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Abstract

We describe a study of the use of decision-theogpailicies for optimally joining

human and automated problem-solving efforts. Weudospecifically on the

challenge of determining when it is best to trangfallers from an automated
dialog system to human receptionists. We demaesth@ sensitivities of transfer
actions to both the inferred competency of the epafialog models and the
current sensed load on human receptionists. Theigoldraw upon probabilistic
models constructed via machine learning from cdlsat were logged by a call
routing service deployed at our organization. Wecdbe the learning of models
that predict outcomes and interaction times andvshow these models can be
used to generate expected-utility policies thaniifig when it is best to transfer
callers to human operators. We explore the behawfothe policies with

simulations constructed from real-world call data.
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1. Introduction

Machine learning and reasoning methods promisettoduce new efficiencies into the world. However,
a number of attempts to field fully automated re@sgp methods, such as spoken dialog systems, have
been associated with disappointmerih many cases, frustrating situations come asrimittent failures

in otherwise valuable and competent services. Anming path to fielding computational intelligence,
even when such methods are not fully competen iexploit statistical methods to identify valuable
couplings of human and machine automation—and itgybdruman effort to bear when such efforts will
be most useful in bridging gaps and deficienciesutomated reasoning. We refer to methods thalh mes
together the intelligences of reasoning systemspmuagle via explicit policies about when and how to
engage people amwmplementary computingAlthough automated systems are often designelgfiault

to human service providers when failures occur, glementary computing is more than a back-off
strategy. It considers the most efficacious walet@rage both human and machine resources, ajowin

for the possibility that some callers may not eganounter the automated system at all.

The importance of developing computing solutiorest re designed to complement human intelligence
and resources has been highlighted in the pastrwitie realm of personal computing [6,7]. Methods
that attempt to interleave the efforts of people amachines at multiple places during a dialog or
problem-solving challenge, including situationstthevolve fast-paced shifts of contribution, ardeof
referred to as performingnixed-initiative interaction However, while complementary computing
includes activities referred to in typical useshad phrasenixed initiative it more generally encompasses
methods that attempt to optimize how automatedoreéag and human resources should be best coupled
in the provision of services. The approach inctute identification of ideal patterns of initiailows

of analysis, and configurations within problem-sody systems composed of both human and
computational components. We shall focus in thapgr on a class of complementary computing
problems that center on the development of effecpvinciples, and machinery with the ability to
understand how and when the skills of people shbaldalled upon to take over or to bolster impérfec

automated reasoners to solve a problem at hand.

We report, as a representative analysis and casly, sthe use of machine learning to enhance the
coupling of human receptionists and an automatettesp dialog system for handling calls within the

Microsoft Corporation. We focus on the use of maeHearning and expected-value decision making to

! See [4] for a reflection from the business commyuabout the failure to date of automated speechgmition systems to
penetrate widely.
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decide when a user’s interaction with an automatietbg system should be transferred to a human
receptionist. We take the ideal-transfer challeagean example that alludes to a larger space of
opportunities with balancing computational competesi and human resources in the provision of
services. In the case of the call transfer chgemeceptionists are drawn from a team of perdahae
faces a changing call load, leading to callers imgiin queues with durations that vary from moment
moment. As we shall see, the ideal time to trarsfeser to a human operator for assistance demends
the current availability of operators as well asttoa probability distributions over the ultimatetcames

and durations of the conversation that is currentigrogress.

Rather than building a dialog system from scraté,explored how machine learning can be used to
overlay a decision-theoretic policy for call-tramsfon top of a legacy automated dialog system. We
learned probabilistic models from a log of real-ldocases that predict the ultimate outcomes and the
durations of interactions with the legacy dialogteyn. We show how we can employ the models to
generate real-time policies for transferring peapteracting with an automated call routing systena
human operator, based on an analysis of a calioseas the dialog progresses, and the current doad
the staff of human operators. The study highlighespromise of using probabilistic techniques ttidye
mesh human resources with automated methods that bampetencies and policies that can be

characterized via machine learning.

In many real-world applications, the competenciesystems may change with ongoing training or with
shifts in the distribution of challenges being seBnus, it can be important for such methods toleynp
ongoing learning about the competency of automatedponents to optimize the best way to employ
computing and human resources. As we shall seggproach allows for the ongoing re-optimizatién o
the complementary computing policies as new opesate added to the staff and as the competenties o
an automated dialog system change over time. Btiragng to collect data about how a dialog system
performs, adjustments can be made in the trangbécigs. For example, the speech recognition
component of the dialog system might be enhancech s&s through the integration of an updated
language model associated with greater recogndimouracies for some or all situations. The speech
recognizer’s accuracy may also degrade over tibis was the case for the system deployed at our
organization. The recognition accuracy for nanfgseople at the company was dropping for a period o
time with the churn of people at the organizatiolVhen the system was initially fielded, expertgeve
employed to tune the acoustic model of the recagngystem, and to provide hints to the system aibou
the common pronunciations of first and last nanwesaf large number of employees at the company.
However, such manual tuning effort was not regulgérformed. System operators noticed that
3



recognition rates would drop during lulls in theint@nance of the acoustic models, as employeethieft

company and new employees were hired.

The methodology we describe adapts in an eleganhenao changes in the competencies of the core
speech recognition component of the automated gliggstem. Thus, the system can take into
consideration the changing competency of the speaecbgnition component, shifting gracefully

depending on the most recent analysis of the rezeds accuracy in different situations.

2. A Status-Quo Call Handling System

Organizations have been turning away from toucle-tauting systems for call routing, and have been
turning to automated dialog systems that emplogdpe&ecognition and natural language processing to
assist users. There is evidence that such a paliaarranted, based on studies of callers’ renstio
touch-tone routing [14]. Dialog systems utilizaé@uatic speech recognition (ASR) to facilitate resps

in natural language, which customers appear torfaver touch-tone menus [13].

For several years at the Microsoft Corporation,aatomated dialog and call routing system named
VoiceDialer has fielded all internal directory assistancescallJsing speech recognition, VoiceDialer
attempts to uniquely identify one of over twentpiband name entries in the company’s global address
book. In building telephony applications for tasmkented domains, system designers can choosedrom
wide array of approaches to dialog representasanh as finite state controllers, slot-filling tdatps,

and rule-based models [1]. The dialog flow for YfmceDialer legacy system was fully specified by a
finite state controller. Although we centered studies on this specific dialog system, we poutttbat

the overall approach of applying expected-valuasitee making to identify complementary-computing
solutions is agnostic about the underlying dialegresentation. System designers can choose adialo
representation that best characterizes their doaradnstill employ the methods we describe to carsid

the costs and benefits of transferring controlumban operators.

To assess the overall performance of the systenopbtaned over 250 megabytes of data logs covering
period of roughly one year. The log contained apjpnately 60,000 transcriptions of individual sess
with VoiceDialer, capturing key system and calleti@ns for each call. We have performed machine
learning on the logs of sessions to build moded¢ dan predict outcomes and durations of interastio

The distinct outcomes and respective prevalenciesasfollows:



» Success. The system eventually recognizes the name spokehebcaller as a name in the directory

and transfers the call to that person (45%).

» Operator transfer-name unavailable: The system infers that the person requested tismthe

directory, and routes the call to an operator (6%).

e Operator transfer-maximum mistakes: The system reaches the maximum number of allowed

mistakes, and routes the call to an operator (12%).
e Operator request: The user requests assistance by pressing ‘0,*#(26%).

* Hangup: The user simply hangs up during the session (13%)

For the legacy policy in force in the VoiceDialgistem, sessions with the automated dialog system ar
allowed to progress for at most four steps or untitaximum tolerated number of mistakes is reaclfied.

we examine the cases where callers engage thersysteompletion, removing from consideration the
38% of cases where a user either hangs up or risgaeoperator, we find that the VoiceDialer system

has a success rate of only 66%.

We shall focus on the use of probabilistic maché@ning and decision analysis to identify idedlats

with regard to the best time to transfer a calhtouman operator. As we shall see, the policy takes
consideration the real-time stream of evidencehayatd by the automated dialog system over the eours
of a call session, and the current load on a tefdmuman operators. The analysis highlights thenise

of integrating, in a graceful manner, human and paational intelligence in the form of dynamic
decision policies that take into consideration¢hanging evidence about the progression of intienast
with an automated dialog system, and potentials-fmced changes in load on human operators. Over
longer periods of time in the course of the evolutof technology, the approach provides a means for
ideally harnessing automated dialog systems as twnpetency grows with improvements in the
underlying recognition technologies—or diminisheshwthe increasing size or scope of the problems

faced.
3. Paliciesfor Transfer from Machineto Human Operators

To highlight key concepts, we shall focus on a toeatric utility model for guiding the construction
policies for transferring a caller from the autoethtdialog system to a human operator. With this
preference model, we consider time as a measurestf and examine methods for minimizing the time
required for the appropriate routing of a callhaTis, we assume that the utility of a call-hamgllaction

is captured by the total time required for a catlerbe routed to a target telephone number, and we
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consider situations where callers attempt to woitk the automated dialog system or request routing
an operator, rather than hanging up. We will explarmore detailed utility model in Section 6, and
introduce there a consideration of such real-w@tdies as frustration with dialog errors, with timee
spent in a quiet queue waiting for human attentang the cost to a business of losing customers via

people hanging up in frustration [12].

In our approach to complementary computing for stesy composed of an automated dialog system and
human operators, we employ machine learning tadbmibdels that predict the ultimate outcomes of a
session. We consider inferences about the outcameésiurations of interactions over sessions as key
building blocks of decision-theoretic call-transfeslicies. We seek to develop predictive mode&d th
can be applied anytime in a call session, and tepased on observations seen so far, the protyabili
distribution over the outcomes and overall duraiah the interaction. Such models could provide
predictions at each step of a dialog, via an amabyfsobservations gathered up to the current tioming

the interaction.

We usep(H|EL) as the probability distribution over the ultimatetcomesH of an interaction with an
automated dialog system for call handling, givesesbational evidenc and background information,

& We wish to learn models that can be used to itife likelihoods of different outcomes and the
expected duration of the interactions, conditionadthe outcomes at hand. The expected duration of a
caller's interaction with the automated portiontieé call handlingt?, based on an observed stream of

evidence is,

t =2 p(H, [E.&)[ p(t|H,, E o)t (1)

That is, to compute the expected time of a calleg'ssion with the automated dialog system at aimt po
in a dialog with the automated system, we condiderexpected duration of the session conditioned on
each ultimate outcomid; of the session and weight these times by theiligetl of each outcome. We
integrate over time to compute the mean time exgefdr the interaction with the automated dialog
system until an outcome is reached, conditionetheroccurrence of each outcorkk, For simplicity,

we shall rewrite this mean time a§| H,.>, which we refer to as theean conditional timdor each

outcome state. Rewriting Equation 1 with mean dmhl times ¢| H;>, we have

t*=> p(H |E &) <t|H, > 2)(



We now focus on learning predictive models that/gle the probabilities of different outcomes, adlwe
as the expected durations of the remaining timestefaction, conditioned on observations gleamechf
the history of the dialog session at hand and tlag time for an operator. We will apply these
probabilistic models to generate policies that @nigal-time decisions about transferring the usanf

the automated spoken dialog system to a humantopera

Let us consider the experience with continuingrigage the status-quo automated dialog system.r€alle
who choose to work with the automated dialog systeersus hanging up in frustration, will eventually
either be provided with the information they neednf the automated system, take the initiative to
transfer themselves to an operator manually (i tnederstand how to engage the system with touehton

commands), or be transferred automatically to avaipr.

We will consider the total expected time requiredeceive routing assistance as including botttithe
required for the automated component and the veaitah operator, should a transfer to an operator
occur. We can decompose outcomes into situatimsieéad eventually to a transfer to an operaiy,
and those that are eventually successful via automavithout any operator attentiohl’. Beyond the
time t* working with the automated dialog system, we alsasider the expected duration of tithéhat a
caller will spend in a queue waiting for a humammgpor and then being assisted by an operator)dhou
the caller be transferred to a human operator §sistance. The mean wait time for an operatorbean
sensed directly at any moment by monitoring quenes call center. We will assume that an operator

can relay immediate, accurate assistance to the use

Putting everything together, the total expectedetiassociated with engaging the legacy system call

routing systemt®, is
0 =3 p(H? [E,E(SEIH? >4t°) + 3 p(H? [E, &) <t[H} > ©

That is, the total time for the interaction wittethtatus-quo system is the expected time requiyatieh
automated and potential human-assisted aspecte afall-handling session, in cases where people are

routed to human operators with the legacy system.

Let us now dive deeper into the machine learnind) r@asoning to infer ideal call-handling policies f
minimizing the expected time for the interactionttwthe combined human—computer call-handling
system. Rather than rely on the legacy fixed temgblicy, predictive models can provide a contigyi
stream of forecasts about the total time that geeted to beequired with the use of the default policy

encoded in a status quo call-handling system. VWesush estimates in an ongoing comparison of the



expected time until reaching a goal, provided bydmpn 3, with the expected time after making an

immediate, courteous automated transfer into tleeigudor an operator.

At the crux of computing the expected time for @werall process of call routing is the constructadn

models that can provide the probabilities of susitéscall handling by the automated system and of
transfers to human operators, and the conditioxpé@ed durations for the different outcomes. Given
the availability of inferences about these probaed, and observations about the current load of
operators, we can make decisions about if and wheexecute an automated transfer to a human

operator.

In operation, we continue to check the load on ajpes and test to see if the expected time for
continuing the automated dialog with the user eatgr than the time spent waiting in the queuetiaeal
being serviced by a human operator, testirn§’it- t > t> wheret is the amount of time already invested
in interacting with the system. If the expectedtwiane at any point in the automated dialog beceme
greater than continuing to engage the user witlatitemated system, we immediately transfer the taser
the queue for a human operator. As we are doing-pgase checking, the approach can be viewed as a

greedy approximation to a solution invoking a mooenplex look-ahead strategy.

We note that the transfer policy employed at araoization can change the numbers of people being
transferred into a queue, thus influencing the waies. We have assumed in this section that amglesi
transfer does not influence the wait time signifitya in a large-scale system; we simply continue to
measure the overall result of a transfer policypssithe organization directly via direct inspectdrthe
wait time. We could extend this model by includiagerm that increments the wait time with each
transfer. In Section 7, we will discuss the oppoitty for modeling the influence of a transfer pygli
being executed across a large organization on Weeall wait times experienced by people being
transferred to operators at different times of d8ych analyses, employing queuing theory for mnogdel
loads on the overall system, promise to be usefugiiiding offline decisions about the ideal numbgr

human operators to employ, given the competenenautomated dialog system.
4. Constructing Probabilistic Modelsto Predict Dialog Outcomes

With the goal of developing dynamic ideal trangbeficies, we seek to construct probabilistic models
from a database of session logs. We wish to hasessof observations drawn from traces encodieg th
timing of actions and recognitions associated \aitiser’s interaction with VoiceDialer's spoken dil

system. At the core of this challenge is gaining wemderstanding of the discriminatory power of



observations for making inferences about differeatcomes, and of session durations for different

outcomes.

Let us first consider the observations availabletwilding case libraries for machine learning. Heat
than applying special feature-selection methodetgior choosing specific features a priori, we
compiled a set of features that we could engineen the available log data with relative ease, thet
sought to identify the most discriminatory featutesough Bayesian structure learning, as we describ
below. The log data includesbest list hypotheses, a list of top candidatestified by the speech
recognizer after every caller utterance. A numbkthe features that we provided to the learning
algorithm were derived from these recognition digions. The features we used to learn predictive
models can be generally classified into four broagtgories (see Appendix | for a complete listlbba

the features we used to build predictive models):

* System and user actions: System and usesbservations represent all prior actions takerthzy
system or the user. Such evidence includes thenaiig®n that the dialog system asked the user to
confirm between its top two guesses of names basdle user’s utterance, or to spell the last name
of the intended person, and the observation thatuger has pressed a touchtone key rather than

providing an utterance.

* Session summary evidence: Session summargbservations summarize the overall statistics of
events within the session once it has finishedhSservations include the number of attempts by
the user to specify the name of the person beinghgp the number oh-best lists that were

generated by the logging system, and the overaditaun of session.

* N-best list evidence: N-best listobservations refer to features output by the dpeecognition
system including the range of confidence scoregag by the speech recognition subsystem, the
mode of the scores, the maximum consecutive sdffexahce, and the count of the most frequent
first/last/full names that appears among the hygsek. We sought to derive as many speech-related
features as possible from timebest list and to conduct feature selection latngi our learning

procedure for model selection.

* Generalized temporal evidence: Generalized tempordeatures capture trends across the multiple
n-best lists generated during a dialog, such asiveighe top name hypothesis is the same between

two n-best lists or the maximum number of times any naoairs in multiple lists.
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Figure 1. Graphical model learned from logged trgjrdata for predicting duration of interaction hvit
a dialog system, conditioned on the ultimate outdiaing a successful transfer. Variables directly

influencing thedurationvariable are highlighted with shaded fill.

We pursued the construction of models that coulddes to infer the likelihood that a session wité t
VoiceDialer system would ultimately handle the whdaession successfullgnding in a successful
transfer to the right person, or fail to autononpwsddress the caller’'s goal. Failures for automhate
handling includes sessions where 1) the callerltismately transferred to an operator by the legacy
policy, given a failure to match the name it redags; 2) the caller is transferred to the operattar the
maximum number of mistakes tolerated by the systexs been reached; 3) the user hangs up

prematurely, and 4) the user requests an opereat@r touchtone command.

We constructed two models for predicting outconiéne first considers all outcomes, including cases
where callers disengage via a hang up. A secondeinavhich focused on predictions for engaged
callers who stick with the system, was developeduge in studies of the behavior of call-transfer
policies based on time-minimization for callers.heTengaged model removes consideration of the

situation and cases where callers hang up.

We now turn to the learning procedure, the modetstructed, and the evaluation methods used to test
predictive accuracy. Given the enumerated featwresemployed Bayesian structure learning to build
Bayesian networks for predicting session outcomé&® used methods developed by Chickergtgal.
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Figure 2. Graphical model learned from logged trgjndata for predicting the ultimate out of an
interaction with a dialog system. Variables dirgdtifluencing theoutcomevariable are highlighted
with shaded fill.

[3] and by Friedman and Goldszmidt [5] to constrinet models. These methods employ heuristic search
over feasible probabilistic dependency models gligle a Bayesian score to rank the candidate models,
each represented as a candidate Bayesian netwtr& sét of random variables under consideratiod, a
proposed structure of directed arcs between thesiodh constructing a Bayesian network, the system
builds and explores a search tree where each replesents a Bayesian network with a different
dependency structure. Each node generated durengdarch procedure is assigned a Bayesian score,

which is an estimation of the likelihood of the algiven the proposed dependency structure.

The Bayesian structure search method we use emptaisglobal and local search. For each variable,
the method creates a tree containing a multinodigtibution at each leaf, exploiting the localustiure-
search methods described in Friedman and Golds#gjidihe method provides a graphical view of the

constructed model, enabling us to inspect multaleables and influences.

We constructed two classes of models from theitrgidata. One class of models predicts the ulemat
outcome of a session. The other class predictextpected duration of an interaction for each ultena
outcome. We constructed a set of distinct Bayesimwork models for each class for each step of a
dialog with the legacy system, whestepsrefer to places in the dialog where processingailers’

utterances took place. These are points in theglassociated with the generation ofrabest list by
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the speech recognizer. Based on the configurafidine legacy system, dialog sessions did notnese

than four steps.

We employed a ten-fold cross-validation methodolfmyyconstructing and evaluating the models from a
library of cases, where each case includes theoméc duration, and step-by-step observations made
during engagements by a caller with the legacyodialystem. The ten-fold cross validation is exedut
as follows: For each dialog step, we select a s&trodifferent folds of training and test datanfrohe
total number of cases for that step. The foldssatected by randomly segmenting case librariesterio
equal-sized sets of cases. Ten predictive models@nstructed for each prediction of interest.e Th
training data for each model is composed of ningheften folds. The performance of each learned
model is then tested with cases contained in thi teld, which had been held out from the training
For predictions of the dialog outcomes, classif@atccuracies are computed for each of the fahdisea
mean and standard deviation of the accuraciehéoten folds are reported. We also performed oéh-f
cross validation for building and testing models dafration at each step, conditioned on different
ultimate outcomes. We made sure to manage the flmdsistream such that training cases used to build
the outcome classification models were not usddgboutcomes of the duration models. For predistio
of durations, we report results as means and stdndiaviations in errors in time predicted for the

durations of calls versus the actual durationsszctioe ten folds, for each outcome and step.
Table 1.

Classification accuracies and lifts of predictivedals for ultimate outcomes by dialog step.

Step 1 Step 2 Step 3 Step 4
All
Call outcome 0.86 (0.01) 0.77 (0.01) 0.692).  0.81(0.02)
Lift 0.17 (0.01) 0.15 (0.02) 0.19 (0.01) 0(2B04)
Engaged
Call outcome 0.90 (0.01) 0.80 (0.01) 0.7929. 0.82 (0.02)
Lift 0.17 (0.01) 0.13 (0.01) 0.21 (0.03) 0(2B04)
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Table 2.

Mean duration errors and lifts of predictive modgsdialog step.

Duration | Automation success
Mean error
Lift
Duration | Name unr ecognized
Mean error
Lift
Duration | Max errors
Mean error
Lift
Duration | Hang up
Mean error
Lift
Duration | Operator requested
Mean error

Lift

Step 1

4.30 (0.21)
9.79 (0.32)

9.78 (0.59)

10.63 (0.43)

10.39 (0.80)

11.31 (0.61)

7.37 (1.55)

8.26 (0.89)

5.63 (0.84)

10.55 (0.64)

Step 2

5.17 (0.21)
10.18 (0.25)

9.24 (0.41)

10.98 (0.61)

12.24 (0.97)

12.64 (1.01)

8.41 (1.88)

8.17 (0.87)

7.043 (1.52)

7.19 (1.18)

Step 3

6.0.30)
9.76 (044

8.0%5%)

11.4076)

5442.69)

13.2853)

10907)

11.06 ()2

9393

7.80 (278

Step 4

6.39 (0.88)
9.95 (1.25)

6.40 (0.72)

13.01 (0.66)

14.58 (5.51)

12.91 (2.54)

10.38

0.00

5.97

0.00

In summary, we learned predictive models for outesrand expected durations for each outcome for

each of the four maximum tolerated steps of théodia We constructed, for each step of the dialog,

Bayesian networks that predict the likelihood ofteaf the ultimate outcomes under consideratiore Th

full outcome model considers five ultimate outcoraesl the engaged model considers four outcomes,

bypassing consideration of the hang-up cases. Wiiti@thlly constructed Bayesian networks for

predicting the durations conditioned on each of filie ultimate outcome states for each of the four

! These outcomes are based on a 70/30 split gisparaity of cases for the outcomes; see discugsipaper for details.
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dialog steps. At each step, the probabilistic m®gerform inference from observations gathered in

previous steps of a session, including features sethe current and all earlier steps.

Table 1 displays the classification accuracies m@dtions by the models that predict the ultimate
outcomes of dialog sessions, for both the commatéthe engaged models, for each of the four dialog
steps. Table 2 displays the errors in predictadittbns for each of the ultimate outcomes, based o
observations made in each dialog step. The tafglpert the means and standard deviations of the
accuracies over each of the ten test sets heldluning the cross validation. In addition, meand an
standard deviations are reported on lifie associated with each of the predictive models diaer
respective marginal model. The lift captures tlifeence in the predictive power of the learneddels

and the marginal models—classifiers that employbekground statistics for predictions, and sdlaet
most likely outcome based on these statistics. tior of the conditional duration outcomes, both
occurring in the fourth dialog step, a low numbgcases for the hang-up and operator-request ¢ages
hang-up cases and 12 user operator request casgsctieely) made performing a tenfold cross
validation inappropriate. For these two outcomes performed a single 70/30 split; that is, werted
predictive models for these cases on 70% of tha dat tested on the remaining 30%. As we have a
single fold and test analysis for each, we do apbrt a standard deviation on these results. Oyvem
saw significant lifts over marginal models in adses except for the two data-sparse outcomes. We

believe that additional data would lead to enharmedictive power for the two latter outcomes.

Beyond predictions, learning graphical probabtisthodels can be used to gain insights into the
influences among variables, and the overall sesits#$ of predictions to observations. We inspédtes

Bayesian networks to seek a deeper understanditigeodlomain. Figures 1 and 2 display two of the
learned graphical models. Nodes are random vasaland arcs represent learned probabilistic

dependencies among the variables. Definitions®mhtbdel variables are contained in Appendix I.

Figure 1 shows the Bayesian network learned fodipteg the duration of the interaction with
VoiceDialer given an ultimate outcome ®iiccessful transfewhen evaluated at the first step of dialog.
We show the model with best performance on tesd, ditwn from the ten models constructed during
the cross-validation procedure for this dialog steyariables showing significant influence for this
model include the greatest difference in confidersowres between any two name hypotheses
(greatestConsecDi), the duration of the interacsorar (latency), number of name attempts detested
far (numOfNameAttempt), the time of day that thg l@as recorded (reco_date), and various statistics

generated from the-best list generated by the speech recognitionesysiThe latter include such
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statistics as the arithmetic mean of all the camfice scores in the first recognition (arith_meararig
the kurtosis of the score distribution (kurtosis_ZF)igure 2 displays the graphical structure of lblest
performing model at the first step of a dialog poedicting the ultimate outcome of the dialog s@ssi
This model was selected from the ten models leafoedhis dialog step as part of cross validation
process. As highlighted in the figure, similartieas have influence in the prediction of the |oagn

outcomes of dialog sessions.

As for some general reflections about the learnageBian networks, we found that the graphical nsdel
showed that inferences about the durations andulimeate outcomes of sessions anfluenced by
observations drawn from multiple classes of evidentVe found that generalized temporal features,
such as the maximum number of times a first orhashe identified during the first dialog turn apfea

in successive turns, tend to have discriminatorygro Other influential observations include subtle
characteristics of the distribution of confidencergs reported by the VoiceDialer's speech recagnit
system such as the skewness and kurtosis of th&bdigons of these scores. We also found that the
number and nature of relevant features for predjctiutcomes and durations differed depending on the

dialog step.
5. Exploration with Simulations using Real-World Cases

In use, we substitute inferences about the proibalistributions over outcomes and durations gatest

by the learned Bayesian networks into Equation8teensfer engaged callers to human operators when
that transfer is associated with a lower expeated than continuing on with the automated dialothwi
the legacy system. To test the value of overlayhmg decision-theoretic call-transfer policy on the
legacy system, we constructed a simulation systdiine simulator steps through traces of real-world
calls drawn from the test case library, and allaygsto explore the influence of using the decision-
theoretic policies at different steps. For expliorad, we apply models to cases held out from thiaitrg

of models for each fold of the cross validation.
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Figure 3. Total numbers of callers staying in lggsgstem (black bars) versus requesting a tratsfan

operator (gray bars) at each step in the dialognftase library of logged data.

For each call, we have access to a log that cantdaiming information as well as the series of

recognitions and related statistics of the intéoact We also have the ultimate outcome and dumatio

the interaction. When exploring the influence bé tpolicies that minimize expected total time, the

simulator examines the log of test calls and exacatt each step, the appropriate model for ultimate
outcome of the interaction, and the set of modmiglfiration conditioned on each outcome—considering
the observations available at the dialog step uodesideration. That is, at each step, the outaooael

is used to compute the probability distribution ottee ultimate outcomes of the interaction with the

automated dialog system. The four models for domaprovide inferences about the durations of the
interaction with the system, conditioned on eadimaite outcome. Decisions about the automated
transfer are made in accordance with the policriesd in Section 3 and can be compared with the

legacy outcomes.

As background, Figure 3 shows, for the calls in¢hse library, the portion of callers remaininghie
system at each of four steps in the dialog. Theréigalso shows, at each step, the quantity ofreatet
manually request operator assistance. Figureotigin 6 display the results of several analysels thi¢

simulator.
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Figure 4. Simulation examining the percentage écsin the case library who would have been
transferred proactively by the decision-theoretiiqy as a function of varying the assumed waitetim
for operator attention. The two curves result fithm use of models and corresponding test sets
associated with the best and worst folds for ptedjaultimate outcome. Means and standard

deviations of the savings per call are displayediffferent wait times for each fold under

Figure 4 summarizes the results of a study expiotite percentage of sessions that would have been
shunted to a human operator by the decision-thiegpeticy in advance of callers manually requesting
an operator. We consider test cases where calleeslity took a manual action to request a transf a
human operator somewhere in their call sessionpatelcases, within and across dialog steps, where
callers would have been routed by the decisionreten policy to the operator in advance of their
manual action. At each step of call sessionssiimellation computes the expected duration of sassio
by calling predictive models with available eviderio infer probability distributions over outconasl

call durations conditioned on the outcomes. Theukition recommends making a transfer to the
operator when this action is associated with a foesxerall expected duration. We considered the
behavior of the system on the test cases for éifteassumed waiting times in the queue for operator

assistance. Specifically, we note the percentagalters who would have been transferred proalgtive
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for waiting times starting at zero and successigetwing by 10 seconds up to 120 seconds. For each
wait time, we compute the mean decrease in the amoiutime per session required to be routed

successfully.
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Figure 5. Callers who ultimately received operatssistance in the legacy system who would have
been transferred proactively by the expected-tirmemization policy as a function of assumed wait
time for human assistance. The curves indicat@éneentage of callers who would have been
transferred to operators in advance of being teansdl via a manual request or via automation within

the legacy system. The bars show the mean savirtgae per session.

To explore the sensitivity of the results to vagythe quality of models, we explored the behavidhe
decision-theoretic policies within the simulatiar the folds associated with the best and worstarué
classification models. Manual transfers were sedhe legacy dialog system for 257 sessions withén
test library associated with the best model and3fi8 sessions of the test libraries associated thih
worst model. Figure 4 includes, for each set sf tases, the mean and standard deviation of tiregsa

per session for the different waiting times. Warfd that the percentage of proactive transferseto b
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similar for the best and worst models and theipeissed libraries of test cases. For both modhdls,
calls are transferred proactively when waiting timeero. With increasing wait times for an operat
the percentage of proactive transfers falls ingmsid manner. The mean savings for the transferred
calls is similar for the worst and best modes, Wwetnote that the variance around the savings bexome

larger with increasing wait times for the less aateimodel.

Figure 5 displays the results of another simulatexploring proactive transfers coming in advantcallo
transfers to operators within the legacy system.thls simulation, we move beyond consideration of
manual requests for operators to consider all teango the human operator seen in the legacy myste
Paths to the ultimate receipt of operator assistamclude (1) manual transfers to a human operator,
covered above, and automated transfers by the ylediatog system that occur when (2) the legacy
system decides that it has heard correctly andthieatequested name is not contained in its lexiaod

(3) when the system has reached its maximum tel@ératrors. An ultimate routing to an operator was
seen in the legacy dialog system for 2,115 sessiattgn the library for the best model and for 2721
sessions of the case library for the worst perfogimodel. Figure 5 shows the changing percentaiges
proactive transfers to an operator for all of theperator-assistance outcomes. The mean redugtions
session times and associated standard deviatibiesvad for these proactive transfers are also alyspol.
We note that the fall off in the percentage ofa@mallproactively transferred with increasing waitiimges

is still sigmoid but is significantly less steepeovhe range of waiting times plotted. Mean sawiing
time per session are greater but have higher \@itivan in the case considering only proactivesteas

occurring before manual requests for an operator.
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Figure 6. Mean session durations associated wiémientions at each step of the dialog system for
different assumed waiting times for human assigan€lusters at each dialog step show mean session
durations for the legacy system (dark bars) anisaactheoretic policies (white bars) for 20, 46d&60

second waiting times (left to right in each clukter

To further probe the behavior of the decision-te&orpolicy relative to the legacy system we exgdbr
the value of making interventions with the time-miization policy at each of the dialog steps for
different assumed waiting times. The results @sthsimulations for wait times of 20, 40, and 60
seconds are displayed in Figure 6. We note thatriterventions are associated with a reductiothef

call durations and a tightening of the standardat®mns around the mean durations.

The simulations demonstrate the potential valuenoflifying the legacy system with a utility-directed
coupling of the system with human operators. Ththaods can endow automated dialog systems with
the ability to shift more calls to people as humesources become available, and, conversely, yihgel
more on automation as human resources become seatwre it becomes increasingly valuable to
gamble on the prospect that users might have aessftd outcome with the automated system. Such
resource-sensitive decision policies, guided by gredictive models and a measure of the monitored
current wait time for human assistance, allow fgstems of people and automated dialog systems to

evolve effectively in light of changing levels dfitman resources and automated dialog competencies.
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6. Toward More Expressive Utility Models

For clarity, we have so far investigated conceptscomplementary computing with the use of a
straightforward time-minimizing model. A richergbierence model takes into consideration a more
comprehensive measure of utility. We shall nowieva more general handling of utility for guiding

the transfer of callers from automated systemsutndn assistance. The model highlights the pofentia

richness of preference considerations, and careduidre data collection and preference assessment.

In a more general consideration of preferences,me®e beyond a consideration of the total time
required for achieving a goal, to consider the reatf the interaction steps. In one generalizatos
would like to consider the differences in the cotime associated with engaging with an automated
system versus that of waiting in a queue. The obsingaging with a dialog system can be influenced
greatly by details of the experience. For examplmay be dominated by the number or density afrsrr
over the course of a dialog rather than just telkctime associated with interaction with the awated
system. Such factors can be folded into a costfiteanalysis of routing actions under uncertainty,
considering the number and nature of each stepialag. Beyond the number of turns and wait times
the utility of an interaction for a caller may bdluenced by other subtle factors. For exampléeiza
may simply have a negative emotional reaction tokimg with an automated system versus a human
operator. Also, a more general preference modesiders the nature and preferences of the owner or
principal agentof the decision making of the overall complementaymputing solution. For example,
we can consider decision makers at the organizatinwsting the automated dialog systems—and
employing human receptionists—as the principal tggehthe actions, and consider the utilities af th

host decision makers, and consider multiple aduti@conomic factors within the overall solution.

In a richer utility model, we move from a generatian of time as a cost function into finer distioos
about a caller’s effort and frustration. We digtiish the time that a user engages with an autamate
dialog systemt®, and the time that the user waits in a queue farmaan operatot”. We introduce cost
functions, C5 and C", that map the times of engagement and waitingaitadvalues, whereC(tF)
describes the dollar value cost with interactinghvthe automated dialog system &@4t") maps the
time waiting in a queue for a human operator toodad value. Such functions are monotonically
increasing and potentially non-linear functionsefiéhis opportunity for working with callers to asse
such cost functions. Such assessment might beliadpby the assumption of simple parametric
models like linear or sigmoid models. For examfae simplicity, one might attempt to map assesgsen

of the functions into constant rate®" andCF, of accruing cost, as dollars per minute. Beysinaple
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considerations of the cost of time with engagingrisystemC(t%) can be formulated to capture the
frustration experienced by callers with errors e€agnition and intention. In such a formulatiome t
function is designed to map a dollar-value cosh®number and nature of errors, and of such 8tatis
as the density of errors over a set of steps. tl@geauch a function would rely on careful studads
callers’ frustration with errors experienced in Wiog with an automated dialog system, including

decision-analytic assessments of “willingness ' paavoid such experiences.

Moving to other economic considerations, the deaishakers hosting an automated dialog system at an
organization may have concerns that extend beyeaddsts of the interaction to callers. Let usiass
that, from the perspective of a decision makernab@@anization, the cost of handling a caller vath
automated dialog system is the cost of maintaittiegautomated dialog system, amortized per €3I,
and that a transfer to a human operator cG8tfor each call. Also, as the decision maker haneso
economic goal in having calls handled appropriately assess and represent the cost of losing €aller

via early disconnections via a hang up. We shédrr® this as the cost of disconnectiof,

Considering these factors, we start with a baspression of utility represented as the expectet @os

the complementary computing solution as follows:

ExpectedCost =) p(H, |E,§)C,(H)) (4)
That is, the expected cost with using the legasgesy is computed as the probability distributioerov
the ultimate results of sessions, where situattdmsclude the ultimate outcomes and durations, aed t
costsC associated with each. Let us further expand thiisyumodel for the spoken dialog problem, by

enumerating the outcomes and associated duratodsthe costs associated with each of the situation

We consider the following outcomes as separateibomions to the overall cost of a session:
« H”* Caller has success working with the automatelbglisystem.

« H?° cCaller is transferred from spoken dialog systerhuman operator and waits until operator

is available.

« H*°P caller is transferred from spoken dialog systerhiman operator but disconnects before

the operator is available.

« HP: Caller hangs up while working with the automatkglog system.
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Summarizing the cost considerations, we considerfalowing terms, accessible as assessments from

the principal agent of the decision making of thenplementary computing system, yielding dollar ealu

costs:

C® Cost of maintaining the spoken-dialog systemdatits are dollar values)

« C° Cost of human operator handling a call.

« C": Cost of losing a caller to a premature discoripactia hang up.

« CH(t5): Cost function that maps time engaging with spotielog system to a dollar value cost.

«  C"(t"): Cost function that maps time waiting in a quéaiea human operator to a dollar value

cost.
* W:The current sensed length of wait in the queua fomman operator.

We generalize mean conditional time to the mearditiomal cost of time and useC&)|H> to refer to
the expected cost associated with an outcome.mBEas conditional costs are computed by summing the

cost over the time, weighting the costs by the pbilly of each of the times.

Putting all of these terms together, we have agxpected utility of the legacy system for handigagh

call as
ExpectedCost=
C®+p(H"|E&<CE(ET)[HA>
+> P(H L5, Y E, &) (<CE(tF)[HA > +CY (W) +C°) 5)

+2, P(HAP 15,67 E, &) (<CE(tF) | HA >+ <C¥(t") [H W >+CP)
+p(H” [t5,E &) (KCE(t7)|H” >+CP)

Assessments of functions for the costs and thegmitibtic models we described in Section 4 can be
plugged into this richer equation. The remainirigsimg predictive models required in the richelityti
model (required for the two inner terms of Equatirare inferences about the probabilities thaecsl
will hang up as they wait in a queue for an operaad the probability distribution over the tinkey

will spend waiting in a queue before disconnectidgs indicated in Equation 5, these are likely &0 b

functions of the history, and the length of timattthey must wait in a queue for the operator.

In decision making, we compare the expected cospcieted with the use of the legacy system as

computed with Equation 5 and the expected costaKimg an immediate transfer to an operator or the
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gueue for the operator if the queue is non-zerbe @ost of the session, following such an immediate

transfer during the engagement of the user bydbenzated system is,

ExpectedCost =CF(tF)
+ p(Wait |t5,W)(C"™ (W) + C°) (6)
+(1- p(Wait |[t5,W))(<C¥ (t" |t5,W >+CP)

As with the use of the simpler time-minimizationlipp described in Section 3, we compare the cost of
these two policies, and execute a transfer wherexpected cost of the immediate transfer is smaller
than the expected cost of sticking with the legsgstem. This policy is myopic, and thus, may belena

more accurately with additional lookahead.

Our discussion of the richer utility model is intlerdl to demonstrate how the basic decision-theoretic
policy that we introduced in Section 3 can be exigghto consider additional costs and uncertainties.
The particular costs and uncertainties will differ different applications depending on charact&gsof

the domain and dialog system, but the principlegat@gch to transferring control from one computadion
or human resource to another based on the consated evidence and expected-value decision making

about the best interleaving of resources remaiesame.

7. Discussion

We have explored a methodology of collecting evigerirom an automated dialog system about
competency and progress, learning predictive modeid then using the models, within an expected
utility framework, to guide the transfer of contfobm the automated system to more competent human
operators. Key contributions of the methodologglude the abstraction of a dialog system into aofet
stages and the construction and use of predictivdels that leverage observations about progress to
infer, at any of the stages, the overall long-taatcomes of the situation, based on evidence that i

currently available.

The approach relies on the reduction of complexiyabstraction of a dialog into a representatibthe
ultimate outcomes and effort required by the userd the construction of models that predict the
outcomes and effort. Complexity is managed by rabthg detailed interactions into stages or key
branches of a dialog that capture progress, antbtleeaging of sets of features at the stagespitmaide
updates about ultimate outcomes. Such evidendedes indications of success&sg, confirmations)
versus failuresd.g.,repeats, other signs of frustration) to proceaxtassfully.
We decomposed the dialog of the VoiceDialer systamfour stages, representing successive depths in
the dialog tree. Each step is associated with li@rtsautterance and the associated analysis of the
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attempted recognition. We found this to be anceffit and useful decomposition of the dialog and
logged data for constructing and reasoning withbphilistic models. For our domain, it was
straightforward to build models for each depthif tree, as the maximum depth was four.

We believe that the methodology is applicable tsteays that perform more complex dialogs, including
dialog systems that seek to fill multiple slotsgisas systems designed to book travel plans [V@.are
optimistic that similar decompositions can be idfied and applied with success in performing
predictive modeling in more complex dialog systerf@r any dialog system, it is possible to genesate
tree of outcomes and durations, where the leavdsnades of the tree represent system actions. For
every node and leaf, statistics can be maintainedhaw often paths are visited, capturing outcomes
where the system reached particular nodes fromrabhe For more complicated domains, it may be
useful to build predictive models in a selectivenmer, focusing on modeling progress at major brasch
of the tree—and to access predictions for the nsoddlen the system reaches these landmark locations
during real-time dialog. The discriminatory powar predicting outcomes and durations of a dialog
session with models constructed from data gathatday branches or stages, will likely depend an th
details of the system, domain, and the particidamfilation of abstractions of the dialog into laradks

or phases that capture notions of progress thrtheydialog.

In the work we described, we collected data anditanted predictive models for the ultimate outceme
and durations at successive major steps in thegliaind also increased the size of the featureesizac
include distinctions observed in prior steps. Tdonstruction of models that predict the ultimate
outcome at each step may be unnecessary. We édhev useful predictors about outcome may be
constructed by limiting the analysis to the lasiteps of a dialog at each point in a dialog, dghinithe

set of steps within a well-defined subdialog. Swuwbving windows of analysis may be combined with
more global models that look at densities and imess of failures to make progress. We look fodvar
to additional research on the feasibility of uskugh limited moving windows of analysis.

Our goals were to explore the use in dialog systeimaodels that can predict the ultimate outconfes o
sessions as well as the durations expected bdfereutcomes are reached and, to investigate holw suc
predictive modeling could be used to guide decsiabout transferring calls from automated dialog
systems to human operators. We employed a patiéoim of learning, Bayesian structure search, tha
centers on the construction of probabilistic graphimodels. The method allows us to visually im$pe
inferred probabilistic relationships among variablé/e found that the learning methodology provided

useful predictive accuracies in our studies. Otbarning methodologies, as well as marginal gtesis
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could be used in place of the Bayesian structusecbein the complementary-computing approach
presented here.

We note that we have assumed a challenge from eifispéamily of complementary computing
challenges—the class of problems where we seehkttoduce automation to reduce the cost of expert
human assistance, in a context where humans argidesed to have the ability to solve challenges
accurately and efficiently and where preliminarycamation may be prone to errors. History is rifighw
examples of the maturation of automation, wheré/epreliminary solutions that do not perform adiwe
as human experts, evolve into approaches that ggosijuivalent or even better performance than that
associated with human intelligence. Thus, moreegdnapproaches to solving complementary-
computing problems involve considering the setesburces, including computational agents and groups
of experts, and reasoning about the ideal of flbaralysis to solve a challenge.

We note that complementary-computing methods extesybnd real-time decision making about the
flow of control in solving problems. We conditiahéhe analysis of call-transfer policies on a fixstalff

of operators and fixed technology, and take astgfhe current wait time for gaining access to huma
assistance. Moving beyond such a fixed-staff assompthe policies can be used offline in a design
setting to inform decisions about ideal expendgui@ personnel and technology. As an examplis, it
feasible to couple expected-value analyses of ideaplings of people and computing systems with
gueue-theoretic simulations that provide estimafethe potential waits for callers to receive assise
from operators [12]. Simulations with queuing misdean elucidate such factors as the influence of a
transfer policy and number of operators on thetle§ queues at peak call times. These simulatiams
allow decision makers to examine how changing tmabrer of operators on staff or shifting or updating

the dialog technology would influence the expedest of handling calls.

Although simpler, heuristic strategies for joiningman and computing resources into effective sesvic
might work well in particular cases, we believetttiee principled methodology that we have discussed
has broad applicability to a spectrum of complemsntcomputing challenges. We found that the
principled approach does not impose a great dealvefhead to implement and execute, and that it can
provide insights into the relationships and trafleamong key control variables. The decision-te&or
models allow for optimizations that would likely déficult to discover through experimentation with

few approximate designs.
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8. Related Research

Other research teams have explored the use o$tgtatimethods to enhance various aspects of spoken
dialog systems. The closest related research rsepte studies of methods for predicting potential
problems with a user’s interactions with a spoketed) system. Most efforts in this realm have fed

on identifying when users are experiencing pooespeecognition behavior [10]. In the TOOT system,
decisions to employ alternate dialog strategiesh aas whether to tightly direct users versus alhgwi
users to have input anitiative in the flow of a dialog, are based on a user'poases. These policies
are represented as rules generated from a clag®ficanalysis of “good” and “bad” dialogs trainaeker
dialog sessions [11]. Unlike the decision-thearetpproach that we have presented, the investigator

employed deterministic policies as a function @& tutput of classifiers.

Models that move beyond identification and pregibere problematic situations are likely to occuain
call-handling context have been previously explongthin the AT&T How May | Help Yoy HMIHY)
system [9,15,16]. The HMIHY system considered sétsvidence from a speech recognition system, a
natural language understanding component, a dial@gager, and sets of hand-labeled features.
Classifiers were trained to predict failures beftmey might occur based on observations availabtae
system after different steps of a dialog. Our wexkends prior efforts in several ways. We alsarlea
and reason explicitly about both outcomes and chatto generate the decision-theoretic call-transf
policies, and we employ statistical modeling anddgstion within an expected-value decision making

framework that seeks to ideally use the changirajalvility of human resources to work with people.

Finally, the approach that we take is similar teisi®n-theoretic planning using fully-observable or
partially-observed Markov decision processes (M[3P) In recent work, an application that makes use
of MDP models for providing care to patients withntentia explored the inclusion of a fall-back optio
to a person in its action set [2]. It is feasitwerepresent the decision-making task of trangfgrto an
operator as an MDP. However, using an MDP woutplire the overhead of formulating a stochastic
transition model, assuming a Markov assumption o dtate space, and decomposing the objective
function into local rewards, mapped to each statecontrast to the MDP approach, we have learigdd r
models at several successive stages of a dialogrenthe models predict the ultimate long-term ounneo

and expected durations of the session.
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9. Summary and Conclusion

We focused on the use of the predictive modelsiexgected-time analysis to identify the best ttme
transfer a caller automatically to a human operatodifferent points in callers’ interactions with
legacy automated call-handling system. We presethie case study as an example of a larger space of
opportunities in the realm of complementary commuti pursuing the development of ideal
configurations, patterns of initiative, and workfle within systems composed of people and

computational components.

We discussed the abstraction of the flow of inteoamcof an automated dialog system into a set of
conversational steps, the collection of competeang progress-related data as callers progressed
through the dialog steps, and the constructionredligtive models via machine learning from data tha
had been logged by a voice routing system in ussdweral years at our organization. We demorestrat
the construction of models that can predict, athestep within a dialog, the ultimate outcomes of
interactions with an automated dialog system, amal éxpected durations of time of the session,
conditioned on each outcome. Then, we presenticigmthat transfer calls away from a legacy syste
based on an objective function that seeks to mirénthe overall interaction times for callers. We
discussed how the policies can be executed, relymthe inferences from the learned models abaut th
ultimate outcomes and durations under uncertaintye tested the behavior of the policies within a
simulation environment that uses as test caseswadd calls that had been logged by the legacy
automated dialog system. We examined recommendetsfér actions, conditioned on different
assumed wait times for accessing a human operdaitie studies with the time minimization policy
showed that the decision-theoretic policies, dribgnthe learned models, can save callers time erAft
investigating the time-minimization policies, wevieved a more detailed preference model that
represents multiple dimensions of cost and valug @@mplementary-computing solution. The extended
model highlights directions in utility assessmedéta collection and modeling for complementary

computing solutions.

The methods and studies demonstrate specificatlyw#tue of employing the decision-theoretic pokcie
for transferring callers to human operators. Mgeeerally, the methodology demonstrates how we can
use machine learning to characterize an automatetite, and then apply inference with learned m®del
to build a more reflective service that can refl@adut the best times to engage human resourcessitt

with solving problems.
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We hope that the methods and case study we preéseiitestimulate additional interest in opportueti

for employing machine learning and expected-vake&sion making to weave computational and human
resources together into effective composite systenWe believe that there is a large space of
opportunities with employing analogous learning asdsoning in other realms to guide the design,
fielding, and testing of complementary-computingusons that optimize the way people and machines

work together to deliver solutions and services.
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Appendix I.

Observational evidence used in models

Dialog status log

numSteps. The number of steps as defined by the loggingesys the number does not

necessarily match the number of utterances.

systPrompts: The prompt type sequences such as 'Greeting@p#trator Option' followed by
'‘Confirm Top Choice,' followed by 'Spell First Najretc.

user Answer Types: User answer sequences such as 'Name' followé&pijling'.
numOfTurns. The number of turns, defined as the number ef uterances.

numOfNameAttemptsDetected: The number of name attempts detected by the néoexg At
times, for a single utterance, there may be twoenattempts detected, depending on whether the

recognizer goes through a second pass.

numNBestList: The number of the-best lists generated by the recognizer. This rarndoes

not necessarily match numOfNameAttemptsDetected.

reco_date: The date of the interaction. As employees lea@vé new employees are hired, the

efficacy of the language model for different reqaesay change over time.

Speech recognition featur es-base level

For any observed featurie the index represents thigh utterance.

maxRedundFirstNames: Maximum number of times a first name is repeatethén-best list;

i.e., the cardinality of the most frequently occurrfirgt name.
maxRedundFirstNames: Maximum number of times a first name is repeateithémn-best list.
maxRedundL astNames. Maximum number of times a last name is repeateddn-best list.

maxRedundFullNames: Maximum number of times a full name is repeatethen-best list.
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» fregRedundFirstNames: Number of distinct first names that have onenore repetitions in the

list; i.e., the cardinality of distinct names that are fotmdbe repeated

+ fregRedundLastNames: Number of distinct last names that have one aremepetitions in the

list

» fregRedundFullNames: Number of distinct full names that have one oreneepetitions in the

list
e count: The number of items in the currenbest list.
» sum: The sum of all the confidence scores.
* maximum: The maximum confidence score.
e minimum: The minimum confidence score.
* range The difference between the maximum and minimonfidence scores.
* median: The median confidence score if any.
e arith_mean: The arithmetic mean of the confidence scores.
* geo_mean: The geometric mean of the confidence scores.

o greatestConsecDiff: The greatest difference between any two consezwunfidence scores, if

there are two or more confidence scores.
* variance: The variance of the confidence scores.
» gtandard_dev: The standard deviation of the confidence scores.
« gandard_error: The standard error of the confidence scores.
* mode: The mode of the confidence scores.
* modeFreq: The frequency of the mode.
» skewness: The skewness of the distribution of confidenceres
» kurtosis: Kurtosis of the distribution of confidence scores

Speech recognition featur e-combinations

» For any observed featuriej, the index andj represent th&h andjth utterance respectively.
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maxRedundFirstNamesBtw_i_j: The maximum number of times any first name isestpd
between theéth and thgth n-best lists;j.e., the cardinality of the most frequently occurrifingt

name between lists.

maxRedundL astNamesBtw_i_j: The maximum number of times any last name is atguke
between théth and thgth n-best lists.

maxRedundFullNamesBtw_i_j: The maximum number of times any full name is stpd
between théth and thgth n-best lists.

fregRedundFirstNamesBtw_i_j: The number of distinct first names that have onemore
repetitions in both théth andjth n-best lists; i.e., the cardinality of distinct tireames that

repeat between lists.

fregRedundL astNamesBtw_i_j: The number of distinct last names that have onenore

repetitions in both thigh andjth n-best lists.

fregRedundFullNamesBtw_i_j: The number of distinct full names that have omenmwre

repetitions in both thigh andjth n-best lists.

getsBetterBtw_i_j: Whether the average confidence score is highéneijth utterance than in

theith utterance

topScoreDiffBtw_i_j: Difference between theh andjth top confidence scores
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