
Contextual Semibandits via Supervised Learning Oracles

Akshay Krishnamurthy ∗1, Alekh Agarwal †2, and Miroslav Dudík ‡2

1University of Massachusetts, Amherst, MA
2Microsoft Research, New York, NY

November 7, 2016

Abstract

We study an online decision making problem where on each round a learner chooses a list of items based
on some side information, receives a scalar feedback value for each individual item, and a reward that is
linearly related to this feedback. These problems, known as contextual semibandits, arise in crowdsourcing,
recommendation, and many other domains. This paper reduces contextual semibandits to supervised
learning, allowing us to leverage powerful supervised learning methods in this partial-feedback setting. Our
first reduction applies when the mapping from feedback to reward is known and leads to a computationally
efficient algorithm with near-optimal regret. We show that this algorithm outperforms state-of-the-art
approaches on real-world learning-to-rank datasets, demonstrating the advantage of oracle-based algorithms.
Our second reduction applies to the previously unstudied setting when the linear mapping from feedback to
reward is unknown. Our regret guarantees are superior to prior techniques that ignore the feedback.

1 Introduction
Decision making with partial feedback, motivated by applications including personalized medicine [22] and
content recommendation [17], is receiving increasing attention from the machine learning community. These
problems are formally modeled as learning from bandit feedback, where a learner repeatedly takes an action
and observes a reward for the action, with the goal of maximizing reward. While bandit learning captures
many problems of interest, several applications have additional structure: the action is combinatorial in nature
and more detailed feedback is provided. For example, in internet applications, we often recommend sets
of items and record information about the user’s interaction with each individual item (e.g., click). This
additional feedback is unhelpful unless it relates to the overall reward (e.g., number of clicks), and, as in
previous work, we assume a linear relationship. This interaction is known as the semibandit feedback model.

Typical bandit and semibandit algorithms achieve reward that is competitive with the single best fixed
action, i.e., the best medical treatment or the most popular news article for everyone. This is often inadequate
for recommendation applications: while the most popular articles may get some clicks, personalizing content
to the users is much more effective. A better strategy is therefore to leverage contextual information to learn
∗akshay@cs.umass.edu
†alekha@microsoft.com
‡mdudik@microsoft.com

1

ar
X

iv
:1

50
2.

05
89

0v
4 

 [
cs

.L
G

] 
 4

 N
ov

 2
01

6



Algorithm Regret Oracle Calls Weights w?

VCEE (Thm. 1)
√
KLT logN T 3/2

√
K/(L logN) known

ε-Greedy (Thm. 3) (LT )2/3(K logN)1/3 1 known
Kale et al. [13]

√
KLT logN not oracle-based known

EELS (Thm. 2) (LT )2/3(K logN)1/3 1 unknown
Agarwal et al. [1] L

√
KLT logN

√
KLT/ logN unknown

Swaminathan et al. [24] L4/3T 2/3(K logN)1/3 1 unknown

Table 1: Comparison of contextual semibandit algorithms for arbitrary policy classes, assuming all rankings
are valid composite actions. The reward is semibandit feedback weighted according to w?. For known
weights, we consider w? = 1; for unknown weights, we assume ‖w?‖2 ≤ O(

√
L).

a rich policy for selecting actions, and we model this as contextual semibandits. In this setting, the learner
repeatedly observes a context (user features), chooses a composite action (list of articles), which is an ordered
tuple of simple actions, and receives reward for the composite action (number of clicks), but also feedback
about each simple action (click). The goal of the learner is to find a policy for mapping contexts to composite
actions that achieves high reward.

We typically consider policies in a large but constrained class, for example, linear learners or tree
ensembles. Such a class enables us to learn an expressive policy, but introduces a computational challenge
of finding a good policy without direct enumeration. We build on the supervised learning literature, which
has developed fast algorithms for such policy classes, including logistic regression and SVMs for linear
classifiers and boosting for tree ensembles. We access the policy class exclusively through a supervised
learning algorithm, viewed as an oracle.

In this paper, we develop and evaluate oracle-based algorithms for the contextual semibandits problem.
We make the following contributions:
1. In the more common setting where the linear function relating the semibandit feedback to the reward

is known, we develop a new algorithm, called VCEE, that extends the oracle-based contextual bandit
algorithm of Agarwal et al. [1]. We show that VCEE enjoys a regret bound between Õ

(√
KLT logN

)
and Õ

(
L
√
KT logN

)
, depending on the combinatorial structure of the problem, when there are T rounds

of interaction, K simple actions, N policies, and composite actions have length L.1 VCEE can handle
structured action spaces and makes Õ(T 3/2) calls to the supervised learning oracle.

2. We empirically evaluate this algorithm on two large-scale learning-to-rank datasets and compare with
other contextual semibandit approaches. These experiments comprehensively demonstrate that effective
exploration over a rich policy class can lead to significantly better performance than existing approaches.
To our knowledge, this is the first thorough experimental evaluation of not only oracle-based semibandit
methods, but of oracle-based contextual bandits as well.

3. When the linear function relating the feedback to the reward is unknown, we develop a new algorithm
called EELS. Our algorithm first learns the linear function by uniform exploration and then, adaptively,
switches to act according to an empirically optimal policy. We prove an Õ

(
(LT )2/3(K logN)1/3

)
regret

bound by analyzing when to switch. We are not aware of other computationally efficient procedures with
a matching or better regret bound for this setting.
See Table 1 for a comparison of our results with existing applicable bounds.

1Throughout the paper, the Õ(·) notation suppressed factors polylogarithmic in K, L, T and logN . We analyze finite policy classes,
but our work extends to infinite classes by standard discretization arguments.

2



Related work. There is a growing body of work on combinatorial bandit optimization [5, 2] with consid-
erable attention on semibandit feedback [11, 13, 7, 20, 14]. The majority of this research focuses on the
non-contextual setting with a known relationship between semibandit feedback and reward, and a typical
algorithm here achieves an Õ(

√
KLT ) regret against the best fixed composite action. To our knowledge,

only the work of Kale et al. [13] and Qin et al. [20] considers the contextual setting, again with known
relationship. The former generalizes the Exp4 algorithm [3] to semibandits, and achieves Õ(

√
KLT ) regret,2

but requires explicit enumeration of the policies. The latter generalizes the LinUCB algorithm of Chu et al.
[8] to semibandits, assuming that the simple action feedback is linearly related to the context. This differs
from our setting: we make no assumptions about the simple action feedback. In our experiments, we compare
VCEE against this LinUCB-style algorithm and demonstrate substantial improvements.

We are not aware of attempts to learn a relationship between the overall reward and the feedback on
simple actions as we do with EELS. While EELS uses least squares, as in LinUCB-style approaches, it does
so without assumptions on the semibandit feedback. Crucially, the covariates for its least squares problem are
observed after predicting a composite action and not before, unlike in LinUCB.

Supervised learning oracles have been used as a computational primitive in many settings including active
learning [12], contextual bandits [21, 25, 1, 10], and structured prediction [9].

2 Preliminaries
Let X be a space of contexts and A a set of K simple actions. Let Π ⊆ (X→ AL) be a finite set of policies,
|Π| = N , mapping contexts to composite actions. Composite actions, also called rankings, are tuples of L
distinct simple actions. In general, there are K!/(K − L)! possible rankings, but they might not be valid
in all contexts. The set of valid rankings for a context x is defined implicitly through the policy class as
{π(x)}π∈Π.

Let ∆(Π) be the set of distributions over policies, and ∆≤(Π) be the set of non-negative weight vectors
over policies, summing to at most 1, which we call subdistributions. Let 1(·) be the 0/1 indicator equal to 1 if
its argument is true and 0 otherwise.

In stochastic contextual semibandits, there is an unknown distribution D over triples (x, y, ξ), where x
is a context, y ∈ [0, 1]K is the vector of reward features, with entries indexed by simple actions as y(a),
and ξ ∈ [−1, 1] is the reward noise, E[ξ|x, y] = 0. Given y ∈ RK and A = (a1, . . . , aL) ∈ AL, we write
y(A) ∈ RL for the vector with entries y(a`). The learner plays a T -round game. In each round, nature draws
(xt, yt, ξt) ∼ D and reveals the context xt. The learner selects a valid ranking At = (at,1, at,2, . . . , at,L)

and gets reward rt(At) =
∑L
`=1 w

?
` yt(at,`) + ξt, where w? ∈ RL is a possibly unknown but fixed weight

vector. The learner is shown the reward rt(At) and the vector of reward features for the chosen simple actions
yt(At), jointly referred to as semibandit feedback.

The goal is to achieve cumulative reward competitive with all π ∈ Π. For a policy π, let R(π) :=
E(x,y,ξ)∼D

[
r
(
π(x)

)]
denote its expected reward, and let π? := argmaxπ∈Π R(π) be the maximizer of

expected reward. We measure performance of an algorithm via cumulative empirical regret,

Regret :=

T∑
t=1

rt(π
?(xt))− rt(At). (1)

The performance of a policy π is measured by its expected regret, Reg(π) := R(π?)− R(π).

2Kale et al. [13] consider the favorable setting where our bounds match, when uniform exploration is valid.

3



Example 1. In personalized search, a learning system repeatedly responds to queries with rankings of search
items. This is a contextual semibandit problem where the query and user features form the context, the simple
actions are search items, and the composite actions are their lists. The semibandit feedback is whether the user
clicked on each item, while the reward may be the click-based discounted cumulative gain (DCG), which is a
weighted sum of clicks, with position-dependent weights. We want to map contexts to rankings to maximize
DCG and achieve a low regret.

We assume that our algorithms have access to a supervised learning oracle, also called an argmax
oracle, denoted AMO, that can find a policy with the maximum empirical reward on any appropriate dataset.
Specifically, given a dataset D = {xi, yi, vi}ni=1 of contexts xi, reward feature vectors yi ∈ RK with rewards
for all simple actions, and weight vectors vi ∈ RL, the oracle computes

AMO(D) := argmax
π∈Π

n∑
i=1

〈vi, yi(π(xi))〉 = argmax
π∈Π

n∑
i=1

L∑
`=1

vi,`yi(π(xi)`), (2)

where π(x)` is the `th simple action that policy π chooses on context x. The oracle is supervised as it assumes
known features yi for all simple actions whereas we only observe them for chosen actions. This oracle is the
structured generalization of the one considered in contextual bandits [1, 10] and can be implemented by any
structured prediction approach such as CRFs [15] or SEARN [9].

Our algorithms choose composite actions by sampling from a distribution, which allows us to use
importance weighting to construct unbiased estimates for the reward features y. If on round t, a composite
action At is chosen with probability Qt(At), we construct the importance weighted feature vector ŷt with
components ŷt(a) := yt(a)1(a ∈ At)/Qt(a ∈ At), which are unbiased estimators of yt(a). For a policy π,
we then define empirical estimates of its reward and regret, resp., as

ηt(π,w) :=
1

t

t∑
i=1

〈w, ŷi(π(xi))〉 and R̂egt(π,w) := max
π′

ηt(π
′, w)− ηt(π,w).

By construction, ηt(π,w?) is an unbiased estimate of the expected reward R(π), but R̂egt(π,w
?) is not

an unbiased estimate of the expected regret Reg(π). We use Êx∼H [·] to denote empirical expectation over
contexts appearing in the history of interaction H .

Finally, we introduce projections and smoothing of distributions. For any µ ∈ [0, 1/K] and any subdistri-
bution P ∈ ∆≤(Π), the smoothed and projected conditional subdistribution Pµ(A | x) is

Pµ(A | x) := (1−Kµ)
∑
π∈Π

P (π)1(π(x) = A) +KµUx(A), (3)

where Ux is a uniform distribution over a certain subset of valid rankings for context x, designed to ensure
that the probability of choosing each valid simple action is large. By mixing Ux into our action selection, we
limit the variance of reward feature estimates ŷ. The lower bound on the simple action probabilities under Ux
appears in our analysis as pmin, which is the largest number satisfying

Ux(a ∈ A) ≥ pmin/K

for all x and all simple actions a valid for x. Note that pmin = L when there are no restrictions on the action
space as we can take Ux to be the uniform distribution over all rankings and verify that Ux(a ∈ A) = L/K.
In the worst case, pmin = 1, since we can always find one valid ranking for each valid simple action and let
Ux be the uniform distribution over this set. Such a ranking can be found efficiently by a call to AMO for
each simple action a, with the dataset of a single point (x,1a ∈ RK ,1 ∈ RL), where 1a(a′) = 1(a = a′).

4



Algorithm 1: VCEE (Variance-Constrained Explore-Exploit) Algorithm

Require: Allowed failure probability δ ∈ (0, 1).
1: Q0 = 0, the all-zeros vector. H0 = ∅. Define: µt = min

{
1/2K,

√
ln(16t2N/δ)/(Ktpmin)

}
.

2: for round t = 1, . . . , T do
3: Let πt−1 = argmaxπ∈Π ηt−1(π,w?) and Q̃t−1 = Qt−1 + (1−

∑
π Qt−1(π))1πt−1

.
4: Observe xt ∈ X, play At ∼ Q̃µt−1

t−1 (· | xt) (see Eq. (3)), and observe yt(At) and rt(At).
5: Define qt(a) = Q̃

µt−1

t−1 (a ∈ A | xt) for each a.
6: Obtain Qt by solving OP with Ht = Ht−1 ∪ {(xt, yt(At), qt(At)} and µt.
7: end for

Semi-bandit Optimization Problem (OP)

With history H and µ ≥ 0, define bπ := ‖w?‖1
‖w?‖22

R̂egt(π)
ψµpmin

and ψ := 100. Find Q ∈ ∆≤(Π) such that:∑
π∈Π

Q(π)bπ ≤ 2KL/pmin (4)

∀π ∈ Π : Êx∼H

[
L∑
`=1

1

Qµ(π(x)` ∈ A | x)

]
≤ 2KL

pmin
+ bπ (5)

3 Semibandits with known weights
We begin with the setting where the weights w? are known, and present an efficient oracle-based algorithm
(VCEE, see Algorithm 1) that generalizes the algorithm of Agarwal et al. [1].

The algorithm, before each round t, constructs a subdistributionQt−1 ∈ ∆≤(Π), which is used to form the
distribution Q̃t−1 by placing the missing mass on the maximizer of empirical reward. The composite action
for the context xt is chosen according to the smoothed distribution Q̃µt−1

t−1 (see Eq. (3)). The subdistribution
Qt−1 is any solution to the feasibility problem (OP), which balances exploration and exploitation via the
constraints in Eqs. (4) and (5). Eq. (4) ensures that the distribution has low empirical regret. Simultaneously,
Eq. (5) ensures that the variance of the reward estimates ŷ remains sufficiently small for each policy π, which
helps control the deviation between empirical and expected regret, and implies that Qt−1 has low expected
regret. For each π, the variance constraint is based on the empirical regret of π, guaranteeing sufficient
exploration amongst all good policies.

OP can be solved efficiently using AMO and a coordinate descent procedure obtained by modifying the
algorithm of Agarwal et al. [1]. While the full algorithm and analysis are deferred to Appendix E, several
key differences between VCEE and the algorithm of Agarwal et al. [1] are worth highlighting. One crucial
modification is that the variance constraint in Eq. (5) involves the marginal probabilities of the simple actions
rather than the composite actions as would be the most obvious adaptation to our setting. This change, based
on using the reward estimates ŷt for simple actions, leads to substantially lower variance of reward estimates
for all policies and, consequently, an improved regret bound. Another important modification is the new
mixing distribution Ux and the quantity pmin. For structured composite action spaces, uniform exploration
over the valid composite actions may not provide sufficient coverage of each simple action and may lead to
dependence on the composite action space size, which is exponentially worse than when Ux is used.

The regret guarantee for Algorithm 1 is the following:

5



Theorem 1. For any δ ∈ (0, 1), with probability at least 1 − δ, VCEE achieves re-
gret Õ

(‖w?‖22
‖w?‖1L

√
KT log(N/δ) / pmin

)
. Moreover, VCEE can be efficiently implemented with

Õ
(
T 3/2

√
K / (pmin log(N/δ))

)
calls to a supervised learning oracle AMO.

In Table 1, we compare this result to other applicable regret bounds in the most common setting, where
w? = 1 and all rankings are valid (pmin = L). VCEE enjoys a Õ(

√
KLT logN) regret bound, which is the

best bound amongst oracle-based approaches, representing an exponentially better L-dependence over the
purely bandit feedback variant [1] and a polynomially better T -dependence over an ε-greedy scheme (see
Theorem 3 in Appendix A). This improvement over ε-greedy is also verified by our experiments. Additionally,
our bound matches that of Kale et al. [13], who consider the harder adversarial setting but give an algorithm
that requires an exponentially worse running time, Ω(NT ), and cannot be efficiently implemented with an
oracle.

Other results address the non-contextual setting, where the optimal bounds for both stochastic [14] and
adversarial [2] semibandits are Θ(

√
KLT ). Thus, our bound may be optimal when pmin = Ω(L). However,

these results apply even without requiring all rankings to be valid, so they improve on our bound by a
√
L

factor when pmin = 1. This
√
L discrepancy may not be fundamental, but it seems unavoidable with some

degree of uniform exploration, as in all existing contextual bandit algorithms. A promising avenue to resolve
this gap is to extend the work of Neu [19], which gives high-probability bounds in the noncontextual setting
without uniform exploration.

To summarize, our regret bound is similar to existing results on combinatorial (semi)bandits but represents
a significant improvement over existing computationally efficient approaches.

4 Semibandits with unknown weights
We now consider a generalization of the contextual semibandit problem with a new challenge: the weight
vector w? is unknown. This setting is substantially more difficult than the previous one, as it is no longer clear
how to use the semibandit feedback to optimize for the overall reward. Our result shows that the semibandit
feedback can still be used effectively, even when the transformation is unknown. Throughout, we assume that
the true weight vector w? has bounded norm, i.e., ‖w?‖2 ≤ B.

One restriction required by our analysis is the ability to play any ranking. Thus, all rankings must be valid
in all contexts, which is a natural restriction in domains such as information retrieval and recommendation.
The uniform distribution over all rankings is denoted U .

We propose an algorithm that explores first and then, adaptively, switches to exploitation. In the exploration
phase, we play rankings uniformly at random, with the goal of accumulating enough information to learn the
weight vector w? for effective policy optimization. Exploration lasts for a variable length of time governed by
two parameters n? and λ?. The n? parameter controls the minimum number of rounds of the exploration
phase and is O(T 2/3), similar to ε-greedy style schemes [16]. The adaptivity is implemented by the λ?
parameter, which imposes a lower bound on the eigenvalues of the 2nd-moment matrix of reward features
observed during exploration. As a result, we only transition to the exploitation phase after this matrix has
suitably large eigenvalues. Since we make no assumptions about the reward features, there is no bound on
how many rounds this may take. This is a departure from previous explore-first schemes, and captures the
difficulty of learning w? when we observe the regression features only after taking an action.

After the exploration phase of t rounds, we perform least-squares regression using the observed reward
features and the rewards to learn an estimate ŵ of w?. We use ŵ and importance weighted reward features
from the exploration phase to find a policy π̂ with maximum empirical reward, ηt(·, ŵ). The remaining
rounds comprise the exploitation phase, where we play according to π̂.

6



Algorithm 2: EELS (Explore-Exploit Least Squares)
Require: Allowed failure probability δ ∈ (0, 1). Assume ‖w?‖2 ≤ B.

1: Set n? ← T 2/3(K ln(N/δ)/L)1/3 max{1, (B
√
L)−2/3}

2: for t = 1, . . . , n? do
3: Observe xt, play At ∼ U (U is uniform over all rankings), observe yt(At) and rt(At).
4: end for
5: Let V̂ = 1

2n?K2

∑n?
t=1

∑
a,b∈A

(
yt(a)− yt(b)

)2 1(a,b∈At)
U(a,b∈At) .

6: Ṽ ← 2V̂ + 3 ln(2/δ)/(2n?).
7: Set λ? ← max

{
6L2 ln(4LT/δ), (T Ṽ /B)2/3 (L ln(2/δ))

1/3
}

.

8: Set Σ←
∑n?
t=1 yt(At)yt(At)

T .
9: while λmin(Σ) ≤ λ? do

10: t← t+ 1. Observe xt, play At ∼ U , observe yt(At) and rt(At).
11: Set Σ← Σ + yt(At)yt(At)

T .
12: end while
13: Estimate weights ŵ ← Σ−1(

∑t
i=1 yi(Ai)ri(Ai)) (Least Squares).

14: Optimize policy π̂ ← argmaxπ∈Π ηt(π, ŵ) using importance weighted features.
15: For every remaining round: observe xt, play At = π̂(xt).

The remaining question is how to set λ?, which governs the length of the exploration phase. The ideal
setting uses the unknown parameter V := E(x,y)∼D Vara∼Unif(A)[y(a)] of the distribution D, where Unif(A)

is the uniform distribution over all simple actions. We form an unbiased estimator V̂ of V and derive an upper
bound Ṽ . While the optimal λ? depends on V , the upper bound Ṽ suffices.

For this algorithm, we prove the following regret bound.

Theorem 2. For any δ ∈ (0, 1) and T ≥ K ln(N/δ)/min{L, (BL)2}, with probability at least 1−δ, EELS
has regret Õ

(
T 2/3(K log(N/δ))1/3 max{B1/3L1/2, BL1/6}

)
. EELS can be implemented efficiently with

one call to the optimization oracle.

The theorem shows that we can achieve sublinear regret without dependence on the composite action space
size even when the weights are unknown. The only applicable alternatives from the literature are displayed in
Table 1, specialized to B = Θ(

√
L). First, oracle-based contextual bandits [1] achieve a better T -dependence,

but both the regret and the number of oracle calls grow exponentially with L. Second, the deviation bound
of Swaminathan et al. [24], which exploits the reward structure but not the semibandit feedback, leads to
an algorithm with regret that is polynomially worse in its dependence on L and B (see Appendix B). This
observation is consistent with non-contextual results, which show that the value of semibandit information is
only in L factors [2].

Of course EELS has a sub-optimal dependence on T , although this is the best we are aware of for a compu-
tationally efficient algorithm in this setting. It is an interesting open question to achieve poly(K,L)

√
T logN

regret with unknown weights.

5 Proof sketches
We next sketch the arguments for our theorems. Full proofs are deferred to the appendices.

7



Proof of Theorem 1: The result generalizes Agarwal et. al [1], and the proof structure is similar. For the
regret bound, we use Eq. (5) to control the deviation of the empirical reward estimates which make up the
empirical regret R̂egt. A careful inductive argument leads to the following bounds:

Reg(π) ≤ 2R̂egt(π) + c0
‖w?‖22
‖w?‖1

KLµt and R̂egt(π) ≤ 2Reg(π) + c0
‖w?‖22
‖w?‖1

KLµt.

Here c0 is a universal constant and µt is defined in the pseudocode. Eq. (4) guarantees low empirical regret
when playing according to Q̃µtt , and the above inequalities also ensure small population regret. The cumulative
regret is bounded by ‖w

?‖22
‖w?‖1KL

∑T
t=1 µt, which grows at the rate given in Theorem 1. The number of oracle

calls is bounded by the analysis of the number of iterations of coordinate descent used to solve OP, via a
potential argument similar to Agarwal et al. [1].

Proof of Theorem 2: We analyze the exploration and exploitation phases individually, and then opti-
mize n? and λ? to balance these terms. For the exploration phase, the expected per-round regret can be
bounded by either ‖w?‖2

√
KV or ‖w?‖2

√
L, but the number of rounds depends on the minimum eigen-

value λmin(Σ), with Σ defined in Steps 8 and 11. However, the expected per-round 2nd-moment matrix,
E(x,y)∼D,A∼U [y(A)y(A)T ], has all eigenvalues at least V . Thus, after t rounds, we expect λmin(Σ) ≥ tV ,
so exploration lasts about λ?/V rounds, yielding roughly

Exploration Regret ≤ λ?
V
· ‖w?‖2 min{

√
KV ,

√
L}.

Now our choice of λ? produces a benign dependence on V and yields a T 2/3 bound.
For the exploitation phase, we bound the error between the empirical reward estimates ηt(π, ŵ) and the

true reward R(π). Since we know λmin(Σ) ≥ λ? in this phase, we obtain

Exploitation Regret ≤ T‖w?‖2
√
K logN

n?
+ T

√
L

λ?
min{

√
KV ,

√
L}.

The first term captures the error from using the importance-weighted ŷ vector, while the second uses a bound
on the error ‖ŵ − w?‖2 from the analysis of linear regression (assuming λmin(Σ) ≥ λ?).

This high-level argument ignores several important details. First, we must show that using Ṽ instead of
the optimal choice V in the setting of λ? does not affect the regret. Secondly, since the termination condition
for the exploration phase depends on the random variable Σ, we must derive a high-probability bound on the
number of exploration rounds to control the regret. Obtaining this bound requires a careful application of the
matrix Bernstein inequality to certify that Σ has large eigenvalues.

6 Experimental Results
Our experiments compare VCEE with existing alternatives. As VCEE generalizes the algorithm of Agarwal
et al. [1], our experiments also provide insights into oracle-based contextual bandit approaches and this is the
first detailed empirical study of such algorithms. The weight vector w? in our datasets was known, so we do
not evaluate EELS. This section contains a high-level description of our experimental setup, with details on
our implementation, baseline algorithms, and policy classes deferred to Appendix C. Software is available at
http://github.com/akshaykr/oracle_cb.

Data: We used two large-scale learning-to-rank datasets: MSLR [18] and all folds of the Yahoo! Learning-
to-Rank dataset [6]. Both datasets have over 30k unique queries each with a varying number of documents

8

http://github.com/akshaykr/oracle_cb


0.0 0.2 0.4 0.6 0.8 1.0
Number of interactions (T)

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
re

w
ar

d

10000 20000 30000

2.2

2.3

Dataset: MSLR

10000 20000 30000
2.9

3.0

3.1

Dataset: Yahoo!

ε-Lin VC-Lin ε-GB2 VC-GB2 ε-GB5 VC-GB5 LinUCB

Figure 1: Average reward as a function of number of interactions T for VCEE, ε-GREEDY, and LINUCB on
MSLR (left) and Yahoo (right) learning-to-rank datasets.

that are annotated with a relevance in {0, . . . , 4}. Each query-document pair has a feature vector (d = 136
for MSLR and d = 415 for Yahoo!) that we use to define our policy class. For MSLR, we choose K = 10
documents per query and set L = 3, while for Yahoo!, we set K = 6 and L = 2. The goal is to maximize the
sum of relevances of shown documents (w? = 1) and the individual relevances are the semibandit feedback.
All algorithms make a single pass over the queries.

Algorithms: We compare VCEE, implemented with an epoch schedule for solving OP after 2i/2 rounds
(justified by Agarwal et al. [1]), with two baselines. First is the ε-GREEDY approach [16], with a constant
but tuned ε. This algorithm explores uniformly with probability ε and follows the empirically best policy
otherwise. The empirically best policy is updated with the same 2i/2 schedule.

We also compare against a semibandit version of LINUCB [20]. This algorithm models the semibandit
feedback as linearly related to the query-document features and learns this relationship, while selecting
composite actions using an upper-confidence bound strategy. Specifically, the algorithm maintains a weight
vector θt ∈ Rd formed by solving a ridge regression problem with the semibandit feedback yt(at,`) as
regression targets. At round t, the algorithm uses document features {xa}a∈A and chooses the L documents
with highest xTa θt+αx

T
aΣ−1

t xa value. Here, Σt is the feature 2nd-moment matrix and α is a tuning parameter.
For computational reasons, we only update Σt and θt every 100 rounds.

Oracle implementation: LINUCB only works with a linear policy class. VCEE and ε-GREEDY work
with arbitrary classes. Here, we consider three: linear functions and depth-2 and depth-5 gradient boosted
regression trees (abbreviated Lin, GB2 and GB5). Both GB classes use 50 trees. Precise details of how we
instantiate the supervised learning oracle can be found in Appendix C.

Parameter tuning: Each algorithm has a parameter governing the explore-exploit tradeoff. For VCEE,
we set µt = c

√
1/KLT and tune c, in ε-GREEDY we tune ε, and in LINUCB we tune α. We ran each

algorithm for 10 repetitions, for each of ten logarithmically spaced parameter values.
Results: In Figure 1, we plot the average reward (cumulative reward up to round t divided by t) on both

datasets. For each t, we use the parameter that achieves the best average reward across the 10 repetitions at
that t. Thus for each t, we are showing the performance of each algorithm tuned to maximize reward over t
rounds. We found VCEE was fairly stable to parameter tuning, so for VC-GB5 we just use one parameter
value (c = 0.008) for all t on both datasets. We show confidence bands at twice the standard error for just
LINUCB and VC-GB5 to simplify the plot.

Qualitatively, both datasets reveal similar phenomena. First, when using the same policy class, VCEE

9



consistently outperforms ε-GREEDY. This agrees with our theory, as VCEE achieves
√
T -type regret, while

a tuned ε-GREEDY achieves at best a T 2/3 rate.
Secondly, if we use a rich policy class, VCEE can significantly improve on LINUCB, the empirical

state-of-the-art, and one of few practical alternatives to ε-GREEDY. Of course, since ε-GREEDY does not
outperform LINUCB, the tailored exploration of VCEE is critical. Thus, the combination of these two
properties is key to improved performance on these datasets. VCEE is the only contextual semibandit
algorithm we are aware of that performs adaptive exploration and is agnostic to the policy representation.
Note that LINUCB is quite effective and outperforms VCEE with a linear class. One possible explanation
for this behavior is that LINUCB, by directly modeling the reward, searches the policy space more effectively
than VCEE, which uses an approximate oracle implementation.

7 Discussion
This paper develops oracle-based algorithms for contextual semibandits both with known and unknown
weights. In both cases, our algorithms achieve the best known regret bounds for computationally efficient
procedures. Our empirical evaluation of VCEE, clearly demonstrates the advantage of sophisticated oracle-
based approaches over both parametric approaches and naive exploration. To our knowledge this is the first
detailed empirical evaluation of oracle-based contextual bandit or semibandit learning. We close with some
promising directions for future work:
1. With known weights, can we obtain Õ(

√
KLT logN) regret even with structured action spaces? This

may require a new contextual bandit algorithm that does not use uniform smoothing.
2. With unknown weights, can we achieve a

√
T dependence while exploiting semibandit feedback?

Acknowledgements
This work was carried out while AK was at Microsoft Research.

10



Algorithm 3: ε-Greedy for Contextual Semibandits with Known Weights

Require: Allowed failure probability δ ∈ (0, 1).
Set n = T 2/3(K ln(2N/δ)/L)1/3.
Let U be the uniform distribution over all rankings.
For t = 1, . . . , n, observe xt, play At ∼ U , observe yt(At) and rt(At).
Optimize policy π̂ ← argmaxπ∈Π ηn(π,w?) using importance-weighted features.
For every remaining round: observe xt, play At = π̂(xt).

A Analysis of ε-Greedy with Known Weights
We analyze the ε-greedy algorithm (Algorithm 3) in the known-weights setting when all rankings are valid,
i.e., pmin = L. This algorithm is different from the one we use in our experiments in that it is an explore-first
variant, exploring for the first several rounds and then exploiting for the remainder. In our experiments, we
use a variant where at each round we explore with probability ε and exploit with probability (1− ε). This
latter version also has the same regret bound, via an argument similar to that of Langford and Zhang [16].

Theorem 3. For any δ ∈ (0, 1), when T ≥ K ln(N/δ)/L, with probability at least 1 − δ, the regret of
Algorithm 3 is at most Õ(‖w?‖2T 2/3(K log(N/δ))1/3L1/6).

Proof. The proof relies on the uniform deviation bound similar to Lemma 20, which we use for the analysis
of EELS. We first prove that for any δ ∈ (0, 1), with probability at least 1− δ, for all policies π, we have

|ηn(π,w?)− R(π)| ≤ ‖w?‖2

(√
2K ln(2N/δ)

n
+

2K

3
√
L

ln(2N/δ)

n

)
. (6)

This deviation bound is a consequence of Bernstein’s inequality. The quantity on the left-hand side is the
average of n terms

ŷi(π(xi))
Tw? − Ex,y[y(π(x))]Tw?,

all with expectation zero, because ŷ is unbiased. The range of each term is bounded by the Cauchy-Schwarz
inequality as

‖w?‖2‖ŷi(π(xi))− Ex,y[y(π(x))]‖2 ≤ ‖w?‖2K/
√
L,

because under uniform exploration the coordinates of ŷi(π(xi)) are bounded in [0,K/L] while the coordinates
of y(π(x)) are in [0, 1] and these are L-dimensional vectors. The variance is bounded by the second moment,
which we bound as follows:

Ex,y,A
[
(ŷ(π(x))Tw?)2

]
≤ ‖w?‖22 Ex,y,A

[
L∑
l=1

ŷ(π(xl))
2

]

≤ ‖w?‖22 Ex,y,A

[
L∑
l=1

K2

L2
1(π(x)l ∈ A)

]
= ‖w?‖2K,

since Ex,y,A[1(π(x)l ∈ A)] = L/K under uniform exploration. Plugging these bounds into Bernstein’s
inequality gives the deviation bound of Eq. (6).

11



Now we can prove the theorem. Eq. (6) ensures that after collecting n samples, the expected reward of
the empirical reward maximizer π̂ is close to maxπ R(π), the best achievable reward. The difference between
these two is at most twice the right-hand side of the deviation bound. If we perform uniform exploration for n
rounds, we are ensured that with probability at least 1− δ the regret is at most

Regret ≤ n‖w?‖2
√
L+ 2(T − n)‖w?‖2

(√
2K ln(2N/δ)

n
+

2K

3
√
L

ln(2N/δ)

n

)

≤ n‖w?‖2
√
L+ 3T‖w?‖2

(√
K ln(2N/δ)

n
+

K√
L

ln(2N/δ)

n

)
.

For our setting of n = T 2/3(K ln(2N/δ)/L)1/3, the bound is

4‖w?‖2T 2/3(K ln(2N/δ))1/3L1/6 + 3‖w?‖2T 1/3(K ln(2N/δ))2/3L−1/6.

Under the assumption on T , the second term is lower order, which proves the result.

B Comparisons for EELS
In this section we do a detailed comparison of our Theorem 2 to the paper of Swaminathan et al. [24], which
is the most directly applicable result. We use notation consistent with our paper.

Swaminathan et al. [24] focus on off-policy evaluation in a more challenging setting where no semibandit
feedback is provided. Specifically, in their setting, in each round, the learner observes a context x ∈ X,
chooses a composite action A (as we do here) and receives reward r(A) ∈ [−1, 1]. They assume that the
reward decomposes linearly across the action-position pairs as

E[r(A)|x,A] =

L∑
`=1

φx(a`, `).

With this assumption, and when exploration is done uniformly, they provide off-policy reward estimation
bounds of the form

|ηn(π)− R(π)| ≤ O

(√
KL ln(1/δ)

n

)
.

This bound holds for any policy π : X → AL with probability at least 1 − δ for any δ ∈ (0, 1). (See
Theorem 3 and the following discussion in Swaminathan et al. [24].) Note that this assumption generalizes
our unknown weights setting, since we can always define φx(a, j) = w?j y(a).

To do an appropriate comparison, we first need to adjust the scaling of the rewards. While Swaminathan
et al. [24] assume that rewards are bounded in [−1, 1], we only assume bounded y’s and bounded noise.
Consequently, we need to adjust their bound to incorporate this scaling. If the rewards are scaled to lie in
[−R,R], their bound becomes

|ηn(π)− R(π)| ≤ O

(
R

√
KL ln(1/δ)

n

)
.

This deviation bound can be turned into a low-regret algorithm by exploring for the first n rounds, finding
an empirically best policy, and using that policy for the remaining T − n rounds. Optimizing the bound in n
leads to a T 2/3-style regret bound:

12



Fact 4. The approach of Swaminathan et al. [24] with rewards in [−R,R] leads to an algorithm with regret
bound

O
(
RT 2/3(KL logN)1/3

)
.

This algorithm can be applied as is to our setting, so it is worth comparing it to EELS. According to
Theorem 2, EELS has a regret bound

O
(
T 2/3(K logN)1/3 max{B1/3L1/2, BL1/6}

)
.

The dependence on T,K, and logN match between the two algorithms, so we are left with L and the scale
factors B,R. This comparison is somewhat subtle and we use two different arguments. The first finds a
conservative value for R in Fact 4 in terms of B and L. This is the regret bound one would obtain by using
the approach of Swaminathan et al. [24] in our precise setting, ignoring the semibandit feedback, but with
known weight-vector bound B. The second comparison finds a conservative value of B in terms of R and L.

For the first comparison, recall that our setting makes no assumptions on the scale of the reward, except
that the noise ξ is bounded in [−1, 1], so our setting never admits R < 1. If we begin with a setting of B, we
need to conservatively set R = max{B

√
L, 1}, which gives the dependence

EELS: max{B1/3L1/2, BL1/6}
Swaminathan et al. [24]: max{BL5/6, L1/3}.

The EELS bound is never worse than the bound in Fact 4 according to this comparison. At B = Θ(L−1/2),
the two bounds are of the same order, which is Θ(L1/3). For B = O(L−1/2), the EELS bound is at most
L1/3, while for B = Ω(L−1/2) the first term in the EELS bound is at most the first term in the Swaminathan
et al. [24] bound. In both cases, the EELS bound is superior. Finally when B = Ω(

√
L), the second term

dominates our bound, so EELS demonstrates an L2/3 improvement.
For the second comparison, since our setting has the noise bounded in [−1, 1], assume that R ≥ 1 and that

the total reward is scaled in [−R,R] as in Fact 4. If we want to allow any y(A) ∈ [0, 1]L, the tightest setting
of R is between ‖w?‖1/2 and ‖w?‖1 (depending on the structure of the positive and negative coordinates
of w?). For simplicity, assume R is a bound on ‖w?‖1. Since the EELS bound depends on B, a bound on
the Euclidean norm of w?, we use ‖w?‖2 ≤ ‖w?‖1 ≤

√
L‖w?‖2 to obtain a conservative setting of B = R.

This gives the dependence

EELS: max{R1/3L1/2, RL1/6}
Swaminathan et al. [24]: RL1/3

Since R ≥ 1, the EELS bound is superior whenever R ≥ L1/4. Moreover, if R = Ω(
√
L), i.e., at least

√
L

positions are relevant, the second term dominates our bound, and we improve by a factor of L1/6. The EELS
bound is inferior when R ≤ L1/4, which corresponds to a high-sparsity case since R is also a bound on
‖w?‖1 in this comparison.

C Implementation Details

C.1 Implementation of VCEE
VCEE is implemented as stated in Algorithm 1 with some modifications, primarily to account for an imperfect
oracle. OP is solved using the coordinate descent procedure described in Appendix E.

13



We set ψ = 1 in our implementation and ignore the log factor in µt. Instead, since pmin = L, we
use µt = c

√
1/KLT and tune c, which can compensate for the absence of the log(t2N/δ) factor. This

additionally means that we ignore the failure probability parameter δ. Otherwise, all other parameters and
constants are set as described in Algorithm 1 and OP.

As mentioned in Section 6, we implement AMO via a reduction to squared loss regression. There are
many possibilities for this reduction. In our case, we specify a squared loss regression problem via a dataset
D = {xi, Ai, yi, γi}ni=1 where xi ∈ X, Ai is any list of actions, yi ∈ RK assigns a value to each action, and
γi ∈ RK assigns an importance weight to each action. Since in our experiments w? = 1, we do not need to
pass along the vectors vi ∈ RL described in Eq. (2).

Given such a dataset D, we minimize a weighted squared loss objective over a regression class F,

f̂ = argmin
f∈F

n∑
i=1

∑
a∈Ai

γi(a)(f(φ(xi, a))− yi(a))2, (7)

where φ(x, a) is a feature vector associated with the given query-document pair. Note that we only include
terms corresponding to simple actions in Ai for each i. This regression function is associated with the greedy
policy that chooses the best valid ranking according to the sum of rewards of individual actions as predicted
by f̂ on the current context.

We access this oracle with two different kinds of datasets. When we access AMO to find the empirically
best policy, we only use the history of the interaction. In this case, we only regress onto the chosen actions in
the history and we let γi be their importance weights. More formally, suppose that at round t, we observe
context xt, choose composite action At ∼ qt and receive feedback {yt(at,`)}L`=1. We create a single example
(xt, At, zt, γt) where xt is the context, At is the chosen composite action, zt has zt(a) = 1(a ∈ At)yt(a)
and γt(a) = 1/qt(a ∈ At). Observe that when this sample is passed into Eq. (7), it leads to a different
objective than if we regressed directly onto the importance-weighted reward features ŷt.

We also create datasets to verify the variance constraint within OP. For this, we use the AMO in a more
direct way by setting At to be a list of all K actions, letting yt be the importance weighted vector, and γt = 1.

We use this particular implementation because leaving the importance weights inside the square loss term
introduces additional variance, which we would like to avoid.

The imperfect oracle introduces one issue that needs to be corrected. Since the oracle is not guaranteed to
find the maximizing policy on every dataset, in the tth round of the algorithm, we may encounter a policy π
that has R̂egt(π) < 0, which can cause the coordinate descent procedure to loop indefinitely. Of course, if we
ever find a policy π with R̂egt(π) < 0, it means that we have found a better policy, so we simply switch the
leader. We found that with this intuitive change, the coordinate descent procedure always terminates in a few
iterations.

C.2 Implementation of ε-GREEDY

Recall that we run a variant of ε-GREEDY where at each round we explore with probability ε and exploit with
probability (1− ε), which is slightly different from the explore-first algorithm analyzed in Appendix A.

For ε-GREEDY, we also use the oracle defined in Eq. (7). This algorithm only accesses the oracle to find
the empirically best policy, and we do this in the same way as VCEE does, i.e., we only regress onto actions
that were actually selected with importance weights encoded via γis. We use all of the data, including the
data from exploitation rounds, with importance weighting.

14



C.3 Implementation of LINUCB
The semibandit version of LINUCB uses ridge regression to predict the semibandit feedback given query-
document features φ(x, a). If the feature vectors are in d dimensions, we start with Σ1 = Id and θ1 = 0, the
all zeros vector. At round t, we receive the query-document feature vectors {φ(xt, a)}a∈A for query xt and
we choose

At = argmax
A

{∑
a∈A

θTt φ(xt, a) + αφ(xt, a)TΣ−1
t φ(xt, a)

}
.

Since in our experiment we know that w? = 1 and all rankings are valid, the order of the documents is
irrelevant and the best ranking consists of the top L simple actions with the largest values of the above
“regularized score”. Here α is a parameter of the algorithm that we tune.

After selecting a ranking, we collect the semibandit feedback {yt(at,`)}L`=1. The standard implementation
would perform the update

Σt+1 ← Σt +

L∑
`=1

φ(xt, at,`)φ(xt, at,`)
T , θt+1 ← Σ−1

t+1

(
t∑
i=1

L∑
`=1

φ(xi, ai,`)yi(ai,`)

)
,

which is the standard online ridge regression update. For computational reasons, we only update every
100 iterations, using all of the data. Thus, if mod(t, 100) 6= 0, we set Σt+1 ← Σt and θt+1 ← θt. If
mod(t, 100) = 0, we set

Σt+1 ← I +

t∑
i=1

L∑
`=1

φ(xi, ai,`)φ(xi, ai,`)
T , θt+1 ← Σ−1

t+1

(
t∑
i=1

L∑
`=1

φ(xi, ai,`)yi(ai,`)

)
.

C.4 Policy Classes
As AMO for both VCEE and ε-GREEDY, we use the default implementations of regression with various
function classes in scikit-learn version 0.17. We instantiate scikit-learn model objects and use
the fit() and predict() routines. The model objects we use are
1. sklearn.linear_model.LinearRegression()
2. sklearn.ensemble.GradientBoostingRegressor(n_estimators=50,max_depth=2)
3. sklearn.ensemble.GradientBoostingRegressor(n_estimators=50,max_depth=5)
All three objects accommodate weighted least-squares objectives as required by Eq. (7).

D Proof of Regret Bound in Theorem 1
The proof hinges on two uniform deviation bounds, and then a careful inductive analysis of the regret using the
OP. We only need our two deviation bounds to hold for the rounds t in which µt =

√
ln(16t2N/δ)/(Ktpmin).

Let dt := ln(16t2N/δ). These rounds then start at

t0 := min

{
t :

√
dt

Ktpmin
≤ 1

2K

}
= min

{
t :

dt
t
≤ pmin

4K

}
.

15



Note that t0 ≥ 4 since dt ≥ 1 and K ≥ pmin. From the definition of t0, we have for all t ≥ t0:

µt ≥
√
dt/(Ktpmin), t ≥ 4Kdt/pmin. (8)

The first deviation bound shows that the variance estimates used in Eq. (5) are suitable estimators for the
true variance of the distribution. To state this deviation bound, we need some definitions:

V (P, π, µ) := Ex∼Dx

[
L∑
`=1

1

Pµ(π(x)` | x)

]
, V̂t(P, π, µ) := Êx∼Ht

[
L∑
`=1

1

Pµ(π(x)` | x)

]
. (9)

In these definitions and throughout this appendix we use the shorthand P (a | x) to mean P (a ∈ A | x) for any
projected subdistribution P (A | x). If P is a distribution, we have

∑
a∈A P (a | x) = L. For a subdistribution,

this sum can be smaller, so
∑
a∈A P (a | x) ≤ L for all subdistributions. The deviation bound is in the

following theorem:

Theorem 5. Let δ ∈ (0, 1). Then with probability at least 1− δ/8, for all t ≥ t0, all distributions P over Π,
and all π ∈ Π, we have

V (P, π, µt) ≤ 6.4V̂t(P, π, µt) + 81.3
KL

pmin
. (10)

Proof. The proof of this theorem is similar to a related result of Agarwal et al. [1] (See their Lemma 10). We
first use Freedman’s inequality (Lemma 23) to argue that for a fixed P, π, µ, and t, the empirical version of
the variance is close to the true variance. We then use a discretization of the set of all distributions and take a
union bound to extend this deviation inequality to all P, π, µ, t.

To start, we have:

Lemma 6. For fixed P, π, µ, t and for any λ ∈
[
0, µpmin

L

]
, with probability at least 1− δ:

V (P, π, µ)− V̂t(P, π, µ) ≤ (e− 2)λL

µpmin
V (P, π, µ) +

ln(1/δ)

tλ

Proof. Let:

Zi :=

L∑
`=1

1

Pµ(π(xi)`|xi)
− Ex∼Dx

L∑
`=1

1

Pµ(π(x)`|x)
,

and notice that 1
t

∑t
i=1 Zi = V̂t(P, π, µ)− V (P, π, µ). Clearly, EZi = 0 for all i and maxi |Zi| ≤ L/µpmin

since when we smooth by µ, each simple action that π could choose must appear with probability at least
µpmin. By the Cauchy-Schwarz and Holder inequalities, the conditional variance is:

Ex∼Dx
Z2
i ≤ Ex∼Dx

(
L∑
`=1

1

Pµ(π(x)`|x)

)2

≤ LEx∼Dx

L∑
`=1

1

Pµ(π(x)`|x)2

≤ L

µpmin
Ex∼Dx

L∑
`=1

1

Pµ(π(x)`|x)
=

L

µpmin
V (P, π, µ).

The lemma now follows by Freedman’s inequality.

16



To prove the variance deviation bound of Theorem 5, we next use a discretization lemma from [10] (their
Lemma 16) which immediately implies that for any P , there exists a distribution P ′ supported on at most Nt
policies such that for ct > 0, if Nt ≥ 6

γ2
t µtpmin

:

V (P, π, µ)− V (P ′, π, µt) + ct

(
V̂t(P

′, π, µt)− V̂t(P, π, µt)
)
≤ γt(V (P, π, µt) + ctV̂t(P, π, µt))

This is exactly the second conclusion of their Lemma 16 except we use ct instead of their (1 + λ) (we will
set ct > 1). The other difference is the inclusion of pmin in the lower bound on Nt, which is based on a
straightforward modification to their proof.

We set γt =
√

1−Kµt
Ntµtpmin

+ 3 1−Kµt
Ntµtpmin

, ct = 1

1− (e−2)Lλt
µtpmin

, Nt = d 12(1−Kµt)
µtpmin

e and λt = 0.66µtpmin/L. The

choice of ct is motivated by Lemma 6, which can be rearranged to (for a distribution P ′)

V (P ′, π, µt)−
1

1− (e−2)Lλt
µtpmin

V̂t(P
′, π, µt) ≤

1

1− (e−2)Lλt
µtpmin

ln(1/δ)

tλt

⇔ V (P ′, π, µt)− ctV̂t(P ′, π, µt) ≤ ct
ln(1/δ)

tλt
.

To take a union over all t ∈ N, Nt-point distributions P over Π, and all π ∈ Π, we set δt = δ( 1
2t2NNt+1 ) in

the tth iteration. This inequality becomes

V (P ′, π, µt)− ctV̂t(P ′, π, µt) ≤ ct
ln(2NNt+1t2/δ)

tλt
.

The choice of ct and λt leads to a bound ct = 1
1−0.66(e−2) ≤ 1.91.

We also use the values of Nt and γt to bound

γt =

√
1−Kµt
Ntµtpmin

+ 3
1−Kµt
Ntµtpmin

≤
√

1

12
+

1

4
.

Rearranging the discretization claim gives

V (P, π, µt) ≤
ct(1 + γt)

(1− γt)
V̂t(P, π, µt) +

1

(1− γt)

(
V (P ′, π, µt)− ctV̂t(P ′, π, µt)

)
≤ 6.4V̂t(P, π, µt) +

ct
(1− γt)

ln(2NNt+1t2/δ)

tλt
.

Using the bounds on ct, γt and the settings of Nt and λt, this last term is at most

ct
(1− γt)

(
L ln(2N2t2/δ)

tµtpmin
+
LNt ln(N)

tµtpmin

)
≤ 6.3L ln(16N2t2/δ)

µttpmin
+

75L(1−Kµt) ln(N)

µ2
t tp

2
min

.

The theorem now follows from the bounds of Eq. (8).

The other main deviation bound is a straightforward application of Freedman’s inequality and a union
bound. To state the lemma, we must introduce one more definition. Let

Vt(π) := max
0≤τ≤t−1

V (Q̃τ , π, µτ )

where Q̃τ is the distribution calculated in Step 3 of Algorithm 1. Note that Q̃µττ is the distribution used to
select the composite action in round τ + 1.

17



Lemma 7. Let δ ∈ (0, 1). Then with probability at least 1− δ/4, for all t ≥ t0 and π ∈ Π, we have

|ηt(π,w?)− R(π)| ≤ ‖w
?‖22

‖w?‖1
Vt(π)pminµt +

‖w?‖22
‖w?‖1

KLµt. (11)

Proof. Consider a specific t ≥ t0 and π ∈ Π. Let

Zi := 〈w?, ŷi(π(xi))〉 − 〈w?, yi(π(xi))〉

and note that 1
t

∑t
i=1 Zi = ηt(π,w

?) − R(π). Since ŷi is an unbiased estimate of yi, the Zis form a
martingale. The range of each Zi is bounded as

|Zi| ≤ ‖w?‖1‖ŷi − yi‖∞ ≤
‖w?‖1
µi−1pmin

≤ ‖w
?‖1

µtpmin
,

because the µis are non-increasing. The conditional variance can be bounded via the Cauchy-Schwarz
inequality:

E[Z2
i |Hi−1] ≤ ‖w?‖22

L∑
`=1

Ex∼Dx
Ey|x

y(π(x)`)
2

Q̃
µi−1

i−1 (π(x)` | x)

≤ ‖w?‖22V (Q̃i−1, π, µi−1) ≤ ‖w?‖22Vt(π).

By Freedman’s inequality with λ = µtpmin/‖w?‖1, we have, with probability at least 1− δ/(8t2N),

|ηt(π,w?)− R(π)| ≤ µtpmin

‖w?‖1
· ‖w?‖22Vt(π) +

dt
t
· ‖w

?‖1
µtpmin

≤ ‖w
?‖22

‖w?‖1
Vt(π)pminµt +Kµt‖w?‖1 (12)

≤ ‖w
?‖22

‖w?‖1
Vt(π)pminµt +

‖w?‖22
‖w?‖1

KLµt. (13)

Here, Eq. (12) follows because dt/(pmint) ≤ Kµ2
t by Eq. (8). Eq. (13) follows because ‖w?‖1 ≤

L‖w?‖22/‖w?‖1 by the fact that ‖w?‖1 ≤
√
L‖w?‖2. The lemma follows by a union bound over all

t ≥ t0 and π ∈ Π.

Equipped with these two deviation bounds we will proceed to prove the main theorem. Let E denote
the event that both the variance and reward deviation bounds of Theorem 5 and Lemma 7 hold. Note that
P(E) ≥ 1− δ/2. Using the variance constraint, it is straightforward to prove the following lemma:

Lemma 8. Assume event E holds, then for any round t ≥ 1 and any policy π ∈ Π, let t? be the round
achieving the max in the definition of Vt(π). Then there are universal constants θ1 ≥ 2 and θ2 such that:

Vt(π) ≤


2KL

pmin
if t? < t0,

θ1KL

pmin
+
‖w?‖1
‖w?‖22

R̂egt?(π)

θ2pminµt?
if t? ≥ t0.

(14)

18



Proof. The first claim follows by the definition of Vt(π) and the fact that µτ = 1/2K for τ < t0. For
the second claim, we use the variance deviation bound and the optimization constraint. In particular, since
t? ≥ t0, we can apply Theorem 5:

V (Q̃t? , π, µt?) ≤ 6.4V̂t?(Q̃t? , π, µt?) + 81.3
KL

pmin
,

and we can use the optimization constraint which gives an upper bound on V̂t?(Q̃t? , π, µt?):

V̂t?(Q̃t? , π, µt?) ≤ V̂t?(Qt? , π, µt?) ≤ 2KL

pmin
+
‖w?‖1
‖w?‖22

R̂egt?(π)

ψpminµt?

The bound follows by the choice θ1 = 94.1 and θ2 = ψ/6.4.

We next compare Reg(π) and R̂eg(π) using the variance bounds above.

Lemma 9. Assume event E holds and define c0 := 4(1 + θ1). For all t ≥ t0 and all policies π ∈ Π:

Reg(π) ≤ 2R̂egt(π) + c0
‖w?‖22
‖w?‖1

KLµt and R̂egt(π) ≤ 2Reg(π) + c0
‖w?‖22
‖w?‖1

KLµt. (15)

Proof. The proof is by induction on t. As the base case, consider t = t0 where we have µτ = 1/(2K) for all
τ < t0, so Vt(π) ≤ 2KL/pmin for all π ∈ Π by Lemma 8. Using the reward deviation bound of Lemma 7,
which holds under E, we thus have

|ηt(π,w?)− R(π)| ≤ ‖w
?‖22

‖w?‖1
Vt(π)pminµt +

‖w?‖22
‖w?‖1

KLµt ≤ 3
‖w?‖22
‖w?‖1

KLµt

for all π ∈ Π. Now both directions of the bound follow from the triangle inequality and the optimality of πt
for ηt(·) and π? for R(·), using the fact that c0 ≥ 6 from the definition of θ1.

For the inductive step, fix some round t and assume that the claim holds for all t0 ≤ t′ < t and all π ∈ Π.
By the optimality of πt for ηt and Lemma 7, we have

Reg(π)− R̂egt(π) = (R(π?)− R(π))− (ηt(πt, w
?)− ηt(π,w?))

≤ (R(π?)− R(π))− (ηt(π?, w
?)− ηt(π,w?))

≤ (Vt(π?) + Vt(π))
‖w?‖22
‖w?‖1

pminµt + 2
‖w?‖22
‖w?‖1

KLµt.

Now by Lemma 8, there exist rounds i, j < t such that

Vt(π) ≤ θ1KL

pmin
+
‖w?‖1
‖w?‖22

R̂egi(π)

θ2pminµi
1(i ≥ t0)

Vt(π?) ≤
θ1KL

pmin
+
‖w?‖1
‖w?‖22

R̂egj(π?)
θ2pminµj

1(j ≥ t0)

For the term involving Vt(π), if i < t0, we immediately have the bound

Vt(π)
‖w?‖22
‖w?‖1

pminµt ≤ θ1
‖w?‖22
‖w?‖1

KLµt.

19



On the other hand, if i ≥ t0 then using the fact that µi ≥ µt, and applying the inductive hypothesis to R̂egi(π)
gives:

Vt(π)
‖w?‖22
‖w?‖1

pminµt ≤ θ1
‖w?‖22
‖w?‖1

KLµt +
R̂egi(π)µt
θ2µi

≤
(
θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt +
2Reg(π)

θ2
.

Similarly for the Vt(π?) term, we have the bound

Vt(π?)
‖w?‖22
‖w?‖1

pminµt ≤
(
θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt +
2Reg(π?)

θ2
=

(
θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt,

since π? has no regret. Combining these bounds gives:

Reg(π)− R̂egt(π) ≤ 2

(
θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt +
2Reg(π)

θ2
+ 2
‖w?‖22
‖w?‖1

KLµt,

which gives

Reg(π) ≤ 1

1− 2/θ2

(
R̂egt(π) + 2

(
1 + θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt−1

)
.

Recall that θ1 = 94.1, θ2 = ψ/6.4, ψ = 100, and c0 = 4(1+θ1). This means that θ2 > 15.6, so 2/θ2 ≤ 1/2,
and hence the pre-multiplier on the R̂egt(π) term is at most 2. To finish proving the bound on Reg(π), it
remains to show that c0 ≥ 2(1 + θ1 + c0/θ2)/(1− 2/θ2), or equivalently, that

c0 (1− 4/θ2) ≥ 2 (1 + θ1) .

This holds, because c0(1− 4/θ2) = 4(1− 4/θ2)(1 + θ1) and 4/θ2 ≤ 1/2.
The other direction proceeds similarly. Under event E we have:

R̂egt(π)− Reg(π) = ηt(πt, w
?)− ηt(π,w?)− R(π?) + R(π)

≤ ηt(πt, w?)− ηt(π,w?)− R(πt) + R(π)

≤ (Vt(π) + Vt(πt))
‖w?‖22
‖w?‖1

pminµt + 2
‖w?‖22
‖w?‖1

KLµt.

As before, we have the bound:

Vt(π)
‖w?‖22
‖w?‖1

pminµt ≤
(
θ1 +

c0
θ2

)
‖w?‖22
‖w?‖1

KLµt +
2Reg(π)

θ2
,

but for the Vt(πt) term we must use the inductive hypothesis twice. We know there exists a round j < t for
which

Vt(πt) ≤ θ1
KL

pmin
+
‖w?‖1
‖w?‖22

R̂egj(π)

θ2pminµj
1(j ≥ t0).

Applying the inductive hypothesis twice gives:

‖w?‖1
‖w?‖22

R̂egj(πt)
θ2pminµj

≤ ‖w
?‖1

‖w?‖22

(
2Reg(πt) + c0

‖w?‖22
‖w?‖1KLµj

)
θ2pminµj

≤ ‖w
?‖1

‖w?‖22

2
(

2R̂egt(πt) + c0
‖w?‖22
‖w?‖1KLµt

)
+ c0

‖w?‖22
‖w?‖1KLµj

θ2pminµj

≤ 3c0
θ2

KL

pmin
.

20



Here we use the inductive hypothesis twice, once at round j and once at round t, and then use the fact that πt
has no regret at round t, i.e., R̂egt(πt) = 0. We also use the fact that the µts are non-increasing, so µt/µj ≤ 1.
This gives the bound:

Vt(πt)
‖w?‖22
‖w?‖1

pminµt ≤
(
θ1 +

3c0
θ2

)
‖w?‖22
‖w?‖1

KLµt.

Combining the bounds for Vt(π) and Vt(πt) gives:

R̂egt(π) ≤
(

1 +
2

θ2

)
Reg(π) +

(
2θ1 +

4c0
θ2

+ 2

)
‖w?‖22
‖w?‖1

KLµt.

Since θ2 ≥ 2, the pre-multiplier on the first term is at most 2. It remains to show that c0 ≥ 2(1+θ1)+4c0/θ2.
This is again equivalent to c0(1− 4/θ2) ≥ 2(1 + θ1), which holds as before.

The last key ingredient of the proof is the following lemma, which shows that the low-regret constraint in
Eq. (4), based on the regret estimates, actually ensures low regret.

Lemma 10. Assume event E holds. Then for every round t ≥ 1:∑
π∈Π

Q̃t−1(π)Reg(π) ≤ (4ψ + c0)
‖w?‖22
‖w?‖1

KLµt−1 (16)

Proof. If t ≤ t0 then µt−1 = 1/(2K) in which case (since Reg(π) ≤ ‖w?‖1):∑
π∈Π

Q̃t−1(π)Reg(π) ≤ ‖w?‖1 ≤
‖w?‖22
‖w?‖1

L = 2
‖w?‖22
‖w?‖1

KLµt−1 ≤ (4ψ + c0)
‖w?‖22
‖w?‖1

KLµt−1.

For t > t0, we have:∑
π∈Π

Q̃t−1(π)Reg(π) ≤
∑
π∈Π

Q̃t−1(π)

(
2R̂egt−1(π) + c0

‖w?‖22
‖w?‖1

KLµt−1

)

≤

(
2
∑
π∈Π

Qt−1(π)R̂egt−1(π)

)
+ c0

‖w?‖22
‖w?‖1

KLµt−1

≤ (4ψ + c0)
‖w?‖22
‖w?‖1

KLµt−1.

The first inequality follows by Lemma 9 and the second follows from the fact that Q̃t−1 places its remaining
mass (compared with Qt−1) on πt−1 which suffers no empirical regret at round t− 1. The last inequality is
due to the low-regret constraint in the optimization.

To control the regret, we must first add up the µts, which relate to the exploration probability:

Lemma 11. For any T ≥ 1:

T∑
t=1

µt−1 ≤ 2

√
TdT
Kpmin

.

21



Proof. We will use the identity

1

K
≤

√
dT

Kpmin
, (17)

which holds, because dT ≥ 1 and K ≥ pmin. We prove the lemma separately for T = 1 and T ≥ 2. Since
t0 ≥ 4, we have µ0 = 1/2K. Thus, for T = 1, by Eq. (17):

T∑
t=1

µt−1 =
1

2K
≤ 1

2

√
dT

Kpmin
≤ 2

√
TdT
Kpmin

.

For T ≥ 2, we use the fact that µ0 = µ1 = 1/2K, and µt ≤
√
dT /(Ktpmin) for t ≤ T :

T∑
t=1

µt−1 ≤
1

K
+

√
dT

Kpmin

T∑
t=3

1√
t− 1

≤

√
dT

Kpmin
+

√
dT

Kpmin

(
2
√
T − 1− 2

)
(18)

≤ 2

√
TdT
Kpmin

.

In Eq. (18), we bounded the first term using Eq. (17) and the second term using the telescoping identity
1/
√
t− 1 ≤ 2

√
t− 1− 2

√
t− 2, which holds for t ≥ 2.

We are finally ready to prove the theorem by adding up the total regret for the algorithm.

Lemma 12. For any T ∈ N, with probability at least 1− δ, the regret after T rounds is at most:

‖w?‖22
‖w?‖1

L

[
2
√

2T ln(2/δ) + 2(4ψ + c0 + 1)

√
KTdT
pmin

]
.

Proof. For each round t ≥ 1, let Zt := rt(π?(xt)) − rt(At) −
∑
π∈Π Q̃

µt−1

t−1 (π)Reg(π). Since at round t,
we play action At with probability Q̃µt−1

t−1 (At), we have EZt = 0. Moreover, since the noise term ξ is shared
between rt(π?(xt)) and rt(At), we have |Zi| ≤ 2‖w?‖1 and it follows by Azuma’s inequality (Lemma 24)
that with probability at least 1− δ/2:

T∑
t=1

|Zt| ≤ 2‖w?‖1
√

2T ln(2/δ).

To control the mean, we use event E, which, by Theorem 5 and Lemma 7, holds with probability at least

22



Algorithm 4: Coordinate Ascent Algorithm for Semi-Bandit Optimization Problem (OP)

Require: History H and smoothing parameter µ.
1: Initialize weights Q← 0 ∈ ∆≤(Π).
2: while true do
3: For all π, define:

Vπ(Q) := Êx∼H

[
L∑
`=1

1

Qµ(π(x)`|x)

]
, Sπ(Q) := Êx∼H

[
L∑
`=1

1

Qµ(π(x)`|x)2

]
,

Dπ(Q) := Vπ(Q)−
2KL

pmin
− bπ

4: If
∑
π Q(π)( 2KL

pmin
+ bπ) > 2KL

pmin
, replace Q by cQ where c := 2KL/pmin∑

π Q(π)(2KL/pmin+bπ) < 1.

5: Else if ∃π s.t. Dπ(Q) > 0, update Q(π)← Q(π) + απ(Q) where απ(Q) := Vπ(Q)+Dπ(Q)
2(1−Kµ)Sπ(Q) .

6: Otherwise halt and output Q.
7: end while

1− δ/2. By another union bound, with probability at least 1− δ, the regret of the algorithm is bounded by:

Regret ≤ 2‖w?‖1
√

2T ln(2/δ) +

T∑
t=1

∑
π∈Π

Q̃
µt−1

t−1 (π)Reg(π)

≤ 2‖w?‖1
√

2T ln(2/δ) +

T∑
t=1

∑
π∈Π

[
(1−Kµt−1)Q̃t−1(π)Reg(π) + ‖w?‖1Kµt−1

]

≤ 2‖w?‖1
√

2T ln(2/δ) +

T∑
t=1

(4ψ + c0 + 1)
‖w?‖22
‖w?‖1

LKµt−1

≤ ‖w
?‖22

‖w?‖1
L

[
2
√

2T ln(2/δ) + 2(4ψ + c0 + 1)

√
KTdT
pmin

]

Here the first inequality is from the application of Azuma’s inequality above. The second one uses the defini-
tion of Q̃µt−1

t−1 to split into rounds where we play as Q̃t−1 and rounds where we explore. The exploration rounds
occur with probability Kµt−1, and on those rounds we suffer regret at most ‖w?‖1. For the other rounds, we
use Lemma 10 and then Lemma 11. We collect terms using the inequality ‖w?‖1 ≤ L‖w?‖22/‖w?‖1.

E Proof of Oracle Complexity Bound in Theorem 1
In this section we prove the oracle complexity bound in Theorem 1. First we describe how the optimization
problem OP can be solved via a coordinate ascent procedure. Similar to the previous appendix, we use the
shorthand Q(a | x) to mean Q(a ∈ A | x) for any projected subdistribution Q(A | x). If Q is a distribution,
we have

∑
a∈AQ(a | x) = L. For a subdistribution, this number can be smaller.

This problem is similar to the one used by Agarwal et al. [1] for contextual bandits rather than semibandits,
and following their approach, we provide a coordinate ascent procedure in the policy space (see Algorithm 4).

23



There are two types of updates in the algorithm. If the weights Q are too large or the regret constraint in
Equation 4 is violated, the algorithm multiplicatively shrinks all of the weights. Otherwise, if there is a policy
that is found to violate the variance constraint in Equation 5, the algorithm adds weight to that policy, so that
the constraint is no longer violated.

First, if the algorithm halts, then both of the conditions must be satisfied. The regret condition must
be satisfied since we know that

∑
π Q(π)(2KL/pmin + bπ) ≤ 2KL/pmin which in particular implies that∑

π Q(π)bπ ≤ 2KL/pmin as required. Note that this also ensures that
∑
π Q(π) ≤ 1 so Q ∈ ∆≤(Π).

Finally, if we halted, then for each π, we must have Dπ(Q) ≤ 0 which implies Vπ(Q) ≤ 2KL
pmin

+ bπ so the
variance constraint is also satisfied.

The algorithm can be implemented by first accessing the oracle on the importance weighted history
{(xτ , ŷτ , w?)}tτ=1 at the end of round t to obtain πt, which we also use to compute bπ . The low regret check
in Step 4 of Algorithm 4 can be done efficiently, since each policy in the support of the current distribution Q
was added at a previous iteration of Algorithm 4, and we can store the regret of the policy at that time for no
extra computational burden. This allows us to always maintain the expected regret of the current distribution
Q for no added cost. Finding a policy violating the variance check can be done by one call to the AMO. At
round t, we create a dataset of the form (xi, zi, vi) of size 2t. The first t terms come from the variance Vπ(Q)
and the second t terms come from the rescaled empirical regret bπ. For τ ≤ t, we define xτ to be the τ th

context,

zτ (a) :=
1

tQµ(a|xτ )
, and vτ := 1.

With this definition, it is easily seen that Vπ(Q) =
∑t
τ=1 v

T
τ zτ (π(xτ )). For τ > t, we define xτ to be the

context from round τ − t and

zτ (a) :=
−‖w?‖1

‖w?‖22tψµpmin
ŷτ (a), and vτ := w?.

It can now be verified that
∑2t
τ=t+1 v

T
τ zτ recovers the bπ term up to additive constants independent of the

policy π (essentially up to the ηt(πt) term). Combining everything, it can be checked that:

Dπ(Q) =

2t∑
τ=1

〈zτ (π(xτ )), vτ 〉 −
2KL

pmin
− ‖w

?‖1
‖w?‖22

ηt(πt)

ψµpmin

The two terms at the end are independent of π so by calling the argmax oracle with this 2t sized dataset, we
can find the policy π with the largest value of Dπ. If the largest value is non-positive, then no constraint
violation exists. If it is strictly positive, then we have found a constraint violator that we use to update the
probability distribution.

As for the iteration complexity, we prove the following theorem.

Theorem 13. For any historyH and parameter µ, Algorithm 4 halts and outputs a set of weightsQ ∈ ∆≤(Π)

that is feasible for OP. Moreover, Algorithm 4 halts in no more than 8 ln(1/(Kµ))
µpmin

iterations and each iteration
can be implemented efficiently, with at most one call to AMO.

Equipped with this theorem, it is easy to see that the total number of calls to the AMO over the course of
the execution of Algorithm 1 can be bounded as Õ

(
T 3/2

√
K

pmin log(N/δ)

)
by the setting of µt. Moreover, due

to the nature of the coordinate ascent algorithm, the weight vector Q remains sparse, so we can manipulate
it efficiently and avoid running time that is linear in N . As mentioned, this contrasts with the exponential-
weights style algorithm of Kale et al. [13] which maintains a dense weight vector over ∆≤(Π).

24



We mention in passing that Agarwal et al. [1] also develop two improvements that lead to a more efficient
algorithm. They partition the learning process into epochs and only solve OP once every epoch, rather than in
every round as we do here (Lemma 2 in Agarwal et al. [1]). They also show how to use the weight vector
from the previous round to warm-start the next coordinate ascent execution (Lemma 3 in Agarwal et al. [1]).
Both of these optimizations can also be implemented here, and we expect they will reduce the total number
of oracle calls over T rounds to scale with

√
T rather than T 3/2 as in our result. We omit these details to

simplify the presentation.

E.1 Proof of Theorem 13
Throughout the proof we write U(A | x) instead of Ux(A) to parallel the notation Q(A | x). Also, similarly
to Q(a | x), we write U(a | x) to mean Ux(a ∈ A).

We use the following potential function for the analysis, which is adapted from Agarwal et al. [1],

Φ(Q) :=
Êx∼H

[
RE
(
U(· | x)

∥∥ Qµ(· | x)
)]

1−Kµ
+

∑
π Q(π)bπ

2K/pmin

with

RE(p‖q) :=
∑
a∈A

pa ln(pa/qa) + qa − pa

being the unnormalized relative entropy. Its arguments p and q can be any non-negative vectors in RK . For
intuition, note that the partial derivative of the potential function with respect to a coordinate Q(π) relates to
the variance Vπ(Q) as follows:

∂Φ(Q)

∂Q(π)
=

Êx∼H
[∑

a∈π(x)

(
− U(a|x)
Qµ(a|x) (1−Kµ) + (1−Kµ)

)]
1−Kµ

+
bπ

2K/pmin

= −Êx∼H

 ∑
a∈π(x)

U(a | x)

Qµ(a | x)

+ L+
pminbπ

2K

≤ −pmin

K
Vπ(Q) + L+

pminbπ
2K

=
pmin

2K

(
−2Vπ(Q) +

2KL

pmin
+ bπ

)
=
pmin

2K

(
−Dπ(Q)− Vπ(Q)

)
.

This means that if Dπ(Q) > 0, then the partial derivative is very negative, and by increasing the weight Q(π),
we can decrease the potential function Φ.

We establish the following five facts:

1. Φ(0) ≤ L ln(1/(Kµ))/(1−Kµ).

2. Φ(Q) is convex in Q.

3. Φ(Q) ≥ 0 for all Q.

25



4. The shrinking update, when the regret constraint is violated, does not increase the potential. More
formally, for any c < 1, we have Φ(cQ) ≤ Φ(Q) whenever

∑
π Q(π)(2KL/pmin + bπ) > 2KL/pmin.

5. The additive update, when Dπ > 0 for some π, lowers the potential by at least Lµpmin
4(1−Kµ) .

With these five facts, establishing the result is straightforward. In every iteration, we either terminate, perform
the shrinking update, or the additive update. However, we will never perform the shrinking update in two
consecutive iterations, since our choice of c, ensures the condition is not satisfied in the next iteration. Thus,
we perform the additive update at least once every two iterations. If we perform I iterations, by the fifth fact,
we are guaranteed to decrease the potential Φ by,

I

2

Lµpmin

4(1−Kµ)
=

ILµpmin

8(1−Kµ)

However, the total change in potential is bounded by L ln(1/(Kµ))/(1−Kµ) by the first and second facts.
Thus, we must have

ILµpmin

8(1−Kµ)
≤ L ln(1/(Kµ))

(1−Kµ)
,

which is precisely the claim.
We now turn to proving the five facts. The first three are fairly straightforward and the last two follow

from analogous claims as in Agarwal et al. [1]. To prove the first fact, note that the exploration distribution in
Qµ is exactly Ux, so

Φ(0) = Êx∼H

∑
a∈A

U(a | x) ln
(

U(a|x)
KµU(a|x)

)
− (1−Kµ)U(a | x)

1−Kµ

 ≤ L ln(1/(Kµ))

1−Kµ
,

because
∑
a∈A U(a | x) = L since U(A | x) is a distribution. Convexity of this function follows from the

fact that the unnormalized relative entropy is convex in the second argument, and the fact that the weight
vector q ∈ RK with components qa = Qµ(a | x) is a linear transformation of Q ∈ RN . The third fact follows
by the non-negativity of both the empirical regret bπ and the unnormalized relative entropy RE(·‖·). For the
fourth fact, we prove the following lemma.

Lemma 14. Let Q be a weight vector for which
∑
π Q(π)(2KL/pmin + bπ) > 2KL/pmin and define

c := 2KL/pmin∑
π Q(π)(2KL/pmin+bπ) < 1. Then Φ(cQ) ≤ Φ(Q).

Proof. Let g(c) := Φ(cQ) and Qµc (a|x) := (1 −Kµ)cQ(a|x) + KµU(a|x). By the chain rule, using the
calculation of the derivative above, we have:

g′(c) =
∑
π

Q(π)
∂Φ(cQ)

∂Q(π)

=
pmin

2K

∑
π

Q(π)

(
2KL

pmin
+ bπ

)
−
∑
π

Q(π)Êx

 ∑
a∈π(x)

U(a|x)

Qµc (a|x)

 . (19)

26



Analyze the last term:

∑
π

Q(π)Êx

 ∑
a∈π(x)

U(a|x)

Qµc (a|x)

 = Êx

[∑
a∈A

∑
π∈Π

U(a|x)Q(π)1(a ∈ π(x))

Qµc (a|x)

]

= Êx

[∑
a∈A

U(a|x)Q(a|x)

Qµc (a|x)

]
=

1

c
Êx

[∑
a∈A

U(a|x)cQ(a|x)

Qµc (a|x)

]
. (20)

We now focus on one context x and define qa := cQ(a|x) and ua := U(a|x)/L. Note that
∑
a U(a|x) = L

so the vector u describes a probability distribution over a ∈ A. The inner sum in Eq. (20) can be upper
bounded by:∑

a∈A

U(a|x)cQ(a|x)

Qµc (a|x)
=
∑
a∈A

Luaqa
(1−Kµ)qa +KLµua

=
∑
a∈A

Lua(qa/ua)

(1−Kµ)(qa/ua) +KLµ

= LEa∼u
[

qa/ua
(1−Kµ)(qa/ua) +KLµ

]
≤ LEa∼u[qa/ua]

(1−Kµ)Ea∼u[qa/ua] +KLµ

=
L(
∑
a∈A qa)

(1−Kµ)(
∑
a∈A qa) +KLµ

≤ L2

(1−Kµ)L+KLµ
= L. (21)

In the third line we use Jensen’s inequality, noting that x/(ax+ b) is concave in x for a ≥ 0. In Eq. (21), we
use that

∑
a∈A qa ≤ L and that x/(ax+ b) is non-decreasing, so plugging in L for

∑
a qa gives an upper

bound.
Combining Eqs. (19), (20), and (21), and plugging in our choice of c = 2KL/pmin∑

π Q(π)(2KL/pmin+bπ) , we obtain
the following lower bound on g′(c):

g′(c) ≥ pmin

2K

∑
π

Q(π)

(
2KL

pmin
+ bπ

)
− L

c

=
pmin

2K

(∑
π

Q(π)

(
2KL

pmin
+ bπ

)
− 2KL

cpmin

)
= 0.

Since g is convex, this means that g(c′) is nondecreasing for all values c′ exceeding c. Since c < 1, we
have:

Φ(Q) = g(1) ≥ g(c) = Φ(cQ).

And for the fifth fact, we have:

Lemma 15. Let Q be a subdistribution and suppose, for some policy π, that Dπ(Q) > 0. Let Q′ be the new
set of weights which is identical except that Q′(π) := Q(π) + α with α := απ(Q) > 0. Then

Φ(Q)− Φ(Q′) ≥ Lµpmin

4(1−Kµ)
.

27



Proof. Assume Dπ(Q) > 0. Note that the updated subdistribution equals Q′(·) = Q(·) + α1(· = π), so its
smoothed projection, Q′µ(a | x) = Qµ(a | x) + (1−Kµ)α1(a ∈ π(x)), differs only in a small number of
coordinates from Qµ(a | x). Using the shorthand qµa := Qµ(a | x), q′µa := Q′µ(a | x) and ua := U(a | x), we
have:

2K
(
Φ(Q)− Φ(Q′)

)
= 2K

 Êx
[∑

a

(
ua ln(ua/q

µ
a )− ua ln(ua/q

′µ
a ) + qµa − q′µa

)]
(1−Kµ)

− αbπ
2K/pmin


=

2K

1−Kµ
Êx

 ∑
a∈π(x)

ua ln

(
q′µa
qµa

)− 2KαL− αbπpmin

≥ 2pmin

1−Kµ
Êx

 ∑
a∈π(x)

ln

(
1 +

α(1−Kµ)

Qµ(a | x)

)− pminα

(
2KL

pmin
+ bπ

)
.

The term inside the expectation can be bounded using the fact that ln(1 + x) ≥ x− x2/2 for x ≥ 0:

Êx

 ∑
a∈π(x)

ln

(
1 +

α(1−Kµ)

Qµ(a | x)

) ≥ Êx

 ∑
a∈π(x)

(
α(1−Kµ)

Qµ(a | x)
− α2(1−Kµ)2

2Qµ(a | x)2

)
= α(1−Kµ)Vπ(Q)− α2(1−Kµ)2

2
Sπ(Q).

Plugging this in the previous derivation gives a lower bound:

2K
(
Φ(Q)− Φ(Q′)

)
≥ 2pminαVπ(Q)− (1−Kµ)pminα

2Sπ(Q)− pminα

(
2KL

pmin
+ bπ

)
≥ pminα

(
Vπ(Q) +Dπ(Q)

)
− (1−Kµ)pminα

2Sπ(Q),

using the definition Dπ(Q) = Vπ(Q)− 2KL
pmin
− bπ . Since α = Vπ(Q)+Dπ(Q)

2(1−Kµ)Sπ(Q) , we obtain:

2K
(
Φ(Q)− Φ(Q′)

)
≥
pmin

(
Vπ(Q) +Dπ(Q)

)2
4(1−Kµ)Sπ(Q)

Note that Sπ(Q) ≥ 1
µpmin

Vπ(Q) (by bounding the square terms in the definition of Sπ(Q) by a linear term
times the lower bound, which is µpmin) and that Vπ(Q) > 2KL

pmin
since Dπ(Q) > 0. Therefore:

2K
(
Φ(Q)− Φ(Q′)

)
≥
µp2

min

(
Vπ(Q) +Dπ(Q)

)2
4(1−Kµ)Vπ(Q)

≥ µp2
minVπ(Q)

4(1−Kµ)
≥ KLµpmin

2(1−Kµ)
.

Dividing both sides of this inequality by 2K proves the lemma.

F Proof of Theorem 2
The proof of Theorem 2 requires many delicate steps, so we first sketch the overall proof architecture.
The first step is to derive a parameter estimation bound for learning in linear models. This is a somewhat

28



standard argument from linear regression analysis, and the important component is that the bound involves the
2nd-moment matrix Σ of the feature vectors used in the problem. Combining this with importance weighting
on the reward features y as in VCEE, we prove that the policy used in the exploitation phase has low expected
regret, provided that Σ has large eigenvalues.

The next step involves a precise characterization of the mean and deviation of the 2nd-moment matrix Σ,
which relies on the exploration phase employing a uniform exploration strategy. This step involves a careful
application of the matrix Bernstein inequality (Lemma 26). We then bound the expected regret accumulated
during the exploration phase; we show, somewhat surprisingly, that the expected regret can be related to the
mean of 2nd-moment matrix Σ of the reward features. Finally, since per-round exploitation regret improves
with a larger setting λ?, while the cumulative exploration regret improves with a smaller setting λ?, we
optimize this parameter to balance the two terms. Similarly, the per-round exploitation regret improves with a
larger setting n?, while the cumulative exploration regret improves with a smaller setting n?, and our choice
of n? optimizes this tradeoff.

An important definition that will appear throughout the analysis is the expected reward variance, when a
single action is chosen uniformly at random:

V := E(x,y)∼D

[
1

K

∑
a∈A

y2(a)−
(

1

K

∑
a∈A

y(a)

)2
]
. (22)

F.1 Estimating V
The first step is a deviation bound for estimating V .

Lemma 16. After n? rounds, the estimate V̂ satisfies, with probability at least 1− δ,

|V̂ − V | ≤

√
V ln(2/δ)

n?
+

ln(2/δ)

6n?
.

Proof. Note that our estimator, V̂ = 1
n?

∑n?
t=1 Zt, is an average of i.i.d. terms, with

Zt :=
1

2K2

∑
a,b∈A

(yt(a)− yt(b))2 1(a, b ∈ At)
U(a, b ∈ At)

,

where U is a uniform distribution over all rankings. The mean of this random variable is precisely V :

E(x,y)∼D,A∼U [Zt] =
1

2K2
Ex,y

 ∑
a,b∈A

(y(a)− y(b))2


= Ex,y

 1

2K2

∑
a,b∈A

(
y(a)2 − 2y(a)y(b) + y(b)2

)
= Ex,y

 1

K

∑
a

y(a)2 −

(
1

K

∑
a

y(a)

)2
 = V.

29



Since we choose L actions uniformly at random, the probability for two distinct actions jointly being selected
is U(a, b ∈ A) = L(L−1)

K(K−1) and for a single action it is U(a ∈ A) = L/K. The (y(a)− y(b))2 term is at most
one but it is always zero for a = b, so the range of Zt is at most

0 ≤ Zt ≤
1

2K2

∑
a6=b∈At

K(K − 1)

L(L− 1)
=
K(K − 1)

2K2
≤ 1

2
.

Note that the last summation is only over the L(L − 1) action pairs corresponding to the slate At, as the
indicator in Zt eliminates the other terms in the sum over all actions from A.

As for the second moment, since Zt ∈ [0, 1/2], we have

E[Z2
t ] ≤ E[Zt]/2 ≤ V/2.

By Bernstein’s inequality, we are guaranteed that with probability at least 1− δ, after n? rounds,

|V̂ − V | ≤

√
V ln(2/δ)

n?
+

ln(2/δ)

6n?
.

Equipped with the deviation bound we can complete the square to find that

V −

√
V ln(2/δ)

n?
+

ln(2/δ)

4n?
≤ V̂ +

5 ln(2/δ)

12n?

⇒

√V −√ ln(2/δ)

4n?

2

≤ V̂ +
ln(2/δ)

2n?

⇒ V ≤

√ ln(2/δ)

4n?
+

√
V̂ +

ln(2/δ)

2n?

2

≤ 2V̂ +
3 ln(2/δ)

2n?
.

Our definition of λ? uses Ṽ which is precisely this final upper bound. Working from the other side of the
deviation bound, we know that

V̂ ≤

√V +

√
ln(2/δ)

4n?

2

≤ 2V +
ln(2/δ)

2n?
.

And combining the two, we see that

V ≤ Ṽ ≤ 4V +
5 ln(2/δ)

2n?
, (23)

with probability at least 1− δ.

F.2 Parameter Estimation in Linear Regression
To control the regret associated with the exploitation rounds, we also need to bound ‖ŵ−w?‖2 which follows
from a standard analysis of linear regression.

30



At each round t, we solve a least squares problem with features yt(At) and response rt which we know
has E[rt | yt, At] = yt(At)

Tw?. The estimator is

wt := argmin
w

t∑
i=1

(
yi(Ai)

Tw − ri
)2
.

Define the 2nd-moment matrix of reward features,

Σt :=

t∑
i=1

yi(Ai)yi(Ai)
T ,

which governs the estimation error of the least squares solution as we show in the next lemma.

Lemma 17. Let Σt denote the 2nd-moment reward matrix after t rounds of interaction and let wt be the
least-squares solution. There is a universal constant c > 0 such that for any δ ∈ (0, 2/e), with probability at
least 1− δ,

‖wt − w?‖2Σt ≤ cL ln(2/δ).

Proof. This lemma is the standard analysis of fixed-design linear regression with bounded noise. By definition
of the ordinary least squares estimator, we have Σtwt = Y T1:tr1:t where Y1:t ∈ Rt×L is the matrix of features,
r1:t ∈ Rt is the vector of responses and Σt = Y T1:tY1:t is the 2nd-moment matrix of reward features defined
above. The true weight vector satisfies Σtw

? = Y T1:t(r1:t − ξ1:t) where ξ1:t ∈ Rt is the noise. Thus
Σt(wt − w?) = Y T1:tξ1:t, and therefore,

‖wt − w?‖2Σt = (wt − w?)TΣt(wt − w?) = (wt − w?)TΣtΣ
†
tΣt(wt − w?) = ξT1:tY1:tΣ

†
tY

T
1:tξ1:t,

where Σ†t is the pseudoinverse of Σt and we use the fact that AA†A = A for any symmetric matrix A. Since
Σ†t = (Y T1:tY1:t)

†, the matrix Y1:tΣ
†
tY

T
1:t is a projection matrix, and it can be written asUUT whereU ∈ Rt×L′

is a matrix with L′ orthonormal columns where L′ ≤ L. We now have to bound the term ‖UT ξ1:t‖22 =
ξT1:tUU

T ξ1:t. Let Hxy = (x1, y1, . . . , xt, yt) denote the history excluding the noise. Conditioned on Hxy,
the vector ξ1:t is a subgaussian random vector with independent components, so we can apply subgaussian
tail bounds. Applying Lemma 25, due to Rudelson and Vershynin [23], we see that with probability at least
1− δ,

ξT1:tUU
T ξ1:t ≤ E

[
ξT1:tUU

T ξ1:t

∣∣Hxy

]
+
√
c0‖UUT ‖2F ln(2/δ) + c0‖UUT ‖ ln(2/δ) (24)

≤
(
L+

√
c0L ln(2/δ) + c0 ln(2/δ)

)
≤
(√

L+
√
c0 ln(2/δ)

)2

.

To derive the second line, we use the fact that UUT is a projection matrix for an L′-dimensional subspace, so
its Frobenius norm is bounded as ‖UUT ‖2F = tr(UUT ) = L′ ≤ L, while its spectral norm is ‖UUT ‖ = 1.
The expectation in Eq. (24) is bounded using the conditional independence of the noise and the fact that its
conditional expectation is zero:

E
[
ξT1:tUU

T ξ1:t

∣∣Hxy

]
= tr

(
UUTE[ξ1:tξ

T
1:t |Hxy]

)
= tr

(
UUTdiag(E[ξ2

i | xi, yi])i≤t
)

≤ tr(UUT )
(

max
i≤t

E[ξ2
i | xi, yi]

)
≤ L′ ≤ L.

Finally, when δ ∈ (0, 2/e) and with c = (1 +
√
c0)2, we obtain the desired bound.

31



F.3 Analysis of the 2nd-Moment Matrix Σt

We now show that the 2nd-moment matrix of reward features has large eigenvalues. This lets us translate
the error in Lemma 17 to the Euclidean norm, which will play a role in bounding the exploitation regret.
Interestingly, the lower bound on the eigenvalues is related to the exploration regret, so we can explore until
the eigenvalues are large, without incurring too much regret.

To prove the bound, we use a full sequence of exploration data, which enables us to bypass the data-
dependent stopping time. Let {xt, yt, At, ξt}Tt=1 be a sequence of random variables where (x, y, ξ) ∼ D and
At is drawn uniformly at random. Let wt be the least squares solution on the data in this sequence up to
round t, and let Σt be the 2nd-moment matrix of the reward features.

Lemma 18. With probability at least 1− δ, for all t ≤ T ,

Σt �
(
tV − 4L

√
tV ln(4LT/δ)− 4L ln(4LT/δ)

)
IL,

where IL is the L× L identity matrix.

Proof. For K = 1, we have V = 0, so the bound holds. In the remainder, assume K ≥ 2. The proof has two
components: the spectral decomposition of the mean EΣt and the deviation bound on Σt.

Spectral decomposition of EΣt: The first step in the proof is to analyze the expected value of the
2nd-moment matrix. Since yt, At are identically distributed, it suffices to consider just one term. Fixing x
and y, we only reason about the randomness in picking A. Let S := EA∼U [y(A)y(A)T ] ∈ RL×L be the
mean matrix for that round. We have:

zTSz =

L∑
`=1

z2
`

∑
a∈A

1

K
y(a)2 +

∑
` 6=`′

z`z`′
∑

a6=a′∈A

y(a)y(a′)

K(K − 1)

=
‖y‖22‖z‖22

K
+
∑
` 6=`′

z`z
′
`

∑
a,a′∈A

y(a)y(a′)

K(K − 1)
−
∑
` 6=`′

z`z
′
`

∑
a

y(a)2

K(K − 1)
.

Define ȳ := 1
K

∑
a∈A y(a), E2

y := 1
K

∑
a∈A y(a)2, and Vy := E2

y − ȳ2, and observe that by the definition
of V in Eq. (22), we have Ex,yVy = V . Continuing the derivation, we obtain:

zTSz = E2
y‖z‖22 +

∑
` 6=`′

z`z`′

(
K

K − 1
ȳ2 − 1

K − 1
E2
y

)

= E2
y‖z‖22 +

(
(zT1)2 − ‖z‖22

)( K

K − 1
ȳ2 − 1

K − 1
E2
y

)
=

K

K − 1
Vy‖z‖22 + (zT1)2

(
K

K − 1
ȳ2 − 1

K − 1
E2
y

)
.

To finish the derivation, let u = 1/
√
L be the unit vector in the direction of all ones and P = I − uuT be the

projection matrix on the subspace orthogonal with u. Then

zTSz =
K

K − 1
Vy(zTuuT z + zTPz) + L(zTuuT z)

(
ȳ2 − 1

K − 1
Vy

)
= s

(
K − L
K − 1

Vy + Lȳ2

)
(zTuuT z) +

K

K − 1
Vy(zTPz).

32



Thus,

S =

(
K − L
K − 1

Vy + Lȳ2

)
uuT +

K

K − 1
VyP.

By taking the expectation, we obtain the spectral decomposition with eigenvalues λu and λP associated,
respectively, with uuT and P :

Ex,y,A[y(A)y(A)T ] = Ex,y[S] =

(
K − L
K − 1

V + LE[ȳ2]

)
︸ ︷︷ ︸

λu

uuT +

(
K

K − 1
V

)
︸ ︷︷ ︸

λP

P. (25)

We next bound the eigenvalue λu. By positivity of y, note that E2
y ≤

(
maxa y(a)

)
ȳ ≤ Kȳ2. Therefore,

Vy = E2
y − ȳ2 ≤ (K − 1)ȳ2, and thus E[ȳ2] ≥ V/(K − 1), so

λu =
K − L
K − 1

V + LE[ȳ2] ≥ K

K − 1
V.

Thus, both eigenvalues are lower bounded by K
K−1V ≥ V .

The deviation bound: For deviation bound, we follow the spectral structure of EΣt and first reason
about the properties of Σtu, followed by the analysis of PΣtP . Throughout the analysis, let zi := yi(Ai)
denote the L-dimensional reward feature vector on round i, and consider a fixed t ≤ T .

Direction u: We begin by the analysis of Σtu. Specifically, we will show that ‖Σtu− (EΣt)u‖2 is small.
We apply Bernstein’s inequality to a single coordinate `, then take a union bound to obtain a bound on ‖·‖∞,
and convert to a bound on ‖·‖2. For a fixed ` and i ≤ t, define

Xi := zi`z
T
i u

and note that (Σtu)` =
∑
i≤tXi. The range and variance of Xi are bounded as

0 ≤ Xi ≤
√
L

E[X2
i ] = E[z2

i`(z
T
i u)2] ≤ E[(zTi u)2] = uTE[ziz

T
i ]u = λu

where the last equality follows by Eq. (25). Thus, by Bernstein’s inequality, with probability at least 1− δ/2L,∣∣∣∣∣∣
∑
i≤t

Xi −
∑
i≤t

EXi

∣∣∣∣∣∣ ≤√2tλu ln(4L/δ) +
√
L ln(4L/δ)/3.

Taking a union bound over ` ≤ L yields that with probability at least 1− δ/2,∥∥Σtu− (EΣt)u
∥∥

2
≤
√
L
∥∥Σtu− (EΣt)u

∥∥
∞ ≤

√
2Ltλu ln(4L/δ) + L ln(4L/δ)/3. (26)

Orthogonal to u: In the subspace orthogonal to u, we apply the matrix Bernstein inequality. Let Xi, for
i ≤ t, be the matrix random variable

Xi := Pziz
T
i P − PE[ziz

T
i ]P

and note that
∑
i≤tXi = PΣtP − E[PΣtP ]. Since zi are i.i.d., below we analyze a single zi and Xi and

drop the index i. The range can be bounded as

λmax(X) ≤ λmax(PzzTP ) ≤ ‖z‖22 ≤ L.

33



To bound the variance, we use Schatten norms, i.e., Lp norms applied to the spectrum of a symmetric matrix.
The Schatten p-norm is denoted as ‖·‖σ,p. Note that the operator norm is ‖·‖σ,∞ and the trace norm is ‖·‖σ,1.
We begin by upper-bounding the variance by the second moment, then use the convexity of the norm, the
monotonicity of Schatten norms, and the fact that the trace norm of a positive semi-definite matrix equals its
trace to obtain:∥∥∥E[X2]

∥∥∥
σ,∞
≤
∥∥∥E[(PzzTP )2]

∥∥∥
σ,∞

≤ E
[
‖(PzzTP )2‖σ,∞

]
≤ E

[
‖(PzzTP )2‖σ,1

]
= E

[
tr
(

(PzzTP )2
)]
,

and continue by the matrix Holder inequality, tr(ATB) ≤ ‖A‖σ,∞‖B‖σ,1, and Eq. (25) to obtain:

≤
(

max
z
‖PzzTP‖σ,∞

)
E
[
‖PzzTP‖σ,1

]
≤ L trE

[
PzzTP

]
= L(L− 1)λP .

Reverting to the notation ‖·‖ for the operator norm, the matrix Bernstein inequality (Lemma 26) yields that
with probability at least 1− δ/2,∥∥∥PΣtP − E[PΣtP ]

∥∥∥ =
∥∥∥∑
i≤t

Xi −
∑
i≤t

EXi

∥∥∥ ≤√2L2tλP ln(2L/δ) + 2L ln(2L/δ)/3. (27)

The final bound: Let x be an arbitrary unit vector. Decompose it along the all-ones direction and the
orthogonal direction as x = αu+ βv, where v ⊥ u, and α2 + β2 = 1. Let v′ = (Σt − EΣt)u. Then∣∣xT (Σt − EΣt)x

∣∣ =
∣∣∣αuT (Σt − EΣt)x+ βvT (Σt − EΣt)αu+ βvT (Σt − EΣt)βv

∣∣∣
≤ |α| ·

∥∥uT (Σt − EΣt)
∥∥

2
+ |αβ| ·

∥∥(Σt − EΣt)u
∥∥

2
+ β2

∣∣vT (Σt − EΣt)v
∣∣

≤ 2|α| · ‖v′‖2 + |β| · ‖PΣtP − E[PΣtP ]‖ . (28)

From Eq. (25), we have
xT (EΣt)x ≥ α2tλu + β2tλP . (29)

To finish the proof, we will use the identity valid for all A,B, c ≥ 0

A+B − c
√
A+B ≥ A+B − c

√
A− c

√
B + c2/4− c2/4

= A− c
√
A+

(√
B − c/2

)2 − c2/4
≥ A− c

√
A− c2/4. (30)

Combining Eq. (28) and Eq. (29), and plugging in bounds from Eq. (26) and Eq. (27), we have

xTΣtx ≥ α2tλu + β2tλP − 2|α| · ‖v′‖2 − |β| · ‖PΣtP − E[PΣtP ]‖

≥ α2tλu + β2tλP − 2|α|
√

2Ltλu ln(4L/δ)− 2|α|L
3

ln(4L/δ)

− |β|
√

2L2tλP ln(2L/δ)− 2|β|L
3

ln(2L/δ)

≥ α2tλu + β2tV −
(

2
√

2L ln(4L/δ)
)√

α2tλu

− |β|
√

4L2tV ln(4L/δ)− 2L ln(4L/δ),

34



where we used V ≤ λP ≤ 2V , and |α| ≤ 1, |β| ≤ 1. We now apply Eq. (30) with A + B = α2tλu and
A = α2tV to obtain

xTΣtx ≥ α2tV + β2tV −
(

2
√

2L ln(4L/δ)
)√

α2tV − 2L ln(4L/δ)

− 2L|β|
√
tV ln(4L/δ)− 2L ln(4L/δ)

≥ tV − 2L
√

2 (|α|+ |β|)
√
tV ln(4L/δ)− 4L ln(4L/δ)

≥ tV − 4L
√
tV ln(4L/δ)− 4L ln(4L/δ),

where we used |α|+ |β| ≤
√

2α2 + 2β2 =
√

2. The lemma follows by the union bound over t ≤ T .

F.4 Analysis of the Exploration Regret
The analysis here is made complicated by the fact that the stopping time of the exploration phase is a random
variable. If we let t̂ denote the last round of the exploration phase, this quantity is a random variable that
depends on the history of interaction up to and including round t̂. Our proof here will use a non-random
bound t? that satisfies P(t̂ ≤ t?) ≥ 1 − δ. We will compute t? based on our analysis of the 2nd-moment
matrix Σt.

A trivial bound on the exploration regret is

t?∑
t=1

[
rt(π

?(xt))− rt(At)
]
≤ t?‖w?‖2

√
L, (31)

which follows from the Cauchy-Schwarz inequality and the fact that the reward features are in [0, 1].
In addition, we also bound the exploration regret by the following more precise bound:

Lemma 19 (Exploration Regret Lemma). Let t? be a non-random upper bound on the random variable t̂
satisfying P(t̂ ≤ t?) ≥ 1− δ. Then with probability at least 1− 2δ, the exploration regret is

t̂∑
t=1

[
rt(π

?(xt))− rt(At)
]
≤ t?‖w?‖2 min

{√
KV ,

√
L
}

+ ‖w?‖2
√

2Lt? ln(1/δ).

Proof. Let {xt, yt, At, ξt}Tt=1 be a sequence of random variables where (x, y, ξ) ∼ D and At is drawn
uniformly at random. We are interested in bounding the probability of the event

E :=


t̂∑
t=1

(
yt(π

?(xt))− yt(At)
)T
w? ≤ ε

 .

This term is exactly the exploration regret, so we want to make sure the probability of this event is large. We
first apply the upper bound

t̂∑
t=1

(
yt(π

?(xt))− yt(At)
)T
w? ≤

t̂∑
t=1

(
yt(A

?
t )− yt(At)

)T
w?,

35



where A?t = arg maxA yt(A)Tw? is the best possible ranking. This upper bound ensures that every term in
the sum is non-negative. We next remove the dependence on the random stopping time t̂ and replace it with a
deterministic number of terms t?:

P(E) ≥ P

 t̂∑
t=1

(
yt(A

?
t )− yt(At)

)T
w? ≤ ε


≥ P

 t̂∑
t=1

(
yt(A

?
t )− yt(At)

)T
w? ≤ ε ∩ t̂ ≤ t?


≥ P

(
t?∑
t=1

(
yt(A

?
t )− yt(At)

)T
w? ≤ ε ∩ t̂ ≤ t?

)

≥ 1− P

(
t?∑
t=1

(
yt(A

?
t )− yt(At)

)T
w? > ε

)
− P

(
t̂ > t?

)
≥ 1− δ − P

(
t?∑
t=1

(
yt(A

?
t )− yt(At)

)T
w? > ε

)
.

The first line follows from the definition of A?t which only increases the sum, so decreases the probability
of the event. The second inequality is immediate, while the third inequality holds because all terms of the
sequence are non-negative. The fourth inequality is the union bound and the last is by assumption on the
event {t̂ ≤ t?}.

Now we can apply a standard concentration analysis. The mean of the random variables is

Ex,y,A
[(
y(A?)− y(A)

)T
w?
]
≤ ‖w?‖2

∥∥∥Ex,y,A[y(A?)− y(A)
]∥∥∥

2

= ‖w?‖2
√∑
`≤L

Ex,y [y(A?` )− ȳ]
2

≤ ‖w?‖2
√∑
`≤L

Ex,y
[(
y(A?` )− ȳ

)2]

≤ ‖w?‖2
√
K

√
1

K

∑
a∈A

Ex,y
[(
y(a)− ȳ

)2]
= ‖w?‖2

√
KV .

The first inequality is Cauchy-Schwarz while the second is Jensen’s inequality and the third comes from
adding non-negative terms. The range of the random variable is bounded as

sup
x,y,A

∣∣∣∣(y(A?)− y(A)
)T
w? − Ex,y,A

[(
y(A?)− y(A)

)T
w?
]∣∣∣∣ ≤ ‖w?‖2√L,

because 0 ≤
(
y(A?) − y(A)

)T
w? ≤ ‖w?‖2

√
L. Thus by Hoeffding’s inequality, with probability at least

36



1− δ,

t?∑
t=1

(
y(A?)− y(A)

)T
w? ≤

t?∑
t=1

Ex,y,A
[(
y(A?)− y(A)

)T
w?
]

+ ‖w?‖2
√

2Lt? ln(1/δ)

≤ t?‖w?‖2
√
KV + ‖w?‖2

√
2Lt? ln(1/δ).

Combining this bound with the bound of Eq. (31) proves the lemma.

F.5 Analysis of the Exploitation Regret
In this section we show that after the exploration rounds, we can find a policy that has low expected regret.
The technical bulk of this section involves a series of deviation bounds showing that we have good estimates
of the expected reward for each policy.

In addition to ȳ from the previous sections, we will also need the sample quantity ȳt := 1
K

∑
a∈A yt(a),

which will allow us to relate the exploitation regret to the variance term V . Since we are using uniform
exploration, the importance-weighted feature vectors are as follows:

ŷt(a) =
1(a ∈ At)yt(a)

U(a ∈ At)
=
K

L
1(a ∈ At)yt(a).

Given any estimate ŵ of the true weight vector w?, the empirical reward estimate for a policy π is

ηn(π, ŵ) :=
1

n

n∑
t=1

ŷt(π(xt))
T ŵ.

A natural way to show that the policy with a low empirical reward has also a low expected regret is to show
that for all policies π, the empirical reward estimate ηn(π, ŵ) is close to the true reward, η(π), defined as,

η(π) := Ex,y
[
y(π(x))Tw?

]
.

Rather than bounding the deviation of ηn directly, we instead control a shifted version of ηn, namely,

ψn(π, ŵ) :=
1

n

n∑
t=1

[
ŷt(π(xt))

T ŵ − ȳt1T ŵ
]
,

where 1 is the L-dimensional all-ones vector. Note that ȳt is based on the rewards of all actions, even those
that were not chosen at round t. This is not an issue, since ȳt is only used in the analysis.

Lemma 20. Fix δ ∈ (0, 1) and assume that ‖ŵ − w?‖2 ≤ θ for some θ ≥ 0. For any δ ∈ (0, 1), with
probability at least 1− δ, we have that for all π ∈ Π,∣∣ψn(π, ŵ)− η(π,w?) + Ex,y

[
ȳ1Tw?

]∣∣
≤ 2(θ + ‖w?‖2)

√
K

(√
ln(2N/δ)

n
+

√
K

L

ln(2N/δ)

n

)
+ θmin{

√
KV , 2

√
L}.

37



Proof. We add and subtract several terms to obtain a decomposition. We introduce the shorthands yπ :=
y(π(x)), ŷπ := ŷ(π(x)), and ŷt,π := ŷt(π(xt)).

ψn(π, ŵ)− η(π,w?) + Ex,y
[
ȳ1Tw?

]
=

1

n

n∑
t=1

(ŷt,π − ȳt1)T ŵ − Ex,y[yπ − ȳ1]Tw?

=
1

n

n∑
t=1

(
(ŷt,π − ȳt1)T ŵ − Ex,y[yπ − ȳ1]T ŵ

)
︸ ︷︷ ︸

Term 1

+Ex,y[yπ − ȳ1]T (ŵ − w?)︸ ︷︷ ︸
Term 2

.

There are two terms to bound here. We bound the first term by Bernstein’s inequality, using that fact that ŷt is
coordinate-wise unbiased for y. The second term will be bounded via a deterministic analysis, which will
yield an upper bound related to the reward-feature variance V .

Term 1: Note that each term of the sum has expectation zero, since ŷt is an unbiased estimate. Moreover,
the range of each individual term in the sum can be bounded as∣∣∣(ŷt,π − ȳt1− Ex,y[yπ − ȳ1]

)T
ŵ
∣∣∣ ≤ ‖ŵ‖2∥∥∥ŷt,π − ȳt1− Ex,y[yπ − ȳ1]

∥∥∥
2

≤ (θ + ‖w?‖2)
2K√
L
.

The second line is derived by bounding the two factors separately. The first factor is bounded by the triangle
inequality: ‖ŵ‖2 ≤ ‖w?‖2 + ‖ŵ − w?‖2 ≤ ‖w?‖2 + θ. The second factor is a norm of an L-dimensional
vector. The vector ŷt,π has coordinates in [0,K/L], whereas the coordinates of ȳt1, yπ, and ȳ1 are all in
[0, 1], so the final vector has coordinates in [−2, K/L+1], and its Euclidean norm is thus at most

√
L(2K/L)

since K ≥ L.
The variance can be bounded by the second moment, which is

Ex,y,A
[(

(ŷπ − ȳ1)T ŵ
)2] ≤ ‖ŵ‖22Ex,y,A

[
L∑
`=1

(ŷ(π(x)`)− ȳ)2

]

≤ ‖ŵ‖22Ex,y,A

[
L∑
`=1

(
ŷ(π(x)`)

2 + ȳ2
)]

≤ ‖ŵ‖22
L∑
`=1

(
K

L
Ex,y,A[ŷ(π(x)`)] + 1

)

= ‖ŵ‖22
L∑
`=1

(
K

L
Ex,y[y(π(x)`)] + 1

)
≤ 2(θ + ‖w?‖2)2K,

where the last inequality uses K ≥ L. Bernstein’s inequality implies that with probability at least 1− δ, for
all π ∈ Π,∣∣∣∣∣ 1n

n∑
t=1

(
(ŷt,π − ȳt1)T ŵ − Ex,y[yπ − ȳ1]T ŵ

)∣∣∣∣∣ ≤ (θ + ‖w?‖2)

[√
4K ln(2N/δ)

n
+

4K ln(2N/δ)

3n
√
L

]
.

38



Term 2: For the second term, we use the Cauchy-Schwarz inequality,

Ex,y[yπ − ȳ1]T (ŵ − w?) ≤
∥∥Ex,y[yπ − ȳ1]

∥∥
2
‖ŵ − w?‖2

The difference in the weight vectors will be controlled by our analysis of the least squares problem. We need
to bound the other quantity here and we will use two different bounds. First,∥∥Ex,y[yπ − ȳ1]

∥∥
2
≤ Ex,y‖yπ − ȳ1‖2 ≤ Ex,y‖yπ‖2 + ȳ‖1‖2 ≤ 2

√
L.

Second,

‖Ex,y[yπ − ȳ1]‖2 =

√√√√Ex,y
L∑
`=1

(
y(π(x)`)− ȳ

)2 ≤√Ex,y
∑
a∈A

(y(a)− ȳ)2

=
√
K

√
Ex,y

1

K

∑
a∈A

(y(a)− ȳ)2 =
√
KV .

Combining everything: Putting everything together, we obtain the bound

(θ + ‖w?‖2)

[√
4K ln(2N/δ)

n
+

4K ln(2N/δ)

3n
√
L

]
+ θmin{

√
KV , 2

√
L}.

Collecting terms together proves the main result.

Assume that we explore for t̂ rounds and then call AMO with weight vector ŵ and importance-weighted
rewards ŷ1, . . . ŷt̂ to produce a policy π̂ that maximizes ηt̂(π, ŵ). In the remaining exploitation rounds we act
according to π̂. With an application of Lemma 20, we can then bound the regret in the exploitation phase.
Note that the algorithm ensures that t̂ is at least equal to the deterministic quantity n?, so we can remove the
dependence on the random variable t̂:

Lemma 21 (Exploitation Regret Lemma). Assume that we explore for t̂ rounds, where t̂ ≥ n?, and we find ŵ
satisfying ‖ŵ −w?‖2 ≤ θ. Then for any δ ∈ (0, 1), with probability at least 1− 2δ, the exploitation regret is
at most

T∑
t=t̂+1

[
rt(π

?(xt))− rt(π̂(xt))
]
≤ 4T (θ + ‖w?‖2)

√
K

√ ln(2N/δ)

n?
+

√
K

L

ln(2N/δ)

n?


+ 2Tθmin{

√
KV , 2

√
L}+ ‖w?‖2

√
2LT ln(1/δ).

Proof. Using Lemma 20 and the optimality of ŵ for the importance-weighted rewards, with probability at
least 1− δ, the expected per-round regret of π̂ is at most

η(π?, w?)− η(π̂, w?)

=
[
η(π?, w?)− ψt̂(π

?, ŵ)
]

+
[
ψt̂(π̂, ŵ)− η(π̂, w?)

]
+
[
ηt̂(π

?, ŵ)− ηt̂(π̂, ŵ)
]

≤ 4(θ + ‖w?‖2)
√
K

(√
ln(2N/δ)

t̂
+

√
K

L

ln(2N/δ)

t̂

)
+ 2θmin{

√
KV , 2

√
L}.

To bound the actual exploitation regret, we use Hoeffding’s inequality together with the fact that the absolute
value of the per-round regret is at most ‖w?‖2

√
L, and finally apply bounds 1/

√
t̂ ≤ 1/

√
n? and 1/t̂ ≤ 1/n?

to prove the lemma.

39



F.6 Proving the Final Bound
The final bound will follow from regret bounds of Lemmas 19 and 21. These bounds depend on parameters
t?, n? and θ. The parameter n? is specified directly by the algorithm and is assured to be a lower bound
on the stopping time. The parameter t? needs to be selected to upper-bound the stopping time t̂, and θ to
upper-bound ‖ŵ − w?‖2.

The stopping time bound t? and error bound θ: Our algorithm uses the constants

λ? := max
{

6L2 ln(4LT/δ), (T Ṽ /B)2/3 (L ln(2/δ))
1/3
}
,

n? := T 2/3(K ln(N/δ))1/3 max{L−1/3, (BL)−2/3},

and we will show we can set

t? := max {6λ?/V, n?} , θ :=
√
cL ln(2/δ)/λ?,

where c is the constant from Lemma 17.
Recall that we assume T ≥ (K ln(N/δ)/L) max{1, (B

√
L)−2}, which ensures that T ≥ n?, and that the

algorithm stops exploration with the first round t̂ such that t̂ ≥ n? and λmin(Σt̂) > λ?. Thus, by Lemma 17,
θ is indeed an upper bound on ‖ŵ − w?‖2. Furthermore, since t? ≥ n?, it suffices to argue that Σt? � λ?IL
with probability at least 1− δ. We will show this through Lemma 18.

Specifically, Lemma 18 ensures that after t? rounds the 2nd-moment matrix satisfies, with probability at
least 1− δ,

Σt? �
(
t?V − 4L

√
t?V ln(4LT/δ)− 4L ln(4LT/δ)

)
IL.

It suffices to verify that the expression in the parentheses is greater than λ?:(
t?V − 4L

√
t?V ln(4LT/δ)− 4L ln(4LT/δ)

)
≥ λ?

⇐
(√

t?V − 2L
√

ln(4LT/δ)
)2

− 4L2 ln(4LT/δ)− 4L ln(4LT/δ) ≥ λ?

⇐
(√

t?V − 2L
√

ln(4LT/δ)
)2

≥ λ? + 8L2 ln(4LT/δ)

⇐
√
t?V − 2L

√
ln(4LT/δ) ≥

√
λ? + 8L2 ln(4LT/δ)

⇐ t? ≥ 1

V

(√
λ? + 8L2 ln(4LT/δ) + 2L

√
ln(4LT/δ)

)2

Our setting is an upper bound on this quantity, using the inequality (a+ b)2 ≤ 2a2 + 2b2 and the fact that
λ? ≥ 6L2 ln(4LT/δ).

Regret decomposition: We next use Lemmas 19 and 21 with the specific values of t?, n? and θ. The
leading term in our final regret bound will be on the order T 2/3. In the smaller-order terms, we ignore
polynomial dependence on parameters other than T (such as K and L), which we make explicit via OT
notation, e.g., O(

√
LT ) = OT (

√
T ).

The exploration regret is bounded by Lemma 19, using the bound t? ≤ 6λ?/V + n?, and the fact that the

40



exploration vacuously stops at round T , so t? can be replaced by min{t?, T}:

Exploration Regret ≤ min{t?, T}‖w?‖2 min{
√
KV ,

√
L}+ ‖w?‖2

√
2LT ln(1/δ)

≤ min

{
6λ?
V
, T

}
Bmin{

√
KV ,

√
L}︸ ︷︷ ︸

Term 1

+n?B
√
L︸ ︷︷ ︸

Term 2

+OT (
√
T ).

Meanwhile, for the exploitation regret, using the fact that n? = Ω(T 2/3), Lemma 21 yields

Exploitation Regret ≤ 4T (θ + ‖w?‖2)
√
K

√ ln(2N/δ)

n?
+

√
K

L

ln(2N/δ)

n?


+ 2Tθmin{

√
KV , 2

√
L}+ ‖w?‖2

√
2LT ln(1/δ)

= 4T (θ + ‖w?‖2)

√
K ln(2N/δ)

n?
+ 2Tθmin{

√
KV , 2

√
L}+OT (

√
T )

≤ 4T

√cL ln(2/δ)

λ?
+B

√K ln(2N/δ)

n?︸ ︷︷ ︸
Term 3

+ 2T

√
cL ln(2/δ)

λ?
min{

√
KV , 2

√
L}︸ ︷︷ ︸

Term 4

+OT (
√
T ).

We now use our settings of n? and λ? to bound all the terms. Working with λ? is a bit delicate, because it
relies on the estimate Ṽ rather than V . However, by Lemma 16 and Eq. (23), we know that

V ≤ Ṽ ≤ 4V + τ,

where τ := 5 ln(2/δ)/(2n?).
Term 1: We proceed by case analysis. First assume that V ≤ τ . Then

Term 1 ≤ TB
√
KV ≤ TB

√
5K ln(2/δ)

2n?
≤ Term 3,

so we can use the bound on Term 3 to control this case.
Next assume that V ≥ τ , which implies Ṽ ≤ 5V , and distinguish two sub-cases. First, assume that λ? is

the second term in its definition, i.e., λ? = (T Ṽ /B)2/3 (L ln(2/δ))
1/3. Then:

Term 1 ≤ 6λ?
V
Bmin

{√
KV ,

√
L
}

≤ 6B(T Ṽ /B)2/3(L ln(2/δ))1/3 min{
√
KV ,

√
L}

V

≤ 18B1/3T 2/3V −1/3(L ln(2/δ))1/3 min{
√
KV ,

√
L},

41



where the last step uses Ṽ 2/3 ≤ (5V )2/3 ≤ 3V 2/3. We now show that the term involving V and the min{·}
is always bounded as follows:

Claim 22. V −1/3 min{
√
KV ,

√
L} ≤ K1/3L1/6.

Proof. If KV ≤ L, then V ≤ L/K, and the expression equals V −1/3
√
KV = V 1/6

√
K ≤ L1/6K1/3. On

the other hand, if L ≤ KV , then V ≥ L/K, and the expression is equal to V −1/3
√
L ≤ K1/3L1/6.

Thus, in this case, Term 1 is O
(
T 2/3L1/2(BK log(2/δ))1/3

)
.

Finally, assume that λ? is the first term in its definition, i.e.,

λ? = 6L2 ln(4LT/δ) ≥ (T Ṽ /B)2/3 (L ln(2/δ))
1/3

,

which implies
V ≤ Ṽ ≤ 63/2L5/2 ln(4LT/δ)3/2(B/T )(ln(2/δ))−1/2. (32)

Thus, we have the bound

Term 1 ≤ TB
√
KV = O

(
T 1/2B3/2L5/4K1/2 log(LT/δ)

)
= OT (

√
T ).

In summary, we have the bound,

Term 1 ≤ Term 3 +O
(
T 2/3L1/2

(
BK log(2/δ)

)1/3)
+OT (

√
T ). (33)

Term 2: Plugging in the definition of n? yields

Term 2 = n?B
√
L ≤ T 2/3(K ln(N/δ))1/3 max{BL1/6, B1/3L−1/6}. (34)

Term 3: Note that

1/
√
n? = T−1/3(K ln(N/δ))−1/6 min{L1/6, (BL)1/3},

λ? ≥ 6L2 ln(4LT/δ) ≥ L2 ln(2/δ),

so

Term 3 = 4T

√cL ln(2/δ)

λ?
+B

√K ln(2N/δ)

n?

≤ O
(
T 2/3

(
1√
L

+B

)(
K ln(N/δ)

)1/3
min{L1/6, (BL)1/3}

)
.

Now if B ≥ 1√
L

, then the min above is achieved by the L1/6 term, so the bound is

O
(
T 2/3BL1/6(K log(N/δ))1/3

)
.

If B ≤ 1√
L

, then the min is achieved by the (BL)1/3 term, so the bound is

O
(
T 2/3B1/3L−1/6(K log(N/δ))1/3

)
.

42



Thus,

Term 3 = O
(
T 2/3(K log(N/δ))1/3

(
BL1/6 +B1/3L−1/6

))
. (35)

Term 4: We distinguish two cases. If λ? = 6L2 ln(4LT/δ) then Eq. (32) holds and thus

V = O
(
L5/2 ln(4LT/δ)3/2(B/T )

)
.

We then have

Term 4 = 2T

√
cL ln(2/δ)

λ?
min{

√
KV , 2

√
L}

≤ O
(
T√
L

√
KV

)
= O

(√
BTKL3/4 ln(LT/δ)

)
= OT (

√
T ).

Otherwise, λ? = (T Ṽ /B)2/3 (L ln(2/δ))
1/3, and since Ṽ ≥ V , we obtain

Term 4 = 2T

√
cL ln(2/δ)

λ?
min{

√
KV , 2

√
L}

≤ O

(
T

√
L log(2/δ)

(TV/B)2/3(L log(2/δ))1/3
min{

√
KV ,

√
L}

)
= O

(
T 2/3B1/3L1/3V −1/3(log(2/δ))1/3 min{

√
KV ,

√
L}
)

= O
(
T 2/3(BK)1/3L1/2(log(2/δ))1/3

)
, (36)

where the last step is Claim 22. This is the leading-order term since the other cases are OT (
√
T ).

Putting everything together: Combining Eqs. (33), (34), (35), and (36), we obtain the bound on the
sum of the exploration and exploitation regret:

Regret = O
(
T 2/3(K log(N/δ))1/3 max{B1/3L1/2, BL1/6}

)
+OT (

√
T ).

G Deviation Bounds
Here, we collect several deviation bounds that we use in our proofs. All of these results are well known and
we point to references rather than provide proofs. The first inequality, which is a Bernstein-type deviation
bound for martingales, is Freedman’s inequality, taken from Beygelzimer et. al [4]

Lemma 23 (Freedman’s Inequality). Let X1, X2, . . . , XT be a sequence of real-valued random variables.
Assume for all t ∈ {1, 2, . . . , T} that Xt ≤ R and E[Xt|X1, . . . , Xt−1] = 0. Define S =

∑T
t=1Xt and

V =
∑T
t=1 E[X2

t |X1, . . . , Xt−1]. For any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ:

S ≤ (e− 2)λV +
ln(1/δ)

λ

43



We also use Azuma’s inequality, a Hoeffding-type inequality for martingales.

Lemma 24 (Azuma’s Inequality). Let X1, X2, . . . , XT be a sequence of real-valued random variables.
Assume for all t ∈ {1, 2, . . . , T} that Xt ≤ R and E[Xt|X1, . . . , Xt−1] = 0. Define S =

∑T
t=1Xt. For any

δ ∈ (0, 1), with probability at least 1− δ:

S ≤ R
√

2T ln(1/δ)

We also make use of a vector-valued version of Hoeffding’s inequality, known as the Hanson-Wright
inequality, due to Rudelson and Vershynin [23].

Lemma 25 (Hanson-Wright Inequality [23]). Let X = (X1, . . . , Xn) be a random vector with independent
components satisfying EXi = 0 and |Xi| ≤ κ almost surely. There exists a universal constant c0 > 0 such
that, for any A ∈ Rn×n and any δ ∈ (0, 1), with probability at least 1− δ,

|XTAX − EXTAX| ≤ κ2
√
c0‖A‖2F log(2/δ) + c0κ

2‖A‖ log(2/δ),

where ‖ · ‖F is the Frobenius norm and ‖·‖ is the spectral norm.

Finally, we use a well known matrix-valued version of Bernstein’s inequality, taken from Tropp [26].

Lemma 26 (Matrix Bernstein). Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices with dimension d. Assume that for each random matrix we have EXk = 0 and λmax(Xk) ≤ R
almost surely. Then for any δ ∈ (0, 1), with probability at least 1− δ:

λmax

(∑
k

Xk

)
≤
√

2σ2 ln(d/δ) +
2

3
R log(d/δ) with σ2 =

∥∥∥∑
k

E(X2
k)
∥∥∥,

where ‖·‖ is the spectral norm.

References
[1] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E Schapire. Taming

the monster: A fast and simple algorithm for contextual bandits. In ICML, 2014.

[2] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial optimization.
Math of OR, 2014.

[3] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 2002.

[4] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandit
algorithms with supervised learning guarantees. In AISTATS, 2011.

[5] Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. JCSS, 2012.

[6] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Yahoo! Learning to
Rank Challenge, 2011.

44



[7] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
applications. In ICML, 2013.

[8] Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with linear payoff functions.
In AISTATS, 2011.

[9] Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction. MLJ, 2009.

[10] Miroslav Dudík, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. In UAI, 2011.

[11] András György, Tamás Linder, Gábor Lugosi, and György Ottucsák. The on-line shortest path problem
under partial monitoring. JMLR, 2007.

[12] Daniel J Hsu. Algorithms for active learning. PhD thesis, University of California, San Diego, 2010.

[13] Satyen Kale, Lev Reyzin, and Robert E Schapire. Non-stochastic bandit slate problems. In NIPS, 2010.

[14] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. Tight regret bounds for stochastic
combinatorial semi-bandits. In AISTATS, 2015.

[15] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML, 2001.

[16] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In NIPS, 2008.

[17] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In WWW, 2010.

[18] MSLR. Mslr: Microsoft learning to rank dataset. http://research.microsoft.com/en-us/
projects/mslr/.

[19] Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits. In
NIPS, 2015.

[20] Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application on
diversified online recommendation. In ICDM, 2014.

[21] Alexander Rakhlin and Karthik Sridharan. Bistro: An efficient relaxation-based method for contextual
bandits. In ICML, 2016.

[22] J. M. Robins. The analysis of randomized and nonrandomized AIDS treatment trials using a new
approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus
on AIDS, 1989.

[23] Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
Electronic Communications in Probability, 2013.

[24] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien
Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. arXiv:1605.04812v2, 2016.

45

http://research.microsoft.com/en-us/projects/mslr/
http://research.microsoft.com/en-us/projects/mslr/


[25] Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert E Schapire. Efficient algorithms for adversarial
contextual learning. In ICML, 2016.

[26] Joel A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. FOCM, 2011.

46


	1 Introduction
	2 Preliminaries
	3 Semibandits with known weights
	4 Semibandits with unknown weights
	5 Proof sketches
	6 Experimental Results
	7 Discussion
	A Analysis of -Greedy with Known Weights
	B Comparisons for EELS
	C Implementation Details
	C.1 Implementation of VCEE
	C.2 Implementation of -Greedy
	C.3 Implementation of LinUCB
	C.4 Policy Classes

	D Proof of Regret Bound in Theorem ??
	E Proof of Oracle Complexity Bound in Theorem ??
	E.1 Proof of Theorem ??

	F Proof of Theorem ??
	F.1 Estimating V
	F.2 Parameter Estimation in Linear Regression
	F.3 Analysis of the 2nd-Moment Matrix t
	F.4 Analysis of the Exploration Regret
	F.5 Analysis of the Exploitation Regret
	F.6 Proving the Final Bound

	G Deviation Bounds

