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Abstract

We consider sequences of graphs (Gn) and define various notions of convergence related
to these sequences including “left convergence,” defined in terms of the densities of homo-
morphisms from small graphs into Gn, and “right convergence,” defined in terms of the
densities of homomorphisms from Gn into small graphs.

We show that right convergence is equivalent to left convergence, both for simple graphs
Gn, and for graphs Gn with nontrivial nodeweights and edgeweights. Other equivalent
conditions for convergence are given in terms of fundamental notions from combinatorics,
such as maximum cuts and Szemerédi partitions, and fundamental notions from statisti-
cal physics, like energies and free energies. We thereby relate local and global properties
of graph sequences. Quantitative forms of these results express the relationships among
different measures of similarity of large graphs.
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1 Introduction

Growing sequences of graphs arise naturally in many contexts, both fundamental and applied.

How do we characterize and classify such sequences? In particular, under what conditions do

such sequences converge to something non-trivial and yet sufficiently universal to be conceptually

meaningful? A considerable part of graph theory and combinatorics in the past fifty years has

been devoted to classifying large, but finite graphs. But, surprisingly, until the work here, there

was not a general theory for sequences of dense graphs that grow without bound. This paper is

the second of two papers in which we develop a theory of convergent sequences of dense graphs;

see [3] for an announcement of some of these results.

Our theory draws heavily on perspectives and results from both combinatorics and statisti-

cal physics. We will therefore explain our results in both languages, and provide examples of

relevance to both fields.

Consider a dense sequence of simple graphs (Gn) such that the number of nodes in Gn goes

to infinity with n (where, as usual, a graph is simple if it has no loops and no multiple edges,

and dense means that the average degree grows like the number of vertices in Gn). In this paper

we will consider several natural notions of convergence for such a sequence—some motivated by

combinatorics and others by statistical physics. Our main result will be a theorem showing that

many of these notions of convergence are equivalent. These equivalences allow simple proofs of

many of the fundamental results in combinatorics, and also provide a framework for addressing

some previously unapproachable questions, see e.g. [2]. These equivalences also help to unify

central notions of combinatorics, discrete optimization, and statistical physics.

From the point of view of combinatorics, our theory can be viewed as a substantial generaliza-

tion of the theory of quasirandom graphs, which are sequences of graphs that “look like” random

graphs . Obviously, there are many ways in which one could make this precise, but interestingly,

many natural ways in which a sequence of graphs could be defined to be quasirandom turn out

to be equivalent [12, 6].

Here we prove similar equivalences for the notion of convergent graph sequences. In fact,

most of the equivalences for quasirandom graphs are immediate corollaries of the general theory

developed here and in our companion paper [4]. A notable exception is the spectral representation

of quasirandom graphs: while it turns out that convergence of the spectrum is implied by our

other conditions of convergence, it is not equivalent in our general setting. Indeed, already in

the setting of generalized quasirandom graph sequences considered in [8] neither the knowledge

of the limiting spectrum of the adjacency matrices nor the knowledge of the limiting spectrum

of the Laplacians is enough to characterize the sequences.

From the viewpoint of physics, our results show that convergence of various thermodynamic

quantities, notably microcanonical free energies or ground state energies for all so-called “soft-
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core” models, is equivalent to convergence of apparently more local graph properties, as defined

below.

1.1 Equivalent Notions of Convergence

The first notion of convergence for a sequence (Gn) we consider is what we call “left convergence”.

It was introduced in the companion of this paper [4] and is a way of characterizing a large graph

G in terms of the number of copies of a small graph F that are contained in G. Given two simple

graphs F and G, we denote the number homomorphisms from F to G by hom(F,G). Let t(F,G)

be the probability that a random map ϕ : V (F ) → V (G) is a homomorphism,

t(F,G) =
1

|V (G)||V (F )|hom(F,G), (1.1)

where V (G) and V (F ) are the set of vertices in G and F , respectively. We then called a sequence

(Gn) of simple graphs left-convergent if the “homomorphism densities” t(F,Gn) converge for all

simple graphs F .

Instead of testing a graph sequence (Gn) with homomorphisms “from the left,” i.e., with

homomorphisms from a small graph F into the graphs (Gn), one might want to test (Gn) with

homomorphisms “from the right,” i.e., one might want to consider the homomorphisms from Gn

into some small graph H. For this to be interesting, we have to work with weighted graphs, i.e.,

graphs H with nodeweights αi(H) > 0 for the nodes i ∈ V (H) and edgeweights βij(H) ∈ R for

the edges ij ∈ E(H). A simple graph can be considered as a weighted graph with all nodeweights

and edgeweights equal to 1. The homomorphism number from a simple graph G into a weighted

graph H is then defined as

hom(G,H) =
∑

ϕ:V (G)→V (H)

∏
u∈V (G)

αϕ(u)(H)
∏

uv∈E(G)

βϕ(u),ϕ(v)(H), (1.2)

where E(G) denotes the set of edges in G. We will often restrict ourselves to so-called “soft-core”

graph, i.e., complete graphs H with all loops present, strictly positive nodeweights αi(H) > 0,

and strictly positive edgeweights βij(H) = βji(H) > 0.

For soft-core graphs H, these homomorphism numbers “from the right” typically grow or fall

exponentially in the number of edges of G. Since the number of edges in a sequence of dense

graphs grows like the square of the number of nodes, it seems natural to define a sequence (Gn)

of graphs to be right-convergent if 1
|V (Gn)|2 ln hom(Gn, H) converges for every soft-core graph H.

For reasons explained below, we will call such a sequence naively right-convergent.

Naive right convergence turns out to be interesting from both a combinatorics and a statistical

physics point of view. Indeed, as we will see below, the convergence of 1
|V (Gn)|2 ln hom(Gn, H) for

a certain graph H on two nodes is equivalent to the convergence of the density of the largest cut
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in Gn; and right convergence is equivalent to the convergence of the density of the largest cut

in weighted multiway cut problems. From the viewpoint of physics, the homomorphism number

hom(G,H) is just the canonical partition function of a suitable soft-core model on the graph

G; one might therefore guess that naive right convergence corresponds to the convergence of

the free energies of these models, but due to our normalization, it actually corresponds to the

convergence of ground state energies, see Section 2.3 below.

In contrast to the notion of left convergence, which corresponds to the convergence of local

properties like the density of triangles or the density of 4-cycles, naive right convergence thus

corresponds to convergence of global properties like the density of the largest cut and the ground

state energies of suitable soft-core models. This raises the question whether the a priori quite

different notions of left- and right convergence are equivalent, the starting point of this paper.

While it turns out that left convergence is not equivalent to naive right convergence (hence

the term naive), a strengthened condition involving homomorphisms for which the number of

vertices in Gn that map onto a given i ∈ V (H) is restricted to be a given fraction of V (Gn) gives

equivalence.

In addition to left and right convergence, we consider several other natural notions of conver-

gence, all of which turn out to be equivalent. Among these notions is that of convergence in a

suitably defined metric, a concept already considered in [4]. Another one concerns partitions and

the graphs obtained from taking “quotients” with respect to these partitions. More precisely,

given a partition P = (V1, . . . , Vq) of a graph G, we define the q-quotient G/P as the weighted

graph on [q] with edgeweights βij given by the edge density between Vi and Vj (in the theory of

Szemerédi partitions, the graph G/P is often called a cluster graph). For two graphs G and G′

on at least q nodes, we may then want to know how close the sets of q-quotients of these two

graphs are. Measuring similarity in terms of Hausdorff distance, this leads to a fourth notion of

convergence, convergence of quotients.

In addition to the above four notions, we will be interested in several notions of convergence

motivated by statistical physics. We will in particular ask under which conditions on a sequence

of graphs (Gn) the ground state energies and free energies of finite spin systems defined on Gn

are convergent. We also address the same question for the so-called microcanonical ground state

energies and free energies. We will show that left convergence of (Gn) implies convergence of the

ground state energies and the free energies of all “soft-core” finite spin systems on (Gn), and we

will show that both convergence of the microcanonical ground state energies, and convergence

of the microcanonical free energies are equivalent to left-convergence.

1.2 The Limit Object

Given the equivalence of the above six notions of convergence, one might want to ask whether

a convergent sequence has a natural limit object, in terms of which the limiting homomorphism
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densities, quotients, free energies, etc. can be expressed.

We start with an example, the random graph sequence (G(n, p)), where as usual G(n, p) is

the graph on n nodes in which any two nodes are connected independently with probability p. It

is not hard to see that t(F,G(n, p)) converges to p|E(F )| with probability one. Interestingly, this

limit can be written as the homomorphism density of a finite weighted graph. Indeed, defining

the homomorphism densities of a weighted graph G with nodeweights αi(G) > 0 and βij(G) ∈ R
by

t(F,G) =
hom(F,G)

αkG
, (1.3)

where k is the number of nodes in the simple graph F , and αG =
∑

i∈V (G) αi(G) is the total

nodeweight of G, we clearly have that p|E(F )| = t(F,G0), where G0 is the graph with one node, a

loop at this node, and weight p for the loop (the node weight is irrelevant in this case, and can,

e.g., be set to 1). This raises the question of which graph sequences have a limit that can be

expressed in terms of a finite, weighted graph, which in turn leads to the notion of generalized

quasirandom graphs, studied in detail in [8].

For a left-convergent sequence of simple graphs, the limit cannot be expressed in terms of a

finite graph in general. Given that one of our equivalences is convergence in metric, one might

therefore want to define the limit in the usual abstract way by identifying sequences which are

Cauchy. But it turns out that there is a much more natural limit object in terms of measurable,

bounded, symmetric 2-variable functions, which we call graphons.

It was already observed by Frieze and Kannan [7] that functions of this form are natural

generalizations of weighted graphs (they proved a Regularity Lemma for this generalization). Of

more relevance for us is the work of Lovász and Szegedy [9], who showed that the limit points of

left-convergent graph sequences can be identified with graphons, in the sense that given a left-

convergent sequence (Gn), there exists a graphon W such that the limit of the homomorphism

densities can be expressed in terms of suitably defined homomorphism densities of W .

The notion of a graphon is useful in an even wider setting, and will, in particular, allow us to

find simple expressions for the limit objects corresponding to the various notions of convergence

considered in this paper. Moreover, most of the statements of our main theorems, Theorem 2.8

and 2.9 below, have a natural formulation for sequences of uniformly bounded graphonsWn ∈ W ,

with proofs which turn out to be much cleaner than the corresponding direct proof of these

theorems in terms of graphs. Indeed, many of the technical details of this paper concern rounding

techniques which reduce Theorem 2.8 and 2.9 to the corresponding statements for sequence of

graphons. It turns out that this approach naturally gives not only the equivalence of the above

notions for sequences of simple graphs but also for sequences of weighted graphs, see Section 2.4

for the precise statements.

The organization of this paper is as follows. In the next section, we define our main concepts
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and state our results; first for sequences of simple graphs, and then for sequences of weighted

graphs. The analogues of these concepts and results for graphons are presented in the Section 3,

and proved in Section 4. In Section 5 we give the details of the rounding procedures needed

to reduce the results of Section 2 to those of Section 3. In our final section, Section 6, we

discuss weaker notions of convergence, in particular convergence of the spectrum of the adjacency

matrices, including an example that shows that the convergence of spectra is not sufficient for

convergence from the left.

2 Convergent Sequences of Graphs

2.1 Definitions

We start by recalling the definition of left-convergence.

Definition 2.1 ([4]) A sequence (Gn) of simple graphs is called left-convergent if the homomor-

phism densities t(F,Gn) converge for all simple graphs F .

Next we formalize the definition of right-convergence in terms of homomorphism for which

the number of vertices in G that map onto a given i ∈ V (H) is restricted to be a given fraction.

To this end, we label the nodes of H as 1, . . . , q, and define Pdq to be the set of vectors a ∈ Rq

for which
∑

i ai = 1 and ai ≥ 0 for all i ∈ [q]. Given a probability distribution a ∈ Pdq, we set

Ωa(G) =
{
ϕ : V (G) → [q] :

∣∣∣|ϕ−1({i})| − ai|V (G)|
∣∣∣ ≤ 1 for all i ∈ [q]

}
. (2.1)

and define a constrained version of the homomorphism numbers by

homa(G,H) =
∑

ϕ∈Ωa(G)

∏
uv∈E(G)

βϕ(u)ϕ(v)(H). (2.2)

Note the absence of the factors αi(H) corresponding to the nodeweights. These would be es-

sentially the same for each term, and are not carried along. This quantity is natural from the

viewpoint of statistical physics: it is the microcanonical partition function on G of a model

characterized by the weights in H, at fixed “particle densities” specified by a.

Definition 2.2 A sequence (Gn) of simple graphs (Gn) is called right-convergent if

1

|V (Gn)|2
ln homa(Gn, H)

converges for every soft-core graph H and every probability distribution a on V (H), and it is

called naively right-convergent if

1

|V (Gn)|2
ln hom(Gn, H)

converges for every soft-core graph H.
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Example 2.3 (Max-Cut) Let H be the weighted graph on {1, 2} with nodeweights α1(H) =

α2(H) = 1 and edgeweights β11(H) = β22(H) = 1 and β12(H) = e (where e is the base of

the natural logarithm). The leading contributions to hom(G,H) then come from the maps

ϕ : V (G) → {1, 2} such that the bichromatic edges of ϕ form a maximal cut in G. Using the

fact that there are only 2|V (G)| mappings, we get that

maxcut(G) ≤ ln hom(G,H)

|V (G)|2
≤ maxcut(G) +

ln 2

|V (G)|
,

where maxcut(G) is the density of the largest cut, i.e., the number of edges in this cut divided

by |V (G)|2. This implies, in particular, that for a naively right-convergent sequence (Gn), the

density of the largest cut is convergent.

Next we define the metric introduced in [4]. It is derived from the so-called cut-norm, and

expresses similarity of global structure: graphs with small distance in this metric have cuts of

similar size. This is easily made precise for two simple graphs G and G′ on the same set V of

nodes, where we define

d�(G,G
′) = max

S,T⊂V

∣∣∣eG(S, T )|V |2
− eG′(S, T )

|V |2
∣∣∣,

with eG(S, T ) denoting the number of edges in G that have one endpoint in S, and one endpoint

in T (with edges in S ∩ T counted twice).

But some care is needed when G and G′ have different nodesets. Here we use the notion of

fractional overlays, see [4] for a motivation of our definition. We will give the definition in the

more general case where both G and G′ are weighted graphs.

Definition 2.4 ([4]) Let G,G′ be weighted graphs with nodeset V and V ′, respectively. For

i ∈ V and u ∈ V ′, let µi = αi(G)/αG and µ′
u = αu(G

′)/αG′ . We then define the set of fractional

overlays of G and G′ as the set X (G,G′) of probability distributions X on V × V ′ such that∑
u∈V ′

Xiu = µi for all i ∈ V and
∑
i∈V

Xiu = µ′
u for all u ∈ V ′,

and set

δ�(G,G
′) = min

X∈X (G,G′)
max

S,T⊂V×V ′

∣∣∣ ∑
(i,u)∈S
(j,v)∈T

XiuXjv

(
βij(G)− βuv(G

′)
)∣∣∣. (2.3)

One of the main results of [4], and one of the main inputs needed for this paper, is the statement

that left convergence is equivalent to convergence in the metric δ�.

Another notion of convergence which we will also show to be equivalent is the convergence

of “quotients”. The quotients of a simple graph G are defined in terms of the partitions P =

{V1, . . . , Vq} of its node set by contracting all nodes in a given group to a new node, leading to
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a weighted graph G/P on q nodes. More precisely, we define G/P as the weighted graph on [q]

with weights

αi(G/P) =
|Vi|

|V (G)|
and βij(G/P) =

eG(Vi, Vj)

|Vi| · |Vj|
. (2.4)

The quotient graph G/P thus has nodeweights proportional to the sizes of the classes in P, and

edgeweights that are equal to the edge densities between the corresponding classes of P . We

denote the set of quotients obtained by considering all possible partitions of V (G) into q classes

by Ŝq(G). Since a quotient G/P ∈ Ŝq(G) can be characterized by q+ q2 real numbers (the node-

and edgeweights of G/P), we may consider the set Ŝq(G) as a subset of Rq+q2 . It might therefore

seem natural to consider two q-quotients as close if their ℓ1 distance on Rq+q2 is small. But for

our purpose, the following distances between two weighted graphs H, H ′ on q labeled nodes are

more useful:

d1(H,H
′) =

∑
i,j∈[q]

∣∣∣αi(H)αj(H)βij(H)

(αH)2
− αi(H

′)αj(H
′)βij(H

′)

(αH′)2

∣∣∣+∑
i∈[q]

∣∣∣αi(H)

αH
− αi(H

′)

αH′

∣∣∣ (2.5)

and

d�(H,H
′) = sup

S,T⊂[q]

∣∣∣∑
i∈S
j∈T

(αi(H)αj(H)βij(H)

(αH)2
− αi(H

′)αj(H
′)βij(H

′)

(αH′)2

)∣∣∣+∑
i∈[q]

∣∣∣αi(H)

αH
− αi(H

′)

αH′

∣∣∣.
(2.6)

Let (X, d) be a metric space. As usual, the Hausdorff metric dHf on the set of subsets of X is

defined by

dHf(S, S ′) = max
{
sup
x∈S

inf
y∈S′

d(x, y), sup
x∈S′

inf
y∈S

d(x, y)
}
. (2.7)

Definition 2.5 A sequence (Gn) of simple graphs has convergent quotients if for all q ≥ 1, the

sequence of sets of quotients Ŝq(Gn) is a Cauchy sequence in the Hausdorff distance dHf
1 .

In addition to the four notions of convergence defined above, we will also consider convergence

of the free energies and ground state energies of certain models of statistical physics. The models

we will be concerned with are so-called soft-core spin systems with finite spin space. They are

defined in terms of a finite set [q] = {1, . . . , q}, a symmetric q × q matrix J with entries in R
(we denote the set of these matrices by Symq) and a vector h ∈ Rq. A “spin configuration” on

a simple graph G is then given by a map ϕ : V (G) → [q], and the energy density of such a spin

configurations is defined as

Eϕ(G, J, h) = − 1

|V (G)|
∑

u∈V (G)

hϕ(u) −
2

|V (G)|2
∑

uv∈E(G)

Jϕ(u)ϕ(v). (2.8)

Here hi has the meaning of a generalized magnetic field, describing the preference of the “spin”

ϕ(u) to be aligned with i ∈ [q], and Jij represents the strength of the interaction between the
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spin states i, j ∈ [q]. Note that we divided the second sum by |V (G)|2 to compensate for the fact

that, in a dense graph, the number of edges grows like the square of the number of nodes. Our

normalization therefore guarantees that the energy density stays bounded uniformly in the size

of V (G).

As usual, the partition function on a simple graph G is defined as

Z(G, J, h) =
∑

ϕ:V (G)→[q]

e−|V (G)|Eϕ(G,J,h), (2.9)

and the free energy and ground state energy per node are defined as

F̂(G, J, h) = − 1

|V (G)|
lnZ(G, J, h), (2.10)

and

Ê(G, J, h) = min
ϕ:V (G)→[q]

Eϕ(G, J, h), (2.11)

respectively. We will often leave out the qualifier “per node”, and refer to the quantities F̂(G, J, h)

and Ê(G, J, h) as free energy and ground state energy of the model (J, h) on G. More specifically,

J is called the coupling constant matrix, and h is called the magnetic field, and the model

(J, h) will be referred to as the soft-core model with spin state [q], coupling constant matrix J

and magnetic field h. We are also interested in the so-called microcanonical versions of these

quantities, defined as

Za(G, J) =
∑

ϕ∈Ωa(G)

exp
(
−|V (G)|Eϕ(G, J, 0)

)
, (2.12)

F̂a(G, J) = − 1

|V (G)|
lnZa(G, J) (2.13)

and

Êa(G, J) = min
ϕ∈Ωa(G)

Eϕ(G, J, 0). (2.14)

In this microcanonical version, the magnetic field h would only add a constant, and therefore we

do not consider it.

Example 2.6 (The Ising Model) The simplest model that fits into our framework is the so-

called Ising model: it has spin configurations ϕ : V (G) → {−1,+1}, and the energy density of a

spin configuration ϕ is defined as

Eϕ(G, J, h) = − 1

|V (G)|2
∑

uv∈E(G)

Kϕuϕv −
1

|V (G)|
∑

u∈V (G)

µϕu,

where K and µ are real parameters. Note that this fits into our scheme by setting Jϕ,ϕ′ =
K
2
ϕϕ′

and hϕ = µϕ.
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Definition 2.7 Let (Gn) be a sequence of simple graphs. We say that (Gn) has convergent

ground state energies and free energies if Ê(Gn, J, h) and F̂(Gn, J, h) converge for all q, all h ∈ Rq

and all J ∈ Symq, respectively. Similarly, we say that (Gn) has convergent microcanonical ground

state energies and free energies if Êa(Gn, J) and F̂a(Gn, J) converge for all q, all a ∈ Pdq and all

J ∈ Symq, respectively.

2.2 Main Results for Sequences of Simple Graphs

The main results of this paper are summarized in the following theorems, except for the results

concerning the limiting expression for the ground state energy and free energy, which require

some additional notation and are stated in Theorem 3.7 in Section 3.6 below.

Theorem 2.8 Let (Gn) be a sequence of simple graphs such that |V (Gn)| → ∞ as n → ∞.

Then the following statements are equivalent:

(i) The sequence (Gn) is left-convergent.

(ii) The sequence (Gn) is a Cauchy sequence in the metric δ�.

(iii) The quotients of (Gn) are convergent in the Hausdorff distance dHf
1 .

(iv) The sequence (Gn) is right-convergent.

(v) The microcanonical ground state energies of (Gn) are convergent.

(vi) The microcanonical free energies of (Gn) are convergent.

Conditions (i) and (ii) were shown to be equivalent in [4]. Extending Example 2.3, it is easy

to see that conditions (iv) and (v) are equivalent (see Lemma 5.7 for a quantitative relation).

Note finally that statements (iii) – (vi) implicitly contain a parameter q, referring to the number

of classes in a partition, or the number of nodes in the soft-core graph under consideration. One

might therefore ask whether the equivalence of (iii) – (vi) holds separately for each q. While this

is true for the equivalence of (iv) and (v), our proofs suggest that this is not the case for the

equivalence of (iii) and (v) or (vi).

In contrast to the notions of convergence discussed in Theorem 2.8, convergence of the energies

and free energies Ê(Gn, J, h) and F̂(Gn, J, h) (and naive right convergence) are not equivalent

to left convergence, see Example 6.3 for a counterexample. But left convergence does imply

convergence of the energies and free energies, as well as naive right convergence. It also implies

convergence of the spectrum. This is the content of our second theorem.

Theorem 2.9 Let (Gn) be a left-convergent sequence of simple graphs such that |V (Gn)| → ∞
as n→ ∞. Then the following holds:

(i) The sequence (Gn) is naively right-convergent.

(ii) The ground state energies of (Gn) are convergent.

(iii) The free energies of (Gn) are convergent

11



(iv) The spectrum of (Gn) is convergent in the sense that if λn,1 ≥ λn,2 ≥ · · · ≥ λn,|V (Gn)| are

the eigenvalues of the adjacency matrix of Gn, then |V (Gn)|−1λn,i and |V (Gn)|−1λn,|V (Gn)|+1−i

converge for all i > 0.

These theorems, as well their analogues for sequences of weighted graphs, Theorems 2.14 and

2.15 below, are proved in Section 5, except for the statement about spectra, which is proved in

Section 6.

2.3 Ground State Energies, Maximum Multiway Cuts, and Quotients

In this section, we discuss the combinatorial meaning of our results, in particular the relation

between ground state energies and generalized max-cut problems on one hand, and the relation

between ground state energies and quotients on the other.

We start with the former. To this end, we insert (2.8) into (2.11), leading to

− Ê(G, J, h) = max
ϕ:V (G)→[q]

( 1

|V (G)|
∑

u∈V (G)

hϕ(u) +
2

|V (G)|2
∑

uv∈E(G)

Jϕ(u)ϕ(v)

)
. (2.15)

Let us first consider the case of zero magnetic field. For the special case where q = 2,

Jij =
1
2
(1− δij) and h = 0, the ground state energy of this model can easily be calculated, giving

that −Ê(G, J, 0) is just equal to the density of the largest cut,

−Ê(G, J, 0) = max
S⊂V (G)

eG(S, V \ S)
|V (G)|2

.

For general q and J , we obtain a natural generalization to weighted multiway cuts. As in

Example 2.3, the solution to this weighted multiway cut problem gives a good approximation to

log hom(G,H) for general soft-core graphs H. More precisely, if βij(H) = e2Jij , then

1

|V (G)|2
ln hom(G,H) = −Ê(G, J, 0) +O

( 1

|V (G)|

)
, (2.16)

with the implicit constant in the error term depending on the nodeweights of H, see Lemma 5.7

below. As a consequence, naive right convergence is equivalent to convergence of the ground

state energies for models without magnetic fields.

Turning to non-zero magnetic fields, even the simplest case q = 2 and Jij =
1
2
(1− δij) leads

to a problem which, while quite natural from a combinatorial point of view, to our knowledge

has not been studied in the literature. Taking, e.g., hi = µδi1 with µ ∈ R, we get the following

generalization of the standard max-cut problem:

−Ê(G, J, h) = max
S⊂V (G)

(eG(S, V \ S)
|V (G)|2

+ µ
|S|

|V (G)|

)
.

12



This problem interpolates, to some extent, between the standard max-cut problem (where the

size of S is ignored) and the max-bisection problem (where the size of S is prescribed exactly).

We will call it the “biased max-cut problem”, and the generalization to arbitrary q, J and h the

“biased weighted multiway cut problem”.

Considering finally the microcanonical ground state energies,

− Êa(G, J) =
2

|V (G)|2
max

ϕ∈Ωa(G)

∑
uv∈E(G)

Jϕ(u)ϕ(v), (2.17)

we are faced with a multiway max-cut problem where the number of vertices in ϕ−1({i}) is

constrained to be approximately equal to ai|V (G)|.

Remark 2.10 If we leave out the convergence of microcanonical free energies, whose combina-

torial significance is less clear, the theorems proved in this paper (together with Example 6.3

below) lead to the following interesting hierarchy of max-cut problems: the weakest form of con-

vergence is that of naive right convergence, which is equivalent to the convergence of the density

of the largest weighted multiway cut (ground state energies with zero magnetic field). The next

strongest notion is that of convergence of biased weighted multiway cuts (ground state energies

with non-zero magnetic field). The strongest is that of convergence of the weighted multiway

cuts with prescribed proportions for the different parts of the cut (microcanonical ground state

energies). The remaining notions of convergence (left convergence, convergence in metric, con-

vergence of quotients, and right convergence) are equivalent to the convergence of the weighted

multiway cuts with arbitrary prescribed proportions.

Turning finally to the relation between quotients and ground state energies, let us note that

any map ϕ contributing to the right hand side of (2.15) defines a partition P = (V1, . . . , Vq) of

V (G): just set Vi = ϕ−1({i}). As a consequence, we can rewrite Ê(G, J, h) as

Ê(G, J, h) = − max
H∈Ŝq(G)

( q∑
i=1

αi(H)hi +

q∑
i,j=1

αi(H)αj(H)βij(H)Jij

)
. (2.18)

This relation shows that the consideration of quotients is quite natural when analyzing weighted

multiway cut problems (a.k.a. ground state energies). It also immediately gives that convergence

of quotients implies convergence of the ground state energies. The corresponding relation for the

microcanonical ground state energies is more complicated due to the fact that a quotient H

contributing to Ea(G, J) has nodeweights which are only approximately equal to the entries of a.

Remark 2.11 Together with the concept of the cut-metric introduced in (2.3), quotients also

allow for a very concise formulation of Szemerédi’s Regularity Lemma [13], at least in its weak

form of Frieze and Kannan [7]. In this formulation, the Weak Regularity Lemma states that

given ε > 0 and any simple graph G, we can find a q ≤ 41/ε
2
and a quotient H ∈ Ŝq(G) such

that δ�(G,H) ≤ ε, see [4] for details.
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2.4 Extension to Weighted Graphs

Although Theorem 2.8 and 2.9 are stated for simple graphs, it turns out that the proofs of most

of these statements hold more generally, namely for any sequence (Gn) of weighted graphs such

that (Gn) has uniformly bounded edgeweights and no dominant nodeweights in the sense that

αmax(Gn)

αGn
→ 0 as n→ ∞, (2.19)

where αmax(G) = maxi∈V (G) αi(G).

We use the symbols α(G) and β(G) to denote the vector of nodeweights and the ma-

trix of edgeweights of a weighted graph G. Recall that αG =
∑

i αi(G), and set αmin(G) =

mini∈V (G) αi(G) and βmax(G) = maxij∈E(G) |βij(G)|. We say that a sequence (Gn) has uniformly

bounded edgeweights if supn βmax(Gn) <∞.

We generalize the homomorphism numbers hom(G,H) to the case where both G and H are

weighted. Assume thus that H is soft-core, with

αi(H) = ehi and βij(H) = e2Jij , (2.20)

and that G is a general weighted graph. Setting βuv(G) = 0 if uv is not an edge in G, we then

define

hom(G,H) =
∑

ϕ:V (G)→V (H)

exp
( ∑
u∈V (G)

αu(G)hϕ(u) +
∑

u,v∈V (G)

αu(G)αv(G)βuv(G)Jϕ(u)ϕ(v)

)
, (2.21)

an expression which reduces to (1.2) if G is simple.

Remark 2.12 This notation allows us to express partition functions as homomorphism numbers

of weighted graphs: For every simple graph G

Z(G, J, h) = hom(G′, H),

where G′ is obtained from G by weighting its edges by 1/|V (G)|.

Recall that we defined the metric δ� for general weighted graphs. Let H be a soft-core graph

with nodeset [q], and let a ∈ Pdq. For a weighted graph G, we then set

Ωa(G) =
{
ϕ : V (G) → [q] :

∣∣∣ ∑
u∈ϕ−1({i})

αu(G)− aiαG

∣∣∣ ≤ αmax(G)
}
, (2.22)

and define

homa(G,H) =
∑

ϕ∈Ωa(G)

exp
( ∑
u,v∈V (G)

αu(G)αv(G)βuv(G)Jϕ(u)ϕ(v)

)
, (2.23)

where J is again related to the edgeweights of H by (2.20).
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To generalize the notion of quotients to a weighted graph G, let us again consider a partition

P = (V1, . . . , Vq) of the nodeset of G. We then define the quotient G/P to be the weighted graph

with nodeset [q] and weights

αi(G/P) =
αG[Vi]

αG
and βij(G/P) =

∑
u∈Vi
v∈Vj

αu(G)αv(G)βuv(G)

αG[Vi]αG[Vj ]

, (2.24)

where αG[Vi] =
∑

u∈Vi αu(G) is the total weight of the partition class Vi. As before, we call G/P
a q-quotient of G if P is a partition of V (G) into q classes, and denote the set of q-quotients of

a given graph G by Ŝq(G).
To define a soft-core spin model on G, let [q] = {1, . . . , q}, let h ∈ Rq, let J be a symmetric

q× q matrix with entries in R, and let ϕ : V (G) → [q]. We then generalize the definition (2.8) to

Eϕ(G, J, h) = −
∑

u∈V (G)

αu(G)

αG
hϕ(u) −

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

Jϕ(u)ϕ(v). (2.25)

The partition function, free energy, and ground state energy of the model (J, h) on the weighted

graph G are then defined in the same way as in the unweighted case, see equations (2.9), (2.10)

and (2.11). Similarly, the microcanonical partition functions, free energies and ground state

energies on a weighted graph G are again defined by (2.12), (2.13) and (2.14). Note by definition,

the energies (2.25), and hence also the partition functions, free energies and ground state energies,

are invariant under rescaling of the nodeweights of G.

Example 2.13 (The Inhomogeneous Ising Model) Recall the Ising model from Exam-

ple 2.6, with spin space {−1,+1}, coupling constants Jϕ,ϕ′ =
K
2
ϕϕ′ and magnetic fields hϕ = µϕ.

When defined on a simple graph, it is often called a “homogeneous model” because the coupling

constants and magnetic fields are constant. But if we take the graph G to be weighted with

edgeweights βuv(G) (but still unit nodeweights), the model becomes an “inhomogeneous Ising

model,” with energy density

Eϕ(G, J,H) = − 1

|V (G)|2
∑

uv∈E(G)

Kuvϕuϕv −
1

|V (G)|
∑

u∈V (G)

µϕu,

where the coupling constants, Kuv = Kβuv(G), represent variations due to inhomogeneities in

the underlying crystal structure.

Just as for simple graphs, a sequence (Gn) of weighted graphs with uniformly bounded

edgeweights is called left-convergent if t(F,Gn) converges for every simple graph F . A sequence

(Gn) of weighted graphs is called right-convergent if

ln homa(Gn, H)

α2
Gn
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converges for every soft-core graph H and every probability distribution a on V (H), and it is

called naively right-convergent if
ln hom(Gn, H)

α2
Gn

converges for every soft-core graph H.

The following theorems generalize Theorems 2.8 and 2.9 to weighted graphs.

Theorem 2.14 Let (Gn) be a sequence with uniformly bounded edgeweights and no dominant

nodeweights. Then the following statements are equivalent:

(i) The sequence (Gn) is left-convergent.

(ii) The sequence (Gn) is a Cauchy sequence in the metric δ�.

(iii) The quotients of (Gn) are convergent in the Hausdorff distance dHf
1 .

(v) The microcanonical ground state energies of (Gn) are convergent.

If in addition α2
Gn
/|V (Gn)| → ∞, then the following is also equivalent to the statements

above:

(iv) The sequence (Gn) is right-convergent.

If the assumption of no dominant nodeweights is replaced by the stronger assumption that all

nodes have weight one and |V (Gn)| → ∞, then the following is also equivalent:

(vi) The microcanonical free energies of (Gn) are convergent.

Theorem 2.15 Let (Gn) be a left-convergent sequence of weighted graphs with uniformly bounded

edgeweights. Then:

(i) If (Gn) has no dominant nodeweights and α2
Gn
/|V (Gn)| → ∞, then the sequence (Gn) is

naively right-convergent.

(ii) If (Gn) has no dominant nodeweights, then the ground state energies of (Gn) are conver-

gent.

(iii) If all nodes have weight one and |V (Gn)| → ∞, then the free energies of (Gn) are

convergent.

(iv) The spectrum of (Gn) is convergent in the sense that if λn,1 ≥ λn,2 ≥ · · · ≥ λn,|V (Gn)| are

the eigenvalues of the adjacency matrix of Gn, then |V (Gn)|−1λn,i and |V (Gn)|−1λn,|V (Gn)|+1−i

converge for all i > 0.

As pointed out earlier, the equivalence of the first two statements in Theorem 2.14 was proved

in the first part of this paper [4]. Here our main focus is on establishing the equivalence of

convergence in metric with the other notions of convergence, i.e., the equivalence of (ii) through

(vi). Let us note that the additional condition needed for the equivalence of (vi) with the

remaining statements is not merely a technical condition. In fact, not all left-convergent sequences

of graphs lead to convergent microcanonical free energies if we allow non-constant nodeweights,

see Example 6.4 in Section 6.
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Remark 2.16 The reader may notice that none of our theorems assumed that the sequence (Gn)

is dense (in the sense that the edge density 1
α2
G

∑
u,v∈V (Gn)

αu(Gn)αv(Gn)βuv(Gn) is bounded from

below by a constant). That does not mean, however, that our theorems say very much for non-

dense sequences. Indeed, if the edge density of Gn tends to zero, then most of the statements

of the theorem become trivial: the ground state energies and free energies, as well as their

microcanonical counterparts tend to zero, the homomorphism density t(F,Gn) of every simple

graph tends to zero, etc.

A similar remark applies to disordered spin systems: while our results for the free energies

require that the nodeweights are one, they do not require that βuv(Gn) has a definite sign. But

if 1
|V (Gn)|2

∑
u,v∈V (Gn)

βuv(Gn) tends to zero (which will happen with probability one if, e.g., βuv

is chosen i.i.d. from {−1,+1}), then the limiting free energies are zero as well. This is due to

the fact that we have chosen the ferromagnetic normalization |V (Gn)|−2 for the energy Eϕ per

node, rather than the “spin-glass” normalization |V (Gn)|−3/2.

Remark 2.17 Let H be a soft-core graph on q nodes, and let a ∈ Pdq. Extending Example 2.3,

it is easy to see
ln homa(G,H)

α2
G

= −Êa(G, J) +O
( |V (Gn)|

α2
G

)
,

with J given by (2.20) (see Lemma 5.7 for a quantitative relation). This shows why right-

convergence is equivalent to the convergence of the microcanonical ground state energies if

α2
Gn
/|V (Gn)| → ∞.

On the other hand, if we consider sequences (Gn) with α
2
Gn
/|V (Gn)| → c for some c ∈ (0,∞),

then
ln homa(G,H)

α2
G

= −1

c
F̂a(G, cJ) + o(1),

and right-convergence becomes equivalent to the convergence of the microcanonical free energies.

The least interesting case is the case α2
Gn
/|V (Gn)| → 0. In this case,

ln homa(G,H)

|V (Gn)|
= log q + o(1).

and the homomorphism numbers homa(G,H) do not contain any interesting information about

Gn as n→ ∞.

3 Convergent Sequences of Graphons

In this section, we discuss the generalization of the concepts and results of the last section to

graphons, already mentioned in Section 1.

Definition 3.1 A graphon is a bounded measurable function W : [0, 1]2 → R which is symmet-

ric, i.e., W (x, y) =W (y, x) for all (x, y) ∈ [0, 1]2.
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We denote the subset of graphons with values in some bounded interval I by WI .

3.1 Graphons as Limits of Left-Convergent Graph Sequences

Let W ∈ W , and let F be a simple graph with V (F ) = {1, . . . , k}. Following [9], we then define

the homomorphism density of W as

t(F,W ) =

∫
[0,1]k

∏
ij∈E(F )

W (xi, xj) dx. (3.1)

It is not hard to see that this definition extends the definition of homomorphism densities from

graphs to graphons. Indeed, let G be a weighted graph on n nodes, and let I1, . . . , In be consec-

utive intervals in [0, 1] of lengths α1(G)/αG, . . . , αn(G)/αG, respectively. We then define WG to

be the step function which is constant on sets of the form Iu × Iv, with

WG(x, y) = βuv(G) if (x, y) ∈ Iu × Iv. (3.2)

Informally, we consider the adjacency matrix of G, and replace each entry (u, v) by a square of

size αu(G)αv(G)/α
2
G with the constant function βuv on this square. With the above definitions,

we have that t(F,G) = t(F,WG).

Let (Gn) be a sequence of weighted graphs and W , a graphon. We say that Gn → W if

t(F,Gn) → t(F,W ) for every simple graph F . Generalizing the results of [9] to weighted graphs

the following was shown in [4]:

Theorem 3.2 For every left-convergent sequence (Gn) of weighted graphs with uniformly

bounded edgeweights there exists a W ∈ W such that Gn → W . Conversely, for every W ∈ W
there exists a sequence (Gn) of weighted graphs with uniformly bounded edgeweights such that

Gn → W .

3.2 The Metric Space of Graphons

We will need several norms on the space of graphons. In addition to the standard L∞, L1 and L2

norms of a graphonW (denoted by ∥W∥∞, ∥W∥1, and ∥W∥2 respectively), we need the cut-norm

introduced in [7]. It is defined by

∥W∥� = sup
S,T⊂[0,1]

∣∣∣∫
S×T

W (x, y)dxdy
∣∣∣,

where the supremum goes over measurable subsets of [0, 1].

There are several equivalent ways of generalizing the definition of the distance δ� to graphons,

see [4]. Here, we define the cut-distance of two graphons by

δ�(U,W ) = inf
ϕ
∥U −W ϕ∥� (3.3)
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where the infimum goes over all invertible maps ϕ : [0, 1] → [0, 1] such that both ϕ and its

image are measure preserving, and W ϕ is defined by W ϕ(x, y) = W (ϕ(x), ϕ(y)). It is not hard

to show that this distance indeed extends the distance of weighted graphs, in the sense that

δ�(G,G
′) = δ�(WG,WG′) where WG is the step function defined in (3.2). We will use the

notation δ�(G,W ) = δ�(WG,W ) for a weighted graph G and graphon W .

Similar construction can be applied to the Lp norm on W , and we can define distance

δp(U,W ) = infϕ ∥U − W ϕ∥p. (We will need this construction only near the end of the paper

for p = 2.)

It is not hard to check that δ� satisfies the triangle inequality, so after identifying graphons

with distance zero, the space (W , δ�) becomes a metric space, denoted by W̃ . The subspace

corresponding to the graphons in WI will be denoted by W̃I . It was shown in [10] that the space

W̃[0,1] is compact. This immediately implies that for any bounded interval I, the metric space

W̃I is compact as well.

One of the main results of our companion paper [4] is the following theorem.

Theorem 3.3 ([4]) Let I be a bounded interval, and let (Wn) be a sequence of graphons with

values in I.

(i) t(F,Wn) is convergent for all simple graphs F if and only if (Wn) is a Cauchy sequence

in the metric δ�.

(ii) Let W be an arbitrary graphon. Then t(F,Wn) → t(F,W ) for all simple graphs F if and

only if δ�(Wn,W ) → 0.

In particular, it follows that Gn → W if and only if δ�(WGn ,W ) → 0. We call two graphons

W and W ′ weakly isomorphic if t(F,W ) = t(F,W ′) for every simple graph F . It follows from

Theorem 3.3 that this is equivalent to δ�(W,W
′) = 0. The results of [5] imply a further equivalent

condition: there exists a third graphon U such that W = Uϕ and W ′ = Uψ for two measure-

preserving functions ϕ, ψ : [0, 1] → [0, 1].

By the compactness of W̃I , any Cauchy sequence of graphons Wn ∈ WI has a limit W ∈ WI ,

but this does not guarantee uniqueness. Indeed, every graphon weakly isomorphic to W could

serve as the limit graphon. It follows from the discussion above that this covers all the non-

uniqueness, in other words, the limit is unique as an element of W̃I .

3.3 Quotients and Approximations by Step Functions

We call a function W : [0, 1]2 → [0, 1] a step function, if [0, 1] has a partition {S1, . . . , Sk} into

a finite number of measurable sets, such that W is constant on every product set Si × Sj. It

can be seen that every step function is at cut-distance zero from WG for some finite, weighted

graph G. Graphons, as limits of finite graphs, can thus be approximated by step functions in
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the cut-distance. One way to find such an approximation is as follows: Given a graphon W ∈ W
and a partition P = (V1, . . . , Vq) of [0, 1] into measurable sets, we define a finite, weighted graph

W/P on [q] by setting

αi(W/P) = λ(Vi), and βij(W/P) =
1

λ(Vi)λ(Vj)

∫
Vi×Vj

W (x, y) dx dy

(if λ(Vi)λ(Vj) = 0, we define βij(W/P) = 0), and the corresponding function WP by

WP(x, y) =

q∑
i,j=1

βij(W/P)1x∈Vi1y∈Vj . (3.4)

We call the graph W/P a q-quotient of W , and use Ŝq(W ) to denote the set of all q-quotients of

W .

It is not hard to check that the averaging operation W 7→ WP is contractive with respect to

the norms ∥ · ∥1, ∥ · ∥2 and ∥ · ∥� on W ,

∥WP∥1 ≤ ∥W∥1, ∥WP∥2 ≤ ∥W∥2 and ∥WP∥� ≤ ∥W∥�. (3.5)

The following theorem is an extension of the Weak Regularity Lemma [7] from graphs to

graphons and states that every graphon can be well approximated by a step function.

Theorem 3.4 Let U ∈ W and k ≥ 1.

(i) There exists a partition P of [0, 1] into at most k measurable parts such that

∥U − UP∥� <

√
2

log2 k
∥U∥2.

(ii) There exists a q ≤ k and a quotient H ∈ Ŝq(U) such that

δ�(U,H) <

√
2

log2 k
∥U∥2.

The first statement of the theorem gives an approximation of a graphon by step functions

and is essentially due to Frieze and Kannan [7]. Indeed, with a slightly worse constant, it follows

from Theorem 12 of [7]. In the above form, the first statement of the theorem is proved in

Section 4.4.2 below. The second statement gives an approximation by a finite, weighted graph,

a factor U/P ∈ Ŝq(U), and can easily be seen to be equivalent to the first. Stronger versions of

the regularity lemma for graphons, in particular a version of the original Szemerédi lemma, can

be found in [9, 10].

We will also need a fractional version of q-quotients with which it will be easier to work.

First, a fractional partition of a set [0, 1] into q classes (briefly, a fractional q-partition) is a
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q-tuple of measurable functions ρ1, . . . , ρq : [0, 1] → [0, 1] such that for all x ∈ [0, 1], we have

ρ1(x) + · · ·+ ρq(x) = 1. Given a fractional q-partition ρ = (ρ1, . . . , ρq) of [0, 1], we then set

αi(ρ) =

∫ 1

0

ρi(x)dx

and define U/ρ to be the weighted graph on [q] with weights

αi(U/ρ) = αi(ρ) and βij(U/ρ) =
1

αi(ρ)αj(ρ)

∫
[0,1]2

ρi(x)ρj(y)U(x, y) dx dy. (3.6)

If αi(ρ)αj(ρ) = 0, we set βij(U/ρ) = 0. We call U/ρ a fractional q-quotient of U and denote the

set of these fractional q-quotients by Sq(U).

3.4 Energy, Entropy and Free Energy

Recall the definition (2.8) of the energy density of spin configuration ϕ : V (G) → [q] on a

simple graph G. Such a spin configuration defines a partition P = (V1, . . . , Vq) of V (G) via

Vi = ϕ−1({i}). In terms of this partition, we can rewrite the energy of the configuration ϕ as

Eϕ(G, J, h) = − 1

|V (G)|
∑
i

hi
∑

u∈V (G)

1u∈Vi −
1

|V (G)|2
∑
i,j

Jij
∑

u,v∈V (G)

1u∈Vi1v∈Vj1uv∈E(G).

Our attempt to generalize this form to graphons leads to the following definitions: Given a

graphon W , an integer q ≥ 1, a matrix J ∈ Symq and a vector h ∈ Rq, we define the energy of a

fractional q-partition ρ of [0, 1] as

Eρ(W,J, h) = −
∑
i

hi

∫
[0,1]

ρi(x) dx−
∑
i,j

Jij

∫
[0,1]2

ρi(x)ρj(y)W (x, y) dx dy. (3.7)

The ground state energy of the model (J, h) on W is then defined as

E(W,J, h) = inf
ρ
Eρ(W,J, h), (3.8)

where the infimum runs over all fractional q-partitions of [0, 1]. The most important energy

measure for us will be the microcanonical ground state energy, given by

Ea(W,J) = inf
ρ:α(ρ)=a

Eρ(W,J, 0), (3.9)

where the infimum now runs over all fractional q-partitions [0, 1] such that α(ρ) = a. Note that

E(W,J, h) = inf
a∈Pdq

(
Ea(W,J)−

∑
i

aihi

)
. (3.10)
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As we will see in Theorem 3.7, the definitions (3.8) and (3.9) are not only natural analogues of

the corresponding definitions for finite graphs, but they are also the correct limiting expressions

of the ground state energies of convergent graphs sequences.

The definition of the free energy of graphs ((2.10) and (2.13)) does not carry over to graphons

in a direct way. In fact, there is no natural notion of homomorphism numbers from a graphon

W into a finite graph H, which is related to the fact that hom(G,H) is not invariant under

blow ups of its first argument (where, as usual, the blow up of a weighted graph G on n nodes

is the graph G[k] on kn nodes labeled by pairs iu, i ∈ V (G), u = 1, . . . , k, with edgeweights

βiu,jv(G[k]) = βij(G) and nodeweights αiu(G[k]) = αi(G)). To circumvent this difficulty, we

define the free energy of a graphonW by a variational formula involving the entropy of a fractional

q-partition ρ of [0, 1],

Ent(ρ) =

∫ 1

0

Ent(ρ(x)) dx with Ent(ρ(x)) = −
q∑
i=1

ρi(x) ln ρi(x). (3.11)

In terms of this entropy we define the free energy of the model (J, h) on W as

F(W,J, h) = inf
ρ

(
Eρ(W,J, h)− Ent(ρ)

)
, (3.12)

where the infimum again runs over all fractional q-partitions of [0, 1]. The microcanonical free

energy is defined analogously:

Fa(W,J) = inf
ρ:α(ρ)=a

(
Eρ(W,J, 0)− Ent(ρ)

)
(3.13)

where the infimum again runs over all fractional q-partitions of [0, 1] such that α(ρ) = a. Note

that again

F(W,J, h) = inf
a∈Pdq

(
Fa(W,J)−

∑
i

aihi

)
. (3.14)

While the definitions (3.12) and (3.13) may seem unintuitive from a mathematical point of view,

they are quite natural from a physics point of view. Ultimately, the most convincing justification

for these definitions is again given by our results, which prove that the limiting expressions of

the free energies of a convergent sequence of graphs are given by (3.12) and (3.13).

3.5 Equivalent Notions of Convergence

Next we state the graphon version of the main result of this paper, Theorem 2.8. It gives several

equivalent properties characterizing convergence in the space of graphons.

Theorem 3.5 Let I be a bounded interval, and let (Wn) be a sequence of graphons in WI . Then

the following statements are equivalent.
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(i) For all simple graphs F , the sequence of homomorphism densities t(F,Wn) is convergent.

(ii) (Wn) is a Cauchy sequence in the cut-metric δ�.

(iii) For every q ≥ 1, the sequence (Sq(Wn)) is Cauchy in the Hausdorff distance dHf
1 .

(iv) The sequence (Ea(Wn, J)) is convergent for all q ≥ 1, all a ∈ Pdq, and all J ∈ Symq.

(v) The sequence (Fa(Wn, J)) is convergent for all q ≥ 1, all a ∈ Pdq, and all J ∈ Symq.

The reader may notice that the analogue of statement (iv) of Theorem 2.8, i.e., right conver-

gence of the sequence (Wn), is missing in the above theorem. This is because there is no natural

notion of homomorphism numbers from a graphon W into a finite graph H, as explained above.

Condition (iv) here corresponds to condition (v) in Theorem 2.8, which (as remarked earlier) is

easily seen to be equivalent to condition (iv) in Theorem 2.8.

Finally, taking into account the representations (3.10) and (3.14), we immediately get the

following corollary of Theorem 3.5.

Corollary 3.6 Let I be a bounded interval, and let (Wn) be a sequence of graphons in WI . If

t(F,Wn) → t(F,W ) for some W ∈ W and all simple graphs F , then E(Wn, J, h) → E(W,J, h)
and F(Wn, J, h) → F(W,J, h) for all q ≥ 1, h ∈ Rq, and J ∈ Symq.

By this corollary, the convergence of the energies E(Wn, J, h) and free energies F(Wn, J, h) is

necessary for the convergence of the homomorphism densities t(F,Wn), but it is not sufficient. In

fact, it is not that hard to construct two graphonsW andW ′ which have different homomorphism

densities, but for which E(W,J, h) = E(W ′, J, h) and F(W,J, h) = F(W ′, J, h) for all q ≥ 1,

h ∈ Rq, and J ∈ Symq, see Example 6.1 in Section 6 below.

3.6 Limit Expressions for Convergent Sequences of Graphs

Our next theorem states that the limiting quantities referred to in Theorems 2.14 and 2.15 are

equal to the corresponding objects defined for graphons.

Theorem 3.7 Let W ∈ W, and let Gn be a sequence of weighted graphs with uniformly bounded

edgeweights, and no dominant nodeweights. Let F be a simple graph, let q ≥ 1, a ∈ Pdq, and

J ∈ Symq, and let H be a soft-core weighted graph with βij(H) = e2Jij . If δ�(Gn,W ) → 0, then

t(F,Gn) → t(F,W )

dHf
1 (Ŝq(Gn), Ŝq(W )) → 0

Êa(Gn, J) → Ea(W,J)

Ê(Gn, J, h) → E(W,J, h).
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If, in addition, α2
Gn
/|V (Gn)| → ∞, then

− 1

α2
Gn

ln homa(Gn, H) → Ea(W,J)

− 1

α2
Gn

ln hom(Gn, H) → E(W,J, 0).

If, in addition, all nodes in Gn have weight one, then

F̂a(Gn, J) → Fa(W,J)

F̂(Gn, J, h) → F(W,J, h).

We illustrate the last theorem and the expression (3.12) for the limiting free energy in a few

simple examples: first the standard ferromagnetic Ising model on a general convergent sequence

of simple graphs, next the particularly simple special case in which the convergent sequence

is just a sequence of complete graphs, and finally an example of a so-called disordered Ising

ferromagnet. We end this section with a general result on the free energy of disordered spin

systems.

Example 3.8 (Ising Model on Convergent Graphs Sequences) Consider the inhomoge-

neous Ising model of Example 2.13 with K > 0 (called the ferromagnetic Ising model), and

assume that Gn is a sequence of simple graphs such that Gn → W from the left. By Theo-

rems 3.3 and 3.7, the free energy F̂(Gn, J, h) converges to the free energy F(W,J, h) defined in

(3.12). Expressing the fractional partitions ρ±(x) as
1
2
(1±m(x)), we rewrite this expression as

F(W,J, h) = inf
m:[0,1]→[−1,1]

(
−K

2

∫
W (x, y)m(x)m(y)dxdy − µ

∫
m(x)dx

+

∫
1

2
(1 +m(x)) ln

(1
2
(1 +m(x))

)
+

∫
1

2
(1−m(x)) ln

(1
2
(1−m(x))

))
,

where the infimum goes over all measurable functions m : [0, 1] → [−1, 1].

Example 3.9 (Curie-Weiss Model) Next we specialize to the case where Gn = Kn, the com-

plete graph on n nodes. In the physics literature, the Ising model on this graph is known as the

mean-field Ising model, or as the Curie-Weiss model. For the complete graph, the frequencies

t(·, Kn) are easily calculated: t(F,Kn) = 1 + O(1/n), implying that Kn converges to the con-

stant function 1 from the left. By Theorems 3.3 and 3.7, the free energies F̂(Kn, J, h) therefore

converge to

F(1, J, h) = inf
m∈[−1,1]

(
−K

2
m2 − µm+

1 +m

2
ln(1 +m) +

1−m

2
ln(1−m)

)
− ln 2.
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It is not hard to see that the infimum is in fact a minimum, and that the minimizer obeys the

equation

m = tanh(Km+ µ),

which is the well know mean-field equation for the “order parameter”m. For µ = 0, this equation

has either one or three solutions, depending on whether K ≤ 1 or K > 1. The largest solution,

M(K) = max{m : m = tanh(Km)},

is called the magnetization, and both m = M(K) and m = −M(K) are minimizers for the free

energy. It is not hard to see that M(K) = 0 for K ∈ [0, 1], and that for K > 1, the function

K 7→ M(K, 0) is real analytic function which takes values that lie strictly between 0 and 1. As

a consequence, the free energy in zero magnetic field, F(1, K, 0) is an analytic function of K on

both (0, 1) and (1,∞), with a singularity (called a phase transition) at K = 1, and

F(1, J, 0) = − ln 2 if K ≤ 1 and F(1, J, 0) < − ln 2 if K > 1.

We will use this fact later to give a counterexample showing that not all left-convergent sequences

of graphs lead to convergent microcanonical free energies if we allow non-constant nodeweights.

The function m(x) in Example 3.8 is the inhomogeneous analogue of this order parameter

m, and more generally, the fractional partitions ρi(x) in (3.12) represent inhomogeneous order

parameters for a soft-core spin system with spin space [q].

Example 3.10 (Disordered Ising Ferromagnets) Our next example concerns the Ising

model on a simple graph G with non-constant coupling constants. Writing the varying cou-

pling constants as Kβuv, this can clearly be modeled in our framework by moving from the

simple graph G to a weighted graph G′ with nodeweights one and edgeweights βuv(G
′) = βuv.

To be specific, let us assume that the weights βuv are chosen i.i.d. from some probability dis-

tribution with bounded support and expectation β̄. It is quite easy to show that whenever the

original sequence Gn is left-convergent with Gn → W , then the sequence G′
n is left-convergent

with probability one and G′
n → β̄W . Thus

F̂(G′
n, J, h) → F(β̄W, J, h) = F(W, β̄J, h) with probability 1.

In order to interpret this result, let us first consider the case where the distribution of βuv is

symmetric and β̄ = 0. This represents a so-called spin-glass, and our result only expresses

the well-known fact that, with the normalization chosen in equations (2.8) and (2.9), the free

energy of a spin glass is zero. For nontrivial results in spin glasses, one would need to scale

Jϕ(u)ϕ(v) by 1/
√
|V (G)| rather than 1/|V (G)|. If β̄ is positive, the model describes a so-called

disordered ferromagnet, and the above identity expresses the fact that, provided that the coupling
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asymmetry is strong enough, a disordered ferromagnet on a sequence of dense graphs has the

same thermodynamic limit as a homogeneous ferromagnet on the same graph sequence, except

for a rescaling of the coupling constant.

As our next proposition shows, the above result holds for arbitrary soft-core spin systems

with finite spin space.

Proposition 3.11 Let (Gn) be a sequence of simple graphs, and let (G′
n) be a sequence of

weighted graphs with V (G′
n) = V (Gn), E(G

′
n) = E(Gn), nodeweights one, and edgeweights

βuv(G
′
n) = X

(n)
uv , where X

(n)
uv are real valued i.i.d. random variables with compact support and

expectation β̄. Let q ≥ 1, h ∈ Rq, J ∈ Symq, and assume that F̂(Gn, β̄J, h) converges as n→ ∞.

Then F̂(G′
n, J, h) converges with probability one, and

lim
n→∞

F̂(G′
n, J, h) = lim

n→∞
F̂(Gn, β̄J, h) with probability 1.

Note that the proposition only requires that F̂(Gn, β̄J, h) is convergent, a condition which is

weaker than left convergence of the original sequence (Gn).

The proof of the proposition gives a similar statement for an arbitrary function from the set

of graphs into R which is invariant under graph isomorphisms and continuous with respect to the

cut-metric. As a consequence, an analogue of the above proposition holds, e.g., for the ground

state energies Ê(G′
n, J, h).

4 Proof of Theorem 3.5

The equivalence of (i) and (ii) was proved in [4]. In fact, the following quantitative form is true

((a) was proved in [9] and (b) was proved in [4]).

Theorem 4.1 Let U,W ∈ W and C = max{1, ∥W∥∞, ∥U∥∞}.
(a) Let F be a simple graph, then

|t(F,U)− t(F,W )| ≤ 4|E(F )|C |E(F )|−1δ�(U,W ).

(b) Suppose that for some k ≥ 1,

|t(F,U)− t(F,W )| ≤ 3−k
2

for every simple graph F on k nodes. Then

δ�(U,W ) ≤ 22C√
log2 k

.

This theorem should motivate the rest of the section, where we prove quantitative forms of the

main implications among (ii)–(v). We start with some preliminaries.
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4.1 Preliminaries

4.1.1 More on Distances for Weighted Graphs

Recall that the q-quotients of a graphon U are weighted graphs on q nodes with total nodeweight

one. We will often identify these weighted graphs with a point (a, X) ∈ Rq+q2 , where a ∈ Rq

is the vector of nodeweights, and X ∈ Symq is the matrix of edgeweights of the quotient under

consideration.

To work with quotients, we will use several different distances on weighted graphs. In addition

to the distances d1 and d� introduced in (2.5) and (2.6), we use the ℓ2-norm of a weighted graph

H,

∥H∥2 = ∥WH∥2 =

 ∑
i,j∈V (H)

αi(H)αj(H)

α2
H

βij(H)2

1/2

.

and the ℓ2 distance between two weighted graphs H and H ′ with the same nodeset and identical

nodeweights,

d2(H,H
′) =

1

α2
H

(∑
i,j∈V

αi(H)αj(H)
(
βij(H)− βij(H

′)
)2)1/2

. (4.1)

Note that for two weighted graphs with the same nodeset and identical nodeweights, these

distances are related to the corresponding norms on graphons by d1(H,H
′) = ∥WH −WH′∥1,

d2(H,H
′) = ∥WH −WH′∥2 and d�(H,H

′) = ∥WH −WH′∥�.
For a fixed a ∈ Pdn, it will be convenient to introduce on Symn the inner product

⟨X, Y ⟩a =
n∑

i,j=1

aiajXijYij, (4.2)

and the corresponding norms

∥X∥a,1 =
n∑

i,j=1

aiaj|Xij|, ∥X∥a,2 = ⟨X,X⟩1/2a and ∥X∥a,� = max
S,T⊆[n]

∣∣∣∑
i∈S
j∈T

aiajXij

∣∣∣. (4.3)

Note that with these definitions, we have

1

n2
∥X∥a,1 ≤ ∥X∥a,� ≤ ∥X∥a,1 ≤ ∥X∥a,2 ≤ ∥X∥∞. (4.4)

Note also that for two weighted graphs H,H ′ with the same nodeweights αi(H) = αi(H
′) and

edgeweights β(H) = X, β(H ′) = X ′, the above norms allow us to express the distances intro-

duced in (2.5) and (4.1) as

d1(H,H
′) = ∥X −X ′∥a,1, d2(H,H

′) = ∥X −X ′∥a,2, and d�(H,H
′) = ∥X −X ′∥a,�,

where a is the vector with components ai = αi(H)/αH = αi(H
′)/αH′ . We will make repeated

use of this representation in this paper.
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4.1.2 Fractional and Integer Quotients

We start by discussing the relationship between fractional and integer quotients. Let U ∈ W ,

let q ≥ 1, and let a ∈ Pdq. In addition to the sets Sq(U) and Ŝq(U) introduced in Section 3.3,

we need the set Sa(U) of quotients H ∈ Sq(U) with α(H) = a, and similarly for Ŝa(U), as well

as the sets Ba(U) = {X ∈ Symq : (a, X) ∈ Sq(U)} and B̂a(U) = {X ∈ Symq : (a, X) ∈ Ŝq(U)}.
Note that these sets are invariant under measure preserving bijections ϕ : [0, 1] → [0, 1].

Indeed, for any such ϕ, let Uϕ(x, y) = U(ϕ(x), ϕ(y)) and ρϕ(x) = ρ(ϕ(x)). Then U/ρ = Uϕ/ρϕ,

implying that Sq(U) = Sq(Uϕ). In a similar way, one proves that Ŝq(U) = Ŝq(Uϕ), Ba(U) =

Ba(U
ϕ) and B̂a(U) = B̂a(U

ϕ).

The next lemma states that the set of quotients Sq(U) is compact in the topology induced

by the metric d1 defined in (2.5).

Lemma 4.2 Let U ∈ W and q ≥ 1. Then (Sq(U), d1) is compact.

Proof. Let H1, H2, · · · ∈ Sq(U). Then there are fractional partitions ρ(1), ρ(2), . . . of [0, 1] such

that Hn = U/ρ(n). For each i ∈ [q], let µ
(n)
i be the measure on the Borel sets of [0, 1] with density

function ρni . By going to a subsequence, we may assume that the sequence (µ
(n)
i (D) : n =

1, 2, . . . ) is convergent for every i ∈ [q] and rational interval D. Let µi(D) be its limit. From

the fact that µ
(n)
i ≤ λ (the Lebesgue measure), it follows that µi extends to all Borel sets as a

measure, and that this measure is absolutely continuous with respect to λ. Hence the function

ρi = dµi/dλ is well defined. It also follows that 0 ≤ ρi ≤ 1 almost everywhere and that∑
i ρi(x) = 1 for almost all x. So changing the ρi on a set of measure 0, we get a fractional

partition ρ = (ρ1, . . . , ρq) of [0, 1].

Let ε > 0. Let P be a partition of [0, 1] into rational intervals such that ∥U − UP∥1 ≤ ε/3.

Then ∣∣∣∫
[0,1]2

ρ
(n)
i (x)ρ

(n)
j (y)U(x, y) dx dy −

∫
[0,1]2

ρi(x)ρj(y)U(x, y) dx dy
∣∣∣

≤
∣∣∣∫

[0,1]2
ρ
(n)
i (x)ρnj (y)

(
U(x, y)− UP(x, y)

)
dx dy

∣∣∣
+
∣∣∣∫

[0,1]2

(
ρ
(n)
i (x)ρnj (y)− ρi(x)ρj(y)

)
UP(x, y) dx dy

∣∣∣
+
∣∣∣∫

[0,1]2
ρi(x)ρj(y)

(
U(x, y)− UP(x, y)

)
dx dy

∣∣∣.
The first and third terms on the right hand side are bounded by ∥U − UP∥1/3; the middle term

will be less than ε/3 if n is large enough, since if D is a step of P, then∫
D

ρ
(n)
i (x) dx→

∫
D

ρi(x) dx
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by the construction of ρi. Since αi(U/ρ
(n)) = µni ([0, 1]) → µi([0, 1]) = αi(U/ρ) for all i, this

implies that

βij(U/ρ
(1)) =

1

αi(U/ρ(n))αj(U/ρ(n))

∫
[0,1]2

ρ
(n)
i (x)ρ

(n)
j (y)U(x, y) dx dy → βij(U/ρ)

whenever αi(U/ρ)αj(U/ρ) > 0.

If αi(U/ρ)αj(U/ρ) = 0, we cannot conclude anything about the limit of βij(U/ρ
(n)), but

fortunately, this is not needed. Indeed, in order to show that d1(U/ρ
(n), U/ρ) → 0 as n → ∞,

we only need to show that βij(U/ρ
(n)) → βij(U/ρ) if αi(U/ρ)αj(U/ρ) > 0. To see this, we note

that the first sum in (2.5) is a sum of terms of the form∣∣∣αi(U/ρ)αj(U/ρ)βij(U/ρ)− αi(U/ρ
(n))αj(U/ρ

(n))βij(U/ρ
(n))
∣∣∣.

If αi(U/ρ)αj(U/ρ) = 0, then the first term in this difference is identically zero, while the second

tends to zero as n→ ∞ due to the facts that α(U/ρ(n)) → α(U/ρ) and |βij(U/ρ(n))| ≤ ∥U∥∞. �

The following lemma is easy to prove along the same lines. Here d1 is again the distance

defined in (2.5), while da,1 is the distance induced by the norm ∥ · ∥a,1 defined in (4.3).

Lemma 4.3 Let U ∈ W, let q ≥ 1, and let a ∈ Pdq. Then (Sq(U), d1) is the closure of

(Ŝq(U), d1), and (Ba(U), da,1) is the closure of (B̂a(U), da,1).

While the two sets Sq(U) and Ŝq(U) are equal if U is a step function (see Proposition 5.3

below), they are not equal in general. This is the content of the following example.

Example 4.4 Let W ∈ W[0,1] be positive definite as a kernel. The fractional partition (ρ, 1− ρ)

of [0, 1] with ρ ≡ 1/2 gives a weighted graph (a, B) on two nodes, with both nodeweights

ai = 1/2, and all edgeweights Bij =
∫
W (x, y)dxdy. Using the positive definiteness of W , it is

then not hard to see that any fractional partition σ with W/σ = W/ρ must actually be equal to

ρ almost everywhere. Thus (a, B) cannot be obtained from any fractional partition other than

ρ, in particular not from any ordinary partition. Hence Ŝq(W ) ̸= Sq(W ).

When analyzing the relationship between ground state energies and quotients, we will nat-

urally be lead to the Hausdorff distance between the subsets of quotients Sa(U) and Sa(W ) for

two graphons U and W . The following lemma relates the Hausdorff distance of these two sets

to the Hausdorff distance between Sq(U) and Sq(W ).

Lemma 4.5 For any two graphons U,W ∈ W and q ≥ 1,

dHf
1 (Sq(U),Sq(W )) ≤ max

a
dHf
1 (Sa(U),Sa(W )) ≤ (1 + 2∥W∥∞)dHf

1 (Sq(U),Sq(W )).
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Proof. The lower bound is trivial: let d = maxa d
Hf
1 (Sa(U),Sa(W )), and let H ∈ Sq(U). Then

H ∈ Sa(U) for some a, and so by the definition of Hausdorff distance, there is anH ′ ∈ Sa(W ) such

that d1(H,H
′) ≤ d. Thus H ′ is a point in Sq(W ) such that d1((a, B), (a, B′)) = ∥B−B′∥a,1 ≤ d.

To prove the upper bound, it will be convenient to introduce the distance

d̃1((a, B), (b, C)) =
∑
i,j

|aiajBij − bibjCij|

and the Hausdorff distance d̃Hf
1 inherited from d̃1. As we will see below, we then have that

d̃Hf
1 (Sa(W ),Sb(W )) ≤ 2∥a− b∥1 ∥W∥∞ (4.5)

for all a,b ∈ Pdq.

Before establishing the bound (4.5), we show how it can be used to prove the upper bound of

the lemma. Let (a, B) ∈ Sq(U) and let d′ = dHf
1 (Sq(U),Sq(W )). By the definition of Hausdorff

distance there is a weighted graph (c, D) ∈ Sq(W ) such that

d1((a, B), (c, D)) = d̃1((a, B), (c, D)) + ∥a− c∥1 ≤ d′,

and by the bound (4.5), there is a matrix B′ ∈ Ba(W ) such that

d̃1((c, D), (a, B′)) ≤ 2∥a− c∥1∥W∥∞.

Hence

d1((a, B), (a, B′)) = d̃1((a, B), (a, B′)) ≤ d̃1((a, B), (c, D)) + d̃1((c, D), (a, B′))

≤ d̃1((a, B), (c, D) + 2∥a− c∥1∥W∥∞ ≤ (1 + 2∥W∥∞)d′,

which completes the proof of the upper bound of the lemma.

We are left with the proof of (4.5). Let H ∈ Sa(U), so that H = U/ρ for some fractional

partition ρ = (ρ1, . . . , ρq) with αi(ρ) = ai. It is easy to define a fractional partition ρ
′ = (ρ′1, . . . ρ

′
q)

of [0, 1] with αi(ρ) = bi and
∑

i ∥ρi− ρ′i∥1 = ∥a−b∥1. In order to prove the bound (4.5), we will

show that

d̃1(U/ρ, U/ρ
′) ≤ 2∥a− b∥1∥U∥∞.

Let i, j ∈ [q]. Then∣∣∣aiajβij(U/ρ)− bibjβij(U/ρ
′)
∣∣∣ = ∣∣∣∫

[0,1]2
U(x, y)

(
ρi(x)ρj(y)− ρ′i(x)ρ

′
j(y)

)
dx dy

∣∣∣
≤ ∥U∥∞

∫
[0,1]2

∣∣∣ρi(x)ρj(y)− ρ′i(x)ρ
′
j(y)

∣∣∣ dx dy
≤ ∥U∥∞

∫
[0,1]2

∣∣∣ρi(x)ρj(y)− ρi(x)ρ
′
j(y)

∣∣∣ dx dy
+ ∥U∥∞

∫
[0,1]2

∣∣∣ρi(x)ρ′j(y)− ρ′i(x)ρ
′
j(y)

∣∣∣ dx dy
= ∥U∥∞

(
ai∥ρj − ρ′j∥1 + ∥ρi − ρ′i∥1bj

)
.
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Summing over i and j this gives the desired bound. �

4.1.3 Ground State Energies and Quotients

We close our section on preliminaries with an expression of the ground state energy and the free

energy in a “finite” way in terms of the corresponding quotients. Let J ∈ Symq and h ∈ Rq.

Using the closedness of Sq(W ) and Ba(W ) and the fact that the map (a, X) 7→ ⟨X, J⟩a + ⟨a, h⟩
is continuous in the d1-metric, one easily shows that

E(W,J, h) = − max
(a,X)∈Sq(W )

(
⟨X, J⟩a + ⟨a, h⟩

)
, (4.6)

and

Ea(W,J) = − max
X∈Ba(W )

q∑
i,j=1

aiajXijJij = − max
X∈Ba(W )

⟨X, J⟩a. (4.7)

4.2 From Distances to Quotients

The next theorem is a quantitative form of the implication (ii)⇒(iii) in Theorem 3.5.

Theorem 4.6 Let q ≥ 1, and U,W ∈ W. Then

dHf
1 (Sq(U),Sq(W )) ≤ q2δ�(U,W ).

Proof. We first prove that

dHf
� (Sa(U),Sa(W )) ≤ ∥U −W∥� (4.8)

for all a ∈ Pdq. Let H ∈ Sa(U). Then there exists a fractional partition ρ = (ρ1, . . . , ρq) of [0, 1]

such that H = U/ρ. Let H ′ = (a, β(W/ρ)). Then for every S, T ⊆ [q], we have∣∣∣∑
i∈S
j∈T

aiaj(βij(H)− βij(H
′))
∣∣∣ = ∣∣∣∑

i∈S
j∈T

∫
[0,1]2

ρi(x)ρj(y)(U(x, y)−W (x, y)) dx dy
∣∣∣

=
∣∣∣∫

[0,1]2

(∑
i∈S

ρi(x)
)(∑

j∈T

ρj(y)
)
(U(x, y)−W (x, y)) dx dy

∣∣∣
≤ ∥U −W∥�,

and hence d�(H,H
′) ≤ ∥U −W∥�, which proves the bound (4.8).

Since the sets Sa(U) and Sa(W ) are invariant under measure preserving bijections, the bound

(4.8) implies that dHf
� (Sa(U),Sa(W )) ≤ δ�(U,W ), and taking into account the bound (4.4), this

in turn implies that

dHf
1 (Sa(U),Sa(W )) ≤ q2δ�(U,W ). (4.9)

Together with Lemma 4.5 this gives the desired bound on dHf
1 (Sq(U),Sq(W )). �
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4.3 From Quotients to Energies

The next theorem is quantitative version of the implication (iii)⇒(iv) from Theorem 3.5.

Theorem 4.7 Let q ≥ 1, a ∈ Pdq, J ∈ Symq and U,W ∈ W. Then

|Ea(U, J)− Ea(W,J)| ≤ (1 + 2∥W∥∞) ∥J∥∞ dHf
1 (Sq(U),Sq(W )).

Proof. In view of Lemma 4.5, it is enough to prove that

|Ea(U, J)− Ea(W,J)| ≤ ∥J∥∞dHf
1 (Sa(U),Sa(W )). (4.10)

Let H ∈ Sa(U) attain the maximum in the representation (4.7) for Ea(U, J), so that

Ea(U, J) = −⟨J, β(H)⟩a.

By the definition of Hausdorff distance, there is an H ′ ∈ Sa(W ) such that d1(H,H
′) ≤

dHf
1 (Sa(U),Sa(W )). Then

Ea(W,J)− Ea(U, J) ≤ ⟨J, β(H)⟩a − ⟨J, β(H ′)⟩a = ⟨J, β(H)− β(H ′)⟩a

≤ ∥J∥∞
q∑

i,j=1

aiaj|βij(H)− βij(H
′)| = ∥J∥∞d1(H,H ′) ≤ ∥J∥∞dHf

1 (Sa(U),Sa(W )).

In a similar way, one proves a lower bound of −∥J∥∞dHf
1 (Sa(U),Sa(W )), giving (4.10) and hence

the statement of the theorem. �

The following theorem is the analogue of Theorem 4.7 for the ground state energies E(W,J, h)
and is a quantitative version of the first statement from Corollary 3.6.

Theorem 4.8 Let q ≥ 1, h ∈ Rq, J ∈ Symq and U,W ∈ W. Then

|E(U, J, h)− E(W,J, h)| ≤ max{∥J∥∞, ∥h∥∞} dHf
1 (Sq(U),Sq(W )). (4.11)

Proof. This bound is proved in the same way as the bound (4.10) and is left to the reader. �

4.4 From Energies Back to Distances

Combining the bounds (4.9) and (4.10), we get

|Ea(U, J)− Ea(W,J)| ≤ q2∥J∥∞δ�(W,U). (4.12)

The next theorem, which is one of the main results in this paper, gives a bound in the opposite

direction, and thereby provides a quantitative proof of the implication (iv)⇒(ii) in Theorem 3.5.

32



Theorem 4.9 Let U,W ∈ W, and suppose that

|Ea(U, J)− Ea(W,J)| ≤
ε2

64q2
∥J∥∞max{∥U∥∞, ∥W∥∞}

for all q ≤ 49/ε
2
, a ∈ Pdq and J ∈ Symq. Then

δ�(U,W ) ≤ εmax{∥U∥∞, ∥W∥∞}.

The proof of Theorem 4.9, to be given in the next sections, is based on the following idea,

which is very similar to the main idea in the proof of the Weak Regularity Lemma. For q ≥ 1,

let

Lq(U) = max
(a,B)∈Sq(U)

(−Ea(U,B)) (4.13)

and

∆q(U) =
√

L4q(U)− Lq(U). (4.14)

We will show that

δ�(U,H) ≤ ∆q(U) (4.15)

whenever H = (a, B) is such that it attains the maximum in (4.13). Since 0 ≤ Lq(U) ≤ ∥U∥2∞
for all q, Lq cannot decrease by a substantial amount too many times, implying in particular

that there must be a q ≤ 49/ε
2
such that ∆q ≤ ε

3
∥U∥∞. But this implies that for this q, the

maximizer in (4.13) must be a good approximation to U in the δ� distance, δ�(U,H) ≤ ε
3
∥U∥∞.

Thus a good knowledge of the ground state energies allows us to calculate a good approximation

to the graphon U by a finite graph in the δ� distance.

4.4.1 The Geometry of Fractional Quotients

In this subsection, we give a different representation for Lq(U) which will allow us to prove (4.15).

To this end, we first prove the following lemma.

Lemma 4.10 Given q ≥ 1, a ∈ Pdq, and U ∈ W, let

La(U) = max
B∈Ba(U)

∥B∥2a,2. (4.16)

Then

La(U) = max
B∈Ba(U)

(
−Ea(U,B)

)
, (4.17)

where any B that attains the maximum in the first expression also attains the maximum in the

second expression, and vice versa.
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Proof. Since ⟨X,B⟩a ≤ ∥X∥a,2∥B∥a,2 ≤ La(U), we have

∥B∥2a,2 = ⟨B,B⟩a ≤ −Ea(U,B) = max
X∈Ba(U)

⟨X,B⟩a ≤ La(U).

Taking the maximum over B ∈ Ba(U), we obtain the identity (4.17), as well as the statement

that any matrix which attains the maximum in (4.16), also attains the maximum in (4.17). To

prove the converse statement, we use that ⟨(X − B), (X − B)⟩a ≥ 0 for all X,B ∈ Ba(U),

implying in particular that

−2Ea(U,B) ≤ ∥B∥2a,2 + La(U).

If B0 is such that −Ea(U,B) attains its maximum for B = B0, we therefore have that

2La(U) = −2Ea(U,B0) ≤ ∥B0∥2a,2 + La(U) ≤ 2La(U)

which implies that ∥B0∥2a,2 = La(U), as required. �

4.4.2 Step Function Approximation

As a consequence of Lemma 4.10, we may rewrite Lq(U) as

Lq(U) = sup
P∈Pq

∥UP∥22, (4.18)

where the supremum goes over all partitions of [0, 1] into q classes. Indeed, let P be a partition

of [0, 1] into q classes, and let a = α(U/P). Then U/P is a quotient of U , and

∥UP∥22 =
q∑

i,j=1

αi(U/P)αj(U/P)βij(U/P) = ∥β(U/P)∥2a,2.

Using the fact that Ba(U) is the closure of B̂a(U), we now rewrite the right hand side of (4.18)

as

sup
P∈Pq

∥UP∥22 = sup
a∈Pdq

sup
B∈B̂a(U)

∥B∥2a,2 = max
a∈Pdq

max
B∈Ba(U)

∥B∥2a,2.

With the help of Lemma 4.10, this gives (4.18). In particular, it follows that

Lq(U) ≤ ∥U∥22. (4.19)

The next lemma will be important in proving bounds on the approximation by step functions.

Lemma 4.11 For every partition P of [0, 1] into q classes, we have

∥U − UP∥2� ≤ L4q(U)− ∥UP∥22.
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Proof. Let S and T be arbitrary measurable subsets of [0, 1], and let P ′ be the partition

of [0, 1] generated by S, T and P . Clearly P ′ has at most 4q classes. Since UP ′ gives the best

L2-approximation of U among all step functions with steps P ′, we conclude that for every real

number t, we have

∥U − UP ′∥22 ≤ ∥U − UP − t1S×T∥22,

which in turn implies that

∥U − UP ′∥22 ≤ ∥U − UP∥22 − 2t⟨1S×T , U − UP⟩+ t2.

Choosing t = ⟨1S×T , U − UP⟩, this gives

⟨1S×T , U − UP⟩2 ≤ ∥U − UP∥22 − ∥U − UP ′∥22 = ∥UP ′∥22 − ∥UP∥22 ≤ L4q(U)− ∥UP∥22.

Since the supremum of the left hand side over all sets S, T is just ∥U − UP∥2�, this proves the

statement of the lemma. �

It is instructive to show that Lemma 4.11 implies the Weak Regularity Lemma for graphons,

Theorem 3.4.

Proof of Theorem 3.4. Set ε = ∥U∥2
√
2/ log2 k. If ∥U − UP∥� ≥ ε for all partitions P with

at most k classes, then by Lemma 4.11, L4q(U) − ∥UP∥22 ≥ ε2 for every 1 ≤ q ≤ k and every

P ∈ Pq. Hence L4q(U)− Lq ≥ ε2 for every 1 ≤ q ≤ k, which in turn implies that

L4k ≥
(⌊1

2
log2 k

⌋
+ 1
)
ε2 >

(1
2
log2 k

)
ε2 ≥ ∥U∥2,

which contradicts (4.19). �
The following corollary verifies (4.15):

Corollary 4.12 Let q ≥ 1, U ∈ W, and H ∈ Sq(U). Then

δ�(U,H) ≤
√
L4q(U)− ∥H∥22. (4.20)

If H attains the maximum in (4.13), then

δ�(U,H) ≤
√
L4q(U)− Lq(U).

Proof. By Lemma 4.10, the second bound of the lemma immediately follows from the first.

Thus it is enough to prove (4.20). Let P be a partition of [0, 1] into q classes, and let U/P = H

be the corresponding integer quotient of U . By Lemma 4.11, we have that

δ�(U,U/P)2 ≤ ∥U − UP∥2� ≤ L4q − ∥H∥22.

Since Sa(U) is the closure of Ŝa(U), this gives (4.20), as desired. �
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4.4.3 Completion of the Proof

Rescaling W and U by a constant factor if necessary, we may assume that ∥U∥∞, ∥W∥∞ ≤ 1.

Let τ = ε2/(64q2) and let q0 = 4⌈9/ε
2⌉−1.

Since 0 ≤ Lq(U) ≤ 1, there is a 1 ≤ q ≤ q0 such that L4q(U) − Lq(U) ≤ ε2

9
. Choose

H = (a, B) ∈ Sq(U) in such a way that Lq(U) = −Ea(U,B). We have

δ�(U,W ) ≤ δ�(U,H) + δ�(H,H
′) + δ�(H

′,W ).

Let us estimate the three terms on the right hand side separately.

By Corollary 4.12, we have

δ�(U,H) ≤ ε

3
, (4.21)

and by Lemma 4.10, we have that −Ea(U,B) = ∥B∥2a,2. Due to the assumption ∥U∥∞ ≤ 1, we

also have ∥B∥∞ ≤ 1.

Let Y ∈ Ba(W ) attain the maximum in the definition of −Ea(W,B). Then

⟨Y,B⟩a = −Ea(W,B) ≥ −Ea(U,B)− τ = ∥B∥2a,2 − τ, (4.22)

and also

⟨Y, Y ⟩a ≤ −Ea(W,Y ) ≤ −Ea(U, Y ) + τ = max
X∈Ba(U)

⟨X,Y ⟩a + τ ≤ ∥B∥a,2∥Y ∥a,2 + τ

≤ 1

2

(
∥B∥2a,2 + ∥Y ∥2a,2

)
+ τ,

implying that

⟨Y, Y ⟩a ≤ ∥B∥2a,2 + 2τ.

Hence

∥B − Y ∥2a,2 = ∥B∥2a,2 + ∥Y ∥2a,2 − 2⟨B, Y ⟩a ≤ ∥B∥2a,2 + (∥B∥2a,2 + 2τ)− 2(∥B∥2a,2 − τ) = 4τ.

Let H ′ = (a, Y ). Using Cauchy-Schwarz, we get that

δ�(H,H
′) ≤ ∥B − Y ∥a,� ≤ q

√
4τ ≤ ε

4
. (4.23)

We are left with a bound on δ�(H
′,W ). To this end, we again use Corollary 4.12, this time

in the form of the bound (4.20), which gives that(
δ�(H

′,W )
)2 ≤ L4q(W )− ∥Y ∥2a,2. (4.24)

By the definition of Lb and the conditions of the theorem, we have that Lb(W ) ≤ Lb(U)+ τ for

every b ∈ Pd4q, and hence

L4q(W ) ≤ L4q(U) + τ. (4.25)
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On the other hand, (4.22) implies that ∥Y ∥2a2 + ∥B∥2a2 ≥ 2⟨Y,B⟩a ≥ 2∥B∥2a2 − 2τ, and so

∥Y ∥2a2 ≥ ∥B∥22a − 2τ = Lq(U)− 2τ. (4.26)

Combining (4.24), (4.25) and (4.26), we get

(
δ�(H

′,W )
)2 ≤ L4q(U) + τ − Lq(U) + 2τ ≤ ε2

9
+ 3τ ≤

(5ε
12

)2
,

and so

δ�(H
′,W ) ≤ 5ε

12
. (4.27)

To sum up, by (4.21), (4.23) and (4.27), we get

δ�(U,W ) ≤ δ�(U,H) + δ�(H,H
′) + δ�(H

′,W ) ≤ ε

3
+
ε

4
+

5ε

12
= ε,

which completes the proof of Theorem 4.9.

4.5 From Distances to Free Energies and Back

In this section we prove the implications (ii)⇒(v)⇒(iv), which will complete the proof of Theo-

rem 3.5. Again, we prove two (simple) quantitative versions.

Theorem 4.13 Let q ≥ 1, let a ∈ Pdq, let J ∈ Symq, let h ∈ Rq, and let U,W ∈ W. Then∣∣∣Fa(U, J)−Fa(W,J)
∣∣∣ ≤ ∥J∥1δ�(U,W ) (4.28)

and ∣∣∣F(U, J, h)−F(W,J, h)
∣∣∣ ≤ ∥J∥1δ�(U,W ). (4.29)

Proof. Since the left-hand side of the above bounds does not change if we replace U by Uϕ for

a measure preserving bijection ϕ : [0, 1] → [0, 1], it is enough to prove the lemma with a bound

in terms of ∥U −W∥� instead of δ�(U,W ). Let ρ = (ρ1, . . . , ρq) be a fractional partition of [0, 1].

Recall the definition (3.7) of Eρ(W,J, h). Using the fact that the cut-norm ∥ ·∥� can be rewritten

as

∥W∥� = sup
f,g: [0,1]→[0,1]

∣∣∣∣∫ W (x, y)f(x)g(y) dx dy

∣∣∣∣ (4.30)

where the suprema go over measurable and functions f, g : [0, 1] → [0, 1], we then have∣∣Eρ(U, J, h)− Eρ(W,J, h)
∣∣ ≤ ∥J∥1∥U −W∥�.

Recalling the definitions (3.12) and (3.13), this completes the proof. �
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Theorem 4.14 Let q ≥ 1, a ∈ Pdq, J ∈ Symq and let U,W ∈ W. Let ε > 0 and c = (2 ln q)/ε.

Then ∣∣Ea(W,J)− Ea(U, J)
∣∣ ≤ 1

c

∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣+ ε.

Proof. Using the fact that Ent(ρ) ≤ ln q, we get by (3.9) and (3.13)∣∣Ea(W,J)−Fa(W,J)
∣∣ ≤ ln q,

and similarly for U . Hence∣∣Ea(W,J)− Ea(U, J)
∣∣ = 1

c

∣∣Ea(W, cJ)− Ea(U, cJ)
∣∣ ≤ 1

c

(∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣+ 2 ln q

)
,

which proves Theorem 4.14, and thereby also completes the proof of Theorem 3.5. �

5 Graphs vs. Graphons

We will use the results of the last section to prove Theorem 2.14 and Theorem 2.15 (i) – (iii). In-

deed, if we have a sequence of graphs (Gn), we can consider the sequence of associated graphons

WGn , and apply Theorem 3.5 to that sequence. The main technical issue here will be to re-

late parameters like t(F,G), Êa(G, J) and F̂a(G, J) to the corresponding parameters t(F,WG),

Ea(WG, J) and Fa(WG, J) of the associated graphon. In some cases, this relationship is trivial:

t(F,G) = t(F,WG) (5.1)

for any two graphs F and G; but the corresponding relations for the ground state energies and

free energies hold only asymptotically. A related technical issue will be the relationship between

fractional and integral partitions, which will be more complicated than for graphons (compare

e.g. Lemma 4.3 and Theorem 5.4).

5.1 Fractional Partitions and Quotients

Recall the definition of quotient graphs from Section 2.4. We will often consider Ŝq(G) as a

subset of Rq+q2 , denoting its elements H as (a, X), with X = β(H) ∈ Symq and a = α(H) ∈ Pdq.

Given a vector a ∈ Pdq, we finally introduce the set B̂a(G) of all weighted adjacency matrices of

all quotients of G with nodeweights a, B̂a(G) = {X ∈ Symq : (a, X) ∈ Ŝq(G)}.
For a finite graph G, the set Ŝq(G) is typically a very large finite set, which makes it difficult

to work with. It will be convenient to introduce a fractional version of quotients. First, a

fractional partition of a set V into q classes (briefly, a fractional q-partition) is a q-tuple of

functions ρ1, . . . , ρq : V → [0, 1] such that for all x ∈ V , we have ρ1(x) + · · ·+ ρq(x) = 1.
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Let G be a weighted graph. For every fractional partition ρ = (ρ1, . . . , ρq) of V (G), we define

the fractional quotient G/ρ as the weighted graph with nodeweights

αi(G/ρ) =
∑

u∈V (G)

αu(G)

αG
ρi(u)

and edges weights

βij(G/ρ) =
1

αi(G/ρ)αj(G/ρ)

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

ρi(u)ρj(v);

compare to the expressions (3.6) for graphons. To distinguish the fractional quotients from the

quotients introduced in Section 2.4, we will often call the latter integer quotients. Note that the

above definition reduces to the definition (2.24) if ρi(x) is the indicator function of the event

that x ∈ Vi. Note also that neither the integer quotients nor the fractional quotients of a graph

G change if we rescale all nodeweights of G by a constant factor.

We call a graph H a fractional q-quotient of G if H = G/ρ for some fractional q-partition

of V (G), and denote the set of all fractional q-quotients of G by Sq(G). Finally, we define the

fractional analogue of the set B̂a(G) as Ba(G) = {X ∈ Symq : (a, X) ∈ Sq(G)}.
It follows from Lemma 4.2 and Proposition 5.3 below that Sq(G) is a closed set, and it is not

hard to see that Sq(G) is connected, but in general it is not convex (see Example 5.2). Obviously,

Sq(G) contains Ŝq(G), but it is not its closure in general (since the latter is a finite set). We will

come back to how well Ŝq(G) approximates Sq(G) in Lemma 5.4. Most of the time, we will work

with the fractional versions, which are much easier to handle.

We can use fractional partitions to define fractional versions of ground state energy, by

replacing the partitions in the definition by fractional partitions. For every fractional partition

ρ of V (G), define

Eρ(G, J, h) = −
∑

u∈V (G)

∑
i

hi
αu(G)

αG
ρi(u)−

∑
u,v∈V (G)

∑
i,j

αu(G)αv(G)

α2
G

βuv(G)ρi(u)ρj(v)Jij. (5.2)

If ρ is a proper partition corresponding to a map ϕ : V (G) → [q], then Eρ(G, J, h) = Eϕ(G, J, h).
Using this notation, we can define

E(G, J, h) = −max
ρ

Eρ(G, J, h) = − max
(a,X)∈Sq(G)

(
⟨X, J⟩a + ⟨a, h⟩

)
. (5.3)

and

Ea(G, J) = − max
ρ:α(ρ)=a

Eρ(G, J, 0) = − max
X∈Ba(G)

⟨X, J⟩a. (5.4)

We will come back to how well these fractional versions approximate the “real” versions in Section

5.3.

We conclude with a couple of examples illustrating the set of quotients and its complexity.

In particular, we see that Sq is not convex in general.
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Example 5.1 Let K1(p) be a single node with a loop with weight p. For every fractional q-

quotient H of K1(p), we have β(H) ≡ p, and so Ba(K1(p)) consists of a single q× q matrix with

constant entry p, no matter what value we choose for a ∈ Pdq.

Example 5.2 This example gives a weighted graph G for which Sq(G) is not convex. Let L2(p)

be the two-node graph with a loop with weight p at each node (and no other edge). Let ρ be a

fractional q-partition of V (L2(p)) = {u, v}, and let H denote the corresponding quotient. Then

αi(H) =
1

2
(ρi(u) + ρi(v)), and βij(H)) =

(1
2
)2ρi(u)ρj(u)p+ (1

2
)2ρi(v)ρj(v)p

αi(H)αj(H)
.

For q = 2, the fractional partition ρ can be expressed by two parameters x, y: ρ1(u) = x,

ρ2(u) = 1− x, ρ1(v) = y, ρ2(v) = 1− y, which reduces to one parameter, say the parameter x, if

we fix α(H)) = a for some a ∈ Pd2. The edgeweights β(H) can then be expressed as a quadratic

function in x, giving that Ba(L2(p)) is a non-convex function in the parameter x in the space of

2× 2 matrices. Then of course S2(L2(p)) is not convex either.

5.2 Quotients of Graphs and Graphons

We start by noting the following simple fact:

Proposition 5.3 For every weighted graph G and every q ≥ 1,

Ŝq(G) ⊆ Sq(G) = Sq(WG) = Ŝq(WG).

Proof. It is obvious that Ŝq(G) ⊆ Sq(G) and Ŝq(WG) ⊆ Sq(WG), so we only have to show that

Sq(G) ⊆ Ŝq(WG) and Sq(WG) ⊆ Sq(G). Every fractional q-partition ρ of V (G) gives a (non-

fractional) q-partition (S1, . . . , Sq) of [0, 1] as follows: partition the interval Iv corresponding to

v ∈ V (G) into q intervals Iv1, . . . , Ivq of lengths ρ1(v)αv(G)/αG, . . . , ρq(v)αv(G)/αG, respectively,

and define Si = ∪v∈V (G)Ivi. It is straightforward to check that G/ρ = (WG)/P , and hence

Sq(G) ⊆ Ŝq(WG). Finally, every fractional partition ρ of [0, 1] defines a fractional partition ρ̄ of

V (G) by

ρ̄i(v) =

∫
Iv

ρi(x) dx.

Again, it is easy to check that G/ρ̄ = W/ρ. This proves that Sq(WG) ⊆ Sq(G), and completes

the proof of the proposition. �

The following technical lemma asserts that by restricting our attention to integral partitions

we do not lose too much, provided the graph has no dominating nodeweights.
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Theorem 5.4 For every weighted graph G and every q ≥ 1,

dHf
1 (Ŝq(G),Sq(G)) ≤ q

√
αmax(G)

αG

(
1 + 4β∞(G)

)
.

Proof. Let c = αmax(G)/αG. We have to show that for every H ∈ Sq(G) there is an H ′ ∈ Ŝq(G)
such that

d1(H,H
′) ≤ q

√
c
(
1 + 4β∞(G)

)
.

Since quotients and fractional quotients do not change if we rescale the weights of G, may assume

that αG = 1.

Let ai = αi(H) and Bij = aiajβij(H), and let ρ = (ρ1, . . . , ρq) be a fractional partition of

V (G) such that H = G/ρ. In other words, let ρ be such that∑
u∈V (G)

αu(G)ρi(u) = ai and αu(G)αv(G)βuv(G)ρi(u)ρj(v) = Bij.

Let P = (V1, . . . , Vq) be a random partition of V (G) obtained by “rounding” ρ as follows: for

every u ∈ V (G), we draw a random index i from the probability distribution (ρ1(u), . . . , ρq(u)),

and put u in Vi. Let H
′ = G/P, and set a′i = αi(H

′) and B′
ij = a′ia

′
jβij(H

′).

We use a standard (though somewhat lengthy) second moment argument to show that with

large probability, a′ is close to a and B′ is close to B. Let Xiu be the indicator variable that we

put u in Vi. Clearly E(Xiu) = ρi(u). Using that Xiu and Xju are independent if u ̸= v,

E((a′i − ai)
2) =

∑
u̸=v

αu(G)αv(G)E((Xiu − ρi(u))(Xiv − ρi(v))) +
∑
u

αu(G)
2E((Xiu − ρi(u))

2)

=
∑

u∈V (G)

αu(G)
2(ρi(u)− ρi(u)

2) ≤ c
∑

u∈V (G)

αu(G)ρi(u) = cai,

and summing over all i, we get

E(∥a− a′∥22) ≤ c. (5.5)

The argument for B is similar but more involved. Let us assume for the moment that

|βuv(G)| ≤ 1. Writing B′
ij −Bij as

B′
ij −Bij =

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)(XiuXjv − ρi(u)ρj(v)),

and introducing the shorthand αu for αu(G), we bound

E((B′
ij −Bij)

2) =
∑

u1,v1,u2,v2

αu1αu2αv1αv2βu1v1(G)βu2v2(G)

× E
((
Xiu1Xjv1 − ρi(u1)ρj(v1)

)(
Xiu2Xjv2 − ρi(u2)ρj(v2)

)
)
)

≤
∑

u1,v1,u2,v2

αu1αu2αv1αv2

∣∣∣E((Xiu1Xjv1 − ρi(u1)ρj(v1)
)(
Xiu2Xjv2 − ρi(u2)ρj(v2)

)
)
)∣∣∣
(5.6)
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where the sum goes over nodes u1, v1, u2, v2 ∈ V (G). Consider any term above:

E
((
Xiu1Xjv1 − ρi(u1)ρj(v1)

)(
Xiu2Xjv2 − ρi(u2)ρj(v2)

)
)
)
. (5.7)

If u1, u2, v1, v2 are all different, then Xiu1 , Xjv1 , Xiu2 , Xjv2 are independent, and hence this expec-

tation is 0.

Next, suppose that there is one coincidence. If this coincidence is u1 = v1, we can use the

independence of the three random variables Xiu2 , Xjv2 and Xiu1Xjv1 to conclude that this gives

again no contribution, and similarly for u2 = v2. Consider one of the other 4 coincidences, say

u1 = u2. Then the expectation in (5.7) is ρi(u1)ρj(v1)ρj(v2), and the contribution of these terms

to the sum in (5.6) is bounded by∑
u1,v1,v2

α2
u1
αv1αv2ρi(u1)ρj(v1)ρj(v2) ≤ caiaj.

There are 4 similar terms, so the total is bounded by 4caiaj.

In the case of two coincidences, we have either u1 = u2 and v1 = v2 or u1 = v2 and v1 = u2

or v1 = u1 and v2 = u2. Consider the case u1 = u2 = u, v1 = v2 = v ̸= u. The expectation in

(5.7) is then ρi(u)ρj(v)
(
1 − ρi(u)ρj(v)

)
. The contribution of these terms to the sum in (5.6) is

at most ∑
u,v

α2
uα

2
vρi(u)ρj(v) ≤ caiaj.

The two other cases are similar, giving a total of at most 3caiaj.

For three coincidences, there are 4 cases, which all are similar. Taking, e.g., the case u1 =

u2 = v1 = u and v2 = v ̸= u, we get the ρi(u)ρj(v)δij(1− ρi(u)). The sum of these terms over u

and v gives a contribution which is at most

δij
∑
u,v

α3
uαvρi(u)ρj(v) ≤ caiaj.

The other three terms are similar, giving a total contribution of 4caiaj.

We are left with the case of four coincidences, u1 = u2 = v1 = v2 = u, which gives an

expectation of ρi(u)δij − 2ρi(u)
3δij + ρi(u)

2ρj(u)
2, and a total contribution of at most∑

u

α4
u

(
ρi(u)δij + ρi(u)ρj(u)

)
≤ caiδij + caiaj.

To sum up, we get that

E((Bij −B′
ij)

2) ≤ 12caiaj + caiδij,

whenever β∞(G) ≤ 1. Rescaling the edgeweights of G to remove the condition β∞(G) ≤ 1, this

gives

E(∥B −B′∥22) = E
(∑

i,j

(Bij −B′
ij)

2
)
≤ 13c(β∞(G))2.
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Combined with (5.5) and Cauchy-Schwarz, this gives

E
(
d1(H,H

′)
)
= qE

(1
q

q∑
i=1

|ai − a′i|
)
+ q2E

( 1

q2

q∑
i,j=1

|Bij −B′
ij|
)

≤ q
(
E
(1
q

q∑
i=1

|ai − a′i|2
))1/2

+ q2
(
E
( 1

q2

q∑
i,j=1

|Bij −B′
ij|2
))1/2

≤ √
qc+ q

√
13cβ∞(G) ≤ q

√
c
(
1 + 4β∞(G)

)
.

Hence with positive probability, d1(H,H
′) ≤ q

√
c
(
1 + 4β∞(G)

)
, as required. �

5.3 Ground State Energies of Graphs and Graphons

We start with the remark that Proposition 5.3 and equation (5.4) imply that

Ea(G, J) = Ea(WG, J). (5.8)

The next theorem relates this common value to the microcanonical ground state energy Êa
introduced in Section 2.4.

Theorem 5.5 Let G be a weighted graph, and let q ≥ 1, a ∈ Pdq and J ∈ Symq. Then

|Êa(G, J)− Ea(G, J)| ≤ 6q3
αmax(G)

αG
βmax(G) ∥J∥∞. (5.9)

First we show that the fractional version of Ê(G, J, h) does not carry new information, at

least if we restrict ourselves to weighted graphs without loops.

Proposition 5.6 Let q ≥ 1, J ∈ Symq and h ∈ Rq. If G is a weighted graph with βxx(G) = 0

for all x ∈ V (G), then

Ê(G, J, h) = E(G, J, h). (5.10)

In the more general case where βuu(G) is arbitrary, we have∣∣∣Ê(G, J, h)− E(G, J, h)
∣∣∣ ≤ 2

αmax

αG
βmax(G)∥J∥∞. (5.11)

To prove these results, we need some preparation.

5.3.1 Preliminaries

Let ρ and ρ′ be two fractional partitions of [0, 1]. We define the distance

d1(ρ, ρ
′) =

1

q

q∑
i=1

∫
[0,1]

|ρi(x)− ρ′i(x)|dx (5.12)
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on fractional q-partitions. For a weighted graph G and two fractional q-partitions of V (G), we

define

d1,G(ρ, ρ
′) =

1

q

q∑
i=1

∑
v∈V (G)

αv(G)

αG
|ρi(v)− ρ′i(v)|. (5.13)

(If G has nodeweights one, we often leave out the subscript of G and denote this distance by

d1(ρ, ρ
′) as well).

The following inequalities are immediate consequences of the definitions (3.7), (5.2) and

(2.25). Let W ∈ W , let G be a weighted graph, and let q ≥ 1, J ∈ Symq and h ∈ Rq. If ρ, ρ′ are

fractional q-partitions of [0, 1], then

|Eρ(W,J, h)− Eρ′(W,J, h)| ≤ q(2∥J∥∞∥W∥∞ + ∥h∥∞) d1(ρ, ρ
′). (5.14)

If ρ, ρ′ are fractional q-partitions of V (G), then

|Eρ(G, J, h)− Eρ′(G, J, h)| ≤ q(2∥J∥∞βmax(G) + ∥h∥∞) d1,G(ρ, ρ
′). (5.15)

If G′ is a weighted graph on the same nodeset as G, then∣∣Eϕ(G, J, h)− Eϕ(G′, J, h)
∣∣ ≤ max{∥h∥∞, q2∥J∥∞}d�(G,G′), (5.16)

and if G and G′ also have the same nodeweights, then∣∣Eϕ(G, J, h)− Eϕ(G′, J, h)
∣∣ ≤ q2∥J∥∞d�(G,G′). (5.17)

5.3.2 Proof of Theorem 5.5.

Without loss of generality, we may assume that αG = 1 and βmax(G) = 1. First we prove that

Ea(G, J) ≤ Êa(G, J) + 2q∥J∥∞αmax(G). (5.18)

Rewrite the microcanonical ground state energy as

Êa(G, J) = − max
ϕ∈Ωa(G)

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

Jϕ(u)ϕ(v), (5.19)

let ϕ : V (G) → [q] be a map attaining the optimum on the right hand side, and let ρ be the

corresponding partition of V (G), considered as a fractional partition. Then Êa(G, J) = Eρ(G, J, 0)
and |αi(ρ)−ai| ≤ αmax(G). It is now easy construct another fractional partition ρ′ with αi(ρ

′) = ai

and d1,G(ρ, ρ
′) ≤ αmax(G). Invoking (5.15), the inequality (5.18) follows.

The main part of the proof is to show that

Êa(G, J) ≤ Ea(G, J) + 6q3αmax ∥J∥∞. (5.20)
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For a given fractional partition ρ of V (G) with α(ρ) = a, call a node v bad if ρ(v) is not a 0-1

vector. Suppose that there are at least q+1 bad nodes, and let S be any set of q+1 bad nodes.

For a bad node v, the vector ρ(v) has at least two fractional entries, so the selected nodes have

at least 2q + 2 fractional entries. If we fix the sums
∑q

i=1 ρi(v) for v ∈ S and
∑

v∈S ρi(v) for

i = 1, . . . , q, we have fixed 2q + 1 sums, so there is a family of solutions with dimension at least

1. I.e., we have an affine family ρt,i(v) = ρi(v) + tri(v) of “deformations” of ρ such that ρt is a

fractional partition of V (G) for every t, α(ρt) = a, and ri(v) = 0 unless v ∈ S and 0 < ρi(v) < 1.

Let X and Xt be such that G/ρ = (a, X) and G/ρt = (a, Xt). Then

⟨J,Xt⟩a = ⟨J,X⟩a + C1t+ C2t
2,

where

C1 = 2
∑
u∈S

v∈V (G)

αu(G)αv(G)βuv(G)

q∑
i,j=1

Jijrj(u)ρi(v)

and

C2 =
∑
u,v∈S

αu(G)αv(G)βuv(G)

q∑
i,j=1

Jijri(u)rj(v).

Choosing the sign of t so that C1t ≥ 0, we increase the absolute value of t until there is at

least one new pair (v, i) for which ρt,i(v) is 0 or 1, while we still have ρt ≥ 0. Starting with an

optimal fractional partition, we repeat this operation until we are left with a set R of at most

q bad nodes. Then we replace the resulting fractional partition ρ̃ on R by any integer partition

(V1, . . . , Vq) obeying the condition∣∣∣∑
u∈R

ρ̃i(u)αu(G)−
∑
u∈Vi

αu(G)
∣∣∣ ≤ αmax(G).

How much do these operations decrease the value ⟨J,X⟩a? Replacing ρ by ρt, we lose at

most C2t
2. Since for every u, (ρ1(u) + tr1(u), . . . , ρq(u) + trq(u)) is still a fractional partition,

we have
∑

i ri(u)t = 0 and 0 ≤ ρi(u) + ri(u)t ≤ 1, implying in particular that
∑

i |ri(u)t| =
2
∑

i |ri(u)t|1ri(u)t<0 ≤ 2
∑

i ρi(u) ≤ 2. Hence

|C2t
2| ≤ ∥J∥∞

∑
u,v∈S

αu(G)αv(G)|βuv(G)|
q∑

i,j=1

|ri(u)t| · |rj(v)t|

≤ 4∥J∥∞
∑
u,v∈S

αu(G)αv(G) = 4∥J∥∞α2
G[S] ≤ 4∥J∥∞(q + 1)αmaxαG[S].

Thus the cost of replacing one fractional entry in S by an integer entry is not more than

4∥J∥∞(q + 1)αmaxαG[S]. To estimate the total cost of reducing the set of bad nodes to a set R

of at most q nodes, we formulate the following game: There are n items of prices α1 ≥ · · · ≥ αn,

which sum to 1, and there are q − 1 copies of each. At each step, you select q + 1 different
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items, and pay the total price; then your adversary points at q of them, which you have to give

back without compensation. The game stops when there are at most q different items left. Your

goal is to minimize your total payment. How much do you have to pay, if both you and your

adversary play optimally?

Let us follow the simple greedy strategy of selecting the q + 1 cheapest items each time. It

is easy to argue that the best strategy for the adversary is to take away all but the cheapest

of these q + 1 items at each time. Then you pay (αn + αn−1 + · · · + αn−q+1) q − 1 times,

(αn−1+αn−2+ · · ·+αn−q) q−1 times, etc. In total you pay for every item at most (q−1)(q+1) <

q2−1 times, and so your total cost is less than q2−1, leading to a decrease in the value of ⟨J,X⟩a
which is less than 4∥J∥∞(q + 1)(q2 − 1)αmax.

To estimate the cost to convert the fractional partition ρ̃ on R to an ordinary partition

P = (V1, . . . , Vq), we bound the difference

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

q∑
i,j=1

Jij

(
1u∈Vi1v∈Vj − ρ̃i(u)ρ̃j(v)

)
=

∑
u∈V (G)
v∈R

αu(G)αv(G)βuv(G)

q∑
i,j=1

Jij

(
ρ̃i(u) + 1u∈Vi

)(
1v∈Vj − ρ̃j(v)

)

by 4∥J∥∞αG[R] ≤ 4qαmax∥J∥∞, leading to an overall bound of 4∥J∥∞
(
(q+1)(q2− 1)+ q

)
αmax ≤

6q3αmax∥J∥∞. This concludes the proof of (5.20). �

5.3.3 Proof of Proposition 5.6

We first prove the identity (5.10). Rewriting both E(G, J,H) and Ê(G, J, h) in terms of factors,

this amounts to showing that

max
(a,X)∈Ŝq(G)

(
⟨X, J⟩a + ⟨a, h⟩

)
= max

(a,X)∈Sq(G)

(
⟨X, J⟩a + ⟨a, h⟩

)
.

Let ρ be a fractional q-partition of G, and let G/ρ = (a, X). Assuming without loss of generality

that αG = 1, we have the identity

⟨X, J⟩a + ⟨a, h⟩ =
∑

u,v∈V (G)

αu(G)αv(G)βuv(G)

q∑
i,j=1

Jijρi(u)ρj(v) +
∑

u∈V (G)

αu(G)

q∑
i=1

hiρi(u).

For a fixed u ∈ V (G), this is a linear function of (ρ1(u) . . . , ρq(u)) (here we use that βuu(G) = 0),

and so its maximum is attained at a vertex of the simplex Pdq, i.e., a vector (ρ1(u) . . . , ρq(u))

which is integer valued. Repeating this for every u ∈ V (G), we see that the maximum over

fractional partitions is attained for an ordinary partition, as desired.
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To obtain the bound (5.11), we note that the error from removing the diagonal terms can be

bounded by

2
∑

u∈V (G)

(αu(G))
2|βuu(G)|
α2
G

∥J∥∞ ≤ 2
αmax(G)

αG
βmax(G)∥J∥∞.

�

5.4 Graph Homomorphisms and Ground State Energy of Graphons

The next lemma generalizes the bound in Example 2.3, and gives a quantitative version of the

bound (2.16).

Lemma 5.7 Let G be an weighted graph on n nodes, and let H be a soft-core weighted graph on

q nodes, with weights αi(H) = ehi and βij(H) = e2Jij . Then

−Ê(G, J, 0) + lnαmin(H)

αG
≤ ln hom(G,H)

α2
G

≤ −Ê(G, J, 0) +
lnαmax(H)

αG
+
n log q

α2
G

.

and for every a ∈ Pdq,

−Êa(G, J) +
lnαmin(H)

αG
≤ ln homa(G,H)

α2
G

≤ −Êa(G, J) +
lnαmax(H)

αG
+
n log q

α2
G

.

Proof. We prove the first inequality; the proof of the second is similar. Write hom(G,H) as

hom(G,H) =
∑

ϕ:V (G)→V (H)

αϕe
−α2

GEϕ(G,J,0)

where αϕ =
∏

i∈V (G) αϕ(i)(H)αi(G). Since, by definition, the minimum of Eϕ(G, J, 0) is the ground
state energy Ê(G, J, 0), we have

hom(G,H) ≤
∑
ϕ

αϕe
−α2

GÊ(G,J,0) ≤ qnαmax(H)αGe−α
2
GÊ(G,J,0),

and

hom(G,H) ≥ max
ϕ

αϕe
−α2

GEϕ(G,J,0) ≥ αmin(H)ne−α
2
GÊ(G,J),

from which the lemma follows. �

5.5 Free Energies of Graphs and Graphons

We now turn to the main theorem of this section, namely that the free energy of G is close to

that of WG.
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Theorem 5.8 Let q ≥ 1, a ∈ Pdq, h ∈ Rq and J ∈ Symq. Let G be a graph on n nodes with all

nodeweights 1. Then∣∣F̂a(G, J)−Fa(WG, J)
∣∣ ≤ 12q2

n1/4
+

65q2√
lnn

∥J∥∞βmax(G).

and ∣∣F̂(G, J, h)−F(WG, J, h)
∣∣ ≤ 12q2

n1/4
+ q2

65√
lnn

∥J∥∞βmax(G) +
5q2

n1/2
∥h∥∞.

The proof of this inequality is more involved than the proof of the corresponding statement

for ground state energies. The additional difficulties here are not just technical. They are

related to the fact, noted earlier, that there is no natural way to define homomorphism numbers

from graphons to finite graphs. Thus, while we could define approximations to the ground state

energies E(W,J, h) and Ea(W,J) which involved only integer partitions, it is not possible to do the

same thing in the case of the free energies F(W,J, h) and Fa(W,J) — since the entropy Ent(ρ) of

an integer partition is zero. In other words, we will have to translate the information contained in

the discrete sums defining Z(G, J, h) and Za(G, J) into entropy information involving fractional

partitions.

This is best explained in the case where the graph under consideration is a blow up G[k] of

a much smaller graph G. In this situation, there are large classes of configurations which have

exactly the same energy density. Indeed, for u ∈ V (G), let Vu be the set of nodes in V (G[k])

which are blow ups of u, and let ki(u) be the number of nodes in Vu which are mapped onto

i ∈ [q]. Then all configurations ϕ : V (G[k]) → [q] with given numbers {ki(u)} have the same

energy. Counting how many such configurations we can find, we will get a term which eventually

will lead to a term Ent(ρ) in an optimization problem. In a final step, we will use the Weak

Regularity Lemma to approximate the graphs in a convergent sequence (Gn) by blow ups of a

suitable sequence of smaller graphs.

5.5.1 Entropies

Recall the definition (3.11) of the entropy of a fractional partition ρ. If ρ is a fractional partition

of a finite set V , this definition can be modified in the following way:

Ent(ρ) = − 1

|V |

q∑
i=1

∑
v∈V

ρi(v) ln ρi(v) =
1

|V |
∑
v∈V

Ent(ρ(v)).

Let ρ be a fractional q-partition of [0, 1] and P = {I1, . . . , In} be an equipartition of [0, 1], i.e.,

a partition such that all classes of P have the same Lebesgue measure. We define the fractional

partition ρP of [0, 1] and the fractional partition ρ/P of [n] as follows:

(ρ/P)i(v) =
1

n

∫
Iv

ρi(x) dx and (ρP)i(y) = (ρ/P)i(v) if y ∈ Iv.
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Proposition 5.9 For every fractional q-partition ρ of [0, 1] and every equipartition P =

{I1, . . . , In} of [0, 1], we have

Ent(ρ) ≤ Ent(ρP) = Ent(ρ/P).

Proof. The equality of Ent(ρP) and Ent(ρ/P) is straightforward. The function Ent(x) =

−
∑q

i=1 xi ln xi is concave for x ∈ Pdq, so the inequality follows by Jensen’s inequality. �

As a consequence, we have the following finite formula for the free energy of the graphon WG

associated with a graph G with nodeweights 1:

Fa(WG) = inf
ρ

(
Eρ(G, J, 0)− Ent(ρ)

)
, (5.21)

where ρ ranges over all fractional partitions of V (G) with α(ρ) = a.

Together with (5.15), the next lemma shows that the quantities on the right hand side of

(5.21) are continuous functions of ρ.

Lemma 5.10 Let ρ, ρ′ be fractional q-partitions (of a finite set or of [0, 1]). If d1(ρ, ρ
′) ≤ 1/e,

then

|Ent(ρ)− Ent(ρ′)| ≤ qd1(ρ, ρ
′) ln

1

d1(ρ, ρ′)
.

Proof. We do the proof for fractional partitions of [0, 1]. Define f : [0, 1] → R by f(x) =

−x ln x. As a consequence of the concavity of f , we have that

|f(x)− f(y)| ≤ max{f(|x− y|), f(1− |x− y|} ≤ g(|x− y|)

where g(x) is the concave hull of max{f(x), f(1− x)},

g(x) =


f(x) if x ∈ [0, 1/e]

1/e if x ∈ (1/e, 1− 1/e)

f(1− x) if x ∈ [1− 1/e, 1].

By Hölder’s inequality, we thus have

1

q
|Ent(ρ)− Ent(ρ′)| =

∣∣∣1
q

q∑
i=1

∫
[0,1]

(
f(ρi(x))− f(ρ′i(x))

)
dx
∣∣∣ ≤ 1

q

q∑
i=1

∫
[0,1]

g
(
|ρi(x)− ρ′i(x)|

)
dx

≤ g
(1
q

q∑
i=1

∫
[0,1]

|ρi(x)− ρ′i(x)|dx
)
= g(d1(ρ, ρ

′)) = f(d1(ρ, ρ
′)),

where we used that assumption that d1(ρ, ρ
′) ≤ 1/e in the last step. This proves the lemma. �

The following lemma is also easy to prove:
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Lemma 5.11 Let G be an weighted graph on n nodes, and let H be a soft-core weighted graph

on q nodes, with weights αi(H) = ehi and βij(H) = e2Jij . Then

F̂(G, J, h) ≤ Ê(G, J, h) ≤ F̂(G, J, h) + ln q

and

F̂a(G, J) ≤ Êa(G, J) ≤ F̂a(G, J) + ln q.

5.5.2 Blowups of a Graph

Instead of directly relating the free energies of G and WG, we first look at blow ups of G.

Lemma 5.12 Let G be a weighted graph with nodeweights one, let q ≥ 1, and let a ∈ Pdq,

h ∈ Rq, and J ∈ Symq. Denote the k-fold blow up of G by G[k]. Then∣∣∣F̂a(G[k], J)−Fa(WG, J)
∣∣∣ ≤ 2q2

k
∥J∥∞βmax(G) + 3q2

ln(k + 1)

k
(5.22)

and ∣∣∣F̂(G[k], J, h)−F(WG, J, h)
∣∣∣ ≤ 2q2

k
max{∥J∥∞βmax(G), ∥h∥∞}+ 3q2

ln (k + 1)

k
. (5.23)

Proof. Let V (G) = {1, . . . , n}, and let I1, . . . , In ⊂ [0, 1] be consecutive intervals of lengths

1/n. Given a configuration ϕ : V (G[k]) → [q], and a node u ∈ V (G), let ki(u) be the number of

nodes u′ ∈ V (G[k]) such that u′ is a copy of u and ϕ(u′) = i, and set ρ̂i(x) = ki(u)/k whenever

x ∈ Iu. Let Ra be the set of all fractional q-partitions ρ of V (G) such that α(ρ) = a, and let R̂a

be the set fractional q-partitions τ of V (G) such that τi(x) is an integer multiple of 1/k, and

|αi(τ)− ai

∣∣∣ ≤ 1

nk
for all i ∈ [q]. (5.24)

Then Ωa(G[k]) is precisely the set of configuration ϕ : V (G[k]) → [q] for which ρ̂ ∈ R̂a.

We write the energy density of the configuration ϕ as

Eϕ(G[k], J, 0) =
1

n2

q∑
i,j=1

Jij
∑

u,v∈V (G)

βuv(G)ρ̂i(u)ρ̂j(v).

The number of configurations ϕ corresponding to a fixed set of numbers (ki(u)) (i ∈ [q], u ∈ [n])

is given by the product of multinomials∏
u∈[n]

k!

k1(u)! . . . kq(u)!
.
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To continue, we approximate the factorials by the leading term in their asymptotic expansion.

Neglecting, for the moment, the error term, we have∏
u∈[n]

k!

k1(u)! . . . kq(u)!
≈
∏
u∈[n]

(k/e)k

(k1(u)/e)k1(u) . . . (kq(u)/e)kq(u)
= exp

(
nkEnt(ρ̂)

)
.

To bound the error in the above approximation, we use the following simple inequality, valid for

all integers m ≥ 1: (m
e

)m
≤ m! ≤ em

(m
e

)m
.

As a consequence, we have that( 1

ek

)qn
enkEnt(ρ̂) ≤

∏
u∈[n]

k!

k1(u)! . . . kq(u)!
≤ (ek)qnenkEnt(ρ̂).

Bounding finally the number of choices for the qn-tuple (ki(u)) by (k + 1)n(q−1) ≤ (k + 1)nq, we

conclude that

(ek)−qnmax
ρ̂∈R̂a

enk(Ent(ρ̂)−Eρ̂(WG,J,0)) ≤ Za(G[k], J) ≤ (ek(k + 1))qnmax
ρ̂∈R̂a

enk(Ent(ρ̂)−Eρ̂(WG,J,0)).

The above bound on the partition function implies that∣∣∣F̂a(G[k], J)− min
ρ̂∈R̂a

(
Eρ̂(WG, J, 0)− Ent(ρ̂)

)∣∣∣ ≤ q
ln(ek(k + 1))

k
≤ 3q

ln(k + 1)

k
. (5.25)

By (5.21), we have

Fa(WG, J) = min
ρ∈Ra

(
Eρ(WG, J, 0)− Ent(ρ)

)
. (5.26)

To complete the proof of the lemma, we therefore have to compare the fractional partitions in

R̂a to those in Ra.

Let ρ̂ ∈ R̂a attain the minimum in the expression on the left hand side of (5.25). Using

the fact that ρ̂ obeys the constraint (5.24), it is not hard to show that there exists a fractional

q-partition ρ ∈ Ra such that d1(ρ, ρ
′) ≤ 1

k
. Inequality (5.14) gives∣∣∣Eρ(WG, J, 0)− Eρ̂(WG, J, 0)

∣∣∣ ≤ 2q∥J∥∞∥WG∥∞d1(ρ, ρ̂) ≤ 2q∥J∥∞βmax(G)
1

k
,

while Lemma 5.10 (together with the fact that |Ent(ρ) − Ent(ρ̂)| ≤ ln q ≤ q
k
ln(k + 1) if k ≤ 2)

implies that

|Ent(ρ)− Ent(ρ̂)| ≤ q
ln(k + 1)

k
.

Hence, using also (5.25),

F̂a(G[k], J) ≥ Eρ̂(WG, J, 0)− Ent(ρ̂)− 3q
ln(k + 1)

k

≥ Eρ(WG, J, 0)− Ent(ρ)− 2q∥J∥∞βmax(G)
1

k
− q

ln(k + 1)

k
− 3q

ln(k + 1)

k

≥ Fa(WG, J)− 2q∥J∥∞βmax(G)
1

k
− 4q

ln(k + 1)

k
. (5.27)
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To prove a bound in the opposite direction, consider a fractional q-partition ρ which attains

the minimum in (5.26). Given this partition, we will construct a partition ρ̂ ∈ R̂a. Let bi(u) =

kρi(u), then by the Integer Making Lemma [1], there exists integers ki(u) such that

|bi(u)− ki(u)| < 1 (1 ≤ i ≤ q, 1 ≤ u ≤ n), (5.28)∣∣∣ q∑
i=1

bi(u)−
q∑
i=1

ki(u)
∣∣∣ < 1 (1 ≤ u ≤ n), (5.29)

and ∣∣∣ n∑
u=1

bi(u)−
n∑
i=u

ki(u)
∣∣∣ < 1 (1 ≤ i ≤ q). (5.30)

Since
∑

i bi(u) = k is an integer, (5.29) implies
∑

i ki(u) = k, and so ρ̂i(u) = ki(u)/k is a

fractional partition. Furthermore (5.30) implies that |αi(ρ̂) − ai| ≤ 1/(nk), and so ρ̂ ∈ R̂a.

Finally, (5.28) gives that

d1(ρ, ρ̂) ≤
q

k
.

Hence, using Lemma 5.10 (this time together with the fact that |Ent(ρ) − Ent(ρ̂)| ≤ ln q ≤
q2

k
ln(k + 1) if 1 ≤ k ≤ ⌊qe⌋) and the inequalities (5.14) and (5.25) again, we get

Fa(WG, J) = Eρ(WG, J, 0)− Ent(ρ)

≥ Eρ̂(G[k], J, 0)− Ent(ρ̂)− 2q2∥J∥∞βmax(G)
1

k
− q2

ln(k + 1)

k

≥ F̂a(G[k], J)− 3q
ln(k + 1)

k
− 2q2∥J∥∞βmax(G)

1

k
− q2

ln(k + 1)

k

≥ F̂a(G[k], J)− 2q2∥J∥∞βmax(G)
1

k
− 3q2

ln(k + 1)

k
,

where in the last step we assume (without loss of generality) that q ≥ 2. Together with (5.27),

this proves the bound (5.22) . The bound (5.23) is proved in the same way; in fact, its proof is

slightly easier. �

We also need the following lemma of a somewhat similar nature.

Lemma 5.13 Let G be a graph with nodeweights 1, and let q ≥ 1, a ∈ Pdq, h ∈ Rq, and

J ∈ Symq. Let G
′ be obtained from G by adding k new isolated nodes with nodeweights 1. Then

|F̂a(G
′, J)− F̂a(G, J)| ≤

k

|V (G)|

(q
2
ln |V (G)|+ (q + 2)

(
βmax∥J∥∞ +

1

2
ln q
))
, (5.31)

|F̂(G′, J, h)− F̂(G, J, h)| ≤ k

|V (G)|

(
βmax∥J∥∞ + ∥h∥∞ + ln q

)
, (5.32)

and

|Fa(WG′ , J)−Fa(WG, J)| ≤
2q2k

|V (G)|
∥J∥∞βmax. (5.33)
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Proof. It suffices to prove the case k = 1. Let n = |V (G)|. Let ϕ ∈ Ωa(G). We claim that after

changing the value of ϕ on at most ⌊(q−1)/2⌋ nodes, it can be extended to the new node to get a

configuration ϕ′ = ϕ′(ϕ) ∈ Ωa(G
′). Indeed, let Vi = ϕ−1({i}), and let δi = (n+ 1)ai − |Vi|. Then∑

i δi = 1, and −1 + ai ≤ δi ≤ ai + 1 (by the assumption that ϕ ∈ Ωa(G)). Let S+ be the set of

indices for which δi > 1, and let S− be the set of indices for which δi ≤ 0. Since
∑

i δi = 1, we

know that |S−| ≥ |S+| − 1. Choose |S+| − 1 vertices of G in such a way that each has a different

image in S−, and change the images of each of them to a different element of S+. If we map the

new vertex n + 1 to the remaining element in S+, we obtain a configuration ϕ′ ∈ Ωa(G
′). Since

|S+|+ |S+| − 1 ≤ q, the number of vertices whose image was changed is at most ⌊(q − 1)/2⌋, as
claimed.

If ϕ′ = ϕ′(ϕ) is obtained from ϕ by the above procedure, then

|Eϕ(G, J, 0)− Eϕ′(G′, J, 0)| ≤ 2∥J∥∞βmaxn⌈(q − 1)/2⌉ ≤ n(q − 1)βmax∥J∥∞.

It is also not hard to check that each ϕ′ can arise from at most n⌊(q−1)/2⌋q⌊(q−1)/2⌋ ≤ (nq)q/2

different configurations ϕ. As a consequence,

Za(G
′, J) =

∑
ψ∈Ωa(G′)

e−
1

n+1
Eψ(G′,J,0) ≥ 1

(nq)q/2

∑
ϕ∈Ωa(G)

e−
1

n+1
Eϕ′(ϕ)(G′,J,0)

≥ 1

(nq)q/2

∑
ϕ∈Ωa(G)

e−
1
n
Eϕ(G′,J,0)e−qβmax∥J∥∞

=
1

(nq)q/2
exp(−qβmax∥J∥∞)Za(G, J).

Conversely, from every ψ ∈ Ωa(G
′) we can construct a ϕ ∈ Ωa(G) by deleting the new node

and changing the image of at most max{1, ⌊(q−1)/2⌋} ≤ q/2 nodes (where we used that, without

loss of generality, q ≥ 2 since otherwise we do not have to change any nodes). This time, there

are at most q(nq)max{1,⌊(q−1)/2⌋} ≤ q(nq)q/2 different configurations ψ ∈ Ωa(G
′) which can give

rise to the same configuration ϕ. As a consequence, we now have

Za(G
′, J) =

∑
ψ∈Ωa(G′)

e−
1

n+1
Eψ(G′,J,0)

≤ q(nq)q/2enqβmax∥J∥∞
∑

ϕ∈Ωa(G)

e−
1

n+1
Eϕ(G,J,0)

≤ q(nq)q/2 exp((q + 1)βmax∥J∥∞)Za(G, J).

Combined with the trivial inequality e−nβmax∥J∥∞ ≤ Za(G, J) ≤ qnenβmax∥J∥∞ this gives

|F̂a(G
′, J)− F̂a(G, J)| =

∣∣∣ 1

n+ 1
lnZa(G

′, J)− 1

n
lnZa(G, J)

∣∣∣
≤ q + 2

n
βmax∥J∥∞ +

ln q

n
+
q ln(nq)

2n

=
q + 2

n

(
βmax∥J∥∞ +

1

2
ln q
)
+

q

2n
lnn.
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This proves (5.31). The inequality (5.32) follows from the observation that

Z(G′, J, h) = Z(G, J, h)

q∑
i=1

ehi ,

and the inequality (5.33) follows easily from Theorem 4.13. �

5.5.3 Conclusion

To conclude the proof of Theorem 5.8, we use the following form of the Weak Regularity Lemma

due to Frieze and Kannan [7]; see also [4]. We define, for a weighted graph G and a partition

P = (V1, . . . , Vk) of V (G), the weighted graph GP on V (G) with nodeweights α(GP) = α(G) and

edgeweights βuv(GP) = βij(G/P) if (u, v) ∈ Vi × Vj. We call P equitable if⌊ |V (G)|
k

⌋
≤ |Vi| ≤

⌈ |V (G)|
k

⌉
for all i ∈ [q].

Lemma 5.14 ([7]) For every weighted graph G with all nodeweights 1 and integer 1 ≤ k ≤
|V (G)|, there is an equitable partition P of V (G) into k classes such that

d�(G,GP) ≤
20√
log2 k

βmax(G).

With the help of this lemma, we now complete the proof of Theorem 5.8 as follows: Let

k = ⌈n1/2⌉. It will be convenient to assume that m = n/k is an integer. To this end, add

k′ = k⌈n/k⌉ − n ≤ n1/2k new isolated nodes to G. By Lemma 5.13, the cumulative change to

F̂a(G, J) and Fa(WG, J) can be bounded by

1

n1/2

(q
2
lnn+

q + 2

2
ln q + (2q2 + q + 2)βmax∥J∥∞

)
≤ q2

n1/2

(1
2
lnn+

1

2
+ 5βmax∥J∥∞

)
.

By the Weak Regularity Lemma 5.14, we may now choose an equitable partition P of V (G) into

k classes such that

d�(G,GP) ≤
20βmax(G)√

log2 k
≤ 20

√
2βmax(G)√
lnn

.

To complete the proof, we use the triangle inequality,∣∣F̂a(G, J)− F̂a(WG, J)
∣∣

≤
∣∣F̂a(G, J)− F̂a(GP , J)

∣∣+ ∣∣F̂a(GP , J)−Fa(WGP , J)
∣∣+ ∣∣Fa(WGP , J)−Fa(WG, J)

∣∣.
Here the first term is bounded by q2∥J∥∞d�(G,GP) by (5.16), (2.12) and (2.13), and the last

term is bounded by the same quantity by Theorem 4.13.
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To estimate the middle term, let G′ = G/P . Then GP = G′[m] and WGP = WG′ , and hence

by Lemma 5.12∣∣F̂a(GP , J)−Fa(WG′ , J)
∣∣ = ∣∣F̂a(G

′[m], J)−Fa(WG′ , J)
∣∣

≤ q2

m

(
2∥J∥∞βmax(G) + 3(1 + lnm)

)
≤ q2

n1/2

(
4∥J∥∞βmax(G) + 6

(
1 +

1

2
lnn
))
.

Combining the various error terms, we get that

∣∣F̂a(G, J)− F̂a(WG, J)
∣∣ ≤ q2

n1/2

(7
2
lnn+

13

2
+ 9βmax(G)∥J∥∞

)
+ q2

40
√
2√

lnn
∥J∥∞βmax(G)

≤ q2

n1/2

(13
2

+
14n1/4

e

)
+ q2

40
√
2 + 9√
lnn

∥J∥∞βmax(G)

≤ 12q2

n1/4
+ q2

65√
lnn

∥J∥∞βmax(G).

This proves the first bound of the theorem. The proof of the second bound is completely analo-

gous and is left to the reader.

5.6 Proof of Theorem 2.14

Let (Gn) be a sequence of graphs with uniformly bounded edgeweights and no dominating

nodeweight.

The equivalence of (i) and (ii) was proved in [4].

Theorem 5.4 and Proposition 5.3 imply that dHf
1 (Ŝq(Gn),Sq(WGn)) → 0, and hence the se-

quence Ŝq(Gn) is Cauchy in the dHf
1 distance if and only if the sequence Sq(WGn) is. By Theorem

3.5, this happens if and only if the graphon sequence (WGn) is convergent, which is equivalent

to (i).

Similarly, equation (5.8) and Theorem 5.5 imply that |Êa(Gn, J)−Ea(WGn , J)| → 0, and hence

the sequence Êa(Gn, J) is convergent if and only if the sequence Ea(WGn , J) is. By Theorem 3.5,

this happens for all a and J if and only if the graphon sequence (WGn) is convergent, which is

again equivalent to (i).

Next suppose that α2
Gn
/n→ ∞. Lemma 5.7 implies that for every weighted graphH = (a, J),∣∣∣homa(Gn, H)

α2
Gn

− Ea(WGn , J)
∣∣∣→ 0,

and hence the sequence (homa(Gn, H)/α2
Gn

) is convergent if and only if (Ea(WGn , J)) is. As we

have seen, this is equivalent to (i).
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Now suppose that all nodeweights in the graphs Gn are 1. Then Theorem 5.8 implies that

|F̂a(Gn, J)−Fa(WGn , J)| → 0, and hence the sequence F̂a(Gn, J) is convergent if and only if the

sequence Fa(WGn , J) is. We conclude by Theorem 3.5 as before.

Similar arguments also prove Theorems 2.15 and 3.7.

5.7 Proof of Proposition 3.11

The following lemma is a slight generalization of Lemma 4.3 in [4], and the proof is essentially

the same.

Lemma 5.15 Let λ > 0, and let H be a weighted graph on n nodes with nodeweights 1. Let Xij

(ij ∈ E(H)) be independent random variables such that E(Xij) = βij(H) and |Xij| ≤ C. Let G

be the random graph on V (H) with edgeweights Xij. Then

d�(H,G) < C

(√
λ+ 4 log 4

n
+

1

n

)
with probability at least 1− e−λn/4.

Turning to the proof of Proposition 3.11, recall that we are considering two sequences (Gn)

and (G′
n) of graphs. Consider a third sequence, G′′

n, with V (G′′
n) = V (G′

n), E(G
′
n) = E(G′′

n) and

βuv(G
′′
n) = β̄.

Lemma 5.15 implies that with probability one, d�(G
′
n, G

′′
n) → 0 as n → ∞. Combined with

the easy bound (5.16), this immediately gives the statement of the proposition. Indeed, using

the fact that F̂(Gn, β̄J, h) = F̂(G′′
n, J, h), we may use (5.16) to bound∣∣∣F̂(G′

n, J, h)− F̂(Gn, β̄J, h)
∣∣∣ = ∣∣∣F̂(G′

n, J, h)− F̂(G′′
n, J, h)

∣∣∣ ≤ q2 max{∥J∥∞, ∥h∥∞}d�(G′′, G′).

6 Weaker Convergence

6.1 Counterexamples

By Theorems 4.13 and 4.14, graphons which are near in the cut-metric have similar free energies,

and thus also similar ground state energies. Our first example shows that the converse does not

hold. Indeed, it gives a family of distinct graphons which have the same free energies and ground

state energies.

Example 6.1 (Block Diagonal Graphons) Given 0 < α < 1 and β1, β2 ≥ 0, let W be the

block diagonal graphon

W (x, y) =


β1 if 0 ≤ x, y ≤ α

β2 if α ≤ x, y ≤ 1

0 otherwise.

(6.1)
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It is easy to express the free energies of W in terms of the free energies of the constant graphons

W1 ≡ αβ1 and W2 ≡ (1− α)β2: If q ≥ 1, h ∈ Rq and J ∈ Symq, then

F(W,J, h) =
∑
u=1,2

min
ρ(u)∈Pdq

(
α2
uβu

∑
i,j

Jijρ
(u)
i ρ

(u)
j − αu

∑
i

ρ
(u)
i hi − αuEnt(ρ

(u))
))

=
∑
u=1,2

αuF(βuαu, J, h)
(6.2)

where α1 = α and α2 = 1− α. The same calculation also shows that

E(W,J, h) =
∑
u=1,2

αuE(βuαu, J, h). (6.3)

Choosing

β1 = 1/α and β2 = 1/(1− α) with α ∈ (0, 1/2],

we obtain a one-parameter family of distinct graphons which cannot be distinguished by their

free energies or ground state energies since F(W,J, h) = F(1, J, h) and E(W,J, h) = E(1, J, h)
for all W in the family.

Obviously, two distinct graphons which can be distinguished by their ground state energies

without magnetic fields can also be distinguished if we allow magnetic fields. Our next example

shows that the converse is not true.

Example 6.2 Consider again the block diagonal graphon defined in (6.1). It is easy to calculate

the ground state energy of this graphon for h = 0, giving

E(W,J, 0) =
(
α2β1 + (1− α)2β2

)
E(1, J, 0).

Choosing

β1 =
λ

α
and β2 =

1− αλ

(1− α)2

with α ∈ (0, 1/2] and λ ∈ (0, 1/α], we obtain a two-parameter family of distinct graphons which

cannot be distinguished by the ground state energies without magnetic fields.

But only the subfamily considered in Example 6.1, i.e., the subfamily with λ = 1, remains

indistinguishable if we allow magnetic fields. Indeed, consider the case q = 2, Jij = 1− δi,1 and

hi = cδ1,i from the biased max-cut problem discussed in Section 2.3. The biased max-cut for

W ≡ β can be easily calculated, giving

−E(β, J, h) = max
a∈[0,1]

(
2a(1− a)β + ca

)
=
β + c

2
+
c2

8β

provided |c| ≤ 2β. Taking into account the relation (6.3), we conclude that for all graphons W

in the above family, we have

−E(W,J, h) = c+ 1

2
+ +

c2

8

(α
λ
+

(1− α)2

1− αλ

)
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provided |c| ≤ min{2λ/α, (1−αλ/(1−α)2}. Thus two elements of the family can be distinguished

by the biased max-cut problem unless α
λ
+ (1−α)2

1−αλ = 1, i.e., unless λ = 1, as claimed.

We have seen in the previous sections that right convergence implies convergence of the

ground state energies, which in turn implies convergence of the ground state energies without

magnetic fields, and hence naive right convergence. Using Examples 6.1 and 6.2, it is not hard

to show that right convergence is in fact strictly stronger than convergence of the ground state

energies, which in turn is strictly stronger than naive right convergence. This is the content of

the next example.

Example 6.3 We first give an example of a sequence of simple graphs which has convergent

ground state energies, but is not left-convergent, and therefore also not right-convergent. Let

p ≤ 1/2, let Gn = G(n, p), and let G′
n be the disjoint union of two random graphs G(n, 2p).

With probability one, Gn then converges from the left to the constant graphon W ≡ p, and G′
n

converges from the left to the graphon W ′ defined by (6.1) with α = 1/2 and β1 = β2 = 2p. As

a consequence, Ê(Gn, J, h) → E(W,J, h) and Ê(G′
n, J, h) → E(W ′, J, h). By the identity (6.3),

E(W,J, h) = E(W ′, J, h) for all q ≥ 1, all J ∈ Symq, and all h ∈ Rd, implying that the ground

state energies of Gn and G′
n converge to the same limiting ground state energy. Interleaving the

two sequences (Gn) and (G′
n), we get a sequence of simple graphs which is not left-convergent,

but has convergent ground state energies (taking into account the identity (6.2), we see that this

sequence has convergent free energies as well).

In a similar way, we can use Example 6.2 to construct a sequence of simple graphs which is

naively right-convergent, but does not have convergent ground state energies. Indeed, let W be

the constant graphon W ≡ p and let W ′ be the graphon defined in (6.1) with α = 1/2, β1 = p

and β2 = 3p. Then E(W ′, J, 0) =
(
p
4
+ 3p

4

)
E(1, J, 0) = E(W,J, 0). Let Gn = G(p, n) and G′

n be

the disjoint union of G(p, n) and G(3p, n). If H is a soft-core graph on q nodes with βij(H) =

e2Jij , then 1
n2hom(Gn, H) → E(W,J, 0) and 1

(2n)2
log hom(G′

n, H) → E(W ′, J, 0) = E(W,J, 0).
Interleaving the two sequences, we thus obtain a sequence which is naively right-convergent, but

does not have convergent ground state energies once we allow for non-zero magnetic fields.

We finally give an example showing that the statements of Theorems 2.14, 2.15 and 3.7

concerning the free energy do not hold if we relax the condition that (Gn) has nodeweights one.

Example 6.4 LetG be the weighted graph on {1, 2} with weights β11(G) = β22(G) = 1, α1(G) =

1/3 and α2(G) = 2/3, and let Gn be obtained from G by blowing up each node n times, Gn =

G[n]. Then Gn converges to the block-diagonal graphon

W (x, y) =

{
1 if 0 ≤ x, y ≤ 1/3 or 1/3 ≤ x, y ≤ 1

0 otherwise.
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But the free energies and microcanonical free energies of Gn do not converge to those of W .

Indeed, let q ≥ 2, a ∈ Pdq, and J ∈ Symq. Proceeding as in the proof of Lemma 5.12, it is then

not hard to show that F̂a(G[n], J) converges to

F∞
a = inf

ρ

(
Eρ(G, J, 0) +

1

2

∑
x∈V (G)

∑
i∈[q]

ρi(x) log ρi(x)
)

where the infimum goes over all fractional partitions ρ of V (G) = {1, 2} obeying the con-

straint 1
3
ρi(1) +

2
3
ρi(2) = ai, while F(G[n], J, 0) converges to F∞ = mina∈Pdq F∞

a . Note that

the nodeweights of G enter into the energy term Eρ(G, J, 0) and the condition on ρ, but not

into the entropy term 1
2

∑
x

∑
i ρi(x) log ρi(x), in contrast to the corresponding expression for the

microcanonical free energies of the limit W ,

Fa(W,J) = inf
ρ

(
Eρ(G, J, 0) +

1

3

∑
i∈[q]

ρi(1) log ρi(1) +
2

3

∑
i∈[q]

ρi(2) log ρi(2)
)
,

where the nodeweights enter into both the energy and the entropy term.

Specializing to the Ising model with spin space {−1,+1} and coupling constants Jϕ,ϕ′ =
K
2
ϕϕ′,

we write the limit F∞
a as

F∞
a = − max

m1,m2∈[−1,1]
1
3
m1+

2
3
m2=m

(K
2

(1
9
m2

1 +
4

9
m2

2

)
+

1

2
Ent(m1) +

1

2
Ent(m2)

)
,

and the free energy of the limit W as

Fa(W,J) = − max
m1,m2∈[−1,1]
1
3
m1+

2
3
m2=m

(K
2

(1
9
m2

1 +
4

9
m2

2

)
+

1

3
Ent(m1) +

2

3
Ent(m2)

)
.

Here m = m(a) = a+ − a− and

Ent(m) = −1 +m

2
ln
(1 +m

2

)
− 1−m

2
ln
(1−m

2

)
.

Let K = 3/2, let m̂ ≥ 0 be such that

max
m2∈[−1,1]

(m2
2

3
+

1

2
Ent(m2)

)
=
m̂2

3
+

1

2
Ent(m̂),

and let â ∈ Pd2 and be such that m̂ = â1 − â2. Using the fact that

max
M∈[−1,1]

(K̃
2
M2 + Ent(M)

)
≥ ln 2 = Ent(0),

with equality if and only if K̃ ≤ 1 (see Example 3.9), it is then not hard to check that

F∞ = F∞
â = −m̂

2

3
− 1

2
Ent(m̂)− 1

2
Ent(0) < − ln 2,
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while

Fâ(W,J) ≥ F(W,J, 0) = − max
m1,m2

(m2
1

12
+
m2

2

3
+

1

3
Ent(m1) +

2

3
Ent(m2)

)
= Ent(0) = − ln 2.

This proves that limn→∞ F̂â(G[n], J) < Fâ(W,J) and limn→∞ F̂(G[n], J, 0) < F(W,J, 0).

Interspersing the sequence (G[n]) with an arbitrary sequence of simple graphs which converges

toW , this also yields an example of a convergent sequence of weighted graphs whose free energies

and microcanonical free energies do not converge.

6.2 Naive Right Convergence with Two Weights

We have seen that naive right convergence is not enough to guarantee left convergence. But there

is a way of saving the equivalence of right convergence with left convergence, by considering target

graphs H with two edgeweights βij and γij. We call these graphs doubly weighted. We say that

H is soft-core, if βij, γij > 0 for all i, j ∈ V (H). The value hom(G,H) is defined as

hom(G,H) =
∑

ϕ:V (G)→V (H)

∏
u∈V (G)

αϕ(u)(H)
∏

uv∈E(G)

βϕ(u),ϕ(v)(H)
∏

uv/∈E(G)

γϕ(u),ϕ(v)(H).

Theorem 6.5 Let (Gn) be a sequence with uniformly bounded edgeweights, and nodeweights 1.

Then (Gn) is left-convergent if and only if

ln hom(Gn, H)

|V (G)|2

has a limit for each doubly weighted soft-core graph H.

Proof. The proof of the “only if” part is analogous to the proof of the first statement in

Theorem 2.15 and is left to the reader. The idea of the proof of the “if” part is that one can

use the second set of edgeweights to force the dominating partition to have prescribed sizes, and

thereby show that the microcanonical ground state energies converge. To be more precise, let

q ≥ 1, a ∈ Pdq, and J ∈ Symq. Define a doubly weighted graph HC by

αi = 1, γij = exp
(−C
ai

1i=j

)
, βij = exp

(
Jij +

C

ai
1i=j

)
(i, j ∈ [q]).

Then for every graph G,

hom(G,HC) exp(C|V (G)|2) =
∑
ϕ

αϕ exp(Eϕ(G, J, 0)) exp
(
−
∑
i

C

ai

(
ain− |ϕ−1(i)|

)2)
.

The last factor is maximized when ϕ ∈ Ωa(G), from which it is not hard to show that

lim
C→∞

( ln hom(G,HC)

|V (G)|2
+ C

)
= Ea(G, J),

uniformly in G, and hence the theorem follows. �
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6.3 Convergence of Spectra

Every graphon W ∈ W defines an operator TW : L2[0, 1] → L2[0, 1] by

TWf(x) =

∫ 1

0

W (x, y)f(y) dy.

It is well known that this operator is self-adjoint and compact, and hence it has a discrete real

spectrum Λ(W ), whose only possible point of accumulation is 0. We consider Λ(W ) as multiset.

For i ≥ 1, let λi(W ) denote the ith largest element of the spectrum (counting multiplicities),

provided the spectrum has at least i positive elements; otherwise, let λi(W ) = 0. Similarly, let

λ′i(W ) denote the ith smallest element of the spectrum, provided the spectrum has at least i

negative elements; otherwise, let λ′i(W ) = 0.

It is known that for k ≥ 2, the sum
∑

λ∈Λ(W ) λ
k is absolute convergent. In fact, we have∑

λ∈Λ(W )

λ2 = ∥W∥22 and
∑

λ∈Λ(W )

λk = t(Ck,W ) for all k ≥ 3. (6.4)

It follows that
∑m

i=1 λ
3
i ≤ t(C3,W ), and hence

λm ≤ t(C3,W )1/3

m1/3
. (6.5)

For a graph G with n nodes, we consider its adjacency matrix AG, and its eigenvalues µ1 ≥
µ2 ≥ · · · ≥ µn. We define its normalized eigenvalues λi = µi/n, (i = 1, . . . , n). Again for k ≥ 3,

we have
n∑
i=1

λki = t(Ck, G). (6.6)

We note that the spectrum ofWG is the normalized spectrum of G, together with infinitely many

0’s.

The following is a generalization of Theorem 2.9 (ii) to weighted graphs, and also gives the

values of the limiting eigenvalues.

Theorem 6.6 Let W be a graphon, and let (Gm : m = 1, 2, . . . ) be a sequence of weighted

graphs with uniformly bounded edgeweights tending to W . Let |V (Gm)| = nm, and let λm,1 ≥
λm,2 ≥ · · · ≥ λn,nm be the normalized spectrum of Gm. Then for every i ≥ 1,

λm,i → λi(W ) and λm,nm+1−i → λ′i(W ) as n→ ∞.

We can prove a bit more:

Theorem 6.7 Let (W1,W2, . . . ) be a sequence of uniformly bounded graphons, converging (in

the δ� metric) to a graphon W . Then for every i ≥ 1,

λi(Wn) → λi(W ) and λ′i(Wn) → λ′i(W ) as n→ ∞. (6.7)
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Proof. If the conclusion does not hold, then there is an i0 ≥ 0 for which (say) λi(Wn) ̸→ λi(W ).

Choosing a suitable subsequence, we may assume that for each j ≥ 1, the limits

µj = lim
n→∞

λj(Wn) and µ′
j = lim

n→∞
λ′j(Wn)

exist, and that µi0 ̸= λi0(W ).

We claim that for every k ≥ 4,

lim
n→∞

∞∑
j=1

λkj (Wn) −→
∞∑
j=1

µkj , and lim
n→∞

∞∑
j=1

λ′j
k
(Wn) −→

∞∑
j=1

µ′
j
k
. (6.8)

Indeed, the sequence t(C3,Wn) is convergent and hence it is bounded by some constant c; but then

(6.5) tells us that λm(Wn) < (c/m)1/3, and hence the sum
∑

m λ
k
m(Wn) is uniformly majorized

by the convergent series
∑

m(c/m)4/3. Hence we can take the limit term-by-term in the sums on

the left hand side.

Using once more the convergence of t(Ck,Wn) to t(Ck,W ) we conclude that for every k ≥ 4,

we have
∞∑
j=1

µkj +
∞∑
j=1

µ′
j
k
=

∞∑
j=1

λj(W )k +
∞∑
j=1

λ′j(W )k. (6.9)

To conclude, it suffices to prove that the two sums on each side are the same term-by-term:

µj = λj(W ) and µ′
j = λ′j(W ) (j ≥ 0). (6.10)

Indeed, this can be proved by induction on j. Let λj occur a times in the sequence (λ1, λ2, . . . )

and b times in the sequence (µ1, µ2, . . . ). Let −λj occur a′ times in the sequence (λ′1, λ
′
2, . . . )

and b′ times in the sequence (µ′
1, µ

′
2, . . . ). Assume by induction that λi = µi for i < j, and that

λ′i = µ′
i whenever |λ′i| > λj or |µ′

i| > λj. Subtracting the contribution of these terms from both

sides of (6.9), and sending k → ∞ through the even numbers, the left hand side is asymptotically

(b + b′)λkj , while the right hand side is (a + a′)λkj . This implies that a + a′ = b + b′. Similarly,

letting k tend to infinity through the odd numbers, we get that a− a′ = b− b′. This implies that

a = b and a′ = b′, so in particular λj = µj as claimed. �

Let I be a bounded interval. The previous theorem then states that for all i ≥ 1, the maps

W 7→ λi(W ) and W 7→ λ′i(W ) are continuous maps from (WI , δ�) to R. By the compactness of

(WI , δ�), these maps are uniformly continuous, implying the following:

Corollary 6.8 For every bounded interval I, every ε > 0 and every i ≥ 1, there is a δi > 0 such

that if U,W ∈ WI and δ�(U,W ) ≤ δi, then

|λi(U)− λi(W )| ≤ ε and |λ′i(U)− λ′i(W )| ≤ ε.
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For the special case when the sequence (Gn) is quasirandom with density p, the largest normalized

eigenvalue of Gn tends to p, while the others tend to 0. In this special case, this statement has a

converse: if (Gn) is a sequence of graphs such that the edge-density on Gn tends to p, the largest

normalized eigenvalue of Gn tends to p, and all the other eigenvalues tend to 0, then (Gn) is

quasirandom.

This converse, however, does not extend to a characterization of convergent graph sequences in

any direct way. Consider two regular non-isomorphic graphs G1 and G2 with the same spectrum,

say the incidence graphs of two non-isomorphic finite projective planes of the same order n.

Consider the blow ups G1(n) and G2(n), n = 1, 2, . . . , and merge them into a single sequence.

This sequence is not convergent, but all graphs in it have the same edge density, and the spectra

of all graphs are the same except for the 0’s.

7 Quasi-inner product and non-effective arguments

There is an alternative way of expressing ground state energies, which leads to a shorter, but

non-effective proof of our main result, the equivalence of left and right convergence. Moreover

it reduces significantly the set of test graphs {(a, H)} resp. {(a, J)} in Definition 2.2 resp. in

Definition 2.7 (see Corollary 7.4).

The best space to work with graphons is the compact space W̃I (for simplicity, assume that

I = [0, 1]). This space has no linear structure, and the sum U +W or inner product ⟨U,W ⟩
of two graphons cannot be defined in a way that would be invariant under weak isomorphism.

However, we can replace the inner product by the following version, which will be very useful:

C(U,W ) = sup
ϕ
⟨U,W ϕ⟩ = sup

ϕ

∫
[0,1]2

U(x, y)W (ϕ(x), ϕ(y)) dx dy,

where the supremum is taken over all measure preserving bijections ϕ : [0, 1] → [0, 1].

We can use this quasi-inner product to express ground state energies. Let a ∈ Pdq and

J ∈ Symq, and let H be the weighted graph on [q] with nodeweights a and edgeweights J . Then

for every graphon W ,

Ea(W,J) = C(W,WH). (7.1)

We can also express the cut norm with this functional as

∥W∥� = sup
S,T⊆[0,1]

⟨W,1S×T ⟩ = sup
a,b∈[0,1]

C(W,1[0,a]×[0,b]). (7.2)

The functional C(U,W ) has many good properties. It follows just like for the cut norm in [4]

that

C(U,W ) = sup
ϕ
⟨U,W ϕ⟩ = sup

ϕ
⟨Uϕ,W ⟩ = sup

σ,τ
⟨Uσ,W τ ⟩, (7.3)
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where ϕ ranges over all measure preserving bijections [0, 1] → [0, 1], and σ, τ range over all mea-

sure preserving, but not necessarily bijective maps [0, 1] → [0, 1]. Hence the overlay functional is

invariant under measure preserving transformations of the graphons U and W , i.e., it is a func-

tional on the space W̃I × W̃I . It also follows that this quantity has the (somewhat unexpected)

symmetry property C(U,W ) = C(W,U), and satisfies the inequalities

⟨U,W ⟩ ≤ C(U,W ) ≤ ∥U∥2∥W∥2, C(U,W ) ≤ ∥U∥∞∥W∥1. (7.4)

This supports the claim that C(., .) behaves like some kind of inner product. This analogy

is further supported by the following identity, a kind of “Cosine Theorem”, relating it to the

distance δ2 derived from the L2-norm:

2C(U,W ) = ∥U∥22 + ∥W∥22 − δ2(U,W )2 = δ2(U, 0)
2 + δ2(W, 0)

2 − δ2(U,W )2. (7.5)

But we have to be a bit careful: the functional C(U,W ) is not bilinear, only subadditive:

C(U + V,W ) ≤ C(U,W ) + C(V,W ). (7.6)

It is homogeneous for positive scalars: if λ > 0, then

C(λU,W ) = C(U, λW ) = λC(U,W ), (7.7)

and C(U,W ) = C(−U,−W ), but C(U,W ) and C(−U,W ) are not related in general.

A less trivial property of this functional is that it is continuous in each variable with respect

to the δ� distance. This does not follow from (7.5), since the distance δ2(U,W ) is not continuous

with respect to δ�, only lower semicontinuous.

Lemma 7.1 If δ�(Un, U) → 0 as n → ∞ (U,Un ∈ W1), then C(Un,W ) → C(U,W ) for every

W ∈ W1.

Proof. We may assume that ∥Un − U∥� → 0. By subadditivity (7.6), we have

−C(U − Un,W ) ≤ C(Un,W )− C(U,W ) ≤ C(Un − U,W ),

and hence it is enough to prove that C(Un−U,W ), C(U −Un,W ) → 0. In other words, it suffices

to prove the lemma in the case when Un → U = 0.

The usual inner product ⟨U,W ⟩ is continuous in each variable with respect to the cut

norm, which was noted e.g. in [11], Lemma 2.2. Since C(Un,W ) ≥ ⟨Un,W ⟩, it follows that

lim infn C(Un,W ) ≥ 0.

To prove the opposite inequality, we start with the case when W is a stepfunction. Write

W =
∑m

i=1 ai1Si×Ti , then using (7.6) and (7.2), we get

C(Un,W ) ≤
m∑
i=1

C(Un, ai1Si×Ti) =
m∑
i=1

C(aiUn,1Si×Ti) ≤
m∑
i=1

∥aiUn∥� =
m∑
i=1

|ai|∥Un∥�.
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Since every term tends to 0, we get that lim sup C(Un,W ) ≤ 0.

Now if W is an arbitrary kernel, then for every ε > 0 we can find a stepfunction W ′ such

that ∥W −W ′∥1 ≤ ε/2. Then C(Un,W ′) → 0, and hence C(Un,W ′) ≤ ε/2 if n is large enough.

But then

C(Un,W ) ≤ C(Un,W −W ′) + C(Un,W ′) ≤ ∥Un∥∞∥W −W ′∥1 + ε/2 ≤ ε.

This shows that lim supn C(Un,W ) ≤ 0, and completes the proof. �

Remark 7.2 While the functional C(U,W ) is continuous in each variable, it is not continuous

as a function on W̃1 × W̃1. Let (Gn) be any quasirandom graph sequence and let Wn = Un =

2WGn − 1. Then Un,Wn → 0 in the cut norm (and so also in δ�), but C(Un,Wn) = 1 for all n.

We use the quasi-inner product to give a proof of what can be considered as the main result

in this paper, the equivalence of (ii) and (iv) in Theorem 3.5.

Theorem 7.3 A sequence (Wn) of graphons in WI is convergent in the δ� distance if and only

if (Ea(Wn, J)) is convergent for every a ∈ Pdq and J ∈ Symq.

Proof. Note that by (7.1), (Ea(Wn, J)) is convergent for every a ∈ Pdq and J ∈ Symq if and

only if C(Wn,WH) is convergent for every weighted graph H.

Suppose that Wn → W in the cut distance. We may apply measure preserving transforma-

tions so that the Wn → W in the cut norm. Then for every U ∈ W1, we have by 7.6 and Lemma

7.1, we have

C(U,Wn)− C(U,W ) ≤ C(U,Wn −W ) → 0,

and hence lim supn C(U,Wn) ≤ C(U,W ). Replacing U by −U shows that lim infn C(U,Wn) ≥
C(U,W ), and hence limn C(U,Wn) = C(U,W ). In particular, C(Wn,WH) is convergent for every

weighted graph H.

Conversely, let (Wn) be a sequence that is not convergent in the cut distance. By the com-

pactness of the graphon space, it has two subsequences (Wni) and (Wmi) converging to dif-

ferent (not weakly isomorphic) graphons W and W ′. Then there is a graphon U such that

C(W,U) ̸= C(W ′, U); in fact, (7.5) implies

(C(W ′,W ′)− C(W ′,W )) + (C(W,W )− C(W ′,W )) = δ2(W
′,W )2 ≥ δ�(W

′,W )2 > 0,

and so either C(W ′,W ′) ̸= C(W,W ′) or C(W,W ′) ̸= C(W,W ).

Suppose that C(W,U) ̸= C(W ′, U), and let (Hk) be any sequence of simple graphs such that

Hk → U in the δ� distance. Then by Lemma 7.1, we have C(W,WHk) ̸= C(W ′,WHk) if k is large

enough, and for this simple graph Hk the sequence C(Wn,WHk) is not convergent. �
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The proof above is not effective: it does not provide explicit inequalities between the different

distance measures that we considered, like Theorems 4.6, 4.7, or 4.9. However, it has the following

corollary. Let F be a simple graph, and let HF be the soft-core weighted graph with V (HF ) =

V (F ) = [q], nodeweights 1 and edgeweights

βi,j(HF ) =

{
e, if (i, j) ∈ E(F ),

1, otherwise.

Let u = (1/q, . . . , 1/q) ∈ Rq.

Corollary 7.4 (a) A sequence (Gn) of weighted graphs is right-convergent if and only if

1

α2
Gn

ln homu(Gn, HF )

is convergent for every simple graph F .

(b) A sequence (Gn) of weighted graphs has convergent microcanonical ground state energies

if and only if Eu(Gn, J) converges for every symmetic 0-1 matrix J with 0’s in the diagonal.
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