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Tools & platforms
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Decision model

Actions

Predictive model

Sensed data

Predictions

Active learning
Experience sampling
Ideal experimentation
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Revolution Brewing

Mental health & wellbeing
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Health insights & diagnosis 

Mental health & wellness

e.g., Search, Twitter, Facebook, Reddit, TalkLife, Crisis Txt Line, Apps

Evidential Streams & Inferences from Populations



Supervised learning: experts, crowd, participants

Unsupervised learning: clustering, topic modeling

Causal modeling: propensity, Neyman-Rubin  

Wrestling with (the Wild West of) Population Data



Sensitivity, robustness, error modeling

Statistics of rare events

Sequence alignment

NL psych models: LIWC, ANEW, etc.

NL topics/sentiment: Emolex, SentiWordNet, Empath

Wrestling with (the Wild West of) Population Data



Experimental design 

Matched sets for studies

- Control 

- Test/intervention

Example:

Rare serious adverse effects of medications

Wrestling with Large-Scale Population Data



Wrestling with Large-Scale Population Data

S
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Query Timeline

DD
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D: query for drug of interest
C: query for condition of interest
S: query for symptom of C  ignored C or S

surveillance window post DFirst

surveillance window pre DFirst

α = DLast – DFirst

𝛽 = 7 days
γ = 60 days
𝜃 = (α + 𝛽 + γ)

Self-controlled study
Query rate ratio 

Detect rare adverse effects of drugs

White, Harpaz, Shah, DuMouchel, Horvitz, Nature CPT, 2014

http://research.microsoft.com/en-us/um/people/horvitz/Nature_CPT_2014.pdf
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Wrestling with Large-Scale Population Data

Fourney, White, Horvitz, CHI 2015

Example:

Pregnancy info needs

Alignment

Machine learning to align 

http://research.microsoft.com/en-us/um/people/horvitz/CHI_pregnancy_patterns_search.pdf
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Wrestling with Large-Scale Population Data

Paul, White, Horvitz, TWEB 2016

Example:

Breast cancer

Alignment

Episodic structure

Synthetic (per privacy), yet representative set of queries

http://research.microsoft.com/en-us/um/people/horvitz/brca_tweb_journal.pdf


Key pivot points

Diagnosis date 
Screening
Surgery 
Chemotherapy 
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u1 timeline

u2

u3

Learning outcome of action

Kiciman and Richardson, KDD 2015

Propensity: Normalizing cohorts to understand influences

http://research.microsoft.com/pubs/245265/kdd15_actionoutcome_cr.pdf
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Kiciman and Richardson, KDD 2015

http://research.microsoft.com/pubs/245265/kdd15_actionoutcome_cr.pdf


Example: Birth of child

Postpartum depression (PPD)

CDC: ~15%

50% cases unreported

De Choudhury, Counts, Horvitz. CSCW 2013, CHI 2013

Opportunity: Major Life Changes

Understand, support through difficult life changes

Major illness
Loss
Death
Divorce
Birth

http://research.microsoft.com/en-us/um/people/horvitz/predicting_postpartum_changes_chi_2013.pdf
http://internal.sehetna.com.jo/PublishingImages/Health Priorities/Pregnancy and Childbirth/PostpartumDepression.jpg
http://internal.sehetna.com.jo/PublishingImages/Health Priorities/Pregnancy and Childbirth/PostpartumDepression.jpg


Identify tweets about births: Twitter Firehose

2,929 new mother candidates

Gender classifier

10 tweets per candidate & profile

376 new mothers

+ 3 months-3 months

*

Birth!

1st person pronoun 

Identifying Multiple Dimensions of a Life Change



Structure & Dynamics of Engagement on Social Graph

Engagement. 
Volume: mean normalized number of posts per day

Replies, retweets, questions, shared links

Ego network

#inlinks; #outlinks

De Choudhury, Counts, Horvitz. CSCW 2013, CHI 2013

http://research.microsoft.com/en-us/um/people/horvitz/predicting_postpartum_changes_chi_2013.pdf


De Choudhury, Counts, Horvitz. CSCW 2013, CHI 2013

Linguistic Analysis

http://research.microsoft.com/en-us/um/people/horvitz/predicting_postpartum_changes_chi_2013.pdf


Linguistic analysis

1o

3o

Neg.

Affect



Patterns and Outcomes

~15% of new mothers: severe changes

- Activity level down, 

- Language usage: 1st person up, 3rd person down, 

- Negative affect up, positive affect down



Exciting family of results

Human subjects + online:

New mothers w/ FB timeline, Twitter

Major depressive episodes

Predicting postpartum changes with data drawn before birth.

De Choudhury, Counts, Horvitz, Hoff. ICWSM 2014

De Choudhury, Gamon, Counts, Horvitz. ICWSM 2013 

Predicting Postnatal Outcomes

http://research.microsoft.com/en-us/um/people/horvitz/FB-cscw2014.pdf
http://research.microsoft.com/en-us/um/people/horvitz/depression_social_media_icwsm_2013.pdf


Grappling with diagnosis & treatment

Queries before & after inferred breast CA diagnoses

Major Life Challenges: Major Illness

Paul, White, Horvitz, WWW 2015

Paul, White, Horvitz, TWEB 2016

Proxy for understanding if, 
how, and when life may 
return to normal?

http://research.microsoft.com/en-us/um/people/horvitz/www2015_treatments.pdf
http://research.microsoft.com/en-us/um/people/horvitz/brca_tweb_journal.pdf


Major Life Challenges: Grieving



It is remarkable that this painful unpleasure 

is taken as a matter of  course by us.
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It is remarkable that this painful unpleasure 

is taken as a matter of  course by us.

Normally, respect for reality gains the day.

In reality, however, this presentation is 

made up of  innumerable single impressions 

(or unconscious traces of  them) , and this 

withdrawal of  libido is not a process that 

can be accomplished in a moment, but most 

certainly, as in mourning, be one in which 

progress is  long-drawn-out and gradual. 

Major Life Challenges: Grieving



N Engl J Med 2015;372:153-60.

Unusually severe & prolonged grieving that impairs function

2 to 3% of population worldwide

Death: Child or life partner, sudden violent death

High rates of suicidal ideation, risk-taking

Value of psychotherapy

Opportunity: Assist with Complicated Grief
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Yom-Tov, White, Horvitz. JMIR, 2014.

On Sensitivity, Ethics, Disclosure



On Sensitivity, Ethics, Disclosure

Horvitz & Mulligan, Science 2015

http://research.microsoft.com/en-us/um/people/horvitz/data_privacy_greater_good.htm

