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Abstract

In this paper, we initiate a formal study of transparency, which in recent years has become an increas-
ingly critical requirement for the systems in which people place trust. We present the abstract concept of
a transparency overlay, which can be used in conjunction with any system to give it provable transparency
guarantees, and then apply the overlay to two settings: Certificate Transparency and Bitcoin. In the latter
setting, we show that the usage of our transparency overlay eliminates the need to engage in mining and
allows users to store a single small value rather than the entire blockchain. Our transparency overlay is
generically constructed from a signature scheme and a new primitive we call a dynamic list commitment,
which in practice can be instantiated using a collision-resistant hash function.

1 Introduction

In the past decade, the trust that society places in centralized mechanisms run by government, network
operators, and financial institutions has been eroding, with various incidents demonstrating that high integrity
cannot be achieved solely through trust in one or a handful of parties. As a reaction to this erosion in trust,
two alternative architectures have emerged: users have either taken matters into their own hands and flocked
to systems that have no central point of trust, or they have increased pressure on central entities to provide
more openness and accountability.

A prominent example of a system with no central point of trust is Bitcoin [28], which was deployed in
January 2009. Bitcoin is a monetary system that is not backed by any government and is managed through a
consensus mechanism over a peer-to-peer network; there is thus no single entity that issues bitcoins or validates
individual transactions, and users of Bitcoin operate using pseudonyms that are not inherently tied to their
real-world identity. Bitcoin has achieved staggering success: as of this writing, its market capitalization is over
8 billion USD and its underlying structure has inspired hundreds of alternative cryptocurrencies; payment
gateways such as Bitpay and Coinbase allow thousands of vendors to accept it; a number of governments have
taken steps to legitimize Bitcoin via interfaces with traditional financial and regulatory infrastructures; and
major financial institutions such as JPMorgan Chase [30] and Nasdaq [29] have announced plans to develop
Bitcoin-based technologies.

Bitcoin and its variants have achieved a large degree of success, but denying all forms of central authority
arguably limits their ability to achieve widespread adoption. Thus, technological solutions have emerged
that instead seek to provide more visibility into currently centralized systems. One key example of such a
system is Certificate Transparency (CT) [21], which addresses shortcomings with SSL certificate authorities
(CAs) — which have ranged from failing to verify the identity of even major website owners such as Google
before issuing a cryptographic certificate [10, 19] to suffering major hacks [25] that result in hundreds of forged
certificates being issued [22] — and empowers users to verify for themselves the correct functioning of a system
with which they interact many times a day (e.g., any time they log in to a secure website, such as their email
provider). Unlike Bitcoin’s approach, CT does not substantially alter the underlying infrastructure (i.e., the
issuance of a certificate is largely unchanged), but instead provides a way for anyone to monitor and audit
the activities of CAs to ensure that bad certificates can be detected quickly, and misbehaving authorities
identified and excluded.

While Bitcoin and Certificate Transparency provide solutions in different settings, they in fact share some
common features; most notably, they rely on transparency as a means to achieve integrity. In Bitcoin, the
ledger of transactions — called the blockchain — is completely transparent, meaning all Bitcoin transactions
are globally visible. A similar property is provided in Certificate Transparency, in which a distributed set of
servers each maintain a globally visible log of all the issued certificates of which they are aware.

Furthermore, both Bitcoin and CT adopt a distributed solution, which is essential to avoid placing trust
in any single entity. Indeed, relying on one party creates (at worst) a system in which this central party has
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unilateral control over the information that is released, or (at best) a system with one central point of failure
on which attackers could target their efforts. By using a solution that is both transparent and distributed,
these systems intuitively provide some notion of public auditability : individual users can check for themselves
that only “good” events have taken place (e.g., in the case of Bitcoin, that all bitcoins have been spent at most
once) and detect misbehavior on the part of all actors within the system. Understanding the link between
transparency and the types of misbehavior that can be detected across a variety of settings is one of the main
motivations behind this work.

1.1 Our contributions.

Systems such as Bitcoin and CT seem to provide important transparency benefits (namely, the public au-
ditability mentioned above), but the similarities and differences between their benefits are not well understood,
and no formal analysis has demonstrated either the level of transparency that they provide or how this trans-
parency provides the intended benefits. In this paper, we initiate such a formal study. In doing so, we seek to
not only compare the different guarantees provided by these systems (although our analysis does accomplish
this), but more importantly to create an abstract transparency overlay that may be used to provide these
guarantees in a variety of applications beyond financial transactions and certificate issuance.

Before we can analyze these protocols or construct a transparency overlay, we must first consider the
crucial components that make up these systems. Our first step is thus to formalize — in Section 3.2 — a
primitive that we call a dynamic list commitment (DLC); a DLC can be thought of as a generalization of a
rolling hash chain or hash tree, and serves as the foundation for our construction of a transparency overlay.
After defining this underlying primitive, we then go on to present transparency overlays in Section 4; here
our design is heavily inspired by the design of CT. We begin with a formal model for transparency overlays,
and then go on to present an abstract transparency overlay and prove its security.

Armed with this abstract secure transparency overlay, we go on in Section 5 to demonstrate that CT is
a secure transparency overlay. We also demonstrate that our formal notion of security implies more intuitive
notions of security in this setting (i.e., that users should accept only “good” certificates) and discuss some
practical considerations.

In Section 6, we continue by turning our attention to the Bitcoin protocol. Here, we do not use the
protocol directly (as we argue that it clearly cannot satisfy our notions of security), but rather plug crucial
components of the protocol into our abstract transparency overlay. While this allows us to achieve a provably
secure transparency overlay for Bitcoin, it more importantly also implies that “regular” Bitcoin users (i.e.,
users interested only in transacting in bitcoin, rather than engaging in the mining process) can operate
significantly more efficiently, provided they are willing to outsource some trust to a distributed set of parties.
This result demonstrates that, in any setting in which users are willing to trust any distributed set of parties,
the full decentralization of Bitcoin is not needed, and the same goals can in fact be accomplished by a CT-
like structure, in which regular users store significantly less information about the transaction ledger and the
mining process is superfluous; i.e., the quadrillion hashes per second expended on Bitcoin mining (as of March
2016) can be eliminated without sacrificing security. Our formal analysis thus reveals the fine line separating
fully decentralized (and expensive) solutions like Bitcoin from distributed (and relatively cheap) solutions like
CT, and we hope that our results can help to inform future decisions about which protocol to adopt.

1.2 Related work.

We consider research that is related both in terms of the applications of Bitcoin and Certificate Transparency,
and in terms of the underlying primitives used to construct our transparency overlay.

An emerging line of work has both formalized some of the properties provided by the Bitcoin network and
bootstrapped Bitcoin to obtain provably secure guarantees in other settings. Garay et al. [17] analyzed the
so-called “backbone” protocol of Bitcoin and prove that it satisfies two important properties as long as the
adversary controls some non-majority percentage of the hashing power. Similarly, Bentov and Kumaresan [8]
provided a two-party computation built on top of (an abstracted version of) Bitcoin that provably achieves
a notion of fairness, and Andrychowicz et al. [3] used Bitcoin to build a provably fair system for multi-party
computation. Andrychowicz and Dziembowski [2] further formalized some of the fairness properties they
require from Bitcoin (and more generally from systems based on proof-of-work) and used them to construct a
broadcast protocol. Finally, on the privacy side, the Zerocash project [6] provides a cryptocurrency that has
provable anonymity guarantees, and Garman et al. [18] showed how to adapt the decentralized approach of
Bitcoin to achieve anonymous credentials. To the best of our knowledge, ours is the first paper to focus on
the transparency property of Bitcoin, rather than its privacy or fairness guarantees.
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(b) Bitcoin.

Figure 1: The basic structure for each of the settings in which we apply transparency.

Aside from CT, a number of other solutions exist for changing the way we interact with certificate au-
thorities; many of these solutions require a ground-up redesign of the CA ecosystem, which is why we chose
to examine CT instead and use it as our inspiration for an overlay system. Fromknecht et al. [16] propose
a decentralized PKI, based on Bitcoin and Namecoin, that eliminates the trust in centralized authorities
altogether. CONIKS [24] provides an approach to logging certificates that differs from CT in two key ways:
it focuses on user rather than website certificates, and largely because of this it provides a privacy-preserving
solution, in which certain aspects of the stored certificates (e.g., usernames) are kept hidden. The Accountable
Key Infrastructure [20] and the related ARPKI [4] both require a distributed infrastructure for not only the
storage of issued certificates (as CT does), but also for their issuance, thus focusing on the prevention rather
than just detection of misbehavior. Ryan [33] demonstrated how to extend CT to handle revocation of certifi-
cates. In a concurrent work, Dowling et al. [15] provided a different security model for CT and demonstrated
that if various properties of the underlying Merkle trees are satisfied then CT is provably secure in their
model. Although somewhat overlapping with our own work, their paper is focused firmly on CT and not on
the abstract properties of transparency overlays and how they can be applied across a variety of settings.

Finally, the main primitive underlying our transparency overlay (a dynamic list commitment) is primarily
a generalization of a Merkle tree [26], and is similar to the definition of a tamper-evident log given by Crosby
and Wallach [13]. It is also related to the notion of an authenticated data structure (ADS) [1, 32, 31] and the
notion of a cryptographic accumulator [7, 12, 11, 23]; indeed the application of ADSs to Bitcoin has already
been touched on in previous work [27] (but from the perspective of programming languages, and thus without
any consideration of security). Dynamic list commitments differ from these related primitives in terms of the
security model, however, and as a result we can provide more efficient constructions while still satisfying a
notion of provable security.

2 Background

2.1 Certificate Transparency

Certificate Transparency (CT) was proposed in 2011 by Ben Laurie and Adam Langley as a way to increase
transparency in the process of issuing certificates, so that certificate authorities (CAs) can be held responsible
for their actions and bad certificates can be caught and revoked early on. The basic process of issuing
certificates operates as depicted in Figure 1a: a CA issues a certificate to a website operator, who then
publishes this certificate so that users can check it. Certificate Transparency then provides an extra layer
on top of this basic interaction to provide transparency; in fact, as we will see in Section 4, our design of a
transparency overlay is heavily inspired by the CT design.

Briefly, CT introduces three additional actors: a log server, who is responsible for keeping track of issued
certificates, an auditor, who is responsible (on behalf of the client) for keeping track of whether given certifi-
cates are in the log or not, and a monitor, who is responsible for checking the quality of the certificates in
the log. As we use these additional actors in our general transparency overlay, we defer further discussion of
their roles and actions to Section 4.1. In Section 5, we prove that CT provides a provably secure transparency
overlay, thus (provably) providing the intuitive security properties that one would hope to achieve.

2.2 Bitcoin

Bitcoin is a decentralized cryptocurrency that was introduced in 2008 [28] and deployed on January 3 2009.
We briefly sketch the main properties of Bitcoin and its underlying blockchain technology here, and refer the
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reader to Bonneau et al. [9] for a more comprehensive overview.
Briefly, Bitcoin operates as depicted in Figure 1b. A sender, identified using a pseudonym or address, has

some number of bitcoins stored with this address; i.e., within the Bitcoin network, this address is acknowledged
as the owner of these bitcoins. To transfer ownership of these bitcoins to some receiver, the sender first creates
a transaction to send them to the receiver, as identified by whichever address she has given to the sender.
The transaction is signed to ensure that only the sender can give away his own bitcoins.

After forming this transaction, the sender broadcasts it to the Bitcoin network, where it eventually reaches
a miner, who acts to seal the transaction into a block. The miner broadcasts this block, containing the
transaction, to the network, where it eventually reaches the receiver, who can confirm the transaction and
its position within the Bitcoin ledger (i.e., the blockchain) to satisfy herself that she is now the owner of the
bitcoins.

Because the Bitcoin blockchain is globally visible, it already provides a degree of transparency that is
higher than that of traditional financial transactions. In Section 6, we apply a transparency overlay on top
of Bitcoin and demonstrate that it provides a significantly more efficient way for Bitcoin users to participate
in transactions and allows hashing to be eliminated from the system.

3 Definitions and Notation

In this section, we define various notions that will be used throughout the rest of the paper. In particular,
we formalize dynamic list commitments in Section 3.2, which can be thought of as a generalization of Merkle
trees and allow us to construct high-integrity logs.

3.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S| denotes its size and x
r←− S

denotes sampling a member uniformly from S and assigning it to x. λ ∈ N denotes the security parameter
and 1λ denotes its unary representation. ε denotes the null value.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands for “polynomial-time.” By
y ← A(x1, . . . , xn;R) we denote running algorithm A on inputs x1, . . . , xn and random coins R and assigning

its output to y. By y
r←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for coins R sampled uniformly at

random. By [A(x1, . . . , xn)] we denote the set of values that have positive probability of being output by A
on inputs x1, . . . , xn. Adversaries are algorithms.

For interactive protocols, we use the notation of Bellare and Keelveedhi [5]. For completeness, we include
the formal notion of defining and executing interactive protocols in Appendix A. Briefly, the behavior of a
stateful participant party that is given m during the i-th round of the j-th execution of a protocol Prot can
be defined as (stateparty,m

′, p, out)
r←− Prot[party, i, j](1λ, stateparty,m), where p indicates the party to which

it is sending m′; the execution of the entire interactive protocol can be defined by outputs
r←− Run(1λ,Prot,

Parties, inputs); and the message sent during the protocol (i.e., the transcript) can be defined by M
r←−

Msgs(1λ,Prot,Parties, inputs).
We use games in security definitions and proofs. A game G has a main procedure whose output is the

output of the game. Pr[G] denotes the probability that this output is true.

3.2 Dynamic list commitments

We define a dynamic list commitment (DLC), which allows one to commit to a list of elements in such a way
that (1) the list represented by the commitment can be updated only by having new elements appended to
the end, and (2) given just the list commitment, one can efficiently prove both the append-only property of
the list and that a given element is in the list.

One common example of a DLC is a hash tree, and in particular a Merkle tree, in which the root hash
acts as the commitment and one can use the hashes of intermediate nodes to prove the above properties.
(Indeed, this is what CT uses.) Our basic formalization is similar to the definition of a tamper-evident history
system [13], but we also include an augmented version that considers additional properties one can use when
operating on ordered lists.

3.2.1 A basic formalization for general lists.

We define a dynamic list commitment DLC as a collection of the following algorithms:
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• c← Com(list) creates the commitment c and 0/1← CheckCom(c, list) checks that c is a commitment
to list;

• cnew← Append(list∆, cold) updates the commitment to take into account the new elements in list∆;

• π← ProveAppend(cold, cnew, list) proves that cnew was obtained from cold solely by appending elements
to an earlier version of list and 0/1← CheckAppend(cold, cnew, π) checks this proof;

• π← ProveIncl(c, elmt, list) proves that elmt is in list (as represented by c); and 0/1← CheckIncl(c, elmt,
π) checks this proof.

Definition 3.1. A DLC is correct if the following properties are satisfied for all lists list and list∆, for all
elmt ∈ list, and for c← Com(list):
• CheckCom(c, list) = 1;

• CheckIncl(c, elmt,ProveIncl(c, elmt, list)) = 1;

• Append(list∆, c) = Com(list‖list∆); and

• CheckAppend(c,Append(list∆, c),ProveAppend(c,Append(list∆, c), list)) = 1.

We say that a DLC is compact if Com(list)| � |list| for all sufficiently long lists list. For security, intuitively
a DLC should be (1) binding, which means that a commitment cannot represent two different lists, (2) sound,
which means that it should be hard to produce a valid proof of inclusion for an element that is not in the
list, and (3) append-only, which means that it should be hard to produce a proof that a list has only been
appended to if other operations (e.g., deletions) have taken place. Formally, these properties can be defined
as follows:

Definition 3.2 (Basic). Define Advsdlc,A(λ) = Pr[GA
s (λ)] for s ∈ {bind, sound, append}, where these games

are defined as follows:

main Gbind
A (λ)

(c, list1, list2)
r←− A(1λ)

return (CheckCom(c, list1) ∧ CheckCom(c, list2) ∧ (list1 6= list2))

main Gsound
A (λ)

(c, list, elmt, π)
r←− A(1λ)

return (CheckCom(c, list) ∧ CheckIncl(c, elmt, π) ∧ (elmt /∈ list))

main Gappend
A (λ)

(c1, c2, list2, π)
r←− A(1λ)

return (CheckCom(c2, list2) ∧ CheckAppend(c1, c2, π) ∧ (6 ∃j : CheckCom(c1, list2[1 : j])))

Then the DLC is binding if for all PT adversaries A there exists a negligible function ν(·) such that Advbind
dlc,A(λ) <

ν(λ), sound if for all PT adversaries A there exists a negligible function ν(·) such that Advsound
dlc,A (λ) < ν(λ),

and append-only if for all PT adversaries A there exists a negligible function ν(·) such that Advappend
dlc,A (λ) <

ν(λ).

3.2.2 An augmented formalization for ordered lists.

It will also be useful for us to consider a special type of DLC, in which the elements in the list have some kind
of order imposed on them. In particular, this allows us to more efficiently perform two additional operations:
demonstrate that two DLCs are inconsistent (i.e., that they are commitments to strictly distinct or forking
lists), and demonstrate that a given element is not in the list represented by a given commitment. As we
will see in our applications later on, these operations are crucial for providing evidence that certain types of
misbehavior have taken place.

In addition to the algorithms required for a basic DLC, we now require a notion of timing (which may not
be the actual time, but rather any representation that allows us to impose an ordering): for every element
elmt in a list, we assume there exists a function time(·) that returns a value t, and that a global ordering
exists for this function, so that we can also define a Boolean function 0/1 ← isOrdered(list). Using this, we
define a notion of consistency for DLCs as follows:

Definition 3.3 (Consistency). A tuple (c, t, list) is consistent if c is a commitment to the state of list at time
t. Formally, we consider a function isConsistent such that isConsistent(c, t, list) = 1 if and only if there exists
a j, 1 ≤ j ≤ len(list), such that (1) CheckCom(c, list[1 : j]) = 1, (2) time(list[j]) ≤ t, (3) j = len(list) or
time(list[j + 1]) ≥ t), and (4) isOrdered(list).
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We can now define four additional algorithms as follows:

• π← DemoInconsistent(list, c′, t′) proves that list is inconsistent with c′ at time t′ and

• 0/1← CheckInconsistent(c′, t′, c, π) checks this proof;

• π← DemoNotIncl(list, elmt) proves that elmt is not in the ordered list list; and

• 0/1← CheckNotIncl(c, elmt, π) checks this proof.

The security properties in the augmented setting are relatively intuitive: an adversary should not be
able to (1) produce an inconsistent tuple (c, t, list) such that one cannot demonstrate their inconsistency, (2)
produce an ordered list and element such that one cannot demonstrate the non-inclusion of the element in
the list, (3) demonstrate an inconsistency that does not exist, or (4) prove non-inclusion of an element that
is in fact in an ordered list. We define these formally as follows:1

Definition 3.4 (Augmented). Define Advsdlc,A(λ) = Pr[GA
s (λ)] for s ∈ {p-cons, p-incl, uf -cons, uf-incl},

where these games are defined as follows:

main Gp-cons
A (λ)

(c, t, list)
r←− A(1λ)

b← CheckInconsistent(c, t,Com(list),DemoInconsistent(list, c, t))
return ((b = 0) ∧ (isConsistent(c, t, list) = 0) ∧ isOrdered(list))

main Gp-incl
A (λ)

(list, elmt)
r←− A(1λ)

b← CheckNotIncl(Com(list), elmt,DemoNotIncl(list, elmt))
return ((b = 0) ∧ (elmt /∈ list) ∧ isOrdered(list))

main Guf-cons
A (λ)

(c1, t, c2, list2, π)
r←− A(1λ)

return (CheckCom(c2, list2) ∧ isConsistent(c1, t, list2) ∧ CheckInconsistent(c1, t, c2, π))

main Guf-incl
A (λ)

(c, list, elmt, π)
r←− A(1λ)

return (CheckCom(c, list) ∧ (elmt ∈ list) ∧ CheckNotIncl(c, elmt, π) ∧ isOrdered(list))

Then the DLC satisfies provable inconsistency if for all PT adversaries A Advp-cons
dlc,A (λ) = 0, provable non-

inclusion if for all PT adversary A Advp-incl
dlc,A (λ) = 0, unforgeable inconsistency if for all PT adversaries A

there exists a negligible function ν(·) such that Advuf-cons
dlc,A (λ) < ν(λ), and unforgeable non-inclusion if for all

PT adversaries A there exists a negligible function ν(·) such that Advuf-incl
dlc,A (λ) < ν(λ).

3.2.3 Two instantiations of augmented DLCs.

To demonstrate that dynamic list commitments exist, we provide two instantiations; both can be found
in Appendix B and derive their security from the collision resistance of a hash function. Briefly, our first
instantiation is essentially a rolling hash chain: new elements appended to the list are folded into the hash (i.e.,
cnew ← H(cold‖elmtnew)), and proofs about (in)consistency and (non-)inclusion reveal selective parts of the list.
This first instantiation thus demonstrates the feasibility of dynamic list commitments (and is conceptually
quite simple), but the proofs are linear in the size of the list, which is not particularly efficient. Thus, our
second instantiation is essentially a Merkle tree, which allows us to achieve proofs that are logarithmic in the
size of the list.

4 Transparency Overlays

In this section, we present our main contributions. First, in Sections 4.1 and 4.2, we introduce both basic
and augmented formal models for reasoning about transparency. Then, in Sections 4.3 and 4.4 we present
a generic transparency overlay and prove its security. To instantiate this securely (as we do in Sections 5
and 6), one then need only provide a simple interface between the underlying system and the overlay.

1In our games below, we require as a winning condition that the list is ordered. This is because our constructions make this
assumption in order to achieve better efficiency, but one could also present constructions for which this extra winning condition
would not be needed.
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4.1 Basic overlays

In order for a system to be made transparent, we must provide an efficient mechanism for checking that the
system is running correctly. Our setting overlays three additional parties on top of an existing system Sys: a
log server LS, an auditor Auditor, and a monitor Monitor. The role of the log server is to take certain events
in the system’s operation and enter them into a publicly available log. The role of the auditor is to check —
crucially, without having to keep the entire contents of the log — that specific events are in the log. Finally,
the role of the monitor is to flag any problematic entries within the log. Collectively then, the auditor and
monitor act to hold actors within the system responsible for the creation of (potentially conflicting) events.

We assume that each of these parties is stateful: the log server maintains the log as state, so stateLS =
log; the auditor maintains a snapshot (i.e., some succinct representation of the current log) as state, so
stateAu = snap; and the monitor maintains a snapshot, a list of bad events, and a list of all events, so
stateMo = (snap, eventsbad, events).

A transparency overlay then requires five interactive protocols; these are defined abstractly as follows:2

GenEventSet is an interaction between the actor(s) in the system that produces the events to be logged. The

protocol is such that eventset
r←− Run(1λ, GenEventSet,Sys, aux).

Log is an interaction between one or more of the actors in the system and LS that is used to enter events

into the log. The protocol is such that (b, ε)
r←− Run(1λ, Log, (Sys,LS), (eventset, ε)), where b indicates

whether or not the system actor(s) believes the log server behaved honestly.

CheckEntry is an interaction between one or more of the actors in the system, Auditor, and LS that is used to

check whether or not an event is in the log. The protocol is such that (b, b′, ε)
r←− Run(1λ, CheckEntry, (Sys,

Auditor,LS), (event, ε, ε)), where b indicates whether or not the system actor(s) believes the event to be in
the log and b′ indicates whether or not the auditor believes the log server behaved honestly in the interaction.

Inspect is an interaction between Monitor and LS that is used to allow the monitor to inspect the contents of

the log and flag any suspicious entries. The protocol is such that (b, ε)
r←− Run(1λ, Inspect, (LS,Monitor),

(ε, ε)), where b indicates whether or not the monitor believes the log server behaved honestly in the inter-
action.

Gossip is an interaction between Auditor and Monitor that is used to compare versions of the log and detect any
inconsistencies. If any misbehavior on behalf of the log server is found, then both parties are able to output
evidence that this has taken place. The protocol is such that (evidence, evidence)

r←− Run(1λ, Gossip,
(Auditor,Monitor), (ε, ε)).

We also require the following (non-interactive) algorithms:

(pkLS, skLS)
r←− GenLogID(1λ) is used to generate a public and secret identifier for the log server; and

0/1← CheckEvidence(pkLS, evidence) is used to check if the evidence against the log server identified by
pkLS is valid.

From a functionality standpoint, we would like the protocols to be correct, meaning all parties should be
satisfied by honest interactions, and compactly auditable, meaning the size of a snapshot is much smaller than
the size of the log.

We define security for a basic transparency overlay in terms of two properties: consistency, which says
that a potentially dishonest log server cannot get away with presenting inconsistent versions of the log to the
auditor and monitor, and non-frameability, which says that potentially dishonest auditors and monitors (and
even actors in the original system) cannot blame the log server for misbehavior if it has behaved honestly.
Participants can thus be satisfied that they are seeing the same view of the log as all other participants, and
that the interactions they have really are with the log server.

To formalize consistency, we consider a game in which the adversary takes on the role of the log server
and is allowed to interact (via the MsgAu and MsgMo oracles, respectively) with the auditor and monitor.
The adversary wins if there is an event that is not in the list maintained by the monitor but that the auditor
nevertheless perceives as being in the log (the third winning condition of Definition 4.1), yet the auditor and
monitor are unable to produce valid evidence of this inconsistency (the first two winning conditions). For ease
of formal exposition, we (1) assume that in the CheckEntry protocol the first message sent to the auditor is
the event to be checked and the last message sent by the auditor is a bit indicating whether the event is in
the log, and (2) require that the monitor must have a newer snapshot than the auditor, but can naturally
extend our definition to cover other configurations as well.

2In each protocol, we also allow the participants to output fail, which indicates that they believe they were given improperly
formatted inputs.
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Definition 4.1 (Consistency). Define Advcons
trans,A(λ) = Pr[Gcons

A (λ)], where Gcons
A (λ) is defined as follows:

main Gcons
A (λ)

events← ∅; eventspass ← ∅
pkLS

r←− AMsgAu,MsgMo(1λ)

evidence
r←− Run(1λ, Gossip, (Auditor,Monitor), (ε, ε))

return ((CheckEvidence(pkLS, evidence) = 0) ∧
(time(stateMo[snap]) ≥ time(stateAu[snap])) ∧
(eventspass \ stateMo[events] 6= ∅))

MsgAu(i, j,m)

(stateAu,m
′, p, out)

r←− CheckEntry[Auditor, i, j](1λ, stateAu,m)
if (i = 1) events[j]← m
if (out 6= ⊥) ∧ (m′ = 1) eventspass ← eventspass ∪ {events[j]}
return m′

MsgMo(i, j,m)

(stateMo,m
′, p, out)

r←− Inspect[Monitor, i, j](1λ, stateMo,m)
return m′

Then the transparency overlay satisfies consistency if for all PT adversaries A there exists a negligible function
ν(·) such that Advcons

trans,A(λ) < ν(λ).

Next, to formalize non-frameability, we consider an adversary that wants to frame an honest log server;
i.e., to produce evidence of its “misbehavior.” In this case, we consider a game in which the adversary takes
on the role of the auditor, monitor, and any actors in the system, and is allowed to interact (via the Msg
oracle) with the honest log server. The adversary wins if it is able to produce evidence that passes verification.

Definition 4.2. Define Advframe
trans,A(λ) = Pr[Gframe

A (λ)], where Gframe
A (λ) is defined as follows:

main Gframe
A (λ)

(pkLS, skLS)
r←− GenLogID(1λ)

evidence
r←− AMsg(1λ, pkLS)

return CheckEvidence(pkLS, evidence)

Msg(Prot, i, j,m)

if (Prot /∈ {Log, CheckEntry, Inspect}) return ⊥
(stateLS,m

′, p, out)
r←− Prot[LS, i, j](1λ, stateLS,m)

return m′

Then the transparency overlay satisfies non-frameability if for all PT adversaries A there exists a negligible
function ν(·) such that Advframe

trans,A(λ) < ν(λ).

We then say that a basic transparency overlay is secure if it satisfies consistency and non-frameability.

Comparison with concurrent work With respect to the security model of Dowling et al. [15], their
model requires only that the monitor and auditor produce evidence of misbehavior in the case where the log
server fails to include an event for which it has issued a receipt (which we consider in the next section). Our
model, on the other hand, also produces evidence in the case where the log has given inconsistent views to
the two parties; this type of evidence seems particularly valuable since this type of misbehavior is detected
only after the fact. This difference allows them to present a simpler definition of non-frameability, as they do
not have to worry about malicious monitors and auditors forging this type of evidence.

4.2 Pledged overlays

In the basic setting described, log servers can be held responsible if they attempt to present different views
of the log to the auditor and monitor. If log servers simply fail to include events in the log in the first place,
however, then there is currently no way to capture this type of misbehavior. While in certain settings the log
server could plausibly claim that it never received an event rather than ignoring it, if the log server issues
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promises or receipts to include events in the log then we can in fact enforce inclusion, or at least blame the
log server if it fails to do so.

Formally, we capture this as an additional security property, accountability, which says that evidence can
also be used to implicate log servers that promised to include events but then did not. In the game, the
adversary then takes on the role of the log server and is allowed to interact arbitrarily with the actor(s) in the
system, auditor, and monitor. It wins if there is an event that it has pledged to include but that the auditor
and monitor do not believe to be in the log (the third winning condition of Definition 4.3), yet the auditor
and monitor are unable to produce evidence of this omission (the first two winning conditions). For ease of
formal exposition, we assume Sys produces its final output before Auditor in the CheckEntry protocol, but
again note that this does not sacrifice generality.

Definition 4.3 (Accountability). Define Advtrace
trans,A(λ) = Pr[Gtrace

A (λ)], where Gtrace
A (λ) is defined as follows:

main Gtrace
A (λ)

events1, events2, eventspledged, eventsfail, a← ∅
pkLS

r←− AMsgSys,MsgAu,MsgMo(1λ)

evidence
r←− Run(1λ, Gossip, (Auditor,Monitor), (ε, ε))

return ((CheckEvidence(pkLS, evidence) = 0) ∧
(time(stateMo[snap]) ≥ time(stateAu[snap]))∧
((eventspledged ∩ eventsfail) \ stateMo[events] 6= ∅))

MsgSys(Prot, i, j,m)

a[i, j]← m
if (Prot = Log)

if (i = 1) events1[j]← m[events]
if (out = 1) eventspledged ← eventspledged ∪ events1[j]

if (Prot = CheckEntry) ∧ (out = 0) eventsfail[j]← events2[j]

(a[i+ 1, j],m′, p, out)
r←− Prot[Sys, i, j](1λ, a[i, j],m)

return m′

MsgAu(Prot, i, j,m)

if (Prot = CheckEntry)
if (i = 1) events2[j]← m
if (out = 0) eventsfail[j]← ⊥

(stateAu,m
′, p, out)

r←− Prot[Auditor, i, j](1λ, stateAu,m)
return m′

MsgMo(i, j,m)

(stateMo,m
′, p, out)

r←− Inspect[Monitor, i, j](1λ, stateMo,m)
return m′

Then the transparency overlay satisfies accountability if for all PT adversaries A there exists a negligible
function ν(·) such that Advtrace

trans,A(λ) < ν(λ).

We then say that a pledged transparency overlay is secure if it satisfies consistency, non-frameability, and
accountability.

4.3 A generic pledged transparency overlay

We now present a generic version of a pledged transparency overlay. We begin by introducing algorithms for
performing various operations in the overlay, and then describe the interactive protocols from Section 4.1 in
terms of these algorithms and the algorithms for a dynamic list commitment (DLC) and a signature scheme
(KeyGen,Sign,Verify). For ease of exposition we assume that various objects (snapshots, receipts, etc.) contain
only the fields necessary to make the protocol work, but could naturally extend our algorithms to cover more
general configurations as well.

To start, an event set eventset contain (at least) a list of events events; a snapshot snap = (c, t, σ) contains
a DLC, timing information, and an unforgeable signature; a receipt rcpt = (pk , t, σ) contains a public key,
timing information, and an unforgeable signature; and a log log = (snap, events) contains a snapshot and a list
of events. We denote these subcomponents using bracket notation; e.g., we use snap[c], or — where subscripts
make it appropriately clear — use ci to denote snapi[c].
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Sys(eventset) LS(logLS)

1
eventset //

2 if (isOrdered(eventset[events]) = 0) return fail

3 if (time(eventset[events][1]) < time(log[events][max])) return fail

4 rcpt
r←− FormRcpt(event) ∀event ∈ eventset[events]

−→
rcptoo

5 if ∃(event, rcpt) s.t. (CheckRcpt(event, rcpt) = 0) return 0 logLS
r←− UpdateLog(logLS, eventset[events])

6 return 1 return ε

Figure 2: The Log protocol for pledged transparency overlays.

To perform basic operations on these objects, we also introduce algorithms for forming and verifying
snapshots and receipts, and for updating the log. These are defined — with respect to a notion of timing t
and a keypair (pkLS, skLS) — as follows:

FormSnap(c, t)

return (c, t,Sign(skLS, (c, t)))

CheckSnap(snap)

return Verify(pkLS, (snap[c], snap[t]), snap[σ])

FormRcpt(log, event)

return (pkLS, t,Sign(skLS, (t, event)))

CheckRcpt(event, rcpt)

return Verify(pkLS, (rcpt[t], event), rcpt[σ])

UpdateLog(log, events)

events′ ← log[events]‖events
c′ ← Append(events, log[snap][c])
snap′ ← FormSnap(c′, t)
return (snap′, events′)

Briefly, in the Log protocol (Figure 2), an event set is given as input to the actor(s) in the system; this is
created by GenEventSet, which we describe for our individual applications in Sections 5 and 6 but leave here
as an abstract interaction. This event set is sent to the log server, who first checks if it is well formed. The log
server then provides a receipt for every event in the set, and sends the receipts back to the system actor(s). If
any of the receipts are invalid, the system rejects the interaction, and otherwise it accepts. Either way, the log
server updates the log; in our protocol specification here, the log server updates the log immediately, but we
discuss in Section 5.3 how this process can be batched and the promises of the log server altered accordingly.

Next, in the CheckEntry protocol (Figure 3), some actor in the system sends an event and a receipt to
the auditor, who first checks that the receipt is valid. If it is, then the auditor checks if the event already falls
within its current purview; i.e., if it falls within the log that the auditor already knows about (according to
its snapshot). If it does, then the auditor skips to asking the log server for a proof of inclusion of this event;
if not, the auditor must update its snapshot and check that the new snapshot is consistent with the old one.
Once the auditor has the proof of inclusion (either after updating or not), it returns to the client whether or
not the proof verifies; the client returns whatever it receives from the auditor, and the auditor returns b = 0 if
the protocol has failed in some way (i.e., the updated snapshot was inconsistent with the old one) and b = 1
otherwise.

Next, in the Inspect protocol (Figure 4), the monitor sends its current snapshot to the log server, and the
log server responds with all events that have been logged since then, along with an updated snapshot. If this
list of appended events is valid (i.e., ordered and consistent with the new snapshot), the monitor can update
its records and look for any bad events in this new list. It returns b = 1 if the protocol has gone smoothly;
i.e., if the new list and snapshot seem to have been formed appropriately.

Finally, in the Gossip protocol (Figure 5), the auditor and monitor begin by exchanging snapshots, and by
ensuring that each snapshot is valid. The monitor then attempts to demonstrate any inconsistencies between
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Sys(event) Auditor(snapAu, eventsbad) LS(logLS)

1
event,rcpt //

2 b← CheckRcpt(event, rcpt)
boo

3 if (b = 0) return fail

4 update← (rcpt[t] > tAu)

(if update)

5

snapAu //

6 π ← ProveAppend(cAu, cLS, eventsLS)
snapLS,πoo

7 b← CheckSnap(snapLS) ∧ CheckAppend(cAu, cLS, π)
boo

8 if (b = 0) return 0

9 snapAu ← snapLS

10 b← (rcpt[t] ≤ tAu)
boo

11 if (b = 0) return fail

12

event,snapAu //

13 π′ ← ProveIncl(cAu, event, eventsLS)
π′

oo

14 b← CheckIncl(cAu, event, π
′)

boo return ε

15 return b if (b = 0) eventsbad ← eventsbad‖(event, rcpt)
16 return 1

Figure 3: The CheckEntry protocol for pledged transparency overlays. The parts of the protocol that may not be
carried out (depending on the ‘if’ clause) are marked with dashed lines.

the two snapshots (i.e., demonstrate that they represent forking or distinct logs) and — if any inconsistencies
do exist — this is returned as evidence of the log server’s misbehavior.

To augment the protocol for pledged overlays, we include in Figure 5 a further optional interaction in
which the auditor sends to the monitor all events for which the CheckEntry protocol failed, to see if they are
being monitored; these are stored in a list eventsbad that is now part of the auditor’s state and updated in
the CheckEntry protocol (line 15 of Figure 3). This allows the auditor and monitor to detect and provide
evidence for the additional type of misbehavior in which the log server simply drops events from the log. This
means that the auditor and monitor can provide two types of evidence: evidence that the log server presented
them with forked or distinct views of the log, or evidence that the log server reneged on the promise it gave
in a receipt. We thus instantiate the algorithm CheckEvidence as follows:

CheckEvidence(pkLS, evidence)

if (evidence = ⊥) return 0
(snap1, snap2, (event, rcpt), π)← evidence
if (CheckSnap(snap1) = 0) return 0
if (CheckSnap(snap2) = 0) return 0
if ((event, rcpt) = (⊥,⊥)) return (CheckInconsistent(c1, t1, c2, π) ∧ (t1 ≤ t2))
return (CheckRcpt(event, rcpt) ∧ CheckNotIncl(c2, event, π) ∧ (rcpt[t] ≤ t2))

Finally, our gossip protocol assumes the monitor has a more up-to-date snapshot than the auditor, which
protects against an adversarial log server trivially winning the consistency game (Definition 4.1) by ignoring
the monitor. One could also imagine a protocol in which the monitor pauses, updates (using the Inspect

protocol), and then resumes its interaction with the auditor, in which case the extra winning condition in
Definition 4.1 could be dropped.

Theorem 4.4. If the DLC is secure in the augmented setting and the signature scheme is unforgeable (i.e.,
EUF-CMA secure), then the protocols presented in Figures 2-5 and the algorithms presented above comprise
a secure pledged transparency overlay, as defined in Section 4.2.

A proof of this theorem can be found in Appendix C. Briefly, consistency follows from three properties
of the dynamic list commitment: provable inconsistency, append-only, and soundness. Together, these ensure
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Monitor(snapMo, eventsbad, eventsMo) LS(log)

1

snapMo //

2 j ← min{i | CheckCom(cMo, events[1 : i])}

3 events∆ ← events[j + 1: ]
snap,events∆oo

4 if (CheckSnap(snap) = 0) ∨ (isOrdered(events∆) = 0) return 0 return ε

5 if (time(events∆[1]) < tMo) return 0

6 c′ ← Append(events∆, cMo)

7 if (c′ 6= snap[c]) return 0

8 snapMo ← snap; eventsMo ← eventsMo‖events∆
9 update eventsbad using out-of-band checks

10 return 1

Figure 4: The Inspect protocol.

that if the log server presents an inconsistent view of the log to the auditor and monitor, then the commitment
seen by the auditor in its snapshot — which, crucially, was updated using ProveAppend and used to demon-
strate the inclusion of events — is inconsistent with the list seen by the monitor. By provable inconsistency,
the monitor can thus provide a proof of inconsistency that comprises valid evidence of the log server’s mis-
behavior. Non-frameability, on the other hand, follows from the unforgeability of the signature scheme and
from the difficulty of forging either a proof of inconsistency or a proof of non-inclusion. Finally, accountability
follows from the provable non-inclusion of the DLC, as if an event is missing from the log then the auditor
and monitor should be able to provide valid evidence of this (in the form of a receipt promising to include a
given event and a proof of non-inclusion of that event).

4.4 A generic basic transparency overlay

A basic transparency overlay is essentially a simpler version of a pledged transparency overlay, so we do not
give a full description of the protocols here, but instead describe the necessary modifications that must be
made.

The most obvious modification is that all of the parts that involve receipts do not exist in the basic
variant. Thus, the Log protocol for a basic transparency overlay omits lines 4-5 from Figure 2 but otherwise
remains the same. Next, in the CheckEntry protocol, the auditor now cannot use the receipt to check if it
needs to update, so it must use time(event) instead. The Inspect protocol contains no mention or usage of
receipts, and thus is exactly the same in the basic variant. This leaves the Gossip protocol, in which the only
significant modification is that basic transparency overlays cannot provide the second type of evidence (in
which the auditor and monitor use the receipt to prove that the log server promised to include an event but
then did not), so do not attempt to produce it (lines 9-12 of Figure 5). This also means that evidence consists
only of the two snapshots and a proof. Using this simpler form of evidence, the CheckEvidence algorithm for
basic overlays then runs as follows:

CheckEvidence(pkLS, evidence)

if (evidence = ⊥) return 0
(snap1, snap2, π)← evidence
if (CheckSnap(snap1) = 0) return 0
if (CheckSnap(snap2) = 0) return 0
return (CheckInconsistent(c1, t1, c2, π) ∧ (t1 ≤ t2))

As the basic transparency overlay thus involves only minor modifications to the pledged transparency
overlay, we do not prove its security from scratch, but instead prove the following theorem as a special case
of Theorem 4.4.

Theorem 4.5. If the DLC is secure in the augmented setting and the signature scheme is unforgeable (i.e.,
EUF-CMA secure), then the modified protocols and algorithms described above comprise a secure basic trans-
parency overlay, as defined in Section 4.1.
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Auditor(snapAu, events
(Au)
bad ) Monitor(snapMo, events

(Mo)
bad , events)

1

snapAu //

2 bAu ← CheckSnap(snapAu)
snapMooo

3 bMo ← CheckSnap(snapMo)

4 if (bMo = 0) return fail if (bAu = 0) return fail

5 if (tAu > tMo) return fail if (tAu > tMo) return fail

6 π ← DemoInconsistent(events, tAu)
πoo

7 b← CheckInconsistent(cAu, tAu, cMo, π) b← CheckInconsistent(cAu, tAu, cMo, π)

8 if (b = 1) return (snapAu, snapMo,⊥, π) if (b = 1) return (snapAu, snapMo,⊥, π)

(repeat for all (event, rcpt) ∈ events
(Au)
bad )

9
event,rcpt //

10 π ← DemoNotIncl(cMo, events, event)
πoo

11 b← CheckNotIncl(cMo, event, π) b← CheckNotIncl(cMo, event, π)

12 if (b = 1) return (snapAu, snapMo, (event, rcpt), π) if (b = 1) return (snapAu, snapMo, (event, rcpt), π)

13 return fail return fail

Figure 5: The Gossip protocol for pledged transparency overlays. The optional part of the protocol is marked with
dashed lines.

Proof. (Sketch.) Correctness and compact auditability follow from the same arguments as in the proof of
Theorem 4.4. The proof of consistency is nearly identical, with the main differences being that there are
fewer cases to rule out if CheckEvidence(pkLS, evidence) = 0 (as only one type of evidence can be produced),
and that the maps QAu and QMo used in the proof store slightly different values.

Similarly, the proof of non-frameability is essentially a shortened version of the proof of Theorem 4.4. In
particular, the lack of receipts in the basic setting means that some of the bad events introduced in this proof
are irrelevant, so we need only consider events E1 (the event in which a proof of inconsistency is faked) and
E2 (the event in which a snapshot is forged). The reductions that bound the probability of these events are
nearly identical to the reductions in the proof of Equation 3 and 4 respectively.

5 Certificate Transparency

In this section, we describe how CT instantiates a pledged transparency overlay (as defined formally in
Section 4.2), discuss how the formal notions of overlay security imply more intuitive notions of security
specific to the setting of issuing certificates, and finally discuss the requirements of a practical deployment of
CT.

5.1 CT is a secure pledged overlay

As depicted in Section 2, Certificate Transparency has three actors in the system Sys: a certificate authority
CA, a website owner Site, and a client Client. One of the first two actors must participate in the Log

protocol,3 to ensure that the certificate issued by CA to Site ends up in the log, and the client participates in
the CheckEntry protocol to check that the certificate presented to it by a website is in the log.

In the parlance of CT, an event is a (basic) certificate cert = (pkname, σCA), where σCA is the CA’s signature
on the site’s public key pkname,

4 a receipt is a signed certificate timestamp (SCT), and a snapshot is a signed
tree head (STH). For the notion of timing needed for snapshots and receipts, one could pick the current local
time of the log server and either use this value directly as t or incorporate into it some buffer period, which

3This means that either the website obtains the signed certificate from the CA and then goes on to enter it into the log, or
the CA signs the certificate and enters it into the log before returning the extended certificate to the website.

4For simplicity, we include here only the most basic version of the information that needs to be checked for and included in
a certificate.
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is referred to in the CT documentation as the maximum merge delay (MMD). We discuss this further in
Section 5.3. Finally, CT instantiates GenEventSet as follows:

Site(pkname) CA
pkname //

σ
r←− Sign(skCA, pkname)

cert← (pkname, σ)
certoo

return {cert} return {cert}

The rest of the protocols needed for the transparency overlay can be instantiated exactly as in Section 4.3,
so Theorem 4.4 carries over directly and we can see that CT provides a secure pledged transparency overlay.

5.2 Further security implications

We have just demonstrated that CT provides a secure transparency overlay, but it is not clear what this
means for the specific setting of certificate issuance. To explore this, we first remind ourselves of the security
of the underlying system (i.e., the issuance of basic certificates), in which (1) it should be difficult to produce
a basic certificate without contacting the CA, and (2) an honest client should accept only (basic) certificates
that verify. These are clearly satisfied assuming the correctness and unforgeability of the signature scheme.

Combining the underlying issuance security with the security of the overlay, we can argue that three more
intuitive security goals are largely satisfied. First, an extended certificate (i.e., a certificate augmented
with an SCT) should not pass verification if it has not been jointly produced by the CA and
log server. This holds because the underlying issuance security implies that it is difficult to produce cert
without the CA, and non-frameability implies that it is difficult to produce rcpt without the log server, so it
should be difficult to produce (cert, rcpt) without both the CA and the log server.

Second, honest clients shouldn’t accept “bad” certificates; i.e., certificates that are either
improperly formatted or not being monitored. The underlying issuance security says that if cert
does not verify then the client won’t accept. Following this, the honest client accepts only if the auditor
indicates that the certificate is in the log. By consistency, the auditor’s view of the log is consistent with the
monitor’s view from the last time they engaged in the Gossip protocol (unless evidence has been produced
to the contrary, at which point we can assume the auditor ceases communication with the log server). If
the certificate is older than this, then the certificate is definitely being monitored; if it is newer, then it is
not guaranteed that the certificate is being monitored, but if it is not then the auditor can at least detect
this during its next iteration of the Gossip protocol. Thus, honest clients never accept improperly formatted
certificates, and are unlikely to accept unmonitored certificates provided that the auditor and monitor are
engaging in the Gossip protocol with sufficient frequency.

Finally, if a log server is misbehaving by omitting certificates from the log that it promised
to include, it should be possible to blame it. If a log server refuses to answer queries, then there is
little we can do about this in the context of our overlay (although in a practical setting with more than one
log server this problem could be mitigated). If a log server does answer, then it can be formally blamed
by accountability, as the SCT acts as non-repudiable evidence that the log server has promised to include a
certificate and the corresponding proof of non-inclusion demonstrates that it has not done so.

5.3 Practical considerations

Finally, we discuss some necessary alterations that would be made to our protocol if used in a real deployment.
Batched additions to the log. In Figure 2, the log server currently updates the log during the Log

protocol, and as a result includes the exact current time in the SCT. To avoid doing this operation every
time, this process would be batched, so the time in the SCT would instead be some time in the near future
(e.g., the end of the current day). This gap between the current and promised times is referred to in the CT
documentation as the maximum merge delay (MMD).

Collapsing the overlay into the system. As discussed in the CT documentation, in a real deployment
we expect auditors to interact with many different log servers (as the certificates seen by clients may be
logged in many different places), but expect monitors to focus on one log and the certificates it contains.
There are therefore two possible models: in one, the auditors and monitors are operated as separate services,
and monitors can even be used as backup log servers. In the other, the role of the auditor could collapse into
the client (e.g., it could be run as a browser extension and responses could be cached), and the role of the

14



monitor could collapse (at least partially) into the website, who could monitor the log to at least keep track
of its own certificates.

Privacy concerns. While SSL certificates are public and thus storing them in a public log presents no
privacy concern, information might be revealed about individual users through the certificates queried by
the auditor (to both the log server and monitor), as well as the choice of signed tree heads and SCTs. We
view this as an interesting area for future research, but mention briefly that some of these concerns can be
mitigated — with minimal effect on the security of the transparency overlay — by omitting the optional part
of Figure 5, in which the auditor reveals to the monitor some of the certificates that it has seen.

6 Amplifying Bitcoin’s Security

Although Bitcoin already provides a large degree of transparency — as its transaction ledger, called the
blockchain, is globally visible — it does not satisfy the requirements of a transparency overlay. In partic-
ular, the miners, who play a role analogous to the log server in producing the blockchain, are not known
entities and thus cannot be held responsible; this in turn means that consistency and non-frameability cannot
be satisfied. In this section, we thus begin by presenting in Section 6.1 a secure basic transparency overlay
for Bitcoin.

One might naturally wonder whether such a distinction is purely pedantic; i.e., if overlaying transparency
on top of a transparent system provides any actual benefits. To answer this question in the affirmative, we
discuss in Section 6.2 the benefits (in terms of both security and efficiency) that are achieved by applying
the transparency overlay. In particular, we show that the addition of a secure transparency overlay relieves
regular Bitcoin users (i.e., users wishing only to spend and receive bitcoins) from having to store and verify
the entire Bitcoin blockchain, which as of this writing is over 80GB.5 To go even further, we argue that if one
is willing to adopt a distributed rather than a fully decentralized solution (i.e., if one is willing to trust any
set of named parties), then the entire Bitcoin system collapses into a CT-like transparency overlay and the
need for hash-based mining is eliminated.

6.1 A transparency overlay for Bitcoin

As depicted in Section 2, Bitcoin has three actors in the system Sys: a sender Sender, a receiver Receiver,
and a miner Miner. The sender and the miner must participate in the Log protocol to enter transactions into
the log (although really this can be done by only the miner, after it has collected all relevant transactions),
and the receiver participates in the CheckEntry protocol to check that the transaction in which it should
be receiving bitcoins is in the log. Our transparency overlay for Bitcoin then instantiates GenEventSet as
follows:

Receiver Sender(tx) Miner(headold, hgt, txset)

return ε
tx //

return ε txset← txset ∪ {tx}

head
r←− Mine(headold, txset)

return (head, hgt, txset)

An event is a transaction tx, which must have a certain structure (i.e., lists of input and output addresses)
and satisfy certain requirements (i.e., that is does not represent double-spending). A set of events eventset
is a block, which contains not only a list of transactions txset but also a hash head, a pointer headprev to the
previous block, and a height hgt; combining events in an event set also allows us to impose the required notion
of timing, which is the block height hgt. By combining GenEventSet with the modified protocols described
in Section 4.4, we can thus apply Theorem 4.5 to get a secure basic transparency overlay in the setting of
Bitcoin.

6.2 Further security implications

By applying a transparency overlay to Bitcoin, we have provided a method for achieving provable transparency
guarantees in this setting. We have also achieved (in a manner similarly observed by Miller et al. [27], although
they did not provide any security guarantees) a much more efficient version of the system: senders and receivers

5https://blockchain.info/charts/blocks-size
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Bitcoin Näıve overlay CT-like overlay

Hashing yes yes no
Set of miners decentralized hybrid* distributed
Broadcast yes yes no
Provable security no yes* yes

Table 1: The different tradeoffs between Bitcoin, our näıve overlay, and a “CT-like” overlay in which log servers
completely replace miners. Our näıve solution provides the same openness that Bitcoin has for miners but also
provable security guarantees for those who make (optional) use of distributed log servers, while our CT-like solution
requires trust in the set of log servers but achieves both provable security and significantly better efficiency.

now store nothing (or, if the auditor collapses into the users as discussed in Section 5.3 for CT, they store
a snapshot), as compared to the entire blockchain or set of block headers that they were required to store
previously. While this goal was of course already achievable by Bitcoin senders and receivers using web
solutions (i.e., storing their bitcoins in an online wallet), our system is the first to achieve this goal with any
provable security guarantees, thus minimizing the trust that such users must place in any third party.

Our analysis also has implications beyond users’ storage of the blockchain. To go beyond our initial
attempt at an overlay (which we dub the “näıve overlay” in Table 1), one might observe that the miner
provides no additional value beyond that of the log server: whereas in CT the CA was necessary to provide
a signature (and more generally is assumed to perform external functions such as verifying the owner of a
website), here the miner just collates the transactions and sends them to the log server. By having senders
contact log servers directly, one could therefore eliminate entirely the role of mining without any adverse
effects on security. Thus, if users are willing to make the trust assumptions necessary for our transparency
overlay — namely, to assume that some honest majority of a distributed set of log servers provide the correct
response about the inclusion of a transaction — then the system can collapse into a distributed structure (the
“CT-like overlay” in Table 1) in which no energy is expended to produce the ledger, and users have minimal
storage requirements. Moreover, if users communicate directly with the log server, then we could add a signed
acknowledgment from the log server that would allow us to satisfy accountability. Interestingly, this solution
closely resembles the recent RSCoin proposal [14] (but with our additional consistency and non-frameability
guarantees), which achieves linear scaling in transaction throughput; this provides additional validation and
suggests that this distributed approach presents an attractive compromise between the two settings.

7 Conclusions and Open Problems

In this paper, we initiated a formal study of transparency overlays by providing definitions and a generic secure
construction of this new primitive. To demonstrate the broad applicability of our generic formalization, we
proved that Certificate Transparency (CT) is a secure transparency overlay, and presented a Bitcoin-based
transparency overlay that achieves provable notions of security and significantly reduces the storage costs of
regular Bitcoin users. Our comparison reveals that in any settings where distributed trust is possible (i.e.,
one is willing to trust any set of known participants), Bitcoin can collapse into CT and the need for both
mining and the storage of the blockchain disappears. On the other hand, if one is not willing to trust anyone,
then on a certain level these requirements seem inevitable.

While our constructions provide provably secure properties concerning integrity, it is not clear how our
transparency overlay could provide this same value to any system in which a meaningful notion of privacy is
required. It is thus an interesting open problem to explore the interaction between transparency and privacy,
and in particular to provide a transparency overlay that preserves any privacy guarantees of the underlying
system.
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A Interactive Protocols

We present a formal description of an interactive protocol between multiple participants, as modified from
the definitions given by Bellare and Keelveedhi [5]. Consider a protocol Prot with a set of participants
Parties, where each participant is invoked at most q times; then the protocol can be represented as a tuple
(Prot[party, j])party∈Parties,j∈[q]. Each algorithm in this tuple is given as input the security parameter 1λ, a value
a, and a message m ∈ {0, 1}∗, and produces as output a value a′, a message m′, an indicator party of the next
algorithm to run, and an output out, where out = ⊥ indicates that the participant has not yet terminated.
When all participants have terminated, the protocol has terminated. In the case of a stateful participant, the
values a and a′ are replaced with stateparty.

The execution of a protocol is captured by Run, which takes a list of inputs inputs and returns a list of
outputs outputs; the algorithm is described below.

Run(1λ,Prot,Parties, inputs)

T ← ∅; party← Parties[1]; m← ε; outputs← ∅
for party ∈ Parties do a[party, 1]← inputs[party]; round[party]← 1
while T 6= Parties do

if party ∈ T return ⊥
i← round[party]

(a[party, i+ 1],m, party′, out)
r←− Prot[party, i](1λ, a[party, i],m)

if (out 6= ⊥) T ← T ∪ {party}; outputs[party]← out
round[party]← i+ 1; party← party′

return outputs

Finally, the transcript (i.e., the messages exchanged during the protocol) is captured by Msgs, which takes
a list of inputs and returns a matrix of messages; the algorithm is described below.
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Msgs(1λ,Prot,Parties, inputs)

T ← ∅; party← Parties[1]; m← ε; M ← ε
for party ∈ Parties do a[party, 1]← inputs[party]; round[party]← 1
while T 6= Parties do

if party ∈ T return ⊥
i← round[party]

(a[party, i+ 1],m, party′, out)
r←− Prot[party, i](1λ, a[party, i],m)

if (out 6= ⊥) T ← T ∪ {party}
round[party]← i+ 1; party← party′; M [party][round[party]]← m′

return M

B Hash-Based Dynamic List Commitments

In Section 3.2, we presented the formalization of a dynamic list commitment (DLC), and defined its algorithms
and desired security properties abstractly. To prove that such structures exist, we present two constructions
here and prove their security.

B.1 An instantiation based on hash chains

Briefly, our first construction is essentially a rolling hash chain: the commitment to a list is an iterated hash
of its elements (i.e., a hash of the first element is hashed with the second element, etc.), and as new elements
are appended they are folded into the hash. Proofs are simple and mainly involve revealing certain parts of
the list and committing to the rest.

Com(list)

h← ε
for all 1 ≤ i ≤ len(list)
h← H(h‖list[i])

c← (h, len(list))
return c

Append(list∆, cold)

(h, `)← cold
for all 1 ≤ i ≤ len(list∆)
h← H(h‖list∆[i])

c← (h, `+ len(list∆))
return c

CheckCom(c, list)

return (c = Com(list))

ProveAppend(cold, cnew, list)

(hold, `old)← cold
if cnew 6= Append(list[`old + 1 :], cold)

return ⊥
return list[`old + 1 :]

CheckAppend(cold, cnew, π)

return (cnew = Append(π, cold))

ProveIncl(c, elmt, list)

c′ ← (ε, 0); j ← 0
for all 1 ≤ i ≤ len(list)

if (list[i] = elmt) j ← i; break
c′ ← Append({list[i]}, c′)

if ((j = 0) ∨ c 6= Append(list[j :], c′))
return ⊥

π′ ← ProveAppend(Append({elmt}, c′), c, list)
return (c′, π′)

CheckIncl(c, elmt, π)

if (π = ⊥) return 0
(c′, π′)← π
return CheckAppend(Append({elmt}, c′), c, π′)
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DemoInconsistent(list, (c′, `′), t′)

// form DLC to time before t′

cpre ← (ε, 0); j ← 0
for all 1 ≤ i ≤ len(list)

if (time(list[i+ 1]) ≥ t′) break
j ← i
cpre ← Append({list[i]}, cpre)

// check for inconsistencies at time t′

ctest ← cpre
for all j + 1 ≤ i ≤ len(list)

if (time(list[i]) > t′) break
ctest ← Append({list[i]}, ctest)
if (ctest = c′)

return ⊥
return (cpre, list[j + 1 :])

CheckInconsistent((c′, `′), t′, (c, `), π)

if (π = ⊥) return 0
(ctest, list)← π; j ← 0
if (time(list[1]) ≥ t′) ∧ (ctest 6= (ε, 0))

return 0
for all 1 ≤ i ≤ len(list)

if (time(list[i]) > t′) break
j ← i
ctest ← Append({list[i]}, ctest)
if (ctest = c′)

return 0
if (Append(list[j + 1 :], ctest) 6= c)

return 0
return 1

DemoNotIncl(list, elmt)

j ← 0
for all 1 ≤ i ≤ len(list)

if (time(list[i+ 1]) ≥ time(elmt)) break
j ← i

for all j + 1 ≤ i ≤ len(list)
if (time(list[i]) > time(elmt)) break
if (list[i] = elmt) return ⊥

if (j = 0) return ((ε, 0), list)
cpre ← Com(list[: j])
return (cpre, list[j + 1 :])

CheckNotIncl(c, elmt, π)

if (π = ⊥) return 0
(cpre, list)← π
if (time(list[1]) ≥ time(elmt)) ∧ (cpre 6= (ε, 0))

return 0
if Append(list, cpre) 6= c return 0
for all 1 ≤ i ≤ len(list)

if (time(list[i]) > time(elmt)) return 1
if (list[i] = elmt) return 0

return 1

Theorem B.1. If H(·) is a collision-resistant hash function, then the dynamic list commitment defined above
is secure in both the basic (Definitions 3.1 and 3.2) and augmented (Definition 3.4) settings.

Proof. (Sketch.) To show this, we need to prove our construction satisfies six properties: (1) correctness (both
basic and augmented), (2) binding, (3) soundness, (4) append-only, (5) provable inconsistency, (6) provable
non-inclusion, (7) unforgeable inconsistency, and (8) unforgeable inclusion. We go through these each in turn.

Correctness. This follows by construction.

Binding. To win the game, an adversary must produce a tuple (c, list1, list2) such that CheckCom(c, list1) =
1, CheckCom(c, list2) = 1, but list1 6= list2. These first two properties imply that the two lists have the same
length and the cumulative hash of each of the lists is the same, but the last property implies that at some
point the lists contain a different entry. Thus, an adversary that identifies the point at which the list entries
diverge but the resulting hashes are the same can output the two differing inputs to the hash (consisting of
the respective DLCs thus far and the divergent entries) to break collision resistance.

(Identifying these points of divergence can always be done in time proportional to the length of the lists,
so our reductions here and for the rest of the properties do run in polynomial time.)

Soundness. To win the game, an adversary must produce a tuple (c, list, elmt, π = (c′, list′)) such that
CheckCom(c, list) = 1, CheckIncl(c, elmt, π) = 1, and elmt /∈ list. These first two properties imply that the
cumulative hash of list is the same as the cumulative hash of c′ and elmt||list′ (i.e., Append(elmt||list′, c′)), but
the last property implies that at some point there must be differing inputs, because elmt is never used as an
input in the former but is used explicitly as an input in the latter. Thus, an adversary that identifies the
point at which the inputs are different but the resulting hash is the same can break collision resistance.

Append-only. To win the game, an adversary must produce a tuple (c1, c2, list2, list
′) such that CheckCom(c2,

list2) = 1, CheckAppend(c1, c2, list
′) = 1, but c1 isn’t a commitment to any prefix of list2. The first two prop-

erties imply that the cumulative hash of list2 is the same as the cumulative hash of c1 and list′, but the last
property implies that at some point in the middle there must be differing inputs, as c1 is not equal to any
of the intermediate values in the cumulative hash of list2 (by definition of not being a prefix). An adversary
that identifies this point can thus output these differing inputs to break collision resistance.
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Provable inconsistency. To win the game, an adversary must produce a tuple (c, t, list) such that isOrdered(list) =
1, the honest proof of inconsistency doesn’t verify, c isn’t a commitment to any prefix of list, or for any j
such that CheckCom(c, list[1 : j]) = 1, either time(list[j]) > t or j 6= len(list) and time(list[j + 1]) < t. By
construction of DemoInconsistent, the only time it outputs ⊥ is when the exists i such that c′ = Com(list[: i])
and time(list[i]) ≤ t, which contradicts the winning conditions.

Now, consider CheckInconsistent. If DemoInconsistent doesn’t produce ⊥, then the first two and the
last cases in which it would output 0 clearly won’t happen, by definition of DemoInconsistent. Finally,
DemoInconsistent outputs cpre = Com(list[: j]), list([j + 1 :], so by correctness of Append the third case where
it outputs 0 will not happen either. Thus, isConsistent(c, t, list) = 1, which contradicts our initial assumption.

Provable non-inclusion. To win the game, an adversary must produce a tuple (list, elmt) such that the
honest proof of non-inclusion doesn’t verify, elmt /∈ list, and list is ordered. The first winning condition
implies that if we parse the proof of non-inclusion as π = (c′, list′) then: (1) time(list′[1]) ≥ time(elmt) and
c′ 6= ε, (2) Append(list′, c′) 6= Com(list), (3) there exists an i such that time(list′[i]) > time(elmt), or (4)
elmt ∈ list′. Because the proof is produced honestly, we can rule out options (1) and (2), and combining
the honest behavior with the assumption that the list is ordered and applying a similar argument as in the
proof of provable inconsistency means we can also rule out option (3). This leaves option (4), which directly
contradicts the second winning condition.

Unforgeable inconsistency. To win the game, an adversary must produce a tuple (c1, t, list2, c2, π) such
that CheckCom(c2, list2), CheckInconsistent(c1, t, c2, π) = 1, and isConsistent(c1, t, list2). The only way CheckInconsistent
will output 1 is if c2 = Append(list, cold). With all but negliglble probability it must be the case that
list2[len(list2) − len(list) + 1 :] = list (i.e., that list matches the end of list2), as if not we can easily break
collision resistance of the hash function.

So, let k be the index such that list = list2[k :]. Moreover, because isConsistent outputs 1, we know that
either j = len(list) or there exists some j with time(list2[j]) ≤ t ≤ time(list2[j+ 1]) such that c1 = Com(list2[1 :
j]). Since list2 is ordered, and time(list2[k]) = time(list[1]) < t (because CheckInconsistent outputs 1), we know
j + 1 > k, or in other words j ≥ k). Now consider the commitment obtained in CheckInconsistent after the
(j−k+1)-st append operation. This commitment will be such that if we append the last len(list2)−j elements
of list2, we get c2, but this commitment is not equal to c1 (otherwise CheckInconsistent outputs 0). We also
know that if we take c1 and append the last len(list2) − j elements of list2, we get c2. Thus, we again can
show a hash collision.

Unforgeable non-inclusion. To win the game, an adversary must produce a tuple (c, list, elmt, π) such that
CheckCom(c, list) = 1, CheckNotIncl(c, elmt, π) = 1, isOrdered(list) and elmt ∈ list. The only way CheckNotIncl
will output 1 is if π = (cold, list∆) such that c = Append(list∆, cold). Note that with all but negliglble probability
it must be the case that list[len(list) − len(list∆) + 1 :] = list∆ (i.e. that list∆ matches the end of list); if not
we can easily build a reduction which breaks collision resistance of the hash function. Let k be the index
such that list∆ = list[k :]. Moreover, we know elmt ∈ list; suppose it appears at position j. Now, since list is
ordered, and either time(list[k]) = time(list[1]) < time(elmt) or cold = (ε, 0) (because CheckInconsistent outputs
1), we know j > k). But the j − kth element in list∆ is not elmt, because CheckInconsistent outputs 1. Thus
if this occurs with non-negligible probability, we will be able to produce a hash collision.

B.2 An instantiation based on Merkle trees

Before we present our construction of DLCs based on Merkle trees, we must introduce some terminology.
For a binary tree T , define the completed subtrees to be subtrees of T with height t and 2t−1 elements, the
maximal completed subtrees to be those which are not contained within any other completed subtrees, and
the membership proof for a node in T to be the siblings of all the ancestors of that node. Then the algorithms
required for a DLC are instantiated as follows:6

Com(list)
Form a binary tree of height dlog(len(list))e + 1 whose leaves, ordered from left to right, are the elements in
list, and where the leaves get closer to the root going from left to right (or stay at the same distance).

For each internal node, compute the hash of its children. Let r be the value at the root. Output
c = (r, len(list)), and output the values at the root of each maximal completed subtree, again going from

6To achieve efficiency, we alter the algorithms from their original form in Section 3.2 to allow for an extra input/output aux,
which is used to keep track of the internal hashes in the tree.
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left to right, as the auxiliary information aux. Note that the positions of these nodes are fully defined by
len(list).

Append(list∆, auxold, cold)
Parse cold = (rold, Lold); if this is not consistent with aux, output ⊥. Otherwise, construct the Merkle tree for
the new list using the values specified in auxold for the maximal completed subtrees, and let rnew be the new
root value. Output cnew = (rnew, Lold + len(list∆)), and the roots of all maximal completed subtrees in the new
tree as auxnew.

CheckCom(c, list)
Return (c = Com(list)).

ProveAppend(cold, auxold, cnew, list)
If cold is not consistent with auxold, output ⊥. Otherwise, build a list πaux that contains, for each value in aux,
a membership proof for the corresponding node in the tree corresponding to cnew. Output π = (πaux, auxold).

CheckAppend(cold, cnew, π)
Parse π = (πaux, auxold). If cold is not consistent with auxold, output 0. Otherwise, output 1 if each of the
membership proofs in πaux verify, and 0 otherwise.

ProveIncl(c, elmt, list)
Let i be the position of elmt in list, and let πi be the membership proof for elmt at position i in the tree
corresponding to list. Output (i, πi).

CheckIncl(c, elmt, π)
Parse c = (r, L) and π = (i, πi). If i > L, output 0. Otherwise, verify the membership proof π for elmt at
position i in a tree with L leaves, and output 1 if this verification succeeds (and 0 otherwise).

DemoInconsistent(list, c′, t′)

If isOrdered(list) = 0, output ⊥. Otherwise, parse list = listpre‖(e1, . . . , en)‖listpost, where time(e1) < t′,
time(en) > t′, and time(ei) = t′ for all i, 2 ≤ i ≤ n − 1. (If time(list[1]) ≥ t′, set listpre = [], or if
time(list[len(list)]) ≤ t′, set listpost = [].)

If listpre 6= [], form (cpre, auxpre) ← Com(listpre), otherwise set (cpre, auxpre) = (ε, ε). Form (cpost, auxpost) ←
Com(listpre‖(e1, . . . , en)), and (c, aux)← Com(list). Compute πpost ← ProveAppend(cpost, auxpost, c, listpost).

Output π = (cpre, auxpre, e1, . . . , en, cpost, πpost).

CheckInconsistent(c′, t′, c, π)

Parse π = (cpre, auxpre, e1, . . . , en, cpost, πpost). Check that time(e1) < t′ or cpre = ε and that time(en) > t′ or
cpost = c, verify πpost, and output 0 if any of these checks fails.

Let ctest = cpre and aux = auxpre. For all i, 1 ≤ i ≤ n, compute (ctest, aux) ← Append(ei, aux, ctest) and
output 0 if ctest = c′. If the loop completes then output (ctest = cpost).

DemoNotIncl(list, elmt)
If isOrdered(list) = 0, output⊥. Otherwise, parse list = listpre‖(e1, . . . , en)‖listpost, where time(e1) < time(elmt),
time(en) > time(elmt), and time(ei) = time(elmt) for all i, 2 ≤ i ≤ n − 1. (If time(list[1]) ≥ time(elmt), set
listpre = [], or if time(list[len(list)]) ≤ time(elmt), set listpost = [].)

If listpre 6= [], form (cpre, auxpre) ← Com(listpre), otherwise set (cpre, auxpre) = (ε, ε). Form (cpost, auxpost) ←
Com(listpre‖(e1, . . . , en)), and (c, aux) ← Com(list). Compute πpost ← ProveAppend(cpost, auxpost, c, listpost).
Output π = (cpre, auxpre, e1, . . . , en, cpost, πpost).

CheckNotIncl(c, elmt, π)
Parse π = (cpre, auxpre, e1, . . . , en, cpost, πpost). Check that time(e1) < time(elmt) or cpre = ε, and time(en) >
time(elmt) or cpost = c, and that elmt /∈ (e2, . . . , en−1). If any of these checks fail, output 0. Otherwise, output
(Append((e1, . . . , en), cpre, auxpre) = cpost).

Theorem B.2. If H(·) is a collision-resistant hash function, then the dynamic list commitment defined above
is secure in both the basic (Definitions 3.1 and 3.2) and augmented (Definition 3.4) settings.

Proof. (Sketch.) To show this, we need to prove our construction satisfies six properties: (1) correctness, (2)
binding, (3) soundness, (4) append-only, (5) provable inconsistency, (6) provable non-inclusion, (7) unforgeable
inconsistency, and (8) unforgeable non-inclusion. We go through these each in turn.

Correctness. This follows by construction.
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Binding. This follows from a standard Merkle tree argument. To win the game, an adversary A must
output two different lists that correspond to the same commitment c = (r, L). Since L is the same, both lists
must have the same length, and since r is the same the corresponding Merkle trees hash to the same root.
Thus, an adversary B can compute the Merkle tree for each list, and consider the first level (starting from
the root) at which at least one node differs between the two trees. That node and its neighbor in both trees
can be used to break collision resistance.

Soundness. Again, this follow from a standard argument. To win the game, an adversary must output
(c, list, elmt, π). Parse π = (i, πi) and recall that πi contains the values in the sibling nodes on the path from
elmt at position i to the root; thus, given a valid πi and elmt we can also compute the values for the nodes
on the path. Then compute the Merkle tree for list, and consider the first node (starting from the root) at
which the node value in the path from elmt differs from the node in the tree for list. The values for that node
and its neighbor in the path from elmt and in the tree for list can be used to break collision resistance.

Append-only. To win the game, an adversary must output (c1, c2, list2, π). Parse π = (πaux, auxold) and
consider the Merkle tree for list2; if the adversary wins, then its root must match the value in c2. If c1 is not
a commitment to a prefix of list2, then there must be at least one node in auxold that does not match the
corresponding node in the tree for list2. In that case we can use the membership proof in πaux for that node
(which shows membership with respect to the root in c2) to find a collision, as in the previous two reductions.

Provable inconsistency. To win the game, an adversary must output (c, t, list). Now, consider the cases
where CheckInconsistent outputs 0: (1) the times of events e1, . . . , en are wrong; (2) the proof πpost does not
verify; (3) the final value ctest 6= c; and (4) for some i, c=c

′.
For (1), since list is ordered, DemoInconsistent always finds a set of events for which the times are correct.

The correctness of ProveAppend implies that (2) cannot happen, and similarly the correctness of Append
implies that (3) cannot happen. Finally, by the correctness of Append, case (4) would imply that CheckCom(c′,
listpre‖(e1, . . . , ei)) = 1, which contradicts the assumption that c′ is not a commitment to a prefix of list.

Provable non-inclusion. To win the game, an adversary must output (list, elmt). Now, consider the cases
where CheckNotIncl outputs 0: (1) the times of events e1, . . . , en are wrong; (2) elmt ∈ (e2, . . . , en−1); (3) πpost
does not verify; and (4) Append((e1, . . . , en), cpre, auxpre) 6= cpost.

For (1), since list is ordered, DemoNotIncl always finds a set of events for which the times are correct.
Option (2) clearly contradicts the winning condition that elmt /∈ list. The correctness of ProveAppend implies
that (3) cannot happen, and the correctness of Append implies that (4) cannot happen.

Unforgeable inconsistency. To win the game, an adversary must output (c1, t, c2, list2, π) such that c1
is a commitment to a prefix of list (call this prefix list1, and the rest of the list list∆), c2 is a commit-
ment to list2, the tuple (c1, t, list2) is consistent, but CheckInconsistent accepts the proof π. Parse π =
(cpre, auxpre, e1, . . . , en, cpost, πpost).

First, suppose that with non-negligible probability either cpre or cpost is not a commitment to a prefix of
list2. That allows us to construct an adversary for the append-only property. (The reduction is immediate
and we omit it.) If this is not the case, then there exist lists list′ and listpost such that list2 = list′‖listpost and
CheckCom(cpost, list

′) = 1. Let listpre be the prefix of list2 corresponding to cpre. Then by correctness of Append
and because CheckInconsistent accepts, we know cpost = Com(listpre‖(e1, . . . , en)).

Now, if with non-negligible probability list′ 6= listpre‖(e1, . . . , en), we can break the binding property.
(Again, this follows from a straightforward reduction.) Thus, we can assume that listpre‖(e1, . . . , en) = list′

and is a prefix of list2.
Finally, because list2 is ordered, and because t′ is greater than equal to the last element in list1 and

t′ ≤ list∆[1] (by consistency), we know that list1 = listpre‖e1, . . . ei for some i, 1 ≤ i ≤ n−1. Then by correctness
of Append, we know c1 will be one of the ctest values computed in CheckInconsistent, and CheckInconsistent
will output 0.

Unforgeable non-inclusion. To win the game, an adversary must produce (c, list, elmt, π) such that
isOrdered(list), CheckCom(c, list) = 1, and elmt ∈ list, but CheckNotIncl accepts the proof π. Parse π =
(cpre, auxpre, e1, . . . , en, cpost, πpost).

First, suppose that with non-negligible probability either cpre or cpost is not a commitment to a prefix of
list. This allows us to construct an adversary for the append-only property. (The reduction is immediate and
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we omit it.) Now, assume this is not the case. Then there exist lists list′, listpost such that list = list′‖listpost
and cpost = Com(list′).

Let listpre be the prefix of list corresponding to cpre. Then by correctness of Append and because CheckNotIncl
accepts, we know cpost = Com(listpre‖(e1, . . . , en)).

Now, if with non-negligible probability list′ 6= listpre‖(e1, . . . , en), then we can break the binding property.
(Again, this follows from a straightforward reduction.) Thus, we can assume that listpre‖(e1, . . . , en) = list′

and is a prefix of list.
Finally, because list is ordered, and because e1 < time(elmt) < en, we know that elmt ∈ (e2, . . . , en−1).

But then CheckInconsistent will output 0 because it will have elmt ∈ (e1, . . . , en), which is a contradiction.

C A Proof of Theorem 4.4

Proof. Correctness and compact auditability follow directly from the correctness of the DLC, signature scheme,
and generic algorithms, and from the compactness of the DLC. We now establish consistency, non-frameability,
and accountability.

Consistency. To show consistency, we break the Msg oracle in Definition 4.1 down into four oracles:
three for each execution of the auditor in the CheckEntry protocol (roughly, lines 1-4, 6-9, and 13-16 of
Figure 3 respectively) and one for the monitor in the Inspect protocol (lines 3-10 of Figure 4). We slightly
alter the algorithms for the auditor to fit the Bellare-Keelveedhi framework: first, stateAu now contains an
extra field inst to keep track of instances. This field is a vector of length n (where n is the maximum
number of instances of the protocol in which Auditor will engage) and inst[j] = (cmd, event, rcpt), where
cmd ∈ {check, update, done}. We also maintain a map QAu such that event 7→ (c, snap, π, π′) and a map QMo

such that t 7→ (snap, events). These algorithms are now defined as follows:

CheckEntry[Auditor, 1, j](1λ, stateAu,m)

(event, rcpt)← m
b← CheckRcpt(event, rcpt)
if (b = 0) inst[j]← (done, event, rcpt); return (stateAu, 0,Sys, fail)
if (rcpt[t] > tAu) inst[j]← (update, event, rcpt); return (stateAu, snapAu, LS,⊥)
inst[j]← (check, event, rcpt)
return (stateAu, (event, snapAu), LS,⊥)

CheckEntry[Auditor, 2, j](1λ, stateAu,m)

(cmd, event, rcpt)← inst[j]
if (cmd = check) return CheckEntry[Auditor, 3, j](1λ, stateAu,m)
(snapLS, π)← m
b← CheckSnap(snapLS) ∧ CheckAppend(cAu, cLS, π)
if (b = 0) inst[j]← (done, event, rcpt); return stateAu, 0,Sys, 0)
snapAu ← snapLS
inst[j]← (check, event, rcpt)
return (stateAu, (event, snapAu), LS,⊥)

CheckEntry[Auditor, 3, j](1λ, stateAu,m)

(cmd, event, rcpt)← inst[j]
b← (rcpt[t] ≤ tAu)
if (b = 0) inst[j]← (done, event, rcpt); return (stateAu, b,Sys,⊥)
b← CheckIncl(cAu, event,m)
if (b = 0) eventsbad ← eventsbad‖(event, rcpt)
inst[j]← (done, event, rcpt); return (stateAu, b,Sys, 1)

We now consider the winning conditions for the consistency game Gcons
A (λ). First, if CheckEvidence(pkLS,

evidence) = 0, then there are six possibilities: (1) evidence = ⊥, or evidence = (snapAu, snapMo, (event, rcpt), π)
and either

2. snapAu does not verify;

3. snapMo does not verify;

4. event = ⊥ and CheckInconsistent(cAu, tAu, cMo, π) = 0;

5. CheckNotIncl(cMo, event, π) = 0; or
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6. CheckRcpt(event, rcpt) = 0.

Looking at the protocol in Figure 5, we can see that in fact the middle four options can never happen, as
the honest auditor and monitor check these values themselves and output them only in the case that they do
verify. Similarly, if the final option occurs, then the honest auditor will not include the pair (event, rcpt) in

events
(Au)
bad , so it will never be used in the gossip protocol and thus never output as evidence.

This leaves us with only one remaining possibility: that evidence = ⊥. Folding in the other winning
conditions, we can express this as the event E in which

((evidence = ⊥) ∧ (tMo ≥ tAu) ∧ (eventspass \ eventsMo 6= ∅)).

We build adversaries B1, B2,i for all i, 1 ≤ i ≤ n, and B3 such that

Pr[E] ≤ Advp-cons
dlc,B1

(λ) +

n∑
i=1

Advappend
dlc,B2,i

(λ) + Advsound
dlc,B3

(λ) (1)

Combining this with our argument above, we get

Advcons
trans,A(λ) = Pr[Gcons

A (λ)]

= Pr[E]

≤ Advp-cons
dlc,B1

(λ) +

n∑
i=1

Advappend
dlc,B2,i

(λ) + Advsound
dlc,B3

(λ),

from which the theorem follows.

Equation 1
By the time the auditor and monitor engage in the Gossip protocol, the maps QAu and QMo will have been
populated with (trimmed) transcripts of the interactions in which these parties have engaged, which means
QAu will have a set of keys {eventi}ni=1 and QMo will have a set of keys {tj}mj=1, and the auditor and monitor will

have respective state (snapAu, events
(Au)
bad ) and (snapMo, events

(Mo)
bad , eventsMo). We make two initial observations

about the values in these maps:

1. If we order the keys for QMo and define (snapj , eventsj)← QMo[tj ], then eventsMo = events1‖ . . . ‖eventsm,
isOrdered(eventsMo) = 1, and CheckCom(cMo, eventsMo) = 1. This follows from the behavior of the honest
monitor and from the correctness of the DLC.

2. If we order the values (c, snapLS, π, π
′) in QAu by tLS, then tAu = tLS,n and cAu = cLS[n]. This follows

by the behavior of the honest auditor (and in particular because snapLS gets added to QAu only if the
appropriate checks pass).

We now break down the components of E2 as follows: first, if evidence = ⊥ and tMo ≥ tAu, then the
execution of the protocol in Figure 5 reached line 13, which means that

CheckInconsistent(cAu, tAu, cMo,DemoInconsistent(eventsMo, tAu)) = 0. (2)

Based on this, we argue that there must exist a prefix eventsAu of eventsMo such that CheckCom(cAu,
eventsAu) = 1. Define this as event Eprefix and suppose to the contrary that it does not hold; then we
construct an adversary B1 against the provable inconsistency of the DLC as follows (we omit the description
of MsgAu and MsgMo, as B1 executes these honestly):

B1(1λ)

pkLS
r←− AMsgAu,MsgMo(1λ)

return (cAu, tAu, eventsMo)

By Equation 2, these outputs satisfy the first winning condition of Gp-cons
B1

(λ), and by our first initial obser-
vation they also satisfy the last winning condition. Furthermore, if ¬Eprefix, then they also satisfy the middle
winning condition, meaning B1 wins the game. Thus, Pr[¬Eprefix] ≤ Advp-cons

dlc,B1
(λ).

Moving on to the last component of E2, if eventspass \ eventsMo 6= ∅, then there exists an event event such
that event ∈ eventspass but event /∈ eventsMo. The former property implies that the following conditions hold:

1. event ∈ QAu, so (c, snapLS, π
′, π)← QAu[event] is well defined; and either
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2. snapLS = ⊥ and CheckIncl(c, event, π′) = 1, or

3. snapLS 6= ⊥ and

(a) CheckAppend(c, cLS, π) = 1;

(b) CheckSnap(snapLS) = 1; and

(c) CheckIncl(cLS, event, π
′) = 1.

Fix eventi as this event, define (ci, snapi, π
′
i, πi) ← QAu[eventi], and assume now that Eprefix holds; i.e.,

that there exists a prefix eventsAu of eventsMo such that CheckCom(cAu, eventsAu) = 1.
We would now like to argue that there also exists a prefix eventsi of eventsAu such that CheckCom(ci,

eventsi) = 1; call this event Ei-prefix. Intuitively, this holds because we have a “path” of append proofs from ci
to cn = cAu, so if no such prefix exists then we can use at least one of these proofs to violate the append-only
property of the DLC.

More formally, observe that Ei-prefix is implied by
∧n
k=iEk-prefix; i.e., ci is a commitment to a prefix

eventsi of eventsAu if ck is a commitment to a prefix eventsk for all k, i ≤ k ≤ n. Thus, ¬Ei-prefix implies∨n
k=i ¬Ek-prefix. We proceed in a series of hybrids: for each hop k, we assume that E`-prefix holds for all `,

k+ 1 ≤ ` ≤ n, and we construct an adversary B2,k as follows (again, omitting the description of MsgAu and
MsgMo, in which B2,k behaves honestly):

B2,k(1λ)

pkLS
r←− AMsgAu,MsgMo(1λ)

(cj , snapj , π
′
j , πj)← QAu[eventj ] for j = k, k + 1

if snapk+1 = ⊥ return ⊥
find prefix eventsk+1 of eventsMo

return (ck, ck+1, eventsk+1, πk+1)

First, we observe that if the prefix eventsk+1 exists (which it does, assuming Eprefix and E`-prefix for all `,
k+ 1 ≤ ` ≤ n), it can be computed efficiently given eventsMo, so B2,k does run in polynomial time. Similarly,

if these events hold then CheckCom(ck+1, eventsk+1) = 1, so the first winning condition of Gappend
B2,k

(λ) is met.

Furthermore, by our conditions above, we know that CheckAppend(ck, ck+1, πk+1) = 1, so the second winning
condition is met as well. Finally, if ¬Ek-prefix, then the third winning condition is met, so Pr[¬Ek-prefix] ≤
Advappend

dlc,B2,k
(λ). Putting all the hybrids together, we get that Pr[Eprefix ∧ ¬Ei-prefix] ≤

∑n
k=i Advappend

dlc,B2,k
(λ).

Finally, suppose now that Ei-prefix does hold; i.e., that there exists a prefix eventsi of eventsAu (which is
itself a prefix of eventsMo) such that CheckCom(ci, eventsi) = 1. Then we can construct an adversary B3 to
break the soundness of the DLC as follows:

B3(1λ)

pkLS
r←− AMsgAu,MsgMo(1λ)

(ci, snapi, π
′
i, πi)← QAu[eventi]

return (ci, eventsi, eventi, π
′
i)

Because Ei-prefix holds, CheckCom(ci, eventsi) = 1, so the first winning condition of Gsound
B3

(λ) is met. By
our conditions for event ∈ eventspass, we also know the second winning condition is met. Finally, because
eventi /∈ eventsMo (which is implied by E), it must also be the case that eventi /∈ eventsi, so we get that
Pr[Eprefix ∧ Ei-prefix] ≤ Advsound

dlc,B3
(λ).

What we have now shown is that

E = ¬Eprefix ∨ (Eprefix ∧ ¬Ei-prefix) ∨ (Eprefix ∧ Ei-prefix),

and that

Pr[¬Eprefix] ≤ Advp-cons
dlc,B1

(λ)

Pr[Eprefix ∧ ¬Ei-prefix] ≤
n∑
k=i

Advappend
dlc,B2,k

(λ)

Pr[Eprefix ∧ Ei-prefix] ≤ Advsound
dlc,B3

(λ)

Putting everything together, we get that

Pr[E] = Pr[¬Eprefix] + Pr[Eprefix ∧ ¬Ei-prefix] + Pr[Eprefix ∧ Ei-prefix]

≤ Advp-cons
dlc,B1

(λ) +

n∑
i=1

Advappend
dlc,B2,i

(λ) + Advsound
dlc,B3

(λ),
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which establishes the equation.

Non-frameability. We break the Msg oracle in Definition 4.2 down into four oracles: one for the execution
of the log server during the Log protocol (lines 1-6 in Figure 2), two for its executions during the CheckEntry

protocol (lines 5-6 and 12-14 of Figure 3 respectively), and one for its execution during the Inspect protocol
(lines 1-4 of Figure 4). We also alter the protocols slightly to add sets Mrcpt and Msnap to keep track of,
respectively, the receipts formed in the Log protocol and the snapshots formed in UpdateLog (during the Log

protocol).
Define

Egd-snap-1 = (CheckSnap(snap) ∧ (snap[c], snap[t]) ∈Msnap),

Egd-snap-2 analogously for snap2, and

Egd-rcpt = (CheckRcpt(event, rcpt) ∧ (event, rcpt[t]) ∈Mrcpt)).

We then define the following four events:

E1 : Egd-snap-1 ∧ Egd-snap-2 ∧ (event, rcpt = ⊥) ∧ CheckInconsistent(c1, t1, c2, π)) ∧ (t1 ≤ t2)

E2 : ¬Egd-snap-1 ∨ ¬Egd-snap-2

E3 : ¬Egd-rcpt

E4 : Egd-snap-1 ∧ Egd-snap-2 ∧ Egd-rcpt ∧ CheckNotIncl(c2, event, π)) ∧ (rcpt[t] ≤ t2)

Now, let A be a PT adversary playing Gframe
A (λ). We build adversaries Bi for all i, 1 ≤ i ≤ 4, such that

Pr[E1] ≤ Advuf-cons
dlc,B1

(λ) (3)

Pr[E2] ≤ Adveuf-cma
sig,B2

(λ) (4)

Pr[E3] ≤ Adveuf-cma
sig,B3

(λ) (5)

Pr[E4] ≤ Advuf-incl
dlc,B4

(λ) (6)

We then have that

Advframe
trans,A(λ) = Pr[Gframe

A (λ)]

≤
4∑
i=1

Pr[Ei]

≤ Advuf-cons
dlc,B1

(λ) + Adveuf-cma
sig,B2

(λ) + Adveuf-cma
sig,B3

(λ) + Advuf-incl
dlc,B4

(λ),

from which the theorem follows.

Equation 3: faking a proof of inconsistency
B1 behaves as follows, using a map Q such that c 7→ events (and omitting the descriptions of all algorithms
in which B1 honestly follows the protocol specification):

B1(1λ)

Q← ∅; (pkLS, skLS)
r←− KeyGen(1λ)

(snap1, snap2, (event, rcpt), π)
r←− AMsg(1λ, pkLS)

return (snap1[c], snap1[t], snap2[c], Q[c2], π)

CheckEntry[LS, 1, j](1λ, stateLS,m)

π ← ProveAppend(m[c], cLS, eventsLS)
Q[cLS] = eventsLS
return (stateLS, (snapLS, π),Auditor, ε)

Inspect[LS, 1, j](1λ, stateLS,m)

〈execute lines 2-3 of Figure 4〉
Q[cLS] = eventsLS
return (stateLS, (snap, events∆),Monitor, ε)
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It is clear that the interaction with B1 is identical to the interaction that A expects, as B1 executes all
of the protocols honestly. Intuitively, B1 keeps track of the log list every time it returns a snapshot to the
adversary. Because (c2, t2) ∈Msnap, c2 ∈ Q, so Q[c2] is well defined. It also holds that isConsistent(c1, t, Q[c2])
(again, by the honest behavior of B1), so the second winning condition of Guf-cons

B1
(λ) is met.

Furthermore, the honest behavior of B1 and the correctness of the DLC imply that c2 = Com(Q[c2]), so the
first winning condition is met. Finally, because E1 holds, it is the case that CheckInconsistent(c1, t1, c2, π) = 1,
so the last winning condition is met as well and B1 wins whenever E1 holds.

Equation 4: forging a snapshot
B2 behaves as follows (omitting the description of all algorithms, in which B2 honestly follows the protocol
specification):

BSign
2 (1λ, pk)

Q← ∅
(snap1, snap2, (event, rcpt), π)

r←− AMsg(1λ, pk)
if (c1, t1) /∈ Q return ((c1, t1), σ1)
return ((c2, t2), σ2)

Log[LS, 1, j](1λ, stateLS,m)

〈execute lines 2-3 of Figure 2〉
rcpt← (pk , t,Sign((t, event))) for all event ∈ m[events]
events′ ← log[events]‖events
c′ ← Append(events, log[snap][c])
snap′ ← (c′, t,Sign((c′, t)))
Q← Q ∪ {(c′, t)}
return (stateLS,

−−→
rcpt,Sys, ε)

It is clear that the interaction with B2 is identical to the interaction that A expects, as B2 executes all the
algorithms honestly and forms the signatures using its signing oracle. Equally, if E2 holds then it must be the
case that (c1, t1) /∈Msnap or (c2, t2) /∈Msnap (because the signature included in a receipt is on (t, event) rather
than (c, t), so will not pass the snapshot verification), as if verification does not pass then CheckEvidence out-
puts 0. If (c1, t1) /∈Msnap then (c1, t1) was not queried to the Sign oracle, and analogously if (c2, t2) /∈Msnap

then (c2, t2) was not queried to the Sign oracle. Thus, B2 succeeds whenever E2 holds.

Equation 5: forging a receipt
B3 behaves nearly identically to B2, with the following two differences: (1) it maintains a set Q for the mes-
sage/signature pairs related to receipt rather than to snapshots, and (2) at the end of the game, it outputs
((t, event), σ) (where these values are pulled from rcpt). Again, it clear that the interaction with B3 is iden-
tical to the one that A expects. Furthermore, if E3 holds then it must be the case that event /∈ Mrcpt, as if
rcpt[pk ] 6= pk then CheckEvidence outputs 0. If event /∈Mrcpt then (rcpt[t], event) was not queried to the Sign
oracle, so B3 succeeds whenever E3 holds.

Equation 6: faking a proof of non-inclusion
Finally, B4 behaves as follows, using a map Q such that c 7→ events (and omitting the descriptions of Msg,
Log[LS, 1, j], CheckEntry[LS, 1, j], and Inspect[LS, 1, j], in which B4 honestly follows the protocol specifica-
tion):

B4(1λ)

Q← ∅; (pkLS, skLS)
r←− KeyGen(1λ)

(snap1, snap2, (event, rcpt), π)
r←− AMsg(1λ, pkLS)

return (snap2[c], Q[c2], event, π)

CheckEntry[LS, 2, j](1λ, stateLS,m)

(event, snapAu)← m
π′ ← ProveIncl(cAu, event, events)
Q[cLS] = events
return (stateLS, π

′,Auditor, ε)
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It is clear that the interaction with B4 is identical to the interaction that A expects, as B4 executes all
the algorithms honestly. If E4 holds, then it must be the case that CheckNotIncl(c2, event, π) = 1. Be-
cause (c2, t2) ∈ Msnap, c2 ∈ Q, so a similar argument to that in the proof of Equation 3 shows that
CheckCom(c2, Q[c2]) = 1. Furthermore, because B4 behaves honestly we know that Q[c2] is ordered and
that if Egd-event holds and if time(event) ≤ t2 then event ∈ events. Thus B4 wins whenever E4 occurs.

Accountability. Let A be an adversary playing Gtrace
A (λ). We build an adversary B such that

Advtrace
trans,A(λ) ≤ Advp-cons

dlc,B (λ),

from which the theorem follows.
To establish this, suppose there exists an event event ∈ (eventspledged∩eventsfail)\eventsMo. By the definition

of the honest auditor and monitor, they output valid evidence evidence = (sthAu, sthMo, (event, rcpt), π =
DemoNotIncl(cMo, certsMo, event)) only if CheckNotIncl(cMo, event, π) = 1.

Thus, if CheckEvidence(pkLS, evidence) = 0, it must be the case that

CheckNotIncl(cMo, event,DemoNotIncl(certsMo, event)) = 0,

in which case we can construct an adversary B against the provable non-inclusion of the DLC as follows (we
omit the descriptions of the oracles, in which B executes the honest algorithm):

B(1λ)

events← ∅; a← ∅
pkLS

r←− AMsg(1λ)
find event ∈ (eventspledged ∩ eventsfail)
return (stateMo[events], event)

By the honest behavior of the monitor, isOrdered(certsMo) = 1, so the final winning condition of Gp-cons
B (λ)

is satisfied, and by assumption so is the first winning condition. It therefore remains to show that event /∈
eventsMo; this, however, follows by assumption as well. Thus, B succeeds whenever A does.
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