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Abstract

In a traditional signature scheme, a signature σ on a message m is issued under a public key
PK, and can be interpreted as follows: “The owner of the public key PK and its corresponding
secret key has signed message m.” In this paper we consider schemes that allow one to issue
signatures on behalf of any NP statement, that can be interpreted as follows: “A person in
possession of a witness w to the statement that x ∈ L has signed message m.” We refer to such
schemes as signatures of knowledge.

We formally define the notion of a signature of knowledge. We begin by extending the tradi-
tional definition of digital signature schemes, captured by Canetti’s ideal signing functionality,
to the case of signatures of knowledge. We then give an alternative definition in terms of games
that also seems to capture the necessary properties one may expect from a signature of knowl-
edge. We then gain additional confidence in our two definitions by proving them equivalent.

We construct signatures of knowledge under standard complexity assumptions in the common-
random-string model.

We then extend our definition to allow signatures of knowledge to be nested i.e., a signature of
knowledge (or another accepting input to a UC-realizable ideal functionality) can itself serve as
a witness for another signature of knowledge. Thus, as a corollary, we obtain the first delegatable
anonymous credential system, i.e., a system in which one can use one’s anonymous credentials
as a secret key for issuing anonymous credentials to others.
Keywords: signature schemes, NIZK, proof of knowledge, UC, anonymous creden-
tials

1 Introduction

Digital signature schemes constitute a cryptographic primitive of central importance. In a tra-
ditional digital signature scheme, there are three algorithms: (1) the key generation algorithm
KeyGen through which a signer sets up his public and secret keys; (2) the signing algorithm Sign;
and (3) the verification algorithm Verify. A signature in a traditional signature scheme can be
thought of as an assertion on behalf of a particular public key. One way to interpret (m,σ) where
Verify(PK,m, σ) = Accept , is as follows: “the person who generated public key PK and its corre-
sponding secret key SK has signed message m.”

We ask ourselves the following question: Can we have a signature scheme in which a signer
can speak on behalf of any NP statement to which he knows a witness? For example, let φ be a
Boolean formula. Then we want anyone who knows a satisfying assignment w to be able to issue
tuples of the form (m,σ), where Verify(φ,m, σ) = Accept , that can be interpreted as follows: “a
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person who knows a satisfying assignment to formula φ has signed message m.” Further, we ask
whether we can have a signature that just reveals that statement but nothing else; in particular, it
reveals nothing about the witness. Finally, what if we want to use a signature issued this way as a
witness for issuing another signature?

Online, you are what you know, and access to data is what empowers a user to authenticate
her outgoing messages. The question is: what data? Previously, it was believed that a user needed
a public signing key associated with her identity, and knowledge of the corresponding secret key
is what gave her the power to sign. Surprisingly, existence of signatures of knowledge means
that if there is any NP statement x ∈ L is associated with a user’s identity, the knowledge of a
corresponding and hard-to-find witness w for this statement is sufficient to empower the user to
sign.

Why We Need Signatures of Knowledge as a New Primitive. Suppose that a message m
is signed under some public key PK, and σ is the resulting signature. This alone is not sufficient
for any application to trust the message m, unless this application has reason to trust the public
key PK. Thus, in addition to (m,σ,PK), such an application will also request some proof that PK
is trustworthy, e.g., a certification chain rooted at some trusted PK0. In order to convince others
to accept her signature, the owner of the public key PK has to reveal a lot of information about
herself, namely, her entire certification chain. Yet, all she was trying to communicate was that the
message m comes from someone trusted by the owner of PK0. Indeed, this is all the information
that the application needs to accept the message m. If instead the user could issue a signature of
knowledge of her SK, PK, and the entire certification chain, she would accomplish the very same
goal without revealing all the irrelevant information.

More generally, for any polynomial-time Turing machine ML, we want to be able to sign using
knowledge of a witness w such that ML(x,w) = Accept . We think of ML as a procedure that
decides whether w is a valid witness for x ∈ L for the NP language L. We call the resulting
signature a signature of knowledge of w that is a witness to x ∈ L, on message m, or sometimes
just a signature of knowledge of w on message m, or sometimes a signature of knowledge on behalf
of x ∈ L on message m.

Other Applications Our simplest example is a ring signature [RST01]. In a ring signature,
a signer wishes to sign a message m in such a way that the signature cannot be traced to her
specifically, but instead to a group of N potential signers, chosen at signing time. A ring signature
can be realized by issuing a signature of knowledge of one of the secret keys corresponding to N
public keys. Moreover, following Dodis et al. [DKNS04] using cryptographic accumulators [BdM94],
the size of this ring signature need not be proportional to N : simply accumulate all public keys into
one accumulator A using a public accumulation function, and then issue a signature of knowledge
of a secret key corresponding to a public key in A.

Next, let us show how signatures of knowledge give rise to a simple group signature scheme [CvH91,
CS97, ACJT00, BMW03, BBS04]. In a group signature scheme, we have group members, a group
manager, and an anonymity revocation manager. Each member can sign on behalf of the group, and
a signature reveals no information about who signed it, unless the anonymity revocation manager
gets involved. The anonymity revocation manager can trace the signature to the group member
who issued it; moreover it is impossible, even if the group manager and the revocation manager
collude, to create a signature that will be traced to a group member who did not issue it.

Consider the following simple construction. The group’s public key consists of (PKs,PKE , f),
where PKs is a signature verification key for which the group manager knows the corresponding
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secret key; PKE is an encryption public key for which the anonymity revocation manager knows
the corresponding decryption key; and f is a one-way function. To become a group member, a
user picks a secret x, gives f(x) to the group manager and obtains a group membership certificate
g = σPKs

(f(x)). To issue a group signature, the user picks a random string R, encrypts his identity
using randomness R: c = Enc(PKE, f(x);R) and produces a signature of knowledge σ of (x, g,R)
such that c is an encryption of f(x) using randomness R, and g is a signature on f(x). The
resulting group signature consists of (c, σ). To trace a group signature, the revocation manager
decrypts c. It is not hard to see (only intuitively, since we haven’t given any formal definitions)
that this construction is a group signature scheme. Indeed, at a high level, this is how existing
practical and provably secure group signatures work [ACJT00, BBS04].

Unlike the two applications above that have already been studied and where signatures of
knowledge offer just a conceptual simplification, our last application was not known to be realizable
prior to this work.

Consider the problem of delegatable anonymous credentials. The problem can be explained
using the following example. Suppose that, as Brown University employees, we have credentials
attesting to that fact, and we can use these credentials to open doors to campus facilities. We
wish to be able do so anonymously because we do not want the janitors to monitor our individual
whereabouts. Now suppose that we have guests visiting us. We want to be able to issue them a guest
pass using our existing credential as a secret key, and without revealing any additional information
about ourselves, even to our guests. In turn, our visitors should be able to use their guest passes
in order to issue credentials to their taxi drivers, so these drivers can be allowed to drive on the
Brown campus. 1 So we have a credential delegation chain, from the Brown University certification
authority (CA) that issues us the employee credential, to us, to our visitors, to the visitors’ taxi
drivers, and each participant in the chain does not know who gave him/her the credential, but (1)
knows the length of his credential chain and knows that this credential chain is rooted at the Brown
CA; and (2) can extend the chain and issue a credential to the next person.

Although it may seem obvious how to solve this problem once we cast everything in terms of
signatures of knowledge and show how to realize signatures of knowledge, we must stress that this
fact eluded researchers for a very long time, dating back to Chaum’s original vision of the world
with anonymous credentials [Cha85]. More recently this problem was raised in the anonymous
credentials literature [LRSW99, CL01, Lys02]. And it is still elusive when it comes to practical
protocols: our solution is not efficient enough to be used in practice.

In conclusion, we need signatures of knowledge as a primitive because it comes up again and
again in privacy-preserving protocols. This primitive is both conceptually helpful in understand-
ing existing constructions (group signatures, ring signatures), and useful for developing new ones
(signing without disclosing certification data, delegatable anonymous credentials).

On Defining Signatures of Knowledge. The first definition of any new primitive is an
attempt to formalize intuition. We see from the history of cryptographic definitions (from defining
security for encryption, signatures, multi-party computation) that it requires a lot of effort and
care. Our approach is to give two definitions, each capturing our intuition in its own way, and then
prove that they are equivalent.

One definitional approach is to give an ideal functionality that captures our intuition for a
signature of knowledge. Our ideal functionality will guarantee that a signature will only be accepted
if the functionality sees the witness w either when generating the signature or when verifying it;

1This is fictional; you do not need permission to drive on campus.
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and, moreover, signatures issued by signers through this functionality will always be accepted. At
the same time, the signatures that our functionality will generate will contain no information about
the witness. This seems to capture the intuitive properties we require of a signature of knowledge,
although there are additional subtleties we will discuss in Section 2.1. For example, this guarantees
that an adversary cannot issue a signature of knowledge of w on some new message m unless he
knows w, even with access to another party who does know w. This is because the signatures issued
by other parties do not reveal any information about w, while in order to obtain a valid signature,
the adversary must reveal w to our ideal functionality. Although this definition seems to capture
the intuition, it does not necessarily give us any hints as to how a signature of knowledge can be
constructed. Our second definition helps with that.

Our second definition is a game-style one [Sho04, BR04]. This definition requires that a signature
of knowledge scheme be in the public parameter model (where the parameters are generated by
some trusted process called Setup) and consist of two algorithms, Sign and Verify. Besides the usual
correctness property that requires that Verify accept all signatures issued by Sign, we also require
that (1) signatures do not reveal anything about the witness; this is captured by requiring that there
exist a simulator who can undetectably forge signatures of knowledge without seeing the witness
using some trapdoor information about the common parameters; and (2) valid signatures can only
be generated by parties who know corresponding witnesses; this is captured by requiring that there
exist an extractor who can, using some trapdoor information about the common parameters, extract
the witness from any signature of knowledge, even one generated by an adversary with access to
the oracle producing simulated signatures. This definition is presented in Section 2.2. (We call this
definition SimExt-security, for simulation and extraction.)

We prove that the two definitions are equivalent: namely, a scheme UC-realizes our ideal func-
tionality if and only if it is SimExt-secure.

Our ideal signature of knowledge functionality can be naturally extended to a signature of
knowledge of an accepting input to another ideal functionality. For example, suppose that FΣ is
the (regular) signature functionality. Suppose w is a signature on the value x under public key
PK, issued by the ideal FΣ functionality. Then our functionality FSOK can issue a signature σ on
message m, whose meaning is as follows: “The message m is signed by someone who knows w, where
w is a signature produced by FΣ under public key PK on message x.” In other words, a signature
w on message x under public key PK that causes the verification algorithm for FΣ to accept, can
be used as a witness for a signature of knowledge. One complication in defining the signature of
knowledge functionality this way is that, to be meaningful, the corresponding instance of the FΣ

functionality must also be accessible somehow, so that parties can actually obtain signatures under
public key PK. Further, for FSOK to be UC-realizable, we must require that the functionality that
decides that w is a witness for x, also be UC-realizable. See Section 4 to see how we tackled these
definitional issues. As far as we know, this is the first time that an ideal functionality is defined as
a function of other ideal functionalities, which may be of independent interest to the study of the
UC framework.

Our Constructions. In Section 3, we show how to construct signatures of knowledge for any
polynomial-time Turing machine ML deciding whether w is a valid witness for x ∈ L. We use the
fact (proved in Section 2.3) that SimExt-security is a necessary and sufficient notion of security,
and give a construction of a SimExt-secure signature of knowledge. Our construction is based
on standard assumptions. In the common random string model, it requires a dense cryptosystem
[DP92, SCP00] and a simulation-sound non-interactive zero-knowledge proof scheme with efficient
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provers[Sah99, dSdCO+01] (which can be realized assuming trapdoor permutations for example).
We then show in Section 4 that, given any UC-realizable functionality F that responds to

verification queries and is willing to publish its verification algorithm, the functionality which
generates signatures of knowledge of an accepting input to F is also UC-realizable. We then
explain why this yields a delegatable anonymous credential scheme.

The History of the Terminology. The term “signature of knowledge” was introduced by
Camenisch and Stadler [CS97], who use this term to mean a proof of knowledge (more specifi-
cally, a Σ-protocol [Cra97]) turned into a signature using the Fiat-Shamir heuristic [FS87]. Many
subsequent papers on group signatures and anonymous credentials used this terminology as well.
However, existing literature does not contain definitions of security for the term. Every time a
particular construction uses a signature of knowledge as defined by Camenisch and Stadler, the
security of the construction is analyzed from scratch, and the term “signature of knowledge” is
used more for ease of exposition than as a cryptographic building block whose security properties
are well-defined. This frequent informal use of signatures of knowledge indicates their importance
in practical constructions and therefore serves as additional motivation of our formal study.

2 Signatures of Knowledge of a Witness for x ∈ L

A signature of knowledge scheme must have two main algorithms, Sign and Verify. The Sign

algorithm takes a message and allows anyone holding a witness to a statement x ∈ L to issue
signatures on behalf of that statement. The Verify algorithm takes a message, a statement x ∈ L,
and a signature σ, and verifies that the signature was generated by someone holding a witness to
the statement.

Signatures of knowledge are essentially a specialized version of noninteractive zero knowledge
proofs of knowledge: If a party P can generate a valid signature of knowledge on any message m
for a statement x ∈ L, that should mean that, first of all, the statement is true, and secondly, P
knows a witness for that statement. This intuitively corresponds to the soundness and extraction
properties of a non-interactive proof of knowledge system. On the other hand, just as in a zero-
knowledge proof, the signature should reveal nothing about the witness w. We know that general
NIZK proof systems are impossible without some common parameters. Thus, our signatures of
knowledge will require a setup procedure which outputs shared parameters for our scheme.

Thus, we can define the algorithms in a signature of knowledge schemes as follows: Let {Mesk}
be a set of message spaces, and for any language L ∈ NP , let ML denoted a polynomial time Turing
machine which accepts input (x,w) iff w is a witness showing that x ∈ L. Let Setup be an algorithm
that outputs public parameters p ∈ {0, 1}k for some parameter k. Let Sign(p,ML, x, w,m) be an
algorithm that takes as input some public parameters p, a TM ML for a language L in NP, a value
x ∈ L, a valid witness w for x, and m ∈ Mesk, a message to be signed. Sign outputs a signature
of knowledge for instance x ∈ L on the message m. Let Verify(p,ML, x,m, σ) be an algorithm that
takes as input the values p, ML, x, the message m, and a purported signature σ, and either accepts
or rejects.

2.1 An Ideal Functionality for a Signature of Knowledge

Canetti’s Universal Composability framework gives a simple way to specify the desired functionality
of a protocol. Furthermore, the UC Theorem guarantees that our protocols will work as desired, no
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matter what larger system they may be operating within. We will begin by giving a UC definition
of signatures of knowledge. For an overview of the UC framework, see Appendix A.

We begin by recalling Canetti’s signature functionality. Note that the cited version of the
functionality is from 2005, and is different from the one that Canetti first proposed in 2000. For
details see Appendix B. For a detailed discussion and justification for Canetti’s modelling choices
see [Can05].

Note that this functionality is allowed to produce an error message and halt, or quit, if things go
wrong. That means that it is trivially realizable by a protocol that always halts. We will therefore
only worry about protocols that realize our functionalities non-trivially, i.e. never output an error
message.

The session id(sid) of FSIG captures the identity P of the signer; all participants in the protocol
with this session id agree that P is the signer. In a signature of knowledge, we do not have one
specific signer, so P should not be included in the session id. But all participants in the protocol
should agree on the language that they are talking about. Thus, we have a language L ∈NP and a
polynomial-time Turing machine ML and a polynomial p, such that x ∈ L iff there exists a witness
w such that |w| = p(|x|) ∧ML(x,w) = 1. Let us capture the fact that everyone is talking about
the same L by requiring that the session id begin with the description of ML.

FSIG : Canetti’s signature functionality

Key Generation Upon receiving a value (KeyGen,sid) from some party P , verify that sid = (P, sid ′) for
some sid ′. If not, then ignore the request. Else, hand (KeyGen,sid) to the adversary. Upon receiving
(Algorithms, sid , Verify, Sign) from the adversary, where Sign is a description of a PPT ITM, and
Verify is a description of a deterministic polytime ITM, output (VerificationAlgorithm, sid , Verify)
to P .

Signature Generation Upon receiving a value (Sign,sid , m) from P , let σ ← Sign(m), and verify that
Verify(m, σ) = 1. If so, then output (Signature, sid , m, σ) to P and record the entry (m, σ). Else,
output an error message (Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, σ, Verify′) from some party V , do: If
Verify′ = Verify, the signer is not corrupted, Verify(m, σ′) = 1, and no entry (m, σ′) for any
σ′ is recorded, then output an error message (Unforgeability error) to V and halt. Else, output
(Verified,sid, m, Verify′(m, σ)) to V .

As mentioned above, signatures of knowledge inherently require some setup. Just as in the key
generation interface of FSIG above, a signature of knowledge functionality (FSOK) setup procedure
will determine the algorithm Sign that computes signatures and the algorithm Verify for verifying
signatures. However, since anyone who knows a valid witness w can issue a signature of knowledge
on behalf of x ∈ L, both Sign and Verify will have to be available to any party who asks for them.
In addition, the setup procedure will output algorithms Simsign and Extract that we will explain
later.

There are three things that the signature generation part of the FSOK functionality must
capture. The first is that in order to issue a signature, the party who calls the functionality must
supply (m,x,w) where w is a valid witness to the statement that x ∈ L. This is accomplished by
having the functionality check that it is supplied a valid w. The second is that a signature reveals
nothing about the witness that is used. This is captured by issuing the formal signature σ via a
procedure that does not take w as an input. We will call this procedure Simsign and require that
the adversary provide it in the setup step. Finally, the signature generation step must ensure that
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the verification algorithm Verify is complete, i.e., that it will accept the resulting signature σ. If
it find that Verify is incomplete, FSOK will output an error message (Completeness error) and halt,
just as FSIG does.

The signature verification part of FSOK should, of course, accept signatures (m,x, σ) if m was
previously signed on behalf of x ∈ L, and σ is the resulting signature (or another signature such
that Verify(m,x, σ) = 1). However, unlike FSIG , just because m was not signed on behalf of x
through the signing interface, that does not mean that σ should be rejected, even if the signer is
uncorrupted. Recall that anyone who knows a valid witness should be able to generate acceptable
signatures! Therefore, the verification algorithm must somehow check that whoever generated σ
knew the witness w. Recall that in the setup stage, the adversary provided the algorithm Extract.
This algorithm is used to try to extract a witness from a signature σ that was not produced
via a call to FSOK . If Extract(m,x, σ) produces a valid witness w, then FSOK will output the
outcome of Verify(m,x, σ). If Extract(m,x, σ) fails to produce a valid witness, and Verify(m,x, σ)
rejects, then FSOK will reject. What happens if Extract(m,x, σ) fails to produce a valid witness,
but Verify(m,x, σ) accepts? This corresponds to the case when a signature σ on m on behalf
of x was produced without a valid witness w, and yet σ is accepted by Verify. If this is ever
the case, then there is an unforgeability error, and so FSOK should output (Unforgeabilityerror)
and halt. Unlike FSIG , here we need not worry about whether the requesting party supplied a
correct verification algorithm, since here everyone is on the same page and is always using the same
verification algorithm (determined in the setup phase).

We are now ready to provide a more formal and concise description of the FSOK (L) functionality.

FSOK (L): signature of knowledge of a witness for x ∈ L

Setup Upon receiving a value (Setup,sid) from any party P , verify that sid = (ML, sid ′) for some sid ′.
If not, then ignore the request. Else, if this is the first time that (Setup,sid) was received, hand
(Setup,sid) to the adversary; upon receiving (Algorithms, sid , Verify, Sign, Simsign, Extract) from the
adversary, where Sign, Simsign, Extract are descriptions of PPT TMs, and Verify is a description of a
deterministic polytime TM, store these algorithms. Output the stored (Algorithms, sid , Sign, Verify)
to P .

Signature Generation Upon receiving a value (Sign,sid , m, x, w) from P , check that ML(x, w) = 1. If
not, ignore the request. Else, compute σ ← Simsign(m, x), and check that Verify(m, x, σ) = 1. If
so, then output (Signature,sid, m, x, σ) to P and record the entry (m, x, σ). Else, output an error
message (Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, x, σ) from some party V , do: If
(m, x, σ′) is stored for some σ′, then output (Verified,sid, m, x, σ, Verify(m, x, σ)) to V . Else
let w ← Extract(m, x, σ); if ML(x, w) = 1, output (Verified,sid, m, x, σ, Verify(m, x, σ)) to V .
Else if Verify(m, x, σ) = 0, output (Verified,sid, m, x, σ, 0) to V . Else output an error message
(Unforgeability error) to V and halt.

In the UC framework, each instance of the ideal functionality is associated with a unique sid,
and it ignores all queries which are not addressed to this sid. Since our FSOK functionalities
require that sid = ML ◦ sid′, this means that each FSOK functionality handles queries for exactly
one language.

Now consider the following language Up.

Definition 2.1 (Universal language). For polynomial p, define universal language Up s.t. x would
contain a description of a Turing machine M and an instance x′ such that x ∈ Up iff there exists w
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s.t. M(x′, w) halts and accepts in time at most p(|x|).

Notice that FSOK (Up) allows parties to sign messages on behalf of any instance x of any language
L which can be decided in non-deterministic p(|x|) time. Thus, if we have Setup,Sign, and Verify

algorithms which realize FSOK (Up), we can use the same algorithms to generate signatures of
knowledge for all such instances and languages. In particular, this means we do not need a separate
setup algorithm (in implementation, a separate CRS or set of shared parameters) for each language.
Readers familiar with UC composability may notice that any protocol which realizes FSOK(Up) for
all polynomials p will also realize the multisession extension of FSOK (with minor alterations). For
more information, see Appendix 4.4.

2.2 A Definition in Terms of Games

We now give a second, games style definition for signatures of knowledge. We find that games
style definitions are often more intuitive, particularly to a reader not thoroughly versed in the UC
composability framework, and that they can also be much easier to work with. This definition
provides additional clarity and also makes our job easier when proving security of our construction.
We will show that this definition is equivalent to (necessary and sufficient for) the UC definition
given in the previous section.

Informally, a signature of knowledge is SimExt-secure if it is correct, simulatable and ex-
tractable.

The correctness property is similar to that of a traditional signature scheme. It requires that
any signature issued by the algorithm Sign should be accepted by Verify.

The simulatability property requires that there exist a simulator which, given some trapdoor
information on the parameters, can create valid signatures without knowing any witnesses. This
captures the idea that signatures should reveal nothing about the witness used to create them. Since
the trapdoor must come from somewhere, the simulator is divided into Simsetup that generates the
public parameters (possibly from some different but indistinguishable distribution) together with
the trapdoor, and Simsign which then signs using these public parameters. We require that no
adversary can tell that he is interacting with Simsetup and Simsign rather than Setup and Sign.

The extraction property requires that there exist an extractor which, given a signature of
knowledge for an x ∈ L and appropriate trapdoor information, can produce a valid witness showing
x ∈ L. This captures the idea that it should be impossible to create a valid signature of knowledge
without knowing a witness. In defining the extraction property, we require that any adversary that
interacts with the simulator Simsetup and Simsign (rather than the Setup and Sign) not be able to
produce a signature from which the extractor cannot extract a witness. The reason that in the
definition, the adversary interacts with Simsetup instead of Setup is because the extractor needs
a trapdoor to be able to extract. Note that it also interacts with Simsign instead of Sign. The
adversary could run Sign itself, so access to Simsign gives it a little bit of extra power.

Definition 2.2 (SimExt-security). Let L be the language defined by a polynomial-time Turing
machine ML as explained above, such that all witnesses for x ∈ L are of known polynomial length
p(|x|). Then (Setup,Sign,Verify) constitute a SimExt-secure signature of knowledge of a witness
for L, for message space {Mesk} if the following properties hold:

Correctness There exists a negligible function ν such that for all x ∈ L, valid witnesses w for
x(i.e. witnesses w such that ML(x,w) = 1), and m ∈ Mesk

Pr[p← Setup(1k);σ ← Sign(p,ML, x, w,m) : Verify(p,ML, x,m, σ) = Accept] = 1− ν(k)
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Simulatability There exists a polynomial time simulator consisting of algorithms Simsetup and
Simsign such that for all probabilistic polynomial-time adversaries A there exists a negligible
functions ν such that for all polynomials f , for all k, for all auxiliary input s ∈ {0, 1}f(k)

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

= ν(k)

where the oracle Sim receives the values (ML, x, w, m) as inputs, checks that the witness w
given to it was correct and returns σ ← Simsign(p, τ,ML, x,m). τ is the additional trapdoor
value that the simulator needs in order to simulate the signatures without knowing a witness.

Extraction 2 In addition to (Simsetup,Simsign), there exists an extractor algorithm Extract such
that for all probabilistic polynomial time adversaries A there exists a negligible function ν
such that for all polynomials f , for all k, for all auxiliary input s ∈ {0, 1}f(k)

Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← ASim(p,τ,·,·,·,·)(s, p);
w← Extract(p, τ,ML, x,m, σ) :

ML(x,w) ∨ (ML, x,m) ∈ Q+ ∨ ¬Verify(p,ML, x,m, σ)] = 1− ν(k)

where Q+ denotes the query tape which lists all the previous successful queries A has sent to
the oracle Sim., i.e. all those queries (ML, x,m) which were sent with some valid witness w.

Note that the above definition captures, for example, the following intuition: suppose that Alice
is the only one in the world who knows the witness w for x ∈ L, and it is infeasible to compute w.
Then Alice can use x as her signing public key, and her signature σ on a message m can be formed
using a signature of knowledge w. We want to make sure that the resulting signature should be
existentially unforgeable against chosen message attacks [GMR88]. Suppose it is not. Then there
is a forger who can output (m,σ), such that σ is accepted by the verification algorithm without a
query m to Alice. Very informally, consider the following four games:

Adversary vs. Alice: The parameters are generated by Setup. Alice chooses a random x,w pair
and publishes x. The adversary sends Alice messages to be signed and Alice responds to each using
x,w and Sign. Adversary outputs a purported forgery. Let p1 be the probability that the forgery
is successful.

Adversary vs. Simulator: The simulator generates parameters using Simsetup. The simulator
chooses a random x,w pair and publishes x. The adversary sends the simulator messages to be
signed, and he responds using x,w and Sim. The adversary outputs a purported forgery. Let p2 be
the probability that the forgery is successful.

Adversary vs. Extractor: The extractor generates parameters using Simsetup. He then chooses
a random x,w pair and publishes x. The adversary sends the simulator messages to be signed, and
he responds using x,w and Sim. The adversary outputs a purported forgery. The extractor runs
Extract to obtain a potential witness w. Let p3 be the probability that w is a valid witness.

Adversary vs. Reduction: The reduction is given an instance x, which it publishes. It then
generates parameters using Simsetup. The adversary sends messages to be signed, and the reduction
responds using x and Simsign. The adversary outputs a purported forgery. The reduction runs
Extract to obtain w. Let p4 be the probability that w is a valid witness.

By the simulatability property, the difference between p1 and p2 must be negligible. By the
extraction property, the difference between p2 and p3 must be negligible. Since Sim ignores w and
runs Simsign, p3 and p4 must be identical. Thus, generating forgeries is at least as hard as deriving

2There was a typo in the original version.
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a witness w for a random instance x. If the algorithm used to sample (x,w) samples hard instances
with their witnesses, then we know that the probability of forgery is negligible.

More formally, let G be an algorithm which samples (x,w) pairs, and X be an algorithm which
samples x values from the same distribution. Let ML be the language from which the x instances
are chosen, and let s be any auxiliary input to the adversary.

Consider the following traditional signature scheme:

SigKeyGen(1k) : (x,w)← G(1k); p← Setup(1k);PK = (x, p), SK = w

SigSign(m,SK) : Sign(p,ML, x, w,m)

SigVerify(m,σ, PK) : Verify(p,ML, x,m, σ)

Theorem 2.1. For all adversaries, the probability of forgery in the above scheme is at most negli-
gibly higher than the probability of finding a valid withness w for a random x← X(1k)

Proof. As defined above,
p1 = Pr [p← Setup(1k); (x,w) ← G(1k); (m,σ)← ASign(p,ML,x,w,·)(s, p, x) :

(ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

p2 = Pr [(p, τ)← Simsetup(1k); (x,w) ← G(1k); (m,σ)← ASim(p,τ,ML,x,w,·)(s, p, x) :
(ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

p3 = Pr [(p, τ)← Simsetup(1k); (x,w) ← G(1k); (m,σ)← ASim(p,τ,ML,x,w,·)(s, p, x);
w′ ← Extract(p, τ, x,ML,m, σ) : (ML, x,m) /∈ Q+ ∧ML(x,w′)]

p4 = Pr [(p, τ)← Simsetup(1k);x← X(1k); (m,σ)← ASimsign(p,τ,ML,x,·)(s, p, x);
w′ ← Extract(p, τ, x,ML,m, σ) : (ML, x,m) /∈ Q+ ∧ML(x,w′)]

Note that in the fourth scenario, success occurs if we find a valid witness for a random x ←
X(1k). Thus, we have only to show that the probability of forgery (p1) is a most negligibly higher
than the probability of success in this scenario(p4). We do this in several increments:

• Suppose there exists an adversary such that p1 − p2 is nonnegligible. Then we can show
that the simulatability property does not hold for this signature of knowledge scheme. We
construct a distinguisher D, which interacts with A and breaks the simulatability property.

D receives p and s, generates a random (x,w) pair, and sends s, p, x to A. D answers A’s
signature queries (Sign(p,ML, x, w, ·)) by forwarding them to his signing oracle. When A
outputs a purported forgery (m,σ), D checks that m was not one of A’s previous signing
queries and that Verify(p,ML, x,m, σ) returns true. If so, D returns 0; otherwise D returns
1.

Now, note that
Pr[p← Setup(1k); b← DSign(p,·,·,·)(s, p) : b = 1]

= Pr[p← Setup(1k); (x,w)← G(1k); (m,σ)← ASign(p,ML,x,w,·)(s, p, x) :
(ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

= p1

Pr[(p, τ)← Simsetup(1k); b← DSim(p,τ,·,·,·)(s, p) : b = 1]

= Pr[(p, τ)← Simsetup(1k); (x,w) ← G(1k); (m,σ)← ASim(p,τ,ML,x,w,·)(s, p, x) :
(ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

= p2

By assumption, p1 − p2 is nonnegligible, so this contradicts the simulatability property.
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• Suppose there exists an adversary A such that p2 − p3 is nonnegligible. Then we show that
the extraction property does not hold. We construct an algorithm B which interacts with A
and breaks the extraction property as follows.

B receives p, s, generates a random (x,w) pair by running G and sends s, x, p to A. B
answers A’s signature queries by forwarding them to his signing oracle (Sim). When A
outputs a potential forgery (m,σ), B outputs this signature pair. Let E be the process
by which p, τ, x,w,m,w′ and σ are chosen in the Adversary vs. Extractor and Adversary
vs. Reduction games above. I.e. Let E = {(p, τ) ← Simsetup(1k); (x,w) ← G(1k); (m,σ) ←
ASim(p,τ,ML,x,w,·)(s, p, x);w′ ← Extract(p, τ,ML, x,m, σ)} be a process which outputs (p, x,m, σ,w′).

Now we show that B breaks the extraction property:
Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← BSim(p,τ,·,·,·,·)(s, p);

w′ ← Extract(p, τ,ML, x,m, σ) :
¬ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

= Pr [(p, τ)← Simsetup(1k); (x,w)← G(1k); (m,σ) ← ASim(p,τ,ML,x,w,·)(s, p, x);
w′ ← Extract(p, τ,ML, x,m, σ) :

¬ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]

= Pr[(p, x,m, σ,w′)← E(1k) : ¬ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
> Pr[(p, x,m, σ,w′)← E(1k) : ¬ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
− Pr[(p, x,m, σ,w′)← E(1k) : ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ ¬Verify(p,ML, x,m, σ)]

= Pr[(p, x,m, σ,w′)← E(1k) : ¬ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
+ Pr[(p, x,m, σ,w′)← E(1k) : ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
− Pr[(p, x,m, σ,w′)← E(1k) : ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
− Pr[(p, x,m, σ,w′)← E(1k) : ML(x,w′) ∧ (ML, x,m) /∈ Q+ ∧ ¬Verify(p,ML, x,m, σ)]

= Pr[(p, x,m, σ,w′)← E(1k) : (ML, x,m) /∈ Q+ ∧ Verify(p,ML, x,m, σ)]
− Pr[(p, x,m, σ,w′)← E(1k) : ML(x,w′) ∧ (ML, x,m) /∈ Q+]

= p2 − p3 > ǫ(k) for some nonnegligible function ǫ(k).

Thus,
Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← BSim(p,τ,·,·,·,·)(s, p);

w ← Extract(p, τ,ML, x,m, σ) :
ML(x,w) ∨ (ML, x,m) ∈ Q+ ∨ ¬Verify(p,ML, x,m, σ)] < 1− ǫ(k)

which breaks the extraction property.

• As noted above, since X draws x values from the same distribution as G and since Sim simply
ignores w and performs Simsign, we must have p3 = p4.

Thus, p1 − p4 is negligible. That means, the probability of forgery in Alice’s signature scheme
is at most negiligibly higher than the probability of finding a witness w for a random instance
x← X.

2.3 Equivalence of the Definitions

As was mentioned above, signatures of knowledge cannot exist without some trusted setup proce-
dure which generates shared parameters. In the UC model, shared parameters are captured by the
FD

CRS functionality [Can01]. This functionality generates values from a given distribution D (the
desired distribution of shared parameters), and makes them available for all parties in the protocol.
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Thus, protocols requiring shared parameters can be defined in the FCRS -hybrid model, where real
protocols are given access to the ideal shared parameter functionality.

Formally, the FD
CRS functionality receives queries of the form (CRS,sid) from a party P . If a

value v for this sid has not been stored, it chooses a random value v from distribution D and stores
it. It returns (CRS, sid , v) to P and also sends (CRS,sid , v) to the adversary.

Let Σ = (Setup,Sign,Verify) be a signature of knowledge scheme. Let k be the security param-
eter. We define a FD

CRS -hybrid signature of knowledge protocol πΣ, where D is the distribution of
Setup(1k).

When a party P running πΣ receives an input (Setup,sid) from the environment, it checks that
sid = (ML, sid ′) for some sid ′. If not it ignores the request. It then queries the FCRS functionality,
receives (CRS,v), and stores v. Finally, it returns (Algorithms,sid,Sign(v,ML, ·, ·, ·),Verify(v,ML, ·, ·))
to the environment.

When P receives a request (Sign, sid ,m, x,w) from the environment, it retrieves the stored
v. It checks that ML(x,w) = 1. If not, it ignores the request, otherwise it returns (Signature,
sid ,m, x,Sign(v,ML, x, w,m)). When P receives a request (Verify, sid ,m, x, σ) from the environ-
ment, it again retrieves the stored v, and then returns (Verified, sid ,m, x, σ,Verify(v,ML, x,m, σ)).

Recall that Up, defined in Definition 2.1, is the universal language.

Theorem 2.2. For any polynomial p, πΣ UC-realizes FSOK (Up) in the FD
CRS -hybrid model if and

only if Σ is SimExt-secure.

Proof. Suppose that Σ is SimExt-secure. Then let us show that πΣ UC-realizes FSOK (Up). Consider
the ideal adversary (simulator) S that works as follows: Upon receiving (Setup,sid) from FSOK ,
S will parse sid = (MU , sid ′). It obtains (p, τ) ← Simsetup(1k) and sets Sign = Sign(p, ·, ·, ·, ·)
(so Sign will have four inputs: the language ML — note that since we are realizing FSOK (Up),
any instance will start with ML,— the instance x ∈ L, the witness w, and the message m),
Verify = Verify(p, ·, ·, ·, ·), Simsign = Simsign(p, τ, ·, ·, ·, ·), and Extract = Extract(p, τ, ·, ·, ·, ·). Finally,
it sends (Algorithms,sid,Sign,Verify,Simsign,Extract) back to FSOK . Another place where S must
do something is when the adversary A queries the FD

CRS functionality. In response to such a query,
S outputs p.

Let Z be any environment and A be an adversary. We wish to show that Z cannot distinguish
interactions with A and πΣ from interactions with S and FSOK . Let us do that in two steps. First,
we show that the event E that FSOK halts with an error message has negligible probability. Next,
we will show that, conditioned on E not happening, Z’s view in its interaction with S and FSOK

is indistinguishable from its view in interactions with A and πΣ.
There are two types of errors that lead to event E: FSOK halts with Completeness error or

Unforgeability error.
Suppose that the probability of a completeness error is non-negligible. By construction of

S, a completeness error happens when a signature generated by Simsign is rejected by Verify.
This contradicts the simulatability requirement: Since the environment Z can, with non-negligible
probability, find a series of queries to FSOK that lead to a completeness error, then it distinguishes
the output of Sim as defined in definition 2.2 from that of Sign, since by SimExt-security of Σ we
get the property that signatures generated by Sign are always accepted by Verify.

Suppose that the probability of an unforgeability error is non-negligible. Then there exists
some polynomial i(k), such that the probability that the i(k)th verification query causes the error,
is non-negligible. By construction of S, an unforgeability error happens when Extract fails to
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extract a witness w from a signature σ, issued by Z, that is accepted by Verify but which was not
generated by FSOK . Let us construct an adversary A that uses such Z to break the unforgeability
property of Σ. By definition of SimExt-security, first (p, τ) ← Simsetup(1k) are generated, and
then ASim(p,τ,·,·,·,·)(s, p) is invoked, where s is an auxiliary string, for example one that contains
the description of Z. A then invokes Z. When Z issues setup queries (Setup,sid), A returns the
appropriate Sign(p, ·, ·, ·) and Verify(p, ·, ·, ·) algorithms. When Z issues signing queries, A uses its
Sim oracle; note that by construction of S, the resulting responses are distributed identically to the
responses that FSOK would have issued. For the first i(k)−1 verification queries (Verify,sid ,m, x, σ
of Z, A returns the output of Verify(p,m, x, σ). A outputs the contents of Z’s i(k)th verification
query (m,x, σ). Note that Z’s view here is the same as its view in an interaction with FSOK , and so
the probability that FSOK would halt with an unforgeability error is non-negligible. Unforgeability
errors occur when Extract(p, τ,m, x, σ) fails to extract a valid witness w, and m has not been signed
by FSOK , and yet Verify(p,m, x, σ) = Accept . Thus, with non-neglible probability, A produces
(m,x, σ) that violate the conditions of the extractability property of the SimExt-security definition.
Therefore, Σ is not SimExt-secure, which is a contradiction.

Therefore we have shown that the probability of event E is negligible. Let us now show that,
conditioned on Ē, Z’s view when interacting with FSOK and S is indistinguishable from its view
when interacting with a real adversary A and the real protocol πΣ. Suppose for contradiction
that it is distinguishable. Then let us use Z to construct a distinguisher A that will contradict
the simulatability property of Σ, namely, distinguish between the Sign oracle and the Sim oracle.
A will invoke Z. It will respond to Z’s setup query by giving it Sign(p, ·, ·, ·) and Verify(p, ·, ·, ·).
If p was generated using Setup (and so A is given Sign as its oracle), this is the same situation
as when Z is interacting with πΣ; while if it was generated using Simsetup (and so A’s oracle is
Sim), then this is the same as when Z is interacting with S and FSOK . In response to Z’s signing
queries, A will ask its oracle to produce a signature. Again, note that if A’s oracle is Sign, σ is
distributed as in πΣ, while if it is Sim, σ is distributed as in an interaction with FSOK— the only
other possibility for FSOK would be to halt with an error, but we are considering the case when
this does not happen. To respond to Z’s verification queries, A runs the Verify algorithm. Since
we have conditioned on FSOK not halting with an error, the response of the Verify algorithm will,
in case A’s oracle is Sim, correspond to the behavior of FSOK . On the other hand, if A’s oracle is
Sign, this response is the same as in πΣ. Therefore, if Z distinguishes FSOK and S from πΣ and A,
it implies that A distinguishes between the two oracles, which contradicts simulatability.

Now let us show the other direction. Suppose that πΣ UC-realizes FSOK (U) in the FD
CRS -hybrid

model. Let us show that it follows that Σ is SimExt-secure. Since πΣ is UC-realizable, it must have
a simulator S. By (p, τ)← Simsetup(1k) let us refer to the algorithm that S runs in response to a
setup query; the public parameters p consist of the value that S will subsequently return in response
to queries to the FD

CRS functionality; the trapdoor τ consists of the algorithms (Simsign,Extract)
that S hands over to FSOK in response to the setup query.

Suppose Σ does not satisfy the correctness property and yet πΣ UC-realizes FSOK (U). Then
let us show a contradiction. Note that honest parties that use FSOK , always accept signatures
generated by honest parties through FSOK , (although FSOK may halt during signing with a
Correctness error). On the other hand, since Σ does not satisfy completeness, honest parties using Σ
reject signatures produced by honest parties that use Σ with non-negligible probability. Therefore,
to distinguish FSOK from πΣ, all Z needs to do is to find a signature σ, output by an honest party,
that is rejected by Verify. Such a signature will exist in πΣ with non-negligible probability since
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Σ does not satisfy correctness, and yet will not exist in FSOK by the argument above. This is a
contradiction.

Suppose Σ does not satisfy simulatability. Then there exists a distinguisher between the Sign

and the Sim oracles. Then it is easy to see how the environment can use such a distinguisher to
distinguish between FSOK and πΣ, since in FSOK signatures output by honest parties are computed
according to Sim, while in πΣ, they are computed according to Sign.

Finally, suppose Σ does not satisfy extractability. Then there exists an adversary A that,
with non-negligible probability produces a signature from which an appropriate witness cannot be
extracted. Then it is easy to see how the environment Z can use this adversary to distinguish πΣ

from FSOK . It will invoke A; whenever A issues queries to Sim, it will direct these queries to be
signed by honest parties. Finally, A produces an unsigned message m and (m,x, σ) that Verify

accepts, but from which a witness cannot be extracted. Z directs (m,x, σ) to be verified by an
honest party. If A’s success happens non-negligibly often, then, should Z be talking to FSOK , it
will cause FSOK to halt with an error with non-negligible probability; while should it be talking to
πΣ, the values (m,x, σ) will be accepted.

3 Construction

Here we present Σ, a construction of a SimExt-secure signature of knowledge. By Theorem 2.2,
this also implies a protocol πΣ that UC-realizes the FSOK functionality presented in Section 2.1.

Our construction has two main building blocks: CPA secure dense cryptosystems [DP92, SCP00]
and simulation-sound non-interactive zero knowledge proofs [Sah99, dSdCO+01]. (For a review of
these primitives, see Appendix C.) Let (G,Enc,Dec) be a dense cryptosystem, and let (NIZKProve,
NIZKSimsetup,NIZKSim,NIZKVerify) be a simulation-sound non-interactive zero-knowledge proof
system.

Setup Let p be a common random string. Parse p as follows: p = PK ◦ ρ, where PK is a k-bit
public key of our cryptosystem.

Signature Generation In order to sign a message m ∈ Mesk using knowledge of witness w for
x ∈ L, let c = Enc(PK, (m,w), R), where R is the randomness needed for the encryption
process; let
π ← NIZKProve(ρ, (m,ML, x, c,PK), (∃(w,R) : c = Enc(PK, (m,w), R)∧ML(x,w)), (w,R)).
Output σ = (c, π).

Verification In order to verify a signature of knowledge of witness w for x ∈ L, σ = (c, π), run
NIZKVerify(ρ, π, (m,ML, x, c,PK), (∃(w,R) : c = Enc(PK, (m,w), R) ∧ML(x,w))).

Intuitively, the semantic security of the cryptosystem together with the zero knowledge property
of the proof system ensure that the signature reveals no information about the witness. The
simulation soundness property of the proof system means that the adversary cannot prove false
statements. Thus any signature that verifies must include a ciphertext which is an encryption of
the given message and of a valid witness. Clearly, if he is interacting only with a simulator who
does not know any witnesses, this implies that the adversary should know the witness. Further, by
simulatability, the adversary cannot gain any advantage by communicating with valid signers.

Theorem 3.1. The construction above is a SimExt-secure signature of knowledge.
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Proof. (Sketch) First we argue simulatability. In the Simsetup phase, our simulator will choose a
key pair (PK,SK) of the dense cryptosystem, and will obtain the string ρ together with trapdoor
τ ′ by running NIZKSimsetup. In the Simsign phase, the simulator will always let c be the encryption
of 0|m|+lL , and will create (fake) proof π by invoking NIZKSim.

We show that the resulting simulation is successful using a two-tier hybrid argument. First, note
that, by the unbounded zero-knowledge property of the underlying NIZK proof system, signatures
obtained by replacing calls to NIZKProve by calls to NIZKSim will be distributed indistinguishably
from real signatures. We call this signing process MixSign; so we see that MixSign is indistinguishable
from Sign. Second, note that, by semantic security of the dense cryptosystem used, using c ←
Enc(PK, (m,w)) versus c ← Enc(PK, (0|m|+lL)) results in indistinguishable distributions. Since
the only difference between MixSign and Simsign is in how c is chosen, it follows that MixSign and
Simsign are indistinguishable as well. So we get simulatability.

Second, let us argue extraction. Recall that, as part of the trapdoor τ , Simsetup above retains
SK, the secret key for the cryptosystem. The extractor simply decrypts the c part of the signature
σ to obtain the witness w. By the simulation-soundness property of the underlying NIZK proof
system, no adversary can produce a signature acceptable to the Verify algorithm without providing
c that decrypts to a correct witness w.

Proof. (Full)

• Simulatability:

Simsetup runs (PK,SK)← G(1k) to obtain a random public key PK and the corresponding
secret key SK. Then, let (ρ, τ ′)← NIZKSimsetup(1k). Let p = PK ◦ ρ, τ = (SK, τ ′).

Simsign(p, τ,ML, x,m) parses p = PK ◦ ρ and τ = (SK, τ ′), lets c ← Enc(PK, (m, 0lL))
and obtains π = NIZKSim(ρ, τ ′, (m,ML, x, c,PK), (∃(w,R) : c = Enc(PK,m,w,R) ∧
ML(x,w))). Output (c, π).

We will show that interaction with Sign and Setup is indistinguishable from interaction with
Simsign and Simsetup. Consider an intermediate signing algorithm:

MixSign(p, τ, L, x,m,w) verifies that ML(x,w) accepts, parses p = PK ◦ ρ and τ = (SK, τ ′),
lets c← Enc(PK, (m,w)) and obtains π = NIZKSim(ρ, τ ′, (m,ML, x, c,PK), (∃(w,R) : c =
Enc(PK,m,w,R) ∧ML(x,w))). Output (c, π)

Let

p1 =

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← AMixSign(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

Sign and MixSign are identical except that Sign makes calls to NIZKProve, and MixSign makes
calls to NIZKSim. Thus, if p1 is nonnegligible, then we have broken the Unbounded Zero
Knowledge property of the SSNIZK proof system.

Finally, consider the following hybrid signing algorithms:

HybridSigni calls MixSign the first i times it is queried, and calls Sim for the rest of the
queries.
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Note that HybridSigni and HybridSigni+1 are identical except that on the (i + 1)-th call,
HybridSigni+1 encrypts (mi+1, wi+1), while HybridSigni encrypts (mi+1, 0

lL).

That means if
∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← AHybridSigni+1(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[(p, τ)← Simsetup(1k); b← AHybridSigni(p,τ,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is nonnegligible, then we have broken the semantic security of the encryption scheme.

Thus, since HybridSign0 = Simsign, and HybridSignq = MixSign where q is the total(polynomial)
number of signing queries A makes, we now have

p2 =

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[(p, τ)← Simsetup(1k); b← AMixSign(p,τ,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is negligible.

So finally, combining p1 and p2 , we have that

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

is negligible. Thus, we have shown Simulatability.

• Extraction:

Extract(p, τ,ML, x,m, σ) parses σ = (c, π) and τ = (SK, τ ′), runs Dec(PK,SK, c) to obtain
(m,w), and outputs w.

Suppose there exists A, f, s such that

Pr [(p, τ)← Simsetup(1k); (ML, x,m, σ)← ASim(p,τ,·,·,·,·)(s, p);
w ← Extract(p, τ,ML, x,m, σ) :

ML(x,w) ∨ (ML, x,m) ∈ Q+ ∨ ¬Verify(p,ML, x,m, σ)] = 1− ǫ(k)

for nonnegligible ǫ(k)

Let L′ be a language such that an instance (ρ, x,ML,m, c, PK) ∈ L′ iff there exists (w,R)
such that ML(x,w) ∧ c = Enc(PK, (m,w), R).

Then, from above, using the constructions for Simsetup, Extract, and Verify:

Pr [(PK ◦ ρ,SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK,SK, c) :

ML(x,w) ∨ (ML, x,m) ∈ Q+ ∨ ¬(NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′))] = 1− ǫ(k)

Looking at the probability of the opposite event, we get:

Pr [(PK ◦ ρ,SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK,SK, c) :

(ML, x,m) /∈ Q+ ∧ NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′)
∧¬ML(x,w)] = ǫ(k)
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Finally, using the definition of L′, which says that when w is obtained from Dec(PK,SK, c),
ML(x,w) must accept:

Pr [(PK ◦ ρ,SK ◦ τ)← Simsetup(1k); (ML, x,m, σ = (c, π))← ASim(p,τ,·,·,·,·)(s, p);
(m,w) = Dec(PK,SK, c) :

(ML, x,m) /∈ Q+ ∧ NIZKVerify(π, (ρ, x,ML,m, c, PK) ∈ L′)
∧(ρ, x,ML,m, x,PK) /∈ L′] = ǫ(k)

Since Sim calls NIZKSim for each of the queried proofs and we now have an algorithm which
can prove false statements, we have broken the simulation soundness property.

4 FSOK for Generalized Languages, and Applications

Recall from the introduction that a signature of knowledge may be used in order to construct a
group signature scheme. Let PKs be the public signing key of the group manager, and suppose
that the group manager can sign under this public key (using the corresponding secret key SKs).
Let PKE be a public encryption key such that the anonymity revocation manager knows the
corresponding secret key SKE . A user must pick a secret key x and a public key p = f(x) where f
is some one-way function. She then obtains a group membership certificate g = σPKs

(p), the group
manager’s signature on her public key. In order to sign on behalf of the group, the user encrypts
her public key and obtains a ciphertext c = Enc(PKE, p;R), where R is the randomness used for
encryption. Finally, her group signature on message m is a signature of knowledge of (x, p, g,R)
such that c = Enc(PKE , p;R), p = f(x), and g is a valid signature on p under PKs.

Now let us consider more closely the language L used in the signature of knowledge. In the
example above, c ∈ L and (x, p, g,R) is the witness. This language is determined by the parameters
of the system, (f,PKs,PKE). This is not a general language, but instead it depends on the system
parameters, which in turn depend on three other building blocks, a one-way function, an encryption
scheme and a signature scheme. We want to show that even in this context, the use of a signature
of knowledge has well-understood consequences for the security of the rest of the system.

To that end, we consider signatures of knowledge for languages that are defined by secure
functionalities realizing particular tasks. In this example, this corresponds to the one-way function,
encryption and signing functionalities. Encryption is used to incorporate the encrypted identity, c,
of the signer into her group signature. A signing functionality is used to issue group membership
certificates, g, to individual group members. Finally, we have a one-way function f that takes a
user’s secret key x and maps it to her public key p.

We could choose a specific realization of each of these primitives, combine these realizations, and
use the resulting TM to define our language L for a signature of knowledge as described in Section
2. However, we would like to be able to define an abstract signature of knowledge functionality
whose language is defined by ideal functionalities and not dependent on any specific realizations.

In this section, we wish to create a framework where, given ideal functionalities Ff , FEnc and
FΣ for these three primitives, we can define a signature of knowledge functionality FSOK for the
resulting language L, where L is defined in terms of the outputs of functionalities Ff , FEnc , and
FΣ. Such FSOK can be used to realize group signatures as above, as well as other cryptographic
protocols.
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First, in Section 4.1, we will characterize functionalities that define such generalized languages
L. These are functionalities which, when they receive an input (x,w), verify that this is indeed an
accepting input, in other words that w constitutes a witness for x ∈ L.

In Section 4.2, we will define FSOK (F0), a signature of knowledge of an accepting input to one
ideal functionality, F0. Then, we prove Theorem 4.1: given a SimExt-secure scheme, FSOK (F0) is
UC-realizable in the CRS model if and only if F0 is UC-realizable.

Then we generalize the idea to apply to languages L that are not defined by just one functionality
F0, but by a set of functionalities F1, . . . , Fc. For example, it will follow that we can define and
UC-realize our ideal functionality for group signatures, where the underlying languages is defined
in terms of Ff , FEnc , and FΣ. This extension is presented in Section 4.3. Further, we give a
multiple-session extension of FSOK that allows protocols to reuse the CRS; this is presented in
Section 4.4. In this multiple-session extension, we can even allow multiple signature of knowledge
instances to sign on behalf of languages defined in terms of the same subfunctionality instances.

In addition, it will follow that FSOK (. . . (FSOK (F1, . . . ,Ft)) . . .) is UC-realizable, and so a sig-
nature of knowledge can serve as a witness for another signature of knowledge. This allows us to
UC-realize delegatable anonymous credentials. This is explained in Section 4.5.

As far as we know, prior literature on the UC framework did not address the issues of defining an
ideal functionality as an extension of another ideal functionality or of a set of other functionalities.
(In contrast, it addressed the case when a real protocol used an ideal functionality as a sub-routine.)
As a result, our modelling task at hand is very complex. For simplicity, we will only formally address
the situation of FSOK (F), i.e., when the language L is defined by only one sub-functionality F .

4.1 Explicit Verification Functionalities

Only certain functionalities make sense as a language for a signature of knowledge. In particular,
they need to allow us to determine whether a given element is in the language given a potential
witness: we call this “verification.” We also assume that everyone knows how language membership
is determined. Thus, we also require that the functionality be willing to output code which realizes
its verification procedure. In this section, we formally define the functionalities which can be used
to define the language for a signature of knowledge.

Consider Canetti’s signature functionality FSIG . Once the key generation algorithm has been
run, this functionality defines a language: namely, the language of messages that have been signed.
A witness for membership in such a language is the signature σ. In a Verify query this functionality
will receive (m,σ) and will accept if m has been signed and Verify(m,σ) = Accept , where Verify is
the verification algorithm supplied to FSIG by the ideal adversary S. Moreover, if it so happens
that Verify(m,σ) accepts while m has not been signed, or if it is the case that Verify(m,σ) rejects
a signature generated by FSIG , FSIG will halt with an error. FSIG is an example of a verification
functionality, defined below:

Definition 4.1 (Verification functionality). A functionality F is a verification functionality if (1)
there exists some start(F) query such that F ignores all queries until it receives a start query; (2)
during the start query F obtains from the ideal adversary S a deterministic polynomial-time veri-
fication algorithm Verify; (3) in response to (Verify,sid , input ,witness) queries, F either responds
with the output of Verify(input ,witness) or halts with an error.

Note that start(F) is a specific command that depends on the functionality F . For example, if F
is a signature functionality, start(F) =Keygen. If F is another signature of knowledge functionality,
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start(F) =Setup.
Any verification functionality F with a particular sid defines a language of inputs that will be

accepted by this functionality if an appropriate witness is provided; moreover, this language can be
captured by a deterministic polynomial-time Turing machine represented by the Verify algorithm.
The only times when Verify’s behavior is different from that of F cause F to halt with an error. To
work with this language, we need a way to obtain the Turing machine Verify. Note that Canetti’s
signature functionality does not make the algorithm Verify freely available to any party that calls
it. However, it could easily be extended to make Verify explicitly available through an extra query:

Definition 4.2 (Explicit verification functionality). Let F be a verification functionality. It is also
an explicit verification functionality if, once a start(F)(sid) query has taken place, it responds to a
query (VerificationAlgorithm,sid) from any party P by returning the polynomial time algorithm
Verify.

An explicit verification functionality not only defines a language L, but also makes available
the Turing machine ML for deciding whether w is a witness for x ∈ L.

4.2 Signatures of Knowledge of an Accepting Input to F0

Let F0 be any explicit verification functionality. (Our running example is Canetti’s signature func-
tionality, or our own FSOK functionality, augmented so that it responds to VerificationAlgorithm
queries with the Verify algorithm obtained from the ideal adversary.) We want to build a signa-
ture of knowledge functionality FSOK (F0) that incorporates F0. It creates an instance of F0 and
responds to all the queries directed to that instance. So, if F0 is a signature functionality, then
FSOK (F0) will allow some party P to run key generation and signing, and will also allow anyone to
verify signatures. In addition, any party in possession of (x,w) such that F0’s verification interface
will accept (x,w), can sign on behalf of the statement “There exists a value w such that F0(sid0)
accepts (x,w).” For example, if F0 is a signing functionality, m is a message, and σ0 is a signature
on m created by P with session id sid0, then through FSOK (F0), any party knowing (m,σ0) can
issue a signature σ1, which is a signature of knowledge of a signature σ0 on m, where σ0 was created
by signer P . Moreover, any party can verify the validity of σ1.

To define FSOK (F0), we start with our definition of FSOK (L) and modify it in a few places. In
the protocol description below, these places are underlined.

The main difference in the setup, signature generation, and signature verification interfaces is
that here the Turing machine ML that decides whether w is a valid witness for x ∈ L, is no longer
passed to the functionality FSOK . Instead, language membership is determined by queries to the
verification procedure of F0, as well as by an algorithm ML that F0 returns when asked to provide
its verification algorithm. (Sign,Verify,Simsign,Extract) returned by the adversary now take ML as
input. ML is supposed to be an algorithm that UC-realizes the verification procedure of F0. Note
that just because ML(x,w) accepts, does not mean that F0’s verification procedure necessarily
accepts. However, FSOK expects that ML(x,w) accepts iff F0 accepts, and should FSOK be given
(x,w) where this is not the case, FSOK will output an error message (Error with F0) and halt.

The setup procedure of FSOK (F0) differs from that of FSOK (L) in two places. First, it used
to check that the session id contains the description ML of the language L; instead now it checks
that it contains a description of the functionality F0 and a session id sid0 with which F0 should be
invoked. Second, it must now invoke F0 to determine the language L and the Turing machine ML

(more about that later).

19



The signing and verification procedures of FSOK (F0) differs from that of FSOK (L) only in that,
instead of just checking that ML(x,w) = 1, they check that F0 accepts (x,w) and that ML faithfully
reflects what F0 does.

Let us explain how the language L is determined. During the first setup query, FSOK must
somehow determine the set of accepted (x,w), i.e., get the language L. To that end, it creates an
instance of F0, and runs the start query for F0. It also queries F0 to obtain its verification algorithm
ML. We describe how this is done separately by giving a procedure we call GetLanguage(F0 , sid0),
as a subroutine of the setup phase of FSOK .

Note that this instance of F0 is created inside of FSOK , and outside parties cannot access it
directly. Instead, if they want to use F0 and send a query to it of the form (query , sid0, data), they
should instead query FSOK with a query of the form (F0-query , sid , data), where sid = (sid0, sid1)
is the session id of FSOK . We specify this more rigorously in the actual description of FSOK (F0).
Note that FSOK will ignore any queries until the first setup query — this is done so that one cannot
query F0 before it is actually created.

Also note that F0 may require input from the adversary. Whenever this is the case, the messages
that F0 wants to send to the adversary are forwarded to the adversary, and the adversary’s responses
are forwarded back to F0.

Finally, we want FSOK (F0) itself to be a explicit verification functionality (as explained in
Section 4.1), and so it must be able to respond to queries asking it to provide its verification
algorithm.
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FSOK (F0): signature of knowledge of an accepting input to F0

For any sid , ignore any message received prior to (Setup, sid).

Setup Upon receiving a value (Setup,sid) from any party P , verify that sid = (F0, sid0, sid1) for some
sid0, sid1. If not, then ignore the request. Else, if this is the first time that (Setup,sid) was received,
let ML = GetLanguage(F0, sid0), store ML, and hand (Setup,sid) to the adversary; upon receiving
(Algorithms, sid , Verify, Sign, Simsign, Extract) from the adversary, where Sign, Simsign, Extract are de-
scriptions of PPT ITMs, and Verify is a description of a deterministic polytime ITM, store these
algorithms. Output the (Algorithms, sid , Sign(ML, ·, ·, ·),Verify(ML, ·, ·, ·)) to P .

Signature Generation Upon receiving a value (Sign,sid , m, x, w) from P , check that
F0 accepts (Verify,sid0, x, w) when queried by P . If not, ignore the request.
Else, if ML(x, w) = 0, output an error message (Error with F0) to P and halt. Else, compute
σ ← Simsign(ML, m, x), and verify that Verify(ML, m, x, σ) = 1. If so, then output
(Signature,sid, m, x, σ) to P and record the entry (m, x, σ). Else, output an error message
(Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify,sid, m, x, σ) from some party V , do:
If (m, x, σ′) is stored for some σ′, then output (Verified,sid, m, x, σ, Verify(m, x, σ))
to V . Else let w ← Extract(ML, m, x, σ). If ML(x, w) = 1:
if F0 does not accept (Verify,sid0, x, w), output an error message (Error with F0) to P and halt; else
output (Verified,sid, m, x, σ, Verify(ML, m, x, σ)) to V . Else if Verify(ML, m, x, σ) = 0, output
(Verified,sid, m, x, σ, 0) to V . Else output an error message (Unforgeability error) to V and halt.

Additional routines:

GetLanguage(F0, sid0) Create an instance of F0 with session id sid0. Send to F0 the
message (start(F0), sid0) on behalf of P , the calling party. Send to F0 the mes-
sage (VerificationAlgorithm,sid0). In response, receive from F0 the message
(VerificationAlgorithm,sid0, M). Output M .

Queries to F0 Upon receiving a message (F0-query , sid0, sid1, data) from a party P , send
(query , sid0, data) to F0 on behalf of P . Upon receiving (response, sid0, data) from F0, forward
(F0-response, sid , data) to P .

F0’s interactions with the adversary When F0 wants to send (command , sid0, data) to the adversary,
give to the adversary the message (F0-command , sid , sid0, data). Upon receiving a message receive
a message (F0-header , sid , sid0, data) from the adversary, give (header , sid0, data) to F0 on behalf of
the adversary.

Providing the verification algorithm Upon receiving a message (VerificationAlgorithm,sid) from
any party P , output (VerificationAlgorithm,sid , Verify(ML, ·, ·, ·) to P .

Theorem 4.1. Let F0 be an explicit verification functionality. Assuming SimExt-secure signatures
of knowledge, FSOK (F0) is nontrivially UC-realizable in the FD

CRS hybrid model iff F0 is nontrivially
UC-realizable in the FD

CRS hybrid model, where we consider a realization to be nontrivial if it never
halts with an error message.

Proof. Assume that there exists a SimExt secure signature of knowledge scheme (Setup,Sign,Verify).
Assume also that there exists a protocol ρ which UC-realizes F0. Then we build a protocol π in
the FD

CRS hybrid model which UC-realizes FSOK(F0) as follows.
Upon receiving a value (Setup, sid = (F0, sid0, sid1)), if this is the first such message, the

protocol π will start running an instance of ρ. It will send ρ inputs (Setup, sid0) and then
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(VerificationAlgorithm, sid0), and ρ will return (VerificationAlgorithm, sid0,F0M). π will
store ML = F0M . From this point on, it will behave as πΣ defined in Section 2.2. To finish the
Setup query, it will obtain the CRS p from FD

CRS (where D is the distribution of Setup(1k)) and
output the Sign(p,ML, ·, ·, ·) and Verify(p,ML, ·, ·, ·) algorithms.

On Sign and Verify queries, it will behave exactly as πΣ defined in Section 2.3.
When π receives a query of the form (F0-query , sid0, sid1, data) from party P , it will send

(query , sid0, data) to ρ on behalf of party P . When it receives a response, (response , sid0, data)
from ρ, it forwards (F0-response , sid0, data) to P .

Similarly, when ρ wants to send (command , sid0, data) to the adversary, π will give to the adver-
sary the message (F0-command , sid , sid0, data). When π receives a message (F0-header , sid , sid0, data)
from the adversary, it will give (header , sid0, data) to ρ on behalf of the adversary.

On input (VerificationAlgorithm,sid) from party P , π will output (VerificationAlgorithm,sid ,
Verify(v,ML, ·, ·, ·)) to P .

We will show that π UC-realizes FSOK(F0).
Consider the hybrid protocol H, which runs in the F0-hybrid model. H will behave like π

except that calls to ρ will be sent instead to the ideal F0 functionality. By the UC theorem, if H
UC-realizes FSOK(F0) in the F0-hybrid mode, then π UC-realizes FSOK(F0). Thus, we have only
to show that H UC-realizes FSOK(F0) in the hybrid model.

Let us examine the definition of theFSOK(F0) functionality more closely. Note that, conditioned
on error with F0 never happening, we can equivalently define FSOK(F0) as follows: in the Setup

query, first obtain ML using Get Language as a subroutine; then obtain the algorithms Sign

and Verify by invoking an instance of FSOK (Up) with session id sid as a subroutine, where p is a
polynomial bounding the running time of ML, Up is the universal language, and every instance x
passed to FSOK (Up) is prepended by a description of ML. (Recall that FSOK (Up) responds to its first
valid (Setup sid) query by sending sid to the adversary, receiving and storing Sign,Verify,Simsign,
and Extract algorithms, and returning Sign and Verify.) Similarly, to process Sign and Verify queries,
compute the output of the query by making a call to the same instance of FSOK (Up), again with
ML prepended to the instance x. Let us denote this functionality by G. (The fact that G is an
equivalent formulation, assuming “Error with F0” never occurs, follows by inspection of FSOK (F0)
and we will leave it to the reader to verify that fact.)

Note that if, in G, we replace all calls to FSOK (Up) by calls to πΣ, we obtain H. Moreover,
by Theorem 2.2, πΣ realizes FSOK (Up), and therefore by the UC theorem, no environment Z can
distinguish an execution with H from an execution with G.

Thus, we have shown that as long as FSOK(F0) does not halt with an “Error with F0” error,
FSOK(F0) and H are indistinguishable, since in this case G is just another formulation of FSOK(F0).
By definition, since F0 is an explicit verification functionality, the call (VerificationAlgorithm,
sid0) to F0 returns ML = VerifyF0

, the algorithm that F0 uses on its verification queries. Thus,
ML(x,w) = VerifyF0

(x,w) = 1 iff F0 accepts on query (Verify, sid0, x, w).
That means “Error with F0” can only occur if F0 halts with an error. However, we require

that ρ which realizes F0 never outputs an error. Now suppose there exists an environment Z which
can cause FSOK(F0) to halt with “Error with F0” with nonnegligible probablility. Then we can
simulate FSOK and use Z to distinguish ρ from F0, since ρ never outputs an error, but F0 does.

Thus, with all but negligible probability, interaction with FSOK(F0) and S is indistinguishable
from interaction with G running with S, which is in turn indistinguishable from interaction with
H in the F0-hybrid model. As stated above this implies that π UC-realizes FSOK(F0).
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Now we will consider the reverse direction. Assume that FSOK(F0) is UC-realized by some
protocol π in the FD

CRS hybrid model. Then we will show that F0 is also UC-realizable.
Let ρ be the following protocol in the FSOK (F0)-hybrid model: On input (start(F0)sid0), ρ sets

sid = (F0, sid0, sid1) for some random sid1, and sends (Setup,sid) to FSOK(F0). On receiving any
other query (query , sid0, data), ρ sends (F0-query , sid0, sid1, data) to FSOK(F0). When FSOK(F0)
sends a response (F0-response , sid0, data), ρ will output (response , sid0, data). When ρ receives a
message (F0-command , sid , sid0, data) from FSOK(F0), it sends (command , sid0, data) to the adver-
sary. When the adversary sends a response (header , sid0, data), it sends (F0-header , sid , sid0, data)
to FSOK(F0).

Clearly, by definition of FSOK(F0), ρ UC-realizes F0 in the FSOK(F0)-hybrid model. Thus, by
the UC theorem, ρπ(the protocol ρ where all calls to FSOK(F0) have been replaced by calls to π)
UC-realizes F0. Furthermore, since π nontrivially realizes FSOK(F0), and ρ doesn’t output any
error messages, and so ρπ nontrivially realizes F0.

4.3 Multiple Subfunctionalities

We defined FSOK (F0) in terms of just one instance of a sub-functionality F0. It is easy to extend the
ideal functionality to a more complex case. For example, suppose that F1 and F2 are both explicit
verification functionalities, and we want to realize a signature of knowledge of either a an accepting
input to F1 or accepting input to F2. In order to decide whether a given (input ,witness) pair is
acceptable by F1 or F2, it is sufficient to query both functionalities and combine the result using the
OR function. Similarly, given the Turing machines ML1

and ML2
for their respective verification

algorithms, it is straightforward to produce a Turing machine for the verification algorithm of this
extended functionality: just output a Turing machine that outputs the OR of ML1

and ML2
.

In general, if F1, . . . ,Fc are explicit verification functionalities, f1, . . . , fc and f ′
1, . . . , f

′
c are

any poly-time computable functions, and b is any polynomial-time computable Boolean function,
then we can specify a signature of knowledge functionality FSOK (F1, . . . ,Fc, f1, f

′
1, . . . , fc, f

′
c, b) for

signatures of knowledge of w such that b(x,w,F1(f1(x,w), f ′
1(x,w)), . . . ,Fc(fc(x,w), f ′

c(x,w))) = 1.
What FSOK will need to do to decide whether w is a witness to x’s membership in the language
defined in terms of F1, . . . ,Fc, f1, . . . , fc and f ′

1, . . . , f
′
c and the Boolean function b, is to: (1) store

the response ri of each Fi to a (Verify, sid , fi(x,w), f ′
i(x,w)) query; (2) evaluate b(x,w, r1, . . . , rc).

And again, given a TM for each ML, we can easily build a TM for this composite language.
For example, this captures signatures of knowledge of a signature on one of several messages; on

all of several messages; on a preimage of a one-way function; on a decryption of a ciphertext formed
using a given string as randomness; etc. It is easy to see that this covers the group signature and
ring signature applications we have discussed previously.

Note that for all such extensions, we can generalize the proof of Theorem 4.1 and show that, as-
suming SimExtsecure signatures of knowledge exist, the resultingFSOK (F1, . . . ,Fc, f1, f

′
1, . . . , fc, f

′
c, b)

is UC-realizable in the FD
CRS hybrid model if and only if F1, . . . ,Fc are UC-realizable in the FD

CRS

hybrid model.
For another example of how FSOK might use multiple subfunctionalities, see Section 4.5.
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4.4 Multi-Session Extensions

Recall the definition of a multi-session extension F̂ of an ideal functionality due to Canetti and
Rabin [CR03]. In a nutshell, a multi-session extension F̂ takes care of managing many instances of
F in such a way that they don’t interfere with each other. Specifically, when invoked F̂ is given a
session id sid , and also a sub-session id ssid , and the query itself. F̂ creates an instance of F with
sub-session id ssid if it does not already exist, and forwards the query to it. Thus, many instances
of F run within F̂ as if they were running completely independently. Canetti and Rabin proved
that for any protocol π, if a protocol ρ UC-realizes F̂ , and protocol π UC-realizes a functionality
G in the F-hybrid model (with calls to many independent instances of F), then π[ρ] UC-realizes
G, where π[ρ] is the protocol π where all calls to instances of F have been replaced by calls to a
single instance of ρ.

This is often used to examine the need for common setup parameters. If F̂ can be realized
by a protocol in which many independent copies use use only one set of parameters, then we can
implement all instances of F as given in that protocol with the same parameters and they will still
operate as if they were completely independent.

We can also show that F̂SOK can be an explicit verification algorithm (which by Theorem 4.1
means we can use it to define the language for a higher level signature of knowledge functionality).
Note that πΣ as defined in Section 2.3 does not realize F̂SOK . Suppose we send a signature query
to an FSOK instance for language L with ssid ssid. Then we send a verification query with the
resulting signature to another FSOK instance also for language L, but with slightly different ssid
ssid′. If we are interacting with F̂SOK , these two instances will be completely independent, so the
second FSOK instance (ssid′), by which this message has not been signed, will reject the signature.
If we are interacting with πΣ, however, any signature which has been generated for a language
will always cause the verification procedure to accept when given the same language and the same
CRS by the completeness property of SimExt-secure signatures. However, we can make a small
modification to avoid this problem.

If we extend πΣ so that instead of signing message m and verifying signatures on m, we sign
m ◦ ssid and verify signatures on m ◦ ssid , the resulting protocol will UC-realize F̂SOK for NP
languages. Further, recall that πΣ UC-realizes FSOK(U). Thus, πΣ uses the same verification
algorithm for all languages. If we allow πΣ to output this verification algorithm, then this protocol
will UC realize the explicit verification F̂SOK functionality. We can similarly show that we can
UC-realize the explicit verification F̂SOK(F0) functionality. Finally, this implies that we can realize
the nested FSOK functionality in which F0 = F̂SOK(F ′

0).
In some cases, we would like to create a different type of multisession FSOK functionality. In

this multisession functionality, many instances of FSOK may be operating simultaneously, however,
they need not be completely independent. Instead, we allow some of the FSOK instances to share
the subfunctionalities they use to define their languages. Thus, we could have two FSOK instances,
SOK1, and SOK2, both issuing signatures of knoweldge on behalf of the language of messages
signed by some party P . If we used the standard multisession functionality, each FSOK instance
would be defined in terms of a separate instance of FSIG . Thus, signatures which were generated
and accepted by the FSIG instance running within SOK1 might be rejected by the FSIG instance
running withing SOK2, even though they were all issued by party P . Thus, we need this alternative
“shared subfunctionality” multisession extension. (Note that this becomes more useful when we
allow languages defined by multiple subfunctionalities as described in Appendix 4.3.) We can
show that any SimExtsecure signature of knowledge scheme can also be used to realize this type of
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extension.

4.5 Delegatable Anonymous Credentials

Given any SimExt secure signature of knowledge scheme, i.e. any scheme that UC-realizes FSOK(F0)
and its shared-subfunctionality and multi-subfunctionality extensions (see Sections 4.3 and 4.4),
we can build a delegatable anonymous credential system.

As an example, we will see how we can implement the scenario given in the introduction. We
will show how to formulate anonymous credentials in terms of our multi-subfunctionality FSOK

functionalities. Since we have shown that any SimExt secure signature of knowledge scheme can
be used to realize these functionalities, this will give an implementation of delegatable anonymous
credentials based on any SimExt secure scheme.

At the base level of our delegation chain is the certification authority (CA), which has public
key PKCA and secret key SKCA. The CA wishes to issue a credential to Brown employee with
public key PKEmp and secret key SKEmp . In our delegatable anonymous credential scheme, this
credential will be a traditional signature under the CA’s public key on the message PKEmp . We
can desribe this in the UC model by saying that CA uses F ′

SIG(the explicit verification form of
FSIG ) with sid = CA ◦ sid′ to issue credentials to Brown employees.

Now, we would like our Brown employee to be able to issue credentials to a guest with public key
PKGuest and secret key SKGuest . In this case, we want the credential CredGuest to be a signature
on the guest’s public key PKGuest of knowledge of a valid employee credential for PKEmp and
a corresponding SKEmp . In order to describe this signature of knowledge language in the UC
model, we need two subfunctionalities. To verify the employee credential, we need a signature
functionality as described above. To verify the public key, we extend the multisession encryption
functionality FEnc to an explicit verification algorithm by adding a (Verify x,w) query which returns
true iff x is an encryption public key and w is the corresponding secret key, and a corresponding
VerificationAlgorithm query.

We can now define the guest credential functionality as a shared-subfunctionality signature
of knowledge functionality(see Section 4.3.) Let F1 = F ′

SIG and F2 = F ′
Enc . When we issue

a new credential, we want w = (w1, w2, w3) = (PKEmp ,SKEmp ,CredEmp) i.e. all the infor-
mation which must be hidden in the resulting signature. Since the credential should reveal no
information besides the fact that it is valid, we’ll let x (the potentially visible part of the sig-
nature) = “valid”. Now we need only determine which inputs get passed to F1 and F2. Let
f1(x,w = (w1, w2, w3)) = w1 and f ′

1(x,w = (w1, w2, w3)) = w3). Thus, the first step in checking
whether (x,w) is in our language sends (Verify w1, w3), i.e. (Verify PKEmp ,CredEmp) to F ′

SIG ,
in other words, we check that CredEmp is a valid signature on PKEmp . Now let f2(x,w) = w1

and f ′
2(x,w) = w2. Then the second step sends (Verify w1, w2), i.e. (Verify PKEmp ,SKEmp) to

F ′
Enc , in other words, we check that SKEmp is the secret key corresponding to public key PKEmp .

Finally, we define b(x,w,F1(f1(x,w), f ′
1(x,w)),F2(f2(x,w), f ′

2(x,w))) = F1(f1(x,w), f ′
1(x,w)) ∧

F2(f2(x,w), f ′
2(x,w)), so x,w is accepted by our language iff both functionalties accept. Call this

Guest credential functionality F1
SOK. A Guest credential is now a signature of knowledge given by

F1
SOK on the message PKGuest .

The taxi driver credentials are defined analagously. In this case, in the UC formulation, we
represent the credentials as second level signatures of knowledge. Thus, credentials are now sig-
natures of knowledge on behalf of a combination of F1 = F1

SOK and F2 = F ′
Enc , x =”valid”,

and w = (PKGuest ,SKGuest ,CredGuest). f1, f2, and b are defined as above. A taxi credential is
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represented by a signature by this new FSOK functionality on message m = PKTaxi .
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A UC definition

Here we will briefly review the UC framework as defined in [Can05].
In the UC model, each protocol is examined independently. Any other protocols operating

simultaneously are represented by the environment. In the execution scenario, the parties par-
ticipating in a protocol are given inputs by the environment, which captures the idea that input
to a protocol can be dependent on all the other protocols running in the system. Each party’s
part in this protocol is represented by an ITM. These ITMs can communicate with each other as
specified by the protocol. They can also invoke other ITMs to run subroutines. And finally, they
can communicate with an adversary. This adversary gets input from and sends messages to the
environment.

Security is defined by the description of an ideal functionality which specifies exactly what
actions should be possible and what information leakage is admissible. Thus, this ideal functionality
expects to receive input from parties, and deliver output back to some of them, while performing
some sort of operation. The ideal functionality may also communicate with the adversary. It can
send messages to the adversary, representing information that we allow a secure protocol to leak.
It can also receive messages from the adversary, which represents information not under the control
of the parties running the protocol.

We also define a simulator which will replace the adversary in the ideal world. This simulator
may run a copy of the adversary, and its goal is to convert messages from the ideal world into the
output that the environment expects from the adversary in the real protocol. This means that
whatever information the environment expects to receive from the adversary is information that
could be generated from what the ideal functionality leaks – the protocol leaks no more information
than we have declared admissible.

We then define the ideal execution of the protocol, in which the environment sends input to
the parties who forward it directly to the functionality. Any output from the functionality to the

28



parties is delivered to the environment. When the functionality tries to communicate with the
adversary, the messages will be sent to and from the simulator instead.

Finally, a real protocol is considered secure if there exists a simulator such that for all environ-
ments and adversaries the environment cannot tell whether it is communicating with real parties
running the real protocol ITMs and with the real adversary, or whether it is communicating with
parties running the ideal protocol (forwarding all inputs to the ideal functionality) and with the
simulator. In this case, we say that the real protocol UC-realizes the ideal functionality.

We now summarize a limited version of the UC-composition theorem. Suppose we are given a
protocol ρ that UC-realizes an ideal functionality F . We are also given a protocol π which makes
calls to the ideal protocol F , and which UC-realizes a functionality G. Let πρ be the functionality
which runs π, but in which all calls to F are replaced by calls to ρ. Then the UC-composition
theorem states that πρ UC-realizes G.

A few other details should be mentioned. Each ITM is identified by a unique identifier called an
sid. The UC model allows ITMs to send messages to other ITMs running within the same protocol,
or to subroutine ITMs. All messages must specify the sid of the ITM they are addressed to, and
the code that it should run. In either case, if no ITM with the given sid exists, an ITM will be
created running the given code. 3 (If the ITM is already running we ignore the given code.)

B Cannetti’s Basic Signature Functionality

Over a series of papers, Canetti [Can00, Can01, Can04, Can05] gave several ideal functionalities for
a signature scheme. His motivation was to capture the security properties that one would ideally
want to obtain from a signature scheme. Several versions were proposed, each subsequent version
an improvement over a previous one, giving the adversary less and less power. He then shows that
a signature scheme realizes FSIG if and only if it is existentially unforgeable against adaptive chosen
message attack, as defined by Goldwasser, Micali, and Rivest [GMR88].

We refer to Canetti’s most recent version [Can05], which differs from earlier versions in a few
fundamental ways. The most important difference is the role that the ideal adversary now plays. In
the 2000 formulation, the ideal adversary was contacted during signing, shown the message being
signed and was asked to provide the formal signature σ. In the 2005 formulation, the adversary
is contacted during key generation, and provides an algorithm Sign for generating signatures. The
adversary is not contacted at all during signing, instead signatures are generated using Sign. This
new variant captures the fact that signing happens inside the signer without interaction with the
outside adversarial world, and so we need a notion of security that does not allow the adversary to
know what messages were signed.

Another, more subtle but very important difference from the earliest versions [Can01], is that
this functionality is allowed to produce an error message and halt, or quit, if things go wrong. That
means it is trivially realizable by a protocol that always halts. As mentioned in 2.1, we only worry
about protocols that realize our functionalities non-trivially, i.e. never output an error message.

3The code c includes the name of the functionality and the code for the real protocol which realizes it. If the new

ITM is being invoked in the ideal world, the real code is ignored, and the new ITM runs the ideal functionality with

the given name. If the new ITM is being invoked in the real world, the name is ignored and the new ITM runs the

given code.
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C Primitives

Recall that a cryptosystem (G,Enc,Dec) is called dense if the following two distributions are statis-
tically indistinguishable: (1) the uniform distribution on k-bit binary strings; (2) the distribution
of public keys obtained by running G(1k).

Recall that a non-interactive zero-knowledge (NIZK) proof system consists of algorithms (NIZKProve,
NIZKSimsetup,NIZKSim,NIZKVerify).

NIZKProve takes as input (1) a common random string ρ; (2) the common input x; (3) the
statement that is being proven about the common input x (i.e., the description of a poly-time
non-deterministic Turing machine that accepts x); (4) the witness w that the statement is true. It
outputs a proof π.

NIZKSimsetup generates a string ρ that is indistinguishable from random, together with some
trapdoor information τ about this string. NIZKSim takes as input (1) the string ρ generated by
NIZKSimsetup; (2) the trapdoor τ ; (3) the common input x; (4) the statement that is being proven
about the common input x. It outputs a simulated proof π.

NIZKVerify takes as input (1) the common reference string ρ; (2) the proof π; (3) the common
input x; (4) the statement about x that is being proven. It either accepts or rejects.

Such a proof system has has three basic properties: completeness (NIZKVerify always accepts
proofs generated by NIZKProve); soundness (NIZKVerify always rejects proofs of false statements);
and zero-knowledge (a proof generated by NIZKSim is indistinguishable from one generated by
NIZKProve).

A multi-theorem NIZK proof system requires that these properties hold even as many proofs
for adversarially (and adaptively) chosen statements are generated.

Here we need simulation-sound NIZK, which is a strengthening of the basic soundness property
in the multi-theorem setting. Simulation-soundness requires that no probabilistic poly-time adver-
sary can get NIZKVerify to accept a proof π for a false statement, even after obtaining simulated
proofs (i.e. proofs produced by NIZKSim instead of NIZKProve) of statements of its own choice.

We refer the reader to existing literature [FLS99, dSdCO+01] for formal definitions.
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