) = ;(U/p) for all 4, this
implies that

1
a;(U/p™)a;(U/p™)

whenever «;(U/p)a;(U/p) > 0.

If a;(U/p)a;(U/p) = 0, we cannot conclude anything about the limit of 3;;(U/p™), but
fortunately, this is not needed. Indeed, in order to show that dy(U/p™,U/p) — 0 as n — oo,
we only need to show that 8;;(U/p™) — Bi;(U/p) if ai(U/p)e;(U/p) > 0. To see this, we note

that the first sum in (23) is a sum of terms of the form

55(U/p) = [ A @ @0 9) ddy = (U

ai(U/p)o;(U/p) By (U/p) — i (U/ p™)a; (U p™) Bis (U p™).

If 0;(U/p)a;(U/p) = 0, then the first term in this difference is identically zero, while the second
tends to zero as n — oo due to the facts that a(U/p™) — «(U/p) and |B;;(U/p™)] < [|U]|e. O

The following lemma is easy to prove along the same lines. Here d; is again the distance
defined in (Z3), while d,; is the distance induced by the norm || - ||a1 defined in (E=3).

Lemma 4.3 Let U € W, let ¢ > 1, and let a € Pd,. Then (S,(U),d1) is the closure of
(gq(U),dl), and (Ba(U),dan) is the closure of (B\a(U),dajl).

While the two sets S,(U) and §q(U ) are equal if U is a step function (see Proposition B3

below), they are not equal in general. This is the content of the following example.

Example 4.4 Let W € W1y be positive definite as a kernel. The fractional partition (p, 1 — p)
of [0,1] with p = 1/2 gives a weighted graph (a, B) on two nodes, with both nodeweights
a; = 1/2, and all edgeweights B;; = [ W(x,y)dzdy. Using the positive definiteness of W, it is
then not hard to see that any fractional partition o with W/o = W/p must actually be equal to
p almost everywhere. Thus (a, B) cannot be obtained from any fractional partition other than

p, in particular not from any ordinary partition. Hence gq(W) # S, (W).

When analyzing the relationship between ground state energies and quotients, we will nat-
urally be lead to the Hausdorff distance between the subsets of quotients S,(U) and S,(W) for
two graphons U and W. The following lemma relates the Hausdorff distance of these two sets
to the Hausdorff distance between S,(U) and S,(W).

Lemma 4.5 For any two graphons U W € W and q > 1,

" (S,(U), 8;(W)) < max di" (Sa(U), Sa(W)) < (14 2/[W [loo)di"(S,(U), Sy(W)).
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Proof. The lower bound is trivial: let d = max, d(Sa(U), Sa(W)), and let H € S,(U). Then
H € §,(U) for some a, and so by the definition of Hausdorff distance, there is an H' € S,(W) such
that dy(H, H') < d. Thus H' is a point in S,(W) such that d;((a, B), (a, B')) = || B — B'[|a;1 < d.

To prove the upper bound, it will be convenient to introduce the distance
di((a, B), (b,C)) = > |a;a; Bi; — bib;Cs;|
Y]
and the Hausdorff distance d™ inherited from d;. As we will see below, we then have that
di" (Sa(W), Sp(W)) < 2lla b1 [W ]l (4.5)

for all a,b € Pd,.

Before establishing the bound (B33), we show how it can be used to prove the upper bound of
the lemma. Let (a, B) € S,(U) and let d' = di(S,(U),S,(W)). By the definition of Hausdorff
distance there is a weighted graph (c, D) € S,(WW) such that

di((a, B), (¢, D)) = di((a, B), (¢, D)) + |la—c[l <,
and by the bound (E33), there is a matrix B’ € B,(WW) such that

di((c, D), (a,B')) < 2[|a = c[1[W]|«.
Hence
di((a, B), (a, B")) = di((a, B), (a, B')) < di((a, B), (¢, D)) + di((c, D), (a, B'))
< di((a, B), (¢, D) + 2lla — [ |[Wl|oe < (1 +2[W||oo)d',
which completes the proof of the upper bound of the lemma.

We are left with the proof of (E3). Let H € S,(U), so that H = U/p for some fractional
partition p = (p1, ..., pg) With a;(p) = a;. It is easy to define a fractional partition p’ = (pf, ... p})
of [0, 1] with o, (p) = b; and >, ||pi — pill1 = ||la—b]|1. In order to prove the bound (E3), we will
show that

di(U/p,U/p') < 2||a = b |U] w.

Let i,7 € [q]. Then

a;ia;B:5(U/p) — bibjﬁij(U/P,)

<l [
[0,1]2

< U] /
[0,1]2

100 /
[0,1]2

= Ul (aillps — o5l + 1lpi = pill1b;)-

pi(x)p;(y) — pi()p] (y)‘ dx dy

pilw)ps () = i)y ()| do dy

pi(@)0 () — ()0} ()| da dy
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Summing over ¢ and j this gives the desired bound.

4.1.3 Ground State Energies and Quotients

We close our section on preliminaries with an expression of the ground state energy and the free

energy in a “finite” way in terms of the corresponding quotients. Let J € Sym,  and h € R%.
Using the closedness of S;(W) and B, (W) and the fact that the map (a, X) — (X, J)a + (a, h)

is continuous in the d;-metric, one easily shows that

EW,J h) =— (a7Xr)n€z‘1$}q<(W)(<X, J)a+ (a, h}),
and
q
ga(VV, J) = _Xg[lsi%(}?/l/) aianZ-jJij = — ngls?()‘czv)<X’ J>a.

3,j=1

4.2 From Distances to Quotients

The next theorem is a quantitative form of the implication (ii)=-(iii) in Theorem B3.

Theorem 4.6 Let ¢ > 1, and U/ W € W. Then

)" (84(U), S4(W)) < ¢*6u(U, W).

Proof. We first prove that

A (Sa(U), Sa(W)) < |U = W]g

(4.8)

for all a € Pd,. Let H € S4(U). Then there exists a fractional partition p = (p1, ..., p,) of [0,1]

such that H = U/p. Let H' = (a, 5(W/p)). Then for every S, T C [q], we have

> was(stt) = 8| =[S [ 0 0) Wi, et

€S €S
JET JET

- ’/[ | (Z Pi($)> <Zﬂj(y))(U(l’,y) - W(:L‘,y))d:cdy‘
0,1 Yies J=re

<|U=Wlg,

and hence dn(H, H') < ||U — W/||g, which proves the bound (ER).

Since the sets Sa(U) and S,(W) are invariant under measure preserving bijections, the bound
() implies that d2(S,(U), Sa(W)) < 0n(U, W), and taking into account the bound (E4), this

in turn implies that
1" (Sa(U), Sa(W)) < ¢*0(U, W).

Together with Lemma B3 this gives the desired bound on (S, (U), S,(W)).

31

(4.9)
O



4.3 From Quotients to Energies

The next theorem is quantitative version of the implication (iii)=-(iv) from Theorem B3.
Theorem 4.7 Let ¢ > 1, a€ Pd,, J € Sym, and U W € W. Then

[Ea(U, J) = Ea(W, T)] < (14 2[Wllo) | [loo i (S, (U), Sy (W)).

Proof. In view of Lemma B3, it is enough to prove that
[Ea(U, J) = Ea(W, T)] < [ [lood" (Sa(U), Sa(W)). (4.10)
Let H € Sa(U) attain the maximum in the representation (E=0) for £,(U, J), so that
Ea(U,J) = =(J, B(H))a.

By the definition of Hausdorff distance, there is an H' € Sa(W) such that dy(H,H') <
A (S, (U), Sa(W)). Then

Ea(W,J) = E&a(U, J) < (J, B(H))a — (J, B(H"))a = (J, B(H) = B(H'))a

<N lloo Y @ias|Biy(H) = By (H') = [T loodi(H, H') < || ]|ocdi (Sa(U), Sa(W)).

ij=1

In a similar way, one proves a lower bound of —||J || (Sa(U), Sa(W)), giving (EI0) and hence

the statement of the theorem. O

The following theorem is the analogue of Theorem BZ2 for the ground state energies E(W, J, h)

and is a quantitative version of the first statement from Corollary B3.
Theorem 4.8 Let q > 1, h € R?, J € Sym, and U W € W. Then

E(U, T h) = EW, T h)| < max{[| ] [loo, 17|} A1 (Sg(U), Sy (W)). (4.11)

Proof. This bound is proved in the same way as the bound (E0) and is left to the reader. [

4.4 From Energies Back to Distances

Combining the bounds (E9) and (E0), we get
[Ea(U, ) = Ea(W. )| < @[T [|ocb0 (W, ). (4.12)

The next theorem, which is one of the main results in this paper, gives a bound in the opposite

direction, and thereby provides a quantitative proof of the implication (iv)=-(ii) in Theorem B3.
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Theorem 4.9 Let UW € W, and suppose that

62

— <
lga(Ua J) ga(W J)| — 64(]2

[ ]]o0 max{ [} oo, W [loo }

for all g <49, a € Pd, and J € Sym,. Then
oo (U, W) < emax{[|U||oc, [Wlo}-

The proof of Theorem B9, to be given in the next sections, is based on the following idea,
which is very similar to the main idea in the proof of the Weak Regularity Lemma. For ¢ > 1,
let

L,U) = <a,é§le%}§(U>(_5a(U’ B)) (4.13)
and
A(U) = [ LaglU) = £,(U). (4.14)
We will show that
So(U, H) < A,(U) (4.15)

whenever H = (a, B) is such that it attains the maximum in (E3). Since 0 < £,(U) < ||U||%
for all ¢, £, cannot decrease by a substantial amount too many times, implying in particular
that there must be a ¢ < 4% such that A, < $IlU|loc. But this implies that for this ¢, the
maximizer in (EX3) must be a good approximation to U in the ég distance, ég(U, H) < £||U]|s-
Thus a good knowledge of the ground state energies allows us to calculate a good approximation
to the graphon U by a finite graph in the 05 distance.

4.4.1 The Geometry of Fractional Quotients

In this subsection, we give a different representation for £,(U) which will allow us to prove (E13).

To this end, we first prove the following lemma.

Lemma 4.10 Givenq>1,acPd,, andU € W, let

L.(U)= max |B|?,. 4.1
( ) BGB?(U) || ||a,2 ( 6)
Then
L,(U) = —&.(U,B)), 4.1
() BglgiiiU)( &al )) (4.17)

where any B that attains the mazimum in the first expression also attains the maximum in the

second expression, and vice versa.
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Proof. Since (X, B)a < || X|la2||Bllaz < La(U), we have

HBHiQ = (B,B)a < =& (U,B) = max (X, B)a < La(U).

XeBa(U)

Taking the maximum over B € B,(U), we obtain the identity (ET@), as well as the statement
that any matrix which attains the maximum in (E8), also attains the maximum in (EI4). To
prove the converse statement, we use that (X — B),(X — B))a > 0 for all X, B € B,(U),
implying in particular that

—264(U, B) < | Blla2 + La(U).

If By is such that —&,(U, B) attains its maximum for B = By, we therefore have that
2La(U) = =2&4(U, Bo) < || Bollas + La(U) < 2L4(U)

which implies that || Bo||2, = La(U), as required. O

4.4.2 Step Function Approximation

As a consequence of Lemma ET0, we may rewrite £,(U) as

Ly(U) = sup ||Upll3, (4.18)
PeP,

where the supremum goes over all partitions of [0, 1] into ¢ classes. Indeed, let P be a partition
of [0,1] into ¢ classes, and let a = a(U/P). Then U/P is a quotient of U, and

1Up[13 =" i(U/P)oy(U/P)B(U/P) = |BU/P)|2,

3,j=1

Using the fact that Ba(U) is the closure of B,(U), we now rewrite the right hand side of (EIS)
as

sup U = sup sup ||B = max max ||B
sl = sup sup 1512 = max e 151

With the help of Lemma B0, this gives (EEIX). In particular, it follows that
L,(U) < U5 (4.19)
The next lemma will be important in proving bounds on the approximation by step functions.

Lemma 4.11 For every partition P of [0,1] into ¢ classes, we have

IU = Uplit < Lag(U) = [|Upll3-
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Proof. Let S and T be arbitrary measurable subsets of [0, 1], and let P’ be the partition
of [0,1] generated by S, T and P. Clearly P’ has at most 4¢ classes. Since Up: gives the best
Lo-approximation of U among all step functions with steps P’, we conclude that for every real

number ¢, we have
|U = Uprll3 < |U = Up — thsur 3,

which in turn implies that
|U = Up|l5 < U = Up|l3 — 2t{Lsxr, U — Up) + .
Choosing t = (1g«7, U — Up), this gives
(Lowr, U = Up)® < U = Up|l3 = U = Up|l5 = |Up|l5 — | Upl5 < Lag(U) — |Uplf3.

Since the supremum of the left hand side over all sets S, T is just |U — Up||3, this proves the

statement of the lemma. O

It is instructive to show that Lemma BT implies the Weak Regularity Lemma for graphons,
Theorem B4
Proof of Theorem BA. Set ¢ = ||U||s\/2/log, k. If |[U — Up||5 > ¢ for all partitions P with
at most k classes, then by Lemma BTN, L4,(U) — ||[Upl||3 > &2 for every 1 < ¢ < k and every
P € P,. Hence L4,(U) — L, > £* for every 1 < ¢ < k, which in turn implies that

1 1
£4k > <L§ 10g2 k’J + 1>52 > (5 IOgQ k>€2 > ”UHQ?

which contradicts (E219). O
The following corollary verifies (EI3):

Corollary 4.12 Let ¢> 1, U e W, and H € S,(U). Then

du(U, H) < \/L14(V) = | H]3 (420

If H attains the mazimum in (EI3), then

6(U. H) </ Lagl(U) — Ly(U).

Proof. By Lemma B0, the second bound of the lemma immediately follows from the first.
Thus it is enough to prove (E220). Let P be a partition of [0, 1] into ¢ classes, and let U/P = H
be the corresponding integer quotient of U. By Lemma BT, we have that

0o(U.U/P)* < U= Uplity < Lag — [ H]5.

Since Sa(U) is the closure of Sy(U), this gives (E=20), as desired. O
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4.4.3 Completion of the Proof

Rescaling W and U by a constant factor if necessary, we may assume that ||U||eo, [|[W]le < 1.
Let 7 = €2/(64¢%) and let gy = 4/%/<"1-1,

Since 0 < L£,(U) < 1, there is a 1 < ¢ < gp such that £4,(U) — £,(U) < %. Choose
H = (a,B) € §,(U) in such a way that £,(U) = —&(U, B). We have

6D(U7 W) < 5D(U7 H) + 6D(H7 Hl) + 6D<Hl7 W)

Let us estimate the three terms on the right hand side separately.
By Corollary BT2, we have

on(U, H) < 2, (4.21)

Wl M

and by Lemma B0, we have that —&,(U, B) = ||B||2,. Due to the assumption ||Ufls < 1, we
also have ||Bl|» < 1.
Let Y € B,(W) attain the maximum in the definition of —&,(W, B). Then

(Y,B)a = —Ea(W,B) > =&,(U,B) — 7 = ||B||2, — T, (4.22)
and also

(YY) < =E(WY) < =EWUY)+7= Xn}gaicU)<X, Yia+71< ||B||a72||Y||a,2 + 7
€Ba

1
< 5 (IBIZ2 +IVI2,) +7

implying that
(V.Y)a < ||Bl5, + 27

Hence
1B =Ylao=lBlaz+ Y122 = 2(B,Y)a < |Bllas + (I1Bllas +27) = 2(|Bllo, — 7) = 4.
Let H' = (a,Y"). Using Cauchy-Schwarz, we get that
So(H,H') < ||B - Yllag < ¢Vdr < Z (4.23)

We are left with a bound on dn(H’, W). To this end, we again use Corollary ET3, this time
in the form of the bound (E=20), which gives that

(da(H' W))* < Lag(W) = V]2, (4.24)

By the definition of £y, and the conditions of the theorem, we have that Ly(W) < Ly, (U) + 7 for
every b € Pdy,, and hence
£4q(W) S £4q(U) + 7. (425)
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On the other hand, (E222) implies that ||Y]|2, + || B||2, > 2(Y, B)a > 2|| B||2, — 27, and so
Y115 > 1B]130 — 27 = Ly (U) — 2. (4.26)

Combining (I=24), (E224) and (E=20), we get

2

2
(Ba(H',W))* < Lig(U) +7 = £,(U) +27 < 5 437 < (1)

and so
5D(H’,W) < —. (4.27)

5e

So(U, W) < 60(U, H) + 0(H, H') + 0o(H', W) < = ZJF = -

_§+ 87

which completes the proof of Theorem E9.

4.5 From Distances to Free Energies and Back

In this section we prove the implications (ii)=-(v)=-(iv), which will complete the proof of Theo-

rem BH. Again, we prove two (simple) quantitative versions.

Theorem 4.13 Let ¢ > 1, let a € Pdy, let J € Sym,, let h € R?, and let U;W € W. Then

FalU, ) = FalW, )| < 171180, W) (4:28)

and

‘]-"(U, J,h) — F(W, J, h)‘ < Tl (U, W). (4.29)

Proof. Since the left-hand side of the above bounds does not change if we replace U by U? for
a measure preserving bijection ¢ : [0, 1] — [0, 1], it is enough to prove the lemma with a bound
in terms of ||U — W{|g instead of do(U, W). Let p = (p1, ..., p,) be a fractional partition of [0, 1].
Recall the definition (B72) of £,(W, J, k). Using the fact that the cut-norm || - |5 can be rewritten
as

Wio= sup
f.g: [0,1]—[0,1]

[ W s@aty) de dy (430)

where the suprema go over measurable and functions f,g: [0,1] — [0, 1], we then have
(U, I, 1) = E,(W. T )| < [ TIW|IU = Wl

Recalling the definitions (B12) and (BT3), this completes the proof. O
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Theorem 4.14 Let ¢ > 1, a € Pd,, J € Sym, and let UW € W. Lete >0 and c = (2Ingq)/e.
Then )
|Ea(W, J) = Ea(U, J)| < E\fa(W, cJ) — Fa(U,cJ)| +e.

Proof. Using the fact that Ent(p) < Ing, we get by (B9) and (B13)
|Ea(W, J) = Fa(W, J)| < Ing,
and similarly for U. Hence
|Ea(W, J) — Ea(U, J)| = %\53(W, cJ) = Ea(U,cd)| < %(\]—"a(W, ¢J) — Fa(U,cJ)| 4+ 21n q),

which proves Theorem B4, and thereby also completes the proof of Theorem B3. 0

5 Graphs vs. Graphons

We will use the results of the last section to prove Theorem EZTa and Theorem EI3 (i) — (iii). In-
deed, if we have a sequence of graphs (G,,), we can consider the sequence of associated graphons
We,,, and apply Theorem B3 to that sequence. The main technical issue here will be to re-
late parameters like ¢(F, G), g’a(G, J) and ]?a(G, J) to the corresponding parameters t(F, Wg),
Ea(We, J) and Fo(We, J) of the associated graphon. In some cases, this relationship is trivial:

HF,G) = t(F,Wg) (5.1)

for any two graphs F' and (G but the corresponding relations for the ground state energies and
free energies hold only asymptotically. A related technical issue will be the relationship between
fractional and integral partitions, which will be more complicated than for graphons (compare
e.g. Lemma B3 and Theorem BA).

5.1 Fractional Partitions and Quotients

Recall the definition of quotient graphs from Section EZZ. We will often consider §q(G) as a
subset of R9t9° | denoting its elements H as (a, X), with X = S(H) € Sym, and a = a(H) € Pd,.
Given a vector a € Pd,, we finally introduce the set ga(G) of all weighted adjacency matrices of
all quotients of G with nodeweights a, By (G) = {X € Sym,: (a, X) € gSA’(I(G)}

For a finite graph G, the set §q(G) is typically a very large finite set, which makes it difficult
to work with. It will be convenient to introduce a fractional version of quotients. First, a
fractional partition of a set V into ¢ classes (briefly, a fractional g-partition) is a g-tuple of
functions py,...,p,: V — [0, 1] such that for all x € V', we have py(z) + - + p,(z) = L.
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Let G be a weighted graph. For every fractional partition p = (p1, ..., p,) of V(G), we define
the fractional quotient G /p as the weighted graph with nodeweights

alGlp) = Y 249w

ueV(G)
and edges weights
1 ay(G)aw(G) Bun(G)
i (G/p) = i\u)pPj\v);
0lCID = e, 2y g e

compare to the expressions (B8) for graphons. To distinguish the fractional quotients from the
quotients introduced in Section EZ, we will often call the latter integer quotients. Note that the
above definition reduces to the definition (2222) if p;(x) is the indicator function of the event
that x € V;. Note also that neither the integer quotients nor the fractional quotients of a graph
G change if we rescale all nodeweights of G by a constant factor.

We call a graph H a fractional g-quotient of G if H = G/p for some fractional g-partition
of V(G), and denote the set of all fractional ¢-quotients of G by S,(G). Finally, we define the
fractional analogue of the set Ba(G) as Ba(G) = {X € Sym,: (a, X) € S, (G)}.

It follows from Lemma B2 and Proposition below that S,(G) is a closed set, and it is not
hard to see that S,;(G) is connected, but in general it is not convex (see Example B32). Obviously,
S,(G) contains ‘SA'(Z(G), but it is not its closure in general (since the latter is a finite set). We will
come back to how well gq(G) approximates S,(G) in Lemma B4. Most of the time, we will work
with the fractional versions, which are much easier to handle.

We can use fractional partitions to define fractional versions of ground state energy, by

replacing the partitions in the definition by fractional partitions. For every fractional partition
p of V(G), define

(G Ik =~ Y zh‘““ - Z““ D@l (52

ueV(G) 1 u,weV(G) 1,3

If p is a proper partition corresponding to a map ¢ : V(G) — [q], then &,(G, J, h) = E4(G, J, h).

Using this notation, we can define

E(G.J,h) = —max£,(G, J,h) = - (ay)glggz(a)(m et (a, h)). (5.3)

and
Ea(G,J) = — £,(G, J,0) = — X, Ja. 5.4
(G, ]) == max &£(G,J,0) =~ max (X,J) (54)

We will come back to how well these fractional versions approximate the “real” versions in Section
B33
We conclude with a couple of examples illustrating the set of quotients and its complexity.

In particular, we see that S, is not convex in general.
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Example 5.1 Let Ki(p) be a single node with a loop with weight p. For every fractional g¢-
quotient H of K;(p), we have S(H) = p, and so Ba(K1(p)) consists of a single ¢ X ¢ matrix with

constant entry p, no matter what value we choose for a € Pd,.

Example 5.2 This example gives a weighted graph G for which S,(G) is not convex. Let La(p)
be the two-node graph with a loop with weight p at each node (and no other edge). Let p be a
fractional g-partition of V(La(p)) = {u, v}, and let H denote the corresponding quotient. Then

(3)%pi(w)pi(w)p + (5)%pi(v)p; (v)p
ai(H)ao;(H) '

0u(H) = S(p(u) + piv), and By (H)) =

For ¢ = 2, the fractional partition p can be expressed by two parameters x,y: pi(u) = =z,
pa(u) = 1=z, p1(v) =y, pa(v) =1 —y, which reduces to one parameter, say the parameter z, if
we fix a(H)) = a for some a € Pdy. The edgeweights S(H) can then be expressed as a quadratic
function in z, giving that Ba(Lz2(p)) is a non-convex function in the parameter x in the space of

2 x 2 matrices. Then of course Sy(L2(p)) is not convex either.

5.2 Quotients of Graphs and Graphons

We start by noting the following simple fact:
Proposition 5.3 For every weighted graph G and every q > 1,

S,(G) C 8,(G) = 8,(We) = S,(We).

Proof. It is obvious that S, o
S,(G) C Sq(Wg) and S,(Weg)

G) C€ S,(G) and §q(Wg) C S,(Wg), so we only have to show that
C S(G
fractional) g-partition (Sy,...,S,)

S,(G). Every fractional g-partition p of V(G) gives a (non-
of [0, 1] as follows: partition the interval I, corresponding to
v € V(G) into ¢ intervals L1, . . ., I,, of lengths p;(v)a,(G)/aq, . . ., pg(v)ow(G) /aq, respectively,
and define S; = Upev(e)lvi- It is straightforward to check that G/p = (Weg)/P, and hence
S,(G) C 8,(W¢). Finally, every fractional partition p of [0, 1] defines a fractional partition p of

V(G) by
pilw) = / pi(z) da

Again, it is easy to check that G/p = W/p. This proves that S,(W¢s) C S,(G), and completes
the proof of the proposition. 0

The following technical lemma asserts that by restricting our attention to integral partitions

we do not lose too much, provided the graph has no dominating nodeweights.

40



Theorem 5.4 For every weighted graph G and every g > 1,

< )29 (1 4 ap (6)).

Qg

dH(S,(G), S,(@))

Proof. Let ¢ = apax(G)/ag. We have to show that for every H € S,;(G) there is an H' € gq(G)
such that
dy(H, H') < q/c(1+ 48(G)).

Since quotients and fractional quotients do not change if we rescale the weights of G, may assume
that ag = 1.

Let a; = o;(H) and B;; = a;a;5;;(H), and let p = (p1,...,p,) be a fractional partition of
V(@) such that H = G/p. In other words, let p be such that

S @) —ai and 0u(G)an(G)BulC)pilu)ps(v) = By
ueV(G)

Let P = (V4,...,V,) be a random partition of V(G) obtained by “rounding” p as follows: for
every u € V(G), we draw a random index ¢ from the probability distribution (py(u),. .., p,(u)),
and put v in V;. Let H' = G/P, and set a; = a;(H') and Bj; = aa’;3;;(H').

We use a standard (though somewhat lengthy) second moment argument to show that with

large probability, a is close to a and B’ is close to B. Let X, be the indicator variable that we
put u in V;. Clearly E(X;,) = p;(u). Using that X;, and X, are independent if u # v,

E((a} — :)*) = ) au(@)an (G)E(Xiw — pi(w)) (X — pi(0))) + D @l G)’E((Xau — pi(w))?)

UFU
= 3 @) - @) < e S an(@pilw) = ca,
ueV(Q) ueV(G)

and summing over all 7, we get
E(lla—a'l3) <ec. (5.5)
The argument for B is similar but more involved. Let us assume for the moment that
1B (G)| < 1. Writing Bj; — Bj; as
By =By = Y au(@)au(G)Bu(G)(XaXjo = pilu)p;(v)),
u,veV(Q)

and introducing the shorthand «,, for a,(G), we bound

E((B;g - Bij)2> - Z OWuyy Oty iy iy By vy (G) By (G)

U1,v1,u2,v2

X E<(Xw1XJv1 - pi<u1)pj (Ul)) (X“/«ZX]’UQ pi(u2>pj(v2)))>
< Z Olyyy Oy Oloyy Ol E((Xiulval - pi<u1)pj (Ul)) (Xiu2Xj1)2 - pi(u2>pj(v2)))> ‘

u1,v1,u2,v2
(5.6)
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where the sum goes over nodes uy, vy, ug, v3 € V(G). Consider any term above:

E (X X = p100)p5(00)) (X X = pil2)p5(2))))- (5.7)

If wy, ug, vy, vy are all different, then X;,,,, Xy, Xiu,, Xju, are independent, and hence this expec-
tation is 0.

Next, suppose that there is one coincidence. If this coincidence is u; = vy, we can use the
independence of the three random variables X;,,, Xj,, and Xj;,, X;,, to conclude that this gives
again no contribution, and similarly for us = v,. Consider one of the other 4 coincidences, say
uy = uz. Then the expectation in (B7) is p;(u1)p;(v1)p;j(v2), and the contribution of these terms

to the sum in (B@) is bounded by

S a2,y i )3 (015 (1) < caay.
w101,
There are 4 similar terms, so the total is bounded by 4ca;a;.
In the case of two coincidences, we have either u; = us and v; = vy or u; = vy and v = uy
or v; = u; and vy = uy. Consider the case u; = uy = u, v1 = v9 = v # u. The expectation in
(B72) is then p;(u)p;(v)(1 — pi(u)p;(v)). The contribution of these terms to the sum in (638) is

at most
Z a2aZpi(u)pi(v) < caa;.

The two other cases are similar, giving a total of at most 3ca;a;.
For three coincidences, there are 4 cases, which all are similar. Taking, e.g., the case u; =
uy = vy = u and vy = v # u, we get the p;(u)p;(v)d;;(1 — pi(uw)). The sum of these terms over u

and v gives a contribution which is at most
03 Z aiavpi(u)pj (v) < caa;.

The other three terms are similar, giving a total contribution of 4ca;a;.
We are left with the case of four coincidences, u; = us = vy = vo = u, which gives an
expectation of p;(u)d;; — 2p;(u)?d;; + pi(u)?p;(u)?, and a total contribution of at most

> o, <pi(u>5ij + Pi(U)Pj(U)> < ca;0ij + ca;a;.

To sum up, we get that
E((Bi; — B;)?) < 12ca;a; + caidyj,

whenever 5. (G) < 1. Rescaling the edgeweights of G' to remove the condition S, (G) < 1, this
gives

E(1B — BI3) = E(Y_(By — Bl))?) < 13¢(8(G))*

0,
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Combined with (B3) and Cauchy-Schwarz, this gives

E(di(H, H')) —qE< Z|az ’-|)+q2E( Z|Bm )

<a(E(; > i) +q2(E(ql2 S 15— ByP))
=1 ij=1
< Ve +qV13c8.(G) < qv/e(1+ 46 (G)).

Hence with positive probability, d,(H, H') < q\/E(l - 4600((}')), as required. O

5.3 Ground State Energies of Graphs and Graphons
We start with the remark that Proposition B33 and equation (B4) imply that
Ea(G, T) = EalWe, J). (5.8)

The next theorem relates this common value to the microcanonical ground state energy é\a

introduced in Section 4.

Theorem 5.5 Let G be a weighted graph, and let ¢ > 1, a € Pd, and J € Sym,. Then
6. ) - £alG )| < 60222 5 () ) (5.9

First we show that the fractional version of & (G, J,h) does not carry new information, at

least if we restrict ourselves to weighted graphs without loops.

Proposition 5.6 Let ¢ > 1, J € Sym, and h € R%. If G is a weighted graph with (,.(G) = 0
for all x € V(G), then
E(G,J,h) = E(G, J, h). (5.10)

In the more general case where B,,(G) is arbitrary, we have

E(G, T, h) — E(G, J,h)| < 22225 ()] w. (5.11)
ag
To prove these results, we need some preparation.

5.3.1 Preliminaries

Let p and p' be two fractional partitions of [0, 1]. We define the distance

Z / Ipi(x) — Al(@)lde (5.12)

43



on fractional g-partitions. For a weighted graph G and two fractional g-partitions of V(G), we

define
dic(p,p Z Z WG (w) = i), (5.13)

=1 veV (G

(If G has nodeweights one, we often leave out the subscript of G and denote this distance by
di(p, p') as well).

The following inequalities are immediate consequences of the definitions (B™), (B2) and
(Z3). Let W € W, let G be a weighted graph, and let ¢ > 1, J € Sym, and h € R?. If p, p’ are
fractional g-partitions of [0, 1], then

E(W, b)) = Ey (W, T, h)| < q(2[1 oo W [[oe + [1Blloc) dip; £)- (5.14)
If p, p’ are fractional ¢-partitions of V(G), then
E0(G, T h) = Ey (G, T h)| < (2] [|ooBanax(G) + [|Blloc) drc(p, £)- (5.15)
If G’ is a weighted graph on the same nodeset as G, then
[€6(G, T h) = E4(G, T h)| < max{|[hl|c, ¢*[| ]|} (G, &), (5.16)
and if G and G’ also have the same nodeweights, then
1E5(G, T, h) — E4(G', J,h)| < || T ||odaa(G, G). (5.17)

5.3.2 Proof of Theorem BJ.

Without loss of generality, we may assume that ag = 1 and Bhax(G) = 1. First we prove that
Ea(G, ) < Ea(G. ) + 24| || sotmmax (G). (5.18)

Rewrite the microcanonical ground state energy as

ra) Ay G Qly G Buv G
EalG]) = = max > ) Oiz ! )J¢(u)¢(v)7 (5.19)
T eV (G) G

let ¢ : V(G) — [q] be a map attaining the optimum on the right hand side, and let p be the
corresponding partition of V(G), considered as a fractional partition. Then (G, J) = &,(G, J,0)
and |a;(p) —a;] < amax(G). Tt is now easy construct another fractional partition p’ with a;(p’) = a;
and dy ¢(p, p') < amax(G). Invoking (BIH), the inequality (EI8) follows.

The main part of the proof is to show that

Ea(G,J) < Ea(G, T) + 66t ||| o (5.20)
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For a given fractional partition p of V(G) with a(p) = a, call a node v bad if p(v) is not a 0-1
vector. Suppose that there are at least ¢ + 1 bad nodes, and let S be any set of ¢ + 1 bad nodes.
For a bad node v, the vector p(v) has at least two fractional entries, so the selected nodes have
at least 2¢ + 2 fractional entries. If we fix the sums }°! | p;(v) for v € S and }_ ¢ pi(v) for
1=1,...,q, we have fixed 2¢q + 1 sums, so there is a family of solutions with dimension at least
1. Le., we have an affine family p;;(v) = p;(v) + tr;(v) of “deformations” of p such that p; is a
fractional partition of V(G) for every ¢, a(p;) = a, and r;(v) = 0 unless v € S and 0 < p;(v) < 1.
Let X and X; be such that G/p = (a, X) and G/p; = (a, X;). Then

<J7 Xt)a = <J7 X>a + Clt + CQtQa

where
Cl =2 § au 6uv E Jlj,rj
u€es 1,j=1
veV(G)
and
CQ = E au( Buv E Jz]Tz T]
u,vES i,7=1

Choosing the sign of ¢ so that Cit > 0, we increase the absolute value of ¢ until there is at
least one new pair (v,7) for which p;;(v) is 0 or 1, while we still have p; > 0. Starting with an
optimal fractional partition, we repeat this operation until we are left with a set R of at most
q bad nodes. Then we replace the resulting fractional partition p on R by any integer partition

(Vi,...,V,) obeying the condition
> aiwan(G) = D aulG)] < (@),
ueER ueV;

How much do these operations decrease the value (J, X),? Replacing p by p;, we lose at
most Cyt?. Since for every u, (pi(u) + tri(u), ..., py(u) + try(u)) is still a fractional partition,
we have >, r;(u)t = 0 and 0 < p;(u) + r;(u)t < 1, implying in particular that >, |r;(u)t| =
2> ()t o < 2>, pi(u) < 2. Hence

|Cot?| < |l Z u(G)a (G)|Bun (G| Z |ri(w)t] - [r;(v)t]

u,veS 3,j=1
< 4||J||OO Z au(G)av(G) = 4HJ|’OOaé[S] < 4||J”oo(q + 1)amaXaG[S]'
u,VES

Thus the cost of replacing one fractional entry in S by an integer entry is not more than
4[| J]|oo(q + 1)amaxcrgis)- To estimate the total cost of reducing the set of bad nodes to a set R
of at most g nodes, we formulate the following game: There are n items of prices oy > - -+ > ay,,

which sum to 1, and there are ¢ — 1 copies of each. At each step, you select ¢ + 1 different
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items, and pay the total price; then your adversary points at ¢ of them, which you have to give
back without compensation. The game stops when there are at most ¢ different items left. Your
goal is to minimize your total payment. How much do you have to pay, if both you and your
adversary play optimally?

Let us follow the simple greedy strategy of selecting the ¢ + 1 cheapest items each time. It
is easy to argue that the best strategy for the adversary is to take away all but the cheapest
of these ¢ + 1 items at each time. Then you pay (o, + a1 + -+ 4+ Qn_gs1) ¢ — 1 times,
(ap—1+ap_2+---+an,_,) ¢—1 times, etc. In total you pay for every item at most (¢—1)(¢+1) <
q? —1 times, and so your total cost is less than ¢* — 1, leading to a decrease in the value of (J, X),
which is less than 4|7 (¢ + 1)(¢* — 1) max-

To estimate the cost to convert the fractional partition p on R to an ordinary partition
P =(W,...,V,), we bound the difference

> @)y (@)Bu(@ ZJU(uevlvev—m )i(v))

u,veV(Q) t,j=1
= Y al@u@)8l@) Y Ty () + Luer) (Leer, — 3,0)
weV(Q) i,j=1
vER

by 4]|J]|ccir) < 4g0max||J ||, leading to an overall bound of 4]|J]|« (¢4 1)(g* — 1) + ) Qimax <
6¢3 max|| J||co- This concludes the proof of (E20). O

5.3.3 Proof of Proposition b8
We first prove the identity (BI0). Rewriting both £(G, J, H) and £ (G, J,h) in terms of factors,

this amounts to showing that

max ((X,J)a+<a,h>>: max ((X,J}a—i—(a,h)).

(8,X)e8,(G) (a,X)e85(G)

Let p be a fractional g-partition of G, and let G/p = (a, X). Assuming without loss of generality
that ag = 1, we have the identity

(X, Jat (@ h)= Y 0,(G)ay(G)Bu(G Zm Wos(0)+ > aulG) Y hipi(u)

u,veV(G) ,j=1 ueV(G)

For a fixed u € V(G), this is a linear function of (py(u). .., p,(u)) (here we use that 8,,(G) = 0),
and so its maximum is attained at a vertex of the simplex Pd,, i.e., a vector (pi(u). .., ps(u))
which is integer valued. Repeating this for every u € V(G), we see that the maximum over

fractional partitions is attained for an ordinary partition, as desired.
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To obtain the bound (E), we note that the error from removing the diagonal terms can be
bounded by

2 Z (G '5“"( )||\Juoog20‘ma"< B @1

ueV (G

O

5.4 Graph Homomorphisms and Ground State Energy of Graphons

The next lemma generalizes the bound in Example P23, and gives a quantitative version of the
bound (Z13).

Lemma 5.7 Let G be an weighted graph on n nodes, and let H be a soft-core weighted graph on
q nodes, with weights o;(H) = e" and B;;(H) = e*/i. Then
In apin(H) < Inhom(G, H) <_F I Q) N nlogq

>~ 2 = _S(Gv Ja O) +

—E(G, J,0) +

and for every a € Pd,,

I ovin (H) lnhoma(G H) _ & G.J)+ I Aaxrry | 1log g

Qg - &G - ag aG

&G, ) +

Proof. We prove the first inequality; the proof of the second is similar. Write hom(G, H) as

hom(G, H) = Z ageGE(GI0)
¢:V(G)—=V(H)

where ag = [T;cy(q) @) (H )%(@) . Since, by definition, the minimum of £4(G, J,0) is the ground
state energy E(G, J,0), we have

hom(G, H) < ) age 658G < gy, (H)*0e 068 (GI0)
¢

and
hOIIl(G, H) > max a(be_aé&;)(G,J,O) > amin<H)n —acg(G J)
¢

from which the lemma follows. O

5.5 Free Energies of Graphs and Graphons

We now turn to the main theorem of this section, namely that the free energy of G is close to
that of Wg.
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Theorem 5.8 Let ¢ > 1, a € Pd,, h € R? and J € Sym,. Let G be a graph on n nodes with all
nodeweights 1. Then

~ 12¢? 65¢>
‘Fa(Ga J) - fa(WGv J)‘ < nl/4 \/—HJHooﬁmax( )

and
1242 5¢>

nl/4 +4q \/EHJHooﬂmax( ) 1/2Hh’Hoo

|ﬁ(G7 J7h) _F(WGN]?}L)‘ <

The proof of this inequality is more involved than the proof of the corresponding statement
for ground state energies. The additional difficulties here are not just technical. They are
related to the fact, noted earlier, that there is no natural way to define homomorphism numbers
from graphons to finite graphs. Thus, while we could define approximations to the ground state
energies E(W, J, h) and E,(W, J) which involved only integer partitions, it is not possible to do the
same thing in the case of the free energies F(W, J, h) and F,(W, J) — since the entropy Ent(p) of
an integer partition is zero. In other words, we will have to translate the information contained in
the discrete sums defining Z(G, J, h) and Z,(G, J) into entropy information involving fractional
partitions.

This is best explained in the case where the graph under consideration is a blow up G[k| of
a much smaller graph G. In this situation, there are large classes of configurations which have
exactly the same energy density. Indeed, for u € V(G), let V,, be the set of nodes in V(G[k])
which are blow ups of u, and let k;(u) be the number of nodes in V,, which are mapped onto
i € [¢]. Then all configurations ¢ : V(G[k]) — [¢] with given numbers {k;(u)} have the same
energy. Counting how many such configurations we can find, we will get a term which eventually
will lead to a term Ent(p) in an optimization problem. In a final step, we will use the Weak
Regularity Lemma to approximate the graphs in a convergent sequence (G,,) by blow ups of a

suitable sequence of smaller graphs.

5.5.1 Entropies

Recall the definition (BT) of the entropy of a fractional partition p. If p is a fractional partition

of a finite set V, this definition can be modified in the following way:

Ent(p | ZZpZ ) In p; (v |V| Z Ent(p

i=1 veV veV

Let p be a fractional g-partition of [0, 1] and P = {I4, ..., I,,} be an equipartition of [0, 1], i.e.,
a partition such that all classes of P have the same Lebesgue measure. We define the fractional

partition pp of [0,1] and the fractional partition p/P of [n] as follows:

(/P)i(v) = - / p@)de  and  (ppl(y) = (o/Phv) ity el
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Proposition 5.9 For every fractional q-partition p of [0,1] and every equipartition P =
{I,...,I,} of [0,1], we have

Ent(p) < Ent(pp) = Ent(p/P).

Proof.  The equality of Ent(pp) and Ent(p/P) is straightforward. The function Ent(x) =

—> %, z;Inz; is concave for x € Pd,, so the inequality follows by Jensen’s inequality. U

As a consequence, we have the following finite formula for the free energy of the graphon W
associated with a graph GG with nodeweights 1:
Fa(We) = inf (E,(G, J,0) — Ent(p)), (5.21)

p

where p ranges over all fractional partitions of V(G) with a(p) = a.
Together with (BH), the next lemma shows that the quantities on the right hand side of

(BZZM) are continuous functions of p.

Lemma 5.10 Let p, p' be fractional q-partitions (of a finite set or of [0,1]). If di(p,p’) < 1/e,

then
1

di(p,p')

Proof. We do the proof for fractional partitions of [0,1]. Define f : [0,1] — R by f(z) =

—xInz. As a consequence of the concavity of f, we have that

|[Ent(p) — Ent(p')| < qdi(p, p/) In

[f (@) = f(y) < max{f(|z —y[), (L= |z —yl} < g(lz —y])
where g(x) is the concave hull of max{f(z), f(1 — x)},

f(zx) if xe€]l0,1/€]
glx)=<1/e if ze(l/e,1—1/e)
fl—z) if xze[l—1/e1].

By Holder’s inequality, we thus have

1 , 1¢ ,
*[Ent(p) ~ Ent(s Z /[ (o f(pi(fv)))dwlﬁgizl [, o) = @
<o Z [ o) = ) = ao.1) = T ).

where we used that assumption that dy(p, p’) < 1/e in the last step. This proves the lemma. [J

The following lemma is also easy to prove:
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Lemma 5.11 Let G be an weighted graph on n nodes, and let H be a soft-core weighted graph
on q nodes, with weights c;(H) = e and B;;(H) = €*%ii. Then

F(G, J,h) < &G, J,h) < F(G, J,h) +1Ing

and
FalG,J) < Ea(G, J) < FalG,J) + Ing.

5.5.2 Blowups of a Graph
Instead of directly relating the free energies of G and Wy, we first look at blow ups of G.

Lemma 5.12 Let G be a weighted graph with nodeweights one, let ¢ > 1, and let a € Pd,,
h € R?, and J € Sym,. Denote the k-fold blow up of G by G[k]. Then

~ 2
FulGIR), J) = FalWe, 1) < 2L )17 oo @) + 3q2w (5.92)
and
= 2¢° ,In (k4 1)
)f(G[k], T h) — F(We, J, h)‘ < L max{|lJ foc Buax(G), | llc} + 3P (5.23)

Proof. Let V(G) ={1,...,n}, and let I1,...,I, C [0,1] be consecutive intervals of lengths
1/n. Given a configuration ¢ : V(G[k]) — [¢], and a node u € V(G), let k;(u) be the number of
nodes v’ € V(GJk]) such that «’ is a copy of u and ¢(u') = i, and set p;(x) = k;(u)/k whenever
x € I,. Let R, be the set of all fractional ¢g-partitions p of V(G) such that a(p) = a, and let Ra
be the set fractional ¢g-partitions 7 of V(G) such that 7;(z) is an integer multiple of 1/k, and

1
< = for all 7 € [q]. (5.24)

loi(7) — a

Then Qa(G[k]) is precisely the set of configuration ¢ : V(G[k]) — [q] for which p € Ra.
We write the energy density of the configuration ¢ as
1 O

t,j=1 u,veV(G)

5¢>(G[k] o, O)

n2

The number of configurations ¢ corresponding to a fixed set of numbers (k;(u)) (i € [¢], u € [n])

is given by the product of multinomials
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To continue, we approximate the factorials by the leading term in their asymptotic expansion.
Neglecting, for the moment, the error term, we have
k! (k/e)* N
~ - kEnt )
11 T (u)!. - kg ()] 11 (Br () /)o@ . (kg (u) Je)ka — P (” nt(p)

u€ln] u€[n|

To bound the error in the above approximation, we use the following simple inequality, valid for

mym™ my\m™
(—) §m!§em(—> )
e e

all integers m > 1:

As a consequence, we have that
LN et (p) k! KEnt(7)
- nkEn < < (ek)dmenkEn (p)
(ek;) ‘ - H ky(u)!. .. kg(u)! — (ek)™e

u€[n]

Bounding finally the number of choices for the gn-tuple (k;(w)) by (k + 1)) < (k + 1)™, we

conclude that

(ek)_qn max enk(Ent(ﬁ)—Eﬁ(Wg,J,O)) < Za(G[/{Z], J) < (6/{3(/{2 + 1))qn max enk(Ent(ﬁ)—S,;(Wg,J,O))‘
PERa PERa

The above bound on the partition function implies that

FulGIK], ) — min (55(%, J,0) — Ent(ﬁ))‘ < qw < 3qw. (5.25)
By (BE220), we have
Fa(We, J) = min (gp(Wg, J,0) — Ent(p)). (5.26)

To complete the proof of the lemma, we therefore have to compare the fractional partitions in
’l/ia to those in R,.

Let p € Ry attain the minimum in the expression on the left hand side of (B21). Using
the fact that p obeys the constraint (B=2d), it is not hard to show that there exists a fractional
g-partition p € Ry such that di(p, p') < 1. Inequality (BE03) gives
1
7
while Lemma BT (together with the fact that |Ent(p) — Ent(p)| < Ing < {In(k + 1) if £ < 2)
implies that

EWe, J,0) = E(Wa, J,0)| < 2q[| T [[oc[Wellsodi (p: ) < 24]1J [loo Sinax (G)

Ent(p) — Ent(p)] < g0 L.
Hence, using also (B=23),
FulGIH, J) = E(Wa, J,0) — Ent(p) — 3q@
> E,(Wg, J,0) — Ent(p) — 2q||‘]||00/6max(G)% B qln(k‘]: 1) Sqln(k]j 1)
> Fa(We J) = 20l (@) — 40220 L. (527
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To prove a bound in the opposite direction, consider a fractional g-partition p which attains
the minimum in (E28). Given this partition, we will construct a partition p € Ra. Let b;(u) =

kp;(u), then by the Integer Making Lemma [0], there exists integers k;(u) such that

|b;(u) — Eki(u)| < 1 (1<i<gq, 1<u<n), (5.28)
PILOEDD ki(u)‘ <1 (1<u<n) (5.29)

and . .
Db =Y klw| <1 (1<i<q). (5.30)

Since ). bi(u) = k is an integer, (E=Z9) implies ) . k;(u) = k, and so p;(u) = ki(u)/k is a
fractional partition. Furthermore (B330) implies that |a;(p) — a;| < 1/(nk), and so p € Ra.

Finally, (B228) gives that

~ q
di(p,p) < -
Hence, using Lemma BT (this time together with the fact that |Ent(p) — Ent(p)] < Ing <
% In(k+ 1) if 1 <k < |ge]) and the inequalities (BE14) and (B=23) again, we get

Fa(WGa J) = gp(WGa Ja O) - Ent(p)

. 1 In(k +1
> E5(CIH), ,0) ~ Ent(p) — 2671 o (G — D)
~ In(k+1 1 In(k+1
> Fu(@lk), )~ 30D o) i) - 2D
~ 1 In(k+1
> Fu(GlH, 1) ~ 267 @) — 367D,

where in the last step we assume (without loss of generality) that ¢ > 2. Together with (B=27),
this proves the bound (B222) . The bound (B=23) is proved in the same way; in fact, its proof is
slightly easier. ([l

We also need the following lemma of a somewhat similar nature.

Lemma 5.13 Let G be a graph with nodeweights 1, and let ¢ > 1, a € Pd,, h € RY, and
J € Sym,. Let G' be obtained from G by adding k new isolated nodes with nodeweights 1. Then

n , n k q 1
oG 0) = FulG ) < (5 In|V(G) + (g +2) (5max|uuoo +5 1nq>), (5.31)
. . k
(G 1) = F(G ) < (B e+ [ 1), (532)
and
2¢%k
’Fa(WG’a ']) - Fa(WGa J)’ S |V(G>’ HJHooﬂmax' (533)
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Proof. It suffices to prove the case k = 1. Let n = |[V(G)|. Let ¢ € Q.(G). We claim that after
changing the value of ¢ on at most |(¢—1)/2] nodes, it can be extended to the new node to get a
configuration ¢’ = ¢'(¢) € Qa(G’). Indeed, let V; = ¢~1({i}), and let &; = (n + 1)a; — |V;|. Then
Y6 =1and —1+4+a; < <a; +1 (by the assumption that ¢ € Q,(G)). Let Si be the set of
indices for which ¢; > 1, and let S_ be the set of indices for which §; < 0. Since ). 6; = 1, we
know that |S_| > |S,| — 1. Choose |S;|— 1 vertices of G in such a way that each has a different
image in S_, and change the images of each of them to a different element of S, . If we map the
new vertex n + 1 to the remaining element in S, we obtain a configuration ¢ € Q,(G’). Since
|S4] +1S4] — 1 < g, the number of vertices whose image was changed is at most | (¢ — 1)/2], as
claimed.
If ¢’ = ¢'(¢) is obtained from ¢ by the above procedure, then

’&i)(G’ J, O) - 5¢>’(G/7 J, O)| < QHJHooﬁmaxn((q - 1)/2—| < n<q - 1)ﬁmax”‘]||00'

It is also not hard to check that each ¢' can arise from at most nll@=D/2glle=/2] < (nq)a/2

different configurations ¢. As a consequence,

TG D)= Y e @0 > 1 T EE e E 0

q/2
¢eﬂa<0’> (ng)** o)
e Z o= EE4(G7,7.0) = Bmax | Tl oo
q
PEQa(
1
= W eXp(_QﬁmaxHJ”oo>Za(Ga J)

Conversely, from every ¢ € 2,(G") we can construct a ¢ € Q,(G) by deleting the new node
and changing the image of at most max{1, [(¢—1)/2]} < ¢/2 nodes (where we used that, without
loss of generality, ¢ > 2 since otherwise we do not have to change any nodes). This time, there
are at most g(ng)™>LLa—/21} < ¢(nq)?/? different configurations 1 € Q,(G’) which can give
rise to the same configuration ¢. As a consequence, we now have

Zo(G' Ty = 3 emmatul@I0
PeQa(G)
< g(ng)2em bVl §7 o= hrEol@I0)
#€Qa(G)
< q(ng)** exp((q + 1) Bmax |/ [lo0) Za (G, J).

Combined with the trivial inequality e "maxll/lle < 7 (G J) < gremPmaxll/lle this gives

G ) = Fal Gy )] = | M Za(G ) = 2 I Za(G )|

Q+2 Ing q¢ln(ng
<42 T+ 2d aln(ng)
n 2n
—I—2
= T2 (el e + 5 0) + T
n

23



This proves (B230). The inequality (E2332) follows from the observation that

q
Z(G' T h) = Z(G, J.h) > e,
i=1
and the inequality (B=33) follows easily from Theorem EI3. O

5.5.3 Conclusion

To conclude the proof of Theorem B, we use the following form of the Weak Regularity Lemma
due to Frieze and Kannan [@]; see also [@]. We define, for a weighted graph G and a partition
P=Vi,..., Vi) of V(G), the weighted graph Gp on V(G) with nodeweights a(Gp) = a(G) and
edgeweights 5,,(Gp) = 5;;(G/P) if (u,v) € V; x V;. We call P equitable if

49 < 142

for all i € [q].

Lemma 5.14 ([@]) For every weighted graph G with all nodeweights 1 and integer 1 < k <
|V (G)|, there is an equitable partition P of V(G) into k classes such that

dD(G7 GP) ﬂmax( )

vV 10g2

With the help of this lemma, we now complete the proof of Theorem BR as follows: Let
k = [n'/?]. It will be convenient to assume that m = n/k is an integer. To this end, add
k' = k[n/k] —n < n'?k new isolated nodes to Gi. By Lemma ET3, the cumulative change to
Fa(G, J) and Fa(Weg, J) can be bounded by

1 /q q+2 ) q> 1
—nl/z(ilnn—l— S Ing+ (2 + 4+ 2) Bl oo ) < 1/2( Inn+ - +5/3mx||J||Oo>

By the Weak Regularity Lemma B4, we may now choose an equitable partition P of V(G) into

k classes such that

20 max (G ) 20v/2B1nax (G)
Viogy k Vinn

To complete the proof, we use the triangle inequality,

dD(GJ GP) <

| Fal G, J) — Fa(Wa, J)|
< |FalGLT) = FalGp, )| + | Fal(Gr,y ) = FaWep, J)| + | FaWap, J) — Fa(We, J)|.

Here the first term is bounded by ¢*||J||dn(G, Gp) by (M), (Z12) and (ZI3), and the last
term is bounded by the same quantity by Theorem ET3.
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To estimate the middle term, let G’ = G/P. Then Gp = G'|m] and W, = W, and hence
by Lemma bT2

| Fa(Gp, J) = FaWer, J)| = | Fa(G'[m], J) — Fa(Wer, J)|

2
< L (201 Bas (@) + 3(1 + Inm))
2

q 1
S n1/2 <4HJHOO/BInax(G) + 6<1 + 5 lnn))
Combining the various error terms, we get that

,40v/2

27 13
— ==/l o0 Bmax
Vi

| Fa(G ) = Fa(Wg, J)| < -1 (- nn+— + 96maX(G)||JHOO) + ¢

nl/2\2

(@)

2 1/4

¢ /13 14nY ,40v/2 4+ 9

S 1/2 <_ ) +q HJHooﬁmax( )
n 2 Vinn
12¢4* 9

<

This proves the first bound of the theorem. The proof of the second bound is completely analo-

gous and is left to the reader.

5.6 Proof of Theorem 214

Let (G,) be a sequence of graphs with uniformly bounded edgeweights and no dominating
nodeweight.

The equivalence of (i) and (ii) was proved in [d].

Theorem B4 and Proposition B3 imply that dlff(SA},(Gn),Sq(WGn)) — 0, and hence the se-
quence S\q(Gn) is Cauchy in the d!f distance if and only if the sequence S,(Wg, ) is. By Theorem
B, this happens if and only if the graphon sequence (Wg,) is convergent, which is equivalent
to (i).

Similarly, equation (E8) and Theorem B imply that [Ea(Gp, J)—Ea(We,, J)| — 0, and hence
the sequence é\a(Gn, J) is convergent if and only if the sequence E,(Wg,,, J) is. By Theorem B3,
this happens for all @ and J if and only if the graphon sequence (W¢, ) is convergent, which is
again equivalent to (i).

Next suppose that of, /n — oo. Lemma 672 implies that for every weighted graph H = (a, J),

hom, (G, H)

Oéén —ga(WGn,J) —>0,

and hence the sequence (homa(G,, H)/ag, ) is convergent if and only if (Ea(We,,,J)) is. As we

have seen, this is equivalent to (i).
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Now suppose that all nodeweights in the graphs G,, are 1. Then Theorem BE=R implies that
| Fa(Gr, J) — FalWe,, J)| = 0, and hence the sequence Fa(G,,, J) is convergent if and only if the
J) is. We conclude by Theorem B3 as before.

Similar arguments also prove Theorems T3 and B72.

sequence Fo(Wg

n?

5.7 Proof of Proposition BT1T

The following lemma is a slight generalization of Lemma 4.3 in [@], and the proof is essentially

the same.

Lemma 5.15 Let A > 0, and let H be a weighted graph on n nodes with nodeweights 1. Let X;;
(i € E(H)) be independent random variables such that E(X;;) = B;;(H) and | X;;| < C. Let G
be the random graph on V(H) with edgeweights X,;. Then

do(H,G) < C(« /%Jr l)
n n

with probability at least 1 — e /4,

Turning to the proof of Proposition B, recall that we are considering two sequences (G,,)
and (G!)) of graphs. Consider a third sequence, G/, with V(G?) =V (G)), E(G!) = E(G") and
Bu(Gr) = B.

Lemma BTH implies that with probability one, do(G.,, G") — 0 as n — oo. Combined with
the easy bound (BI8), this immediately gives the statement of the proposition. Indeed, using
the fact that F(G,, 3., h) = F(G", J, k), we may use (EIG) to bound

F(G, T h) — F (G, B, h)( — ]ﬁ(G;, T k) — F(G", J,0)| < ¢ max{|| ||, 2]l Yo (G", GY).

6 Weaker Convergence

6.1 Counterexamples

By Theorems B3 and BT4, graphons which are near in the cut-metric have similar free energies,
and thus also similar ground state energies. Our first example shows that the converse does not
hold. Indeed, it gives a family of distinct graphons which have the same free energies and ground

state energies.

Example 6.1 (Block Diagonal Graphons) Given 0 < a < 1 and ;1,82 > 0, let W be the
block diagonal graphon
G if 0<z,y<a
W =4p if a<ey<l (6.1)

0 otherwise.
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It is easy to express the free energies of W in terms of the free energies of the constant graphons
Wi =apand Wy = (1 —a)Bs: If ¢ > 1, h € R? and J € Sym,, then

f(VV, J, h) = min (aiﬁu Z Jijpgu)p§u) —a, Z pl(U)hi _ auEnt(p(“))>>
0, i

(w)
u=1.2 pl¥)ePdy

(6.2)
= Z Oéuf(ﬁuaiu J7 h)
u=1,2
where «v; = o and a9 = 1 — . The same calculation also shows that
EW,J,h) =D aul(Buwu, . ). (6.3)

u=1,2
Choosing

fi=1/a and [By=1/(1—-a) with «a€(0,1/2],
we obtain a one-parameter family of distinct graphons which cannot be distinguished by their
free energies or ground state energies since F(W,J,h) = F(1,J,h) and E(W, J h) = E(1,J, h)
for all W in the family.

Obviously, two distinct graphons which can be distinguished by their ground state energies
without magnetic fields can also be distinguished if we allow magnetic fields. Our next example

shows that the converse is not true.

Example 6.2 Consider again the block diagonal graphon defined in (E1). It is easy to calculate
the ground state energy of this graphon for h = 0, giving

E(W, J,0) = (azﬁl (- a)2ﬁ2>€(1, J,0).

Choosing

B = g and By = —<11 — z;;
with a € (0,1/2] and A € (0,1/«a], we obtain a two-parameter family of distinct graphons which
cannot be distinguished by the ground state energies without magnetic fields.

But only the subfamily considered in Example B, i.e., the subfamily with A = 1, remains
indistinguishable if we allow magnetic fields. Indeed, consider the case ¢ = 2, J;; =1 — d;; and
h; = cd1,; from the biased max-cut problem discussed in Section EZ3. The biased max-cut for
W = [ can be easily calculated, giving

+c A
g ey 5
provided |c| < 28. Taking into account the relation (E33), we conclude that for all graphons W

—&(B,J,h) = max (2@(1 —a)f + ca> _

a€l0,1]

in the above family, we have

c+1 ayae 1 — a)?
—EW, T h) == ++§(X+—(1_ai>
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provided |c| < min{2\/a, (1—a)/(1—a)?}. Thus two elements of the family can be distinguished
(1-0)?
1—aA

by the biased max-cut problem unless $ + =1, i.e., unless A = 1, as claimed.

We have seen in the previous sections that right convergence implies convergence of the
ground state energies, which in turn implies convergence of the ground state energies without
magnetic fields, and hence naive right convergence. Using Examples G and B3, it is not hard
to show that right convergence is in fact strictly stronger than convergence of the ground state
energies, which in turn is strictly stronger than naive right convergence. This is the content of

the next example.

Example 6.3 We first give an example of a sequence of simple graphs which has convergent
ground state energies, but is not left-convergent, and therefore also not right-convergent. Let
p < 1/2, let G, = G(n,p), and let G!, be the disjoint union of two random graphs G(n, 2p).
With probability one, GG,, then converges from the left to the constant graphon W = p, and G,
converges from the left to the graphon W’ defined by (BEJl) with o = 1/2 and 1 = S = 2p. As
a consequence, g(Gn, J,h) — EW, J, h) and g(G;l, J,h) — EW', J h). By the identity (E3),
EW,J,h) = EW', J,h) for all ¢ > 1, all J € Sym,,

state energies of GG,, and G/, converge to the same limiting ground state energy. Interleaving the

and all h € RY, implying that the ground

two sequences (G,,) and (G.,), we get a sequence of simple graphs which is not left-convergent,
but has convergent ground state energies (taking into account the identity (B2), we see that this
sequence has convergent free energies as well).

In a similar way, we can use Example B2 to construct a sequence of simple graphs which is
naively right-convergent, but does not have convergent ground state energies. Indeed, let W be
the constant graphon W = p and let W’ be the graphon defined in (BI) with o = 1/2, f; = p
and B, = 3p. Then (W, J,0) = (g + %{’)5(1, J,0) = E(W, J,0). Let G, = G(p,n) and G, be
the disjoint union of G(p,n) and G(3p,n). If H is a soft-core graph on ¢ nodes with §;;(H) =
e?%ii | then #hom(Gn,H) — E(W, J,0) and wloghom(G;,H) — EW' J,0) = E(W, J,0).
Interleaving the two sequences, we thus obtain a sequence which is naively right-convergent, but

does not have convergent ground state energies once we allow for non-zero magnetic fields.

We finally give an example showing that the statements of Theorems ZT4, ZT3 and B

concerning the free energy do not hold if we relax the condition that (G,,) has nodeweights one.

Example 6.4 Let G be the weighted graph on {1, 2} with weights £11(G) = f22(G) = 1, a1 (G) =
1/3 and ay(G) = 2/3, and let G,, be obtained from G by blowing up each node n times, G,, =
G[n]. Then G,, converges to the block-diagonal graphon

1 if 0<z,y<1/3 or 1/3<z,y<1

0 otherwise.

W(x,y) = {
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But the free energies and microcanonical free energies of G, do not converge to those of W.
Indeed, let ¢ > 2, a € Pd,, and J € Sym,. Proceeding as in the proof of Lemma B3, it is then
not hard to show that Fa(G[n], J) converges to

F :ir;f(é' (G, J,0) + Z S pila)log pila )
IEV( ) i€lq]
where the infimum goes over all fractional partitions p of V(G) = {1,2} obeying the con-
straint 5p;(1) + 2p;i(2) = a;, while F(Gln], J,0) converges to F> = minacpqy, F5*. Note that
the nodeweights of G enter into the energy term &,(G, J,0) and the condition on p, but not
into the entropy term % Y. > pi(z)log pi(z), in contrast to the corresponding expression for the

microcanonical free energies of the limit W,

FalW, J) = inf (&,( (1) log p, i(2)10g pi(2))
2(W,J) = inf (&,(G, J,0) + Zp 0g i Zp 0g i
zE[a] ZE[«z]
where the nodeweights enter into both the energy and the entropy term.
Specializing to the Ising model with spin space {—1, +1} and coupling constants Jy » = %gbgb’ ,

we write the limit F.° as

. K /1 4 1 1
FX = — ml,nrf;?fil,l] (5 (§m% + §m§> + §Ent(m1) + §Ent(m2)>,
%mﬁ-%mg:m
and the free energy of the limit W as

K

FaW,J) = —  max (2

m1,mo€[—1,1]
%m1+%m2:m

1 4
<9m1 + 9m2) + 3Ent(m1) + 3Ent(m2)>

Here m = m(a) = a, —a_ and
1 1 11— 1-—
Ent(m) = — +mln( —|—m) - mln( m)'
2 2 2 2
Let K =3/2, let m > 0 be such that

2 ~2

ms 1 m 1 .
—= + —Ent ) = — + -Ent
mrg[ai)i”( 3 + 5 EN (mg) 5 + 5 En (m),

and let a € Pdy and be such that m = a; — @3. Using the fact that

max (gMZ + Ent(M)) > In2 = Ent(0),

Me[-1,1]

with equality if and only if K < 1 (see Example B3), it is then not hard to check that

S - SR |
F* = ‘Fﬁ = —? — éEnt(m) — §Ent(0) < —1112,
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while
2

2
Fa(W,J) > F(W, J,0) = — max (% + ”;)2 + 3Ent(m1) §Ent(m2)> — Ent(0) = — In2.

This proves that lim, s Fa(G[n], J) < Fa(W, J) and lim,_, F(G[n], J,0) < F(W, J,0).
Interspersing the sequence (G[n|) with an arbitrary sequence of simple graphs which converges
to W, this also yields an example of a convergent sequence of weighted graphs whose free energies

and microcanonical free energies do not converge.

6.2 Naive Right Convergence with Two Weights

We have seen that naive right convergence is not enough to guarantee left convergence. But there
is a way of saving the equivalence of right convergence with left convergence, by considering target
graphs H with two edgeweights 3;; and v;;. We call these graphs doubly weighted. We say that
H is soft-core, if B;;,7v;; > 0 for all ¢, j € V(H). The value hom(G, H) is defined as

hom(G,H) = > 11 % ) 11 5¢(u>¢> ) 1T e
o:V(G)—=V(H)ueV (G weE(G wg E(G)
Theorem 6.5 Let (G,,) be a sequence with uniformly bounded edgeweights, and nodeweights 1.
Then (Gy,) is left-convergent if and only if
Inhom(G,,, H)
V(G
has a limit for each doubly weighted soft-core graph H.

Proof. The proof of the “only if” part is analogous to the proof of the first statement in
Theorem P13 and is left to the reader. The idea of the proof of the “if” part is that one can
use the second set of edgeweights to force the dominating partition to have prescribed sizes, and
thereby show that the microcanonical ground state energies converge. To be more precise, let
q>1,a¢€Pdy, and J € Sym . Define a doubly weighted graph Hc by

a; =1, Vij = exp(a—icli:j), Bij = exp(Jij + agili:]) (1,7 € [q])-

Then for every graph G,
C .
hom (G, Ho) exp(CIV(G)P) = 3 ao exp(€(G, 1,0)) exp(= 37 = (am — |67 ()])?),
¢ i

The last factor is maximized when ¢ € Q,(G), from which it is not hard to show that

. (Inhom(G, He)
im (e

uniformly in G, and hence the theorem follows. U

+ c) = £.(G, J),

C—o0
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6.3 Convergence of Spectra

Every graphon W € W defines an operator Ty : Lo[0,1] — Ls[0, 1] by

Ty f(z) = / W, y) () dy.

It is well known that this operator is self-adjoint and compact, and hence it has a discrete real
spectrum A (W), whose only possible point of accumulation is 0. We consider A(W) as multiset.
For i > 1, let \;(W) denote the i*" largest element of the spectrum (counting multiplicities),
provided the spectrum has at least i positive elements; otherwise, let \;(W) = 0. Similarly, let
N;(W) denote the i*" smallest element of the spectrum, provided the spectrum has at least i
negative elements; otherwise, let A,(W) = 0.

It is known that for k£ > 2, the sum ), AW M\ is absolute convergent. In fact, we have

> XN =|W|3 and Y M =t(Cy, W) forallk>3. (6.4)
AEA(W) AEA(W)
It follows that Y ;" A? < ¢(C5, W), and hence
t(Cs, W)1/3
Am < B (6.5)

For a graph G with n nodes, we consider its adjacency matrix A, and its eigenvalues pq >

fo > -+ > pin,. We define its normalized eigenvalues A\; = p;/n, (i =1,...,n). Again for k > 3,

we have .
> N =1, G). (6.6)
i=1

We note that the spectrum of Wy is the normalized spectrum of GG, together with infinitely many
0’s.
The following is a generalization of Theorem B3 (ii) to weighted graphs, and also gives the

values of the limiting eigenvalues.

Theorem 6.6 Let W be a graphon, and let (G,, : m = 1,2,...) be a sequence of weighted
graphs with uniformly bounded edgeweights tending to W. Let |V(Gp)| = nm, and let \yq >
Am2 = = 2 Ay, be the normalized spectrum of G.,. Then for every ¢ > 1,

Ami = N(W) and Ny s1—i = Ni(W)  as n — oo,
We can prove a bit more:

Theorem 6.7 Let (W1, Ws,...) be a sequence of uniformly bounded graphons, converging (in
the g metric) to a graphon W. Then for every i > 1,

N(Wy) = N(W)  and N, (W,) = X(W) as n— . (6.7)
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Proof. If the conclusion does not hold, then there is an ig > 0 for which (say) \;(W,,) A X\i(W).

Choosing a suitable subsequence, we may assume that for each j > 1, the limits

py = lim A\;(W,) and  pf = lim \j(W,)

n—o0 n—oo

exist, and that p;, # X\, (W).
We claim that for every k& > 4,

7}13)102 AE(W,) — Zu?, and TLILIEOZ/\;]C(Wn) — Zu;k (6.8)
Jj=1 Jj=1 Jj=1 j=1

Indeed, the sequence t(Cs5, W,,) is convergent and hence it is bounded by some constant ¢; but then
(B3) tells us that A,,(W,) < (¢/m)'/3, and hence the sum Y AF (W) is uniformly majorized
by the convergent series Y, (¢/m)*?. Hence we can take the limit term-by-term in the sums on
the left hand side.

Using once more the convergence of t(Cy, W) to t(Cy, W) we conclude that for every k > 4,

STuE ST =AW X (W) (6.9)
j=1 j=1 j=1 j=1

To conclude, it suffices to prove that the two sums on each side are the same term-by-term:

we have

w=NW)  and W= XNW) (i >0). (6.10)

Indeed, this can be proved by induction on j. Let A; occur a times in the sequence (A1, Ag, ... )
and b times in the sequence (g1, pi2,...). Let —\; occur @’ times in the sequence (A}, A,,...)
and ¢’ times in the sequence (u), i}, ...). Assume by induction that \; = y; for ¢ < j, and that
A, = p; whenever |AJ| > A; or |ui| > A;. Subtracting the contribution of these terms from both
sides of (E1), and sending k — oo through the even numbers, the left hand side is asymptotically
(b+ b')\¥, while the right hand side is (a + a’)A¥. This implies that a +a’ = b+ V. Similarly,
letting k tend to infinity through the odd numbers, we get that a —a’ = b —b'. This implies that

a="band a =10, soin particular \; = p; as claimed. O

Let I be a bounded interval. The previous theorem then states that for all ¢ > 1, the maps
W= \(W) and W — X,(W) are continuous maps from (W, dg) to R. By the compactness of

(Wr, ), these maps are uniformly continuous, implying the following:

Corollary 6.8 For every bounded interval I, every e > 0 and every i > 1, there is a §; > 0 such
that if UW € Wy and oq(U, W) < §;, then

NO) =MW <& and [N(U) = N(W)| <.
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For the special case when the sequence (G,,) is quasirandom with density p, the largest normalized
eigenvalue of GG, tends to p, while the others tend to 0. In this special case, this statement has a
converse: if (G},) is a sequence of graphs such that the edge-density on G,, tends to p, the largest
normalized eigenvalue of G, tends to p, and all the other eigenvalues tend to 0, then (G,,) is
quasirandom.

This converse, however, does not extend to a characterization of convergent graph sequences in
any direct way. Consider two regular non-isomorphic graphs G; and G5 with the same spectrum,
say the incidence graphs of two non-isomorphic finite projective planes of the same order n.
Consider the blow ups G1(n) and Go(n), n = 1,2,..., and merge them into a single sequence.
This sequence is not convergent, but all graphs in it have the same edge density, and the spectra

of all graphs are the same except for the 0’s.

7 Quasi-inner product and non-effective arguments

There is an alternative way of expressing ground state energies, which leads to a shorter, but
non-effective proof of our main result, the equivalence of left and right convergence. Moreover
it reduces significantly the set of test graphs {(a, H)} resp. {(a, )} in Definition I resp. in
Definition 22 (see Corollary ).

The best space to work with graphons is the compact space WI (for simplicity, assume that
I = [0,1]). This space has no linear structure, and the sum U + W or inner product (U, W)
of two graphons cannot be defined in a way that would be invariant under weak isomorphism.

However, we can replace the inner product by the following version, which will be very useful:

C(U W) = sup (U W) = s / Uz, y)W (6(), 6(y)) da dy,

[0,1]2

where the supremum is taken over all measure preserving bijections ¢ : [0, 1] — [0, 1].
We can use this quasi-inner product to express ground state energies. Let a € Pd, and
J € Sym,, and let H be the weighted graph on [g] with nodeweights a and edgeweights .J. Then
for every graphon W,
Ea(W, J) =C(W,Wg). (7.1)

We can also express the cut norm with this functional as

[Wio= sup (W,1sxr) = sup C(W,1paxop)- (7.2)
S,7C0,1] a,b€[0,1]
The functional C(U, W) has many good properties. It follows just like for the cut norm in [H]
that
C(U,W) = sup(U, W?) = sup(U®, W) = sup(U°, W7), (7.3)
¢ @

o, T
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where ¢ ranges over all measure preserving bijections [0, 1] — [0, 1], and o, 7 range over all mea-
sure preserving, but not necessarily bijective maps [0, 1] — [0, 1]. Hence the overlay functional is
invariant under measure preserving transformations of the graphons U and W, i.e., it is a func-
tional on the space WI X WI. It also follows that this quantity has the (somewhat unexpected)
symmetry property C(U, W) = C(W,U), and satisfies the inequalities

(UW) <CUW) < [[U[[Wll2,  C(UW) < [[U|oo] W] (7.4)
This supports the claim that C(.,.) behaves like some kind of inner product. This analogy

is further supported by the following identity, a kind of “Cosine Theorem”, relating it to the

distance 99 derived from the Ly-norm:
20(UW) = U3 + W13 = 62(U, W)* = 65(U, 0)* + 02(W, 0)* = 02(U,W)*. (7.5)
But we have to be a bit careful: the functional C(U, W) is not bilinear, only subadditive:
CU+V,W)<CUW)+C(V,W). (7.6)
It is homogeneous for positive scalars: if A > 0, then
CAUW) =C(U W) =XC(UW), (7.7)

and C(U,W) =C(=U,—W), but C(U,W) and C(—U, W) are not related in general.
A less trivial property of this functional is that it is continuous in each variable with respect
to the dg distance. This does not follow from (IZ3), since the distance do(U, W) is not continuous

with respect to dg, only lower semicontinuous.

Lemma 7.1 If 6n(U,,U) — 0 as n — oo (U,U,, € W), then C(U,,W) — C(U,W) for every
W e W.

Proof. We may assume that ||U, — U||p — 0. By subadditivity ([Z8), we have
—CU -U,, W) <CU,W)-C(UW)<cU,—-UW),

and hence it is enough to prove that C(U,, —U,W),C(U — U,,, W) — 0. In other words, it suffices
to prove the lemma in the case when U, — U = 0.

The usual inner product (U, W) is continuous in each variable with respect to the cut
norm, which was noted e.g. in [], Lemma 2.2. Since C(U,, W) > (U,, W), it follows that
liminf, C(U,, W) > 0.

To prove the opposite inequality, we start with the case when W is a stepfunction. Write
W =>3"" ails,x7,, then using (CH) and (), we get

C(Un, W) <Y ClUn ailsinr) = Y ClaiUn, Lsixr) < Y llaiUnllo = Y il [|Unl|o:
i=1 i=1 i=1 i=1
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Since every term tends to 0, we get that limsupC(U,,, W) < 0.

Now if W is an arbitrary kernel, then for every e > 0 we can find a stepfunction W’ such
that |[W — W'||y < ¢e/2. Then C(U,,, W) — 0, and hence C(U,,, W') < £/2 if n is large enough.
But then

C(Up, W) <C(Up, W = W) + C(Up, W) < ||Up|loo|W = W'||y +£/2 < e.

This shows that lim sup,, C(U,, W) < 0, and completes the proof. O

Remark 7.2 While the functional C(U, W) is continuous in each variable, it is not continuous
as a function on Wy x W;. Let (G,,) be any quasirandom graph sequence and let W,, = U,, =
2W¢, — 1. Then U, W,, — 0 in the cut norm (and so also in 0g), but C(U,, W,,) =1 for all n.

We use the quasi-inner product to give a proof of what can be considered as the main result

in this paper, the equivalence of (ii) and (iv) in Theorem B3.

Theorem 7.3 A sequence (W,,) of graphons in Wy is convergent in the én distance if and only
if (Ea(Wh, J)) is convergent for every a € Pd, and J € Sym,.

Proof. Note that by (), (Ea(W,,J)) is convergent for every a € Pd, and J € Sym, if and
only if C(W,,, Wg) is convergent for every weighted graph H.

Suppose that W,, — W in the cut distance. We may apply measure preserving transforma-
tions so that the W,, — W in the cut norm. Then for every U € W, we have by @ and Lemma
[1, we have

C({U,W,) —Cc(UW)<CcUW,—-W)—=0,

and hence limsup, C(U,W,,) < C(U,W). Replacing U by —U shows that liminf, C(U,W,,) >
C(U,W), and hence lim,, C(U, W,,) = C(U, W). In particular, C(W,,, Wg) is convergent for every
weighted graph H.

Conversely, let (W,,) be a sequence that is not convergent in the cut distance. By the com-
pactness of the graphon space, it has two subsequences (W,,) and (W,,,) converging to dif-
ferent (not weakly isomorphic) graphons W and W’. Then there is a graphon U such that
C(W,U) # C(W' U); in fact, (3) implies

CW' W —C(W' W)+ (C(W, W) = C(W' W)) = (W' W)*> (W, W)? >0,

and so either C(W', W') % C(W,W’) or C(W, W') # C(W,W).

Suppose that C(W,U) # C(W',U), and let (Hy) be any sequence of simple graphs such that
Hj, — U in the 0g distance. Then by Lemma [, we have C(W, Wy, ) # C(W', Wy, ) if k is large
enough, and for this simple graph Hj, the sequence C(W,,, Wy, ) is not convergent. O
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The proof above is not effective: it does not provide explicit inequalities between the different
distance measures that we considered, like Theorems B3, B4, or 9. However, it has the following
corollary. Let F' be a simple graph, and let Hr be the soft-core weighted graph with V(Hpg) =
V(F) = [q], nodeweights 1 and edgeweights

e, if (i,j) € BE(F),

1, otherwise.

Bij(Hr) = {
Let u=(1/q,...,1/q) € R
Corollary 7.4 (a) A sequence (G,,) of weighted graphs is right-convergent if and only if

1
aTGnlnhomu(Gn,HF)

1s convergent for every simple graph F'.

(b) A sequence (G,) of weighted graphs has convergent microcanonical ground state energies

if and only if E4(G,, J) converges for every symmetic 0-1 matriz J with 0’s in the diagonal.
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