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ABSTRACT 
Wearable sensor systems have been used in the ubiquitous 
computing community and elsewhere for applications such 
as activity and gesture recognition, health and wellness 
monitoring, and elder care. Although the power consump-
tion of accelerometers has already been highly optimized, 
this work introduces a novel sensing approach which lowers 
the power requirement for motion sensing by orders of 
magnitude. We present an ultra-low-power method for pas-
sively sensing body motion using static electric fields by 
measuring the voltage at any single location on the body. 
We present the feasibility of using this sensing approach to 
infer the amount and type of body motion anywhere on the 
body and demonstrate an ultra-low-power motion detector 
used to wake up more power-hungry sensors. The sensing 
hardware consumes only 3.3 µW, and wake-up detection is 
done using an additional 3.3 µW (6.6 µW total). 
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INTRODUCTION 
Wearable motion sensors have been used in high-impact 
applications such as activity recognition, health and well-
ness sensing, and elder care. As a result of their popularity, 
considerable work has been done to optimize the power 
consumption of these sensors. The lowest power commer-
cially available accelerometers typically consume 400-
1000 µW, and the latest research devices consume as little 
as 36 µW [6]. With these low-power devices, accelerome-
ters are now being widely deployed in a wide range of ap-
plications. We present a novel sensing approach which ex-
tracts similar human motion information as accelerometers, 
but at orders of magnitude lower power. We demonstrate 

the ability to classify human activity using a 3.3 µW sensor. 
The power consumption of our approach is so low that the 
power consumed by the sensor is now virtually negligible.  

Our approach for sensing the user’s movement builds on 
work in the space of electric field (EF) sensing, which has 
been used in Human-Computer Interaction work to sense 
gestures for user input [1,2,3,4,5,7,8]. Previous work has 
used active sensors, consisting of a transmitter which emits 
a time-varying signal (typically 10–1000 kHz) and a receiv-
er which senses the signal at a different location. In con-
trast, our sensing approach is completely passive; relying 
on the existing static electric field between the body and the 
environment. We do not transmit any signal and simply 
measure a voltage at any single location on the body. 

The ultra-low-power consumption of our approach makes 
this an ideal sensor for continuously sampling coarse-grain 
body movement. This information can either be used for 
simple activity recognition or in order to wake up other 
sensors such as the more power hungry accelerometers or 
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Figure 1. Static EF sensing utilizes capacitive coupling  

between the body, the sensor’s local ground plane, and the  
environment. Top Left: Prototype sensing platform. Top Right: 

Side view of sensor platform showing spacing between the 
body and the local ground plane. Bottom Left: Capacitive cou-

pling indicated by field lines, closer lines indicate stronger 
coupling. Bottom Right: Circuit model of sensing technique.  

 



   

gyroscopes. As an added advantage, the sensor can reliably 
sense movement on other parts of the body, even when the 
sensor itself is held completely still, thus providing capabil-
ities not offered by accelerometers or other inertial sensors. 
In this paper, we describe the theory of operation and hard-
ware that enables this sensing approach, and demonstrate 
that this technique works in any environment (e.g., indoors, 
outdoors, in a Faraday cage, etc.). We also describe a small 
study that explores the capabilities of this new sensing 
technique, its ability to sense different types of body 
movements, and how this technique can be used for ultra-
low-power (6.6 µW) motion-based wake-up. 

THEORY OF OPERATION 
Our sensing technique relies upon the capacitive coupling 
between the human body and its environment, as shown in 
Figure 1. Our sensor measures the voltage across a capaci-
tor (CS) in which one side of the capacitor is connected to 
the body, and the other side of the capacitor is a small local 
ground plane on the sensor board. In addition to this sens-
ing capacitor, both the body and the local ground plane are 
capacitively coupled to the environment (i.e., earth ground) 
through CB and CR, respectively. This system can therefore 
be modeled simply using three capacitors, as shown in Fig-
ure 1. Note that the capacitors in the model are lumped el-
ements and represent the coupling among many different 
objects in the environment. Using this model, we can derive 
the relationships between physical changes (i.e., body 
movement) and the sensed voltage (VS).  

The voltage across a capacitor is governed by ratio of the 
charge on either side, and its capacitance. Using this rela-
tionship, we obtain an expression for our sensing voltage 
(VS) by taking the difference between the voltage on the 
body (VB) and the local ground plane of the sensor (VR), as 
shown in the equation in Figure 1. From this equation, it is 
clear that we will sense a change in VS if there is a change 
in either the charge or the capacitance on either side of our 
sensing capacitor CS. For this sensing approach, a static 
electric field must be established across CS (i.e., there must 
be charge on the capacitor). We inject this charge through a 
small bias current supplied by our sensing hardware. Exper-
imentation confirms that the charge on CS is dominated by 
that supplied by the bias current and not triboelectric charge 
from the body’s friction with the environment.  

When either the body or other objects in the environment 
move, all of the variables in the equation for VS are likely to 
change. However, we believe that the charge is held rela-
tively constant and therefore changes in VS are primarily 

due to changes in the capacitance of CB or CR. For example, 
consider a user that is lifting their leg off of the ground with 
our sensor on their wrist. Since neither the local ground 
plane on the sensor nor any objects in the environment are 
moving, CR should remain constant. However, CB will be 
changing because the coupling between the body and the 
environment (i.e., earth ground) changes significant by lift-
ing the leg. This action will therefore cause a change in VS. 

Our sensing hardware (shown in Figure 3) measures chang-
es in VS in order to infer body movement. This example 
highlights the ability of our sensor to detect body motion 
even when the sensor itself does not move (e.g., the arm 
and sensor are perfectly stationary, but the leg is moving). 
This gives our sensor capabilities which accelerometers and 
other inertial sensors do not have.  

Like accelerometers and other inertial sensors, our sensor 
can measure body movement at the location where the sen-
sor is attached. In this case, the body movement causes 
changes in CB, but since the sensor is also moving in the 
environment, there are also large changes in CR. Once 
again, we detect these body movements by observing 
changes in VS which are caused by changes in the capaci-
tive coupling to the environment. An example signal pro-
duced by waving an arm is shown in Figure 2 along with 
the signals obtained from a 3-axis accelerometer at the 
same location on the wrist. Refer to the video figure to see 
more example signals. Although our signal is correlated to 
the data from the accelerometer, it is important to note that 
we are not measuring acceleration; we are simply measur-
ing changes in the position of the body to its surroundings. 
While this means that we have to explicitly deal with small 
changes in VS as objects in the environment move near the 
body, it also provides the unique ability to detect body mo-
tion independent of movement of the sensor itself.  

Furthermore, because the human body can be considered a 
perfect conductor [7], our sensor can be placed at any loca-
tion on the body as long as it has direct contact with the 
skin, and is fixed rigidly to the body so that CS is constant. 
Additionally, since we are measuring capacitive coupling 
between the body and the environment and not utilizing any 
emitted electromagnetic waves, our sensing approach works 
in any environment. To verify this, we conducted tests in-
doors, outdoors, in a Faraday cage, and in a large open field 
at least 0.6 km from the nearest power lines.  

HARDWARE 
We have implemented a hardware device to passively sense 
body motion using existing static electric fields as described 
in the previous section. Our sensing platform, shown in 
Figure 1, measures 4.4 cm x 4.4 cm x 1.5 cm, and consists 
of a conductive fabric strap to make contact to the body, an 
analog front-end for measuring body motion, wake-up de-
tection circuit, Analog Devices ADXL335 3-axis accel-
erometer for direct comparison, TI MSP430F5172 micro-
controller, and a TI eZ430-RF2500 2.4 GHz wireless trans-
ceiver for streaming live data off the device. The device is 

 
Figure 2. Example static EF sensing signal showing three  

different levels of movement along with accelerometer data. 



  

 

powered by two CR2032 3V lithium batteries: one for the 
eZ430-RF2500 transceiver and one for all other circuitry. 

The block diagram for the analog sensing front-end and 
wake-up detection circuitry is shown in Figure 3. This 
hardware was implemented using ultra-low-power off-the-
shelf components. The voltage sensed on the body (VS) is 
AC coupled and biased to mid-rail using CI and RI, and a 
Vcc/2 virtual ground using an Intersil ISL28194 op-amp. 
Next, the signal is amplified using a Microchip MCP6041 
op-amp between 3 and 43 times so that the full-scale range 
of values observed for normal actions swings from rail to 
rail. To filter out the high amplitude 60 Hz signal on the 
body (i.e., radiated noise from power lines), we apply a 3rd-
order Butterworth lowpass filter with a corner frequency of 
10 Hz using a Sallen-Key active filter. This was imple-
mented using another ISL28194 op-amp. The power con-
sumption of this front-end is 3.3 µW (i.e., 1.1 µA at 3 V). 

EXPLORATION OF CAPABILITIES 
To explore the capabilities of our new sensing approach, we 
collected data from 6 users (3 female). Each user performed 
6 different actions 9 times each in 2 locations within a 
building. The actions were chosen to show a variety of dif-
ferent types of movement: (1) rest (i.e., not moving), (2) 
typing, (3) using a computer mouse, (4) small arm move-
ments (i.e., users were asked to sort cards), (5) walking, and 
(6) jogging. The 9 examples were collected in 3 sessions of 
3 examples each which were separated in time, and the or-
der of the actions was randomized within each session. 
Each example consisted of a 5 second period in which the 
user continually performed the specified action. 

Low-Power Wake-Up 
As shown in Figure 2, the change in the sensed voltage (VS) 
is near zero when the user is not moving and non-zero when 
the user is moving. It is therefore reasonably easy to use 
this signal to detect when the user is moving. Furthermore, 
we hypothesized that different levels of movement can also 
be extracted from our static EF sensing signal using only a 
simple threshold. To test this, we grouped the data collected 
in our user study into 4 classes representing increasing lev-
els of movement. We then generated receiver operating 
characteristic (ROC) curves by sweeping the threshold, 
shown in Figure 4. We used the following four classes to 
represent the level of movement: (1) rest, (2) mousing and 
typing (i.e., hand and finger movements), (3) small arm 
movements, and (4) whole body movements (i.e., walking 
and jogging). To generate the ROC curves, we divided our 

dataset into 250 ms windows. Each window above the 
threshold was classified as being in the more active class. 
Therefore the false positive rate is defined as the number of 
misclassifications over the total number of windows.  

From the ROC curves shown in Figure 4 we can see that it 
is difficult to use a simple threshold to determine the differ-
ence between rest from finger and hand movements. This 
makes sense because small movements of the fingers and 
hands do not have a large effect on the overall capacitance 
of the body to its environment. Therefore, given the sensi-
tivity of our current hardware implementation, we would 
suggest that we cannot reliably use a simple threshold to 
perform wake-up when the user makes small hand and fin-
ger movements. As seen in Figure 4, it is much easier to 
choose a threshold which can robustly perform a wakeup 
when transitioning to higher levels of movement. For ex-
ample, this may augment existing accelerometer-based ac-
tivity sensing systems by going into a sleep state when the 
users stops moving and then wake-up to run the accelerom-
eter again once more movement is detected.  

To demonstrate the ability to perform ultra-low-power 
wake-up, we use two Maxim MAX9120 comparators to 
wake up the MSP430 on our prototype sensing platform. 
Including the comparators, the total power consumption of 
the analog circuitry is 6.6 µW (i.e., 2.2 µA at 3 V), and in-
cluding the MSP430 in deep-sleep, the board consumes 
only 9.3 µW while waiting for body motion to wake-up. 

Body Motion Classification 
In addition to threshold-based wake-up, we hypothesized 
that the static EF sensing signal may contain enough infor-
mation to determine the type of motion that the user is per-
forming. To test this hypothesis, we posed the problem as a 
machine learning classification problem, in which we are 
trying to classify different user actions. If we are able to 
build a classifier that can robustly determine the user ac-
tions, then it is feasible that this signal can be used for ac-
tivity recognition in some of the same ways that accelerom-
eters are currently used. From our threshold-based wake-up 
analysis we learned that it is very difficult to sense hand 
and finger movements. Therefore, in this analysis we only 
considered the following 4 actions from our user study: rest, 
small arm movements, walking, and jogging.  

We expect our static EF signal for body movement to be 
similar to an acceleration-based model, so we leverage clas-
sification features from accelerometer-based activity recog-

 
Figure 3. Block diagram of hardware for motion sensing. 

 

 
Figure 4. Left: ROC curves for threshold-based wake-up. 

Right: Confusion matrix of motion type classification. 
 



   

nition research. We used six features that capture both time 
and frequency domain characteristics. For deriving fre-
quency domain features we compute the power spectral 
density (PSD) using the Welch method. The distribution of 
the energy in a PSD is often a good indicator of the type of 
activity. For example, running results in more energy in the 
higher frequency range than slower activities like walking 
or resting. We derive two features from the PSD: the medi-
an power and median frequency. The latter is the frequency 
that divides the area under the PSD curve into two equal 
halves. The energy distribution for walking and running 
often overlap, which requires additional time-domain fea-
tures in order to obtain robust classification.  

We compute 4 time domain features. First, we compute the 
standard deviation across the entire 5 s window to capture 
the overall variability in the signal. Activities involving less 
motion result in lower variability, providing enough infor-
mation to partition between resting and motion, but not 
enough to distinguish between various movements. Second, 
we compute the number of zero crossings of the derivative, 
which approximates the number of peaks in the signal. 
Third, we count the number of high magnitude, rapid 
changes in the signal by thresholding the absolute value of 
the derivative with a constant static threshold. This was 
calculated so that resting activity did not generate a count. 
Finally, the magnitude of the first peak of the auto-
correlation was computed to capture the periodicity of the 
signal, which differentiates periodic motion (e.g., walking 
and jogging) from random motion. 

Using these 6 features, we trained a k-nearest-neighbor 
classifier with k=1, using the Weka machine learning 
toolkit. We performed a 3-fold cross-validation in which we 
folded the data by session in order to avoid over-fitting (i.e., 
training and testing sets would never contain examples from 
the same session). We ran our 4-class classifier per user, per 
location (i.e., 12 classification runs) and averaged the re-
sults to obtain an overall accuracy of 91.7% (σ=7.0%). The 
confusion matrix for this classification is shown in Figure 4. 

Our ability to achieve motion classification at nearly 92% 
accuracy using a single low-power sensor on the body is 
very promising. To further test the capabilities of the static 
EF sensor, we configured a more realistic machine learning 
scenario in which we train using only one of the 6 sessions 
(i.e., there are 6 sessions of data from each user; 3 from 
each location), and then test on the other 5 sessions. We 
performed a 6-fold cross-validation (i.e., folding by session) 
for each user and obtained 80.0% accuracy (σ=7.5%), thus 
suggesting the possibility of developing a deployable mo-
tion recognition system using only the static EF signal. 

DISCUSSION AND FUTURE WORK 
We described a technique that researchers can use for body 
motion sensing using a novel approach which leverages 
existing static electric fields around the human body. Our 
sensing approach provides coarse-grain body motion data, 
allows for ultra-low-power wake-up of other sensors, and 

shows promise for detecting the type of motion without the 
need for an inertial sensor.  

There are a number of application areas in which our ap-
proach for low-power motion and activity sensing is ideally 
suited. The sensitivity of our approach to footsteps makes it 
ideal for pedometer-based physiological calorimetry (e.g., 
FitBit and similar products), and gait analysis. In addition, 
we have shown correlation between our signal and an ac-
celerometer, which consumes 1-2 orders of magnitude more 
power than our approach. The lowest power commercially-
available accelerometers typically consume 400-1000 µW, 
and the latest research devices consume about 36 µW [6], 
which is much higher than our 3.3 µW. We are excited 
about the simplicity of our approach and the fact that it can 
be done without significant specialized hardware. 

In future iterations, we would like to improve the hardware 
used for sensing. Although we have not experienced any 
issues, voltage signals produced by changes in charge rather 
than capacitance could potentially confuse our system. One 
problem with charge is that it is a result of unpredictable 
static electricity. One way to reduce the effect of charge 
buildup is to periodically short the sensing capacitor.  

We could even more dramatically reduce the power con-
sumption of the front-end hardware by implementing a cus-
tom analog IC. Although our power consumption is already 
very low, it was implemented on higher bandwidth com-
mercial off-the-shelf parts. Since our signal has an extreme-
ly low bandwidth of 10 Hz, we estimate that a custom ana-
log IC could be created which performs the same task as 
our current hardware, but between 1 and 10 nW (i.e., 3 or-
der of magnitude lower power than our existing prototype). 
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