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Abstract. Practical anonymous credential systems are generally built around
sigma-protocol ZK proofs. This requires that credentials be based on specially
formed signatures. Here we ask whether we can instead use a standard (say, RSA,
or (EC)DSA) signature that includes formatting and hashing messages, as a cre-
dential, and still provide privacy. Existing techniques do not provide efficient
solutions for proving knowledge of such a signature: On the one hand, ZK proofs
based on garbled circuits (Jawurek et al. 2013) give efficient proofs for checking
formatting of messages and evaluating hash functions. On the other hand they are
expensive for checking algebraic relations such as RSA or discrete-log, which
can be done efficiently with sigma protocols.

We design new constructions obtaining the best of both worlds: combining the
efficiency of the garbled circuit approach for non-algebraic statements and that of
sigma protocols for algebraic ones. We then discuss how to use these as building-
blocks to construct privacy-preserving credential systems based on standard RSA
and (EC)DSA signatures.

Other applications of our techniques include anonymous credentials with more
complex policies, the ability to efficiently switch between commitments (and
signatures) in different groups, and secure two-party computation on commit-
ted/signed inputs.

1 Introduction

Efficient proofs. Zero knowledge proofs [GMRS85] provide an extremely powerful tool,
which allows a prover to convince a verifier that a statement is true without revealing
any further information. Moreover, it has been shown that every NP language has a
zero knowledge proof system[GMW87], opening up the possibility for a vast range of
privacy preserving applications. However, while this is true in theory, designing proof
systems that are efficient enough to be used is significantly more challenging. In reality,
we only have a few techniques for efficient proofs, and those only apply to a restricted
set of languages.

Almost exclusively, these proof systems focus on proving algebraic statements, i.e.
statements about discrete logarithms, roots, or polynomial relationships between values
[Sch90,GQ88,CS97b,GS08]. The most common and most efficient of these systems fall
into a class known as sigma protocols. Of course we could express any NP relation as a



combination of algebraic statements, for example by expressing the relation as a circuit,
and expressing each gate as an algebraic relation between input and output wires. But if
we were to take this approach to prove a statement using sigma protocols we would need
several exponentiations per gate in the circuit. This becomes prohibitively expensive for
large circuits (for example a circuit computing a cryptographic hash function or block
cipher).*

Recently, [JKO13] introduced a new approach for proving statements phrased as
boolean circuits, based on garbled circuits. Their construction has the advantage that
it only requires a few symmetric key operations per gate, making it dramatically more
efficient than a sigma-protocol-based solution for non-algebraic statements. This means
that it is finally practical to prove statements about complex operations such as hash
functions or block ciphers. For instance, zero knowledge proofs for an AES circuit
or a SHA256 circuit can be done in miliseconds on standard PCs using state of the
art implementations for garbled circuits. On the other hand, expressing many public
key operations as a circuit is still extremely expensive. (Consider for example a circuit
computing modular exponentiation on a cryptographic group - the result would be much
larger than the circuit computing a hash function, and computing a garbled circuit for
such a computation would be too expensive to be practical.)

Now we have two very different techniques for achieving zero knowledge proofs
for algebraic and non-algebraic statements. But in some applications, one is interested
in proving statements that combine the two. For example, what if we want an efficient
protocol for proving knowledge of a DSA or RSA signature, whose verification requires
computing both a hash function and several exponentiations?

The state of the art fails to take advantage of the best of both worlds and has to
forgo the efficiency of one approach to obtain the other’s. One might consider directly
combining both protocols, but a naive solution would allow a cheating prover to use
a different witness for the algebraic and non-algebraic components of the computation
and produce a convincing proof for a statement for which there is no single valid wit-
ness. Thus, one of the basic challenges is to bind the values committed to in the sigma
protocols to the prover’s inputs in the GC-based zero knowledge proof, without having
to perform expensive group operations (e.g. exponentiation) inside the garbled circuit,
and without proving large-circuit statements using sigma protocols.

Anonymous Credentials. Here, we primarily focus on the case of anonymous creden-
tials, introduced by Chaum [Cha86], although we believe our results will be applicable
to many other privacy protocols. A credential system allows a user to obtain creden-
tials from an organization and at some later point prove to a verifier (either the same
organization or some other party) that she has been given appropriate credentials. More
specifically, the user’s credentials will contain a set of attributes, and the verifier will
require that the user prove that the attributes in his credential satisfy some policy. We
say the system is anonymous if this proof does not reveal anything beyond this fact.

4 SNARKSs [Grol0,GGPR13] allow for very efficient verification and short proofs, but have
similar shortcomings in prover efficiency as the prover performs public-key operations pro-
portional to the size of the arithmetic circuit representing the statement.



There have been several proposals for constructions of anonymous credential sys-
tems [CLO1,CL04,BCKL08,Bra99,BL13]. In general, they all follow a similar approach:
the credential is a signature from the organization on the user’s attributes. To prove pos-
session of valid credentials, the user will first commit to her attributes, then prove,
in zero knowledge, knowledge of a signature on the committed attributes, and finally
prove, again in zero knowledge, that the committed attributes satisfy the policy. To
make these zero knowledge proofs efficient, most of the proposed credential systems
are based on sigma protocols, which as described above give efficient proofs of knowl-
edge for certain algebraic statements. This in turn means that the signatures used must
be specially designed so that a sigma protocol can be used to prove knowledge of a
signature on a committed message.’

But what if we want to base our credentials on a standard signature such as FDH-
RSA or DSA which includes hashing the message? Or what if we want the user to be
able to prove a statement about his attributes that is not easily expressible as an algebraic
relation?

Our Results. We study the problem of combining proof systems for algebraic and non-
algebraic statements, and obtain the following results.

— Given an algebraic commitment C', we propose two protocols for proving that C'is a

commitment to z such that f(x) = 1 where f is expressed as a boolean circuit. Both
constructions have the desired property that the GC-based component is dominated
by the cost of garbling f (i.e. not garbling expensive group operations), and the
total number of public-key operations is independent of the size of f.
More specifically, our first solution has public key operations proportional to the
maximum bit length of the input (]z|), and symmetric-key operations proportional
to the number of gates in f. The second has public-key operations proportional to
the statistical security parameter s and symmetric-key operations proportional to
the number of gates in f + |z|s.

Existing solutions either require public-key operations proportional to the size of
f, or need to garble circuits for expensive group operations such as exponentiations
in large groups.

— Building directly on these protocols, we show how to implement a proof that one
committed message is the hash of another, and a proof that two commitments in
different groups commit to the same value.

— Finally, we show how we can combine all of these protocols to obtain an efficient
proof of knowledge of a signature on a committed message for RSA-FDH®, DSA,
and EC-DSA signatures.

3 Technically, [Bra99,BL13] work slightly differently in that the user and organization jointly
compute the proof of knowledge of a signature as part of the credential issuance. However
they still use a customized issuing protocol which would not be compatible with standardized
signatures, and they use sigma protocols exactly as described here to prove that the committed
attributes satisfy the policy.

® This easily extends to standardized variants of RSA like RSA-PSS.



Applications.

— Anonymous Credentials based on RSA, DSA, EC-DSA signatures. The most
direct application in the context of anonymous credentials would be to use RSA,
DSA, or EC-DSA signatures directly as credentials but still allow for privacy pre-
serving presentation protocols. This would be slower than existing credential sys-
tems, but it would have the advantage that the issuer would not have to perform a
complex protocol, but would only have to issue standardized signatures. It further
enables interoperability with existing libraries and non-private credential applica-
tions. 7
Alternatively, we could construct a service which allows users to convert their
non-private credentials (based on RSA/DSA/EC-DSA signatures) into traditional
anonymous credentials (e.g. Idemix [ide10] or UProve [PZ13] tokens, or keyed-
verification credentialsfCMZ14]). Using our new protocol, the service could per-
form that conversion without knowing the user’s attributes: the user would commit
to his attributes, prove using our protocol that they have been signed, and then ob-
tain from the service an anonymous credential encoding the same attributes. (All
of these anonymous credential systems allow for issuing credentials on committed
attributes.)

— Anonymous Credentials with more general policies. Even if we consider a sys-
tem based on traditional anonymous credentials, we might use the IIcom, ; protocol
(which we will describe in section 3) to allow the user to prove that his attributes
satisfy a more complicated policy. For example, he might want to release the hash
of one of his attributes and prove that that has been done correctly, or prove that an
attribute has been encrypted using a standard encryption scheme like RSA-OAEP.
Our protocols could also be used to prove that a user’s attributes fall in a given
range, or to prove statements about comparisons between attributes. If the range
of values possible for each attribute is small, we already have reasonably efficient
solutions - the user can just commit to each bit of the value, and do a straightfor-
ward proof. However this becomes expensive when the range gets larger, in which
case the most efficient known approach is based on integer commitments [FO97]
and requires several exponentiations with an RSA modulus where the exponent is
larger than the group order (e.g. a roughly 2000 bit exponentiation with a 2000 bit
modulus for reasonable security parameters). Alternatively we can use our second
scheme, which only requires a number of public-key operations linear in the se-
curity parameter (e.g. 60), and allows those operations to use much more efficient
elliptic curve groups.

We note that the independent and concurrent work of [KKL ™ 16] provides an alter-
native solution to the problem of anonymous credentials for general policies, using
different techniques.

7 Delignat-Lavaud et al [DLFKP16] achieve a similar result using SNARKs, but with very dif-
ferent tradeoffs: their approach results in much shorter, non-interactive proofs, but much more
expensive proof generation. They also explore several applications in more detail; in some of
these applications, those which allow for interactive proofs, our protocols could be used to
achieve these different tradeoffs.



— Converting between different commitment schemes. There are many protocols
based around commitments, and ideally we would be able to combine these pro-
tocols arbitrarily. For example, if we have an efficient protocol for proving that a
committed tag matches one of the attributes in a user’s credential, and another pro-
tocol for proving that a committed tag is not on a list of revoked values, then we
would be able to combine the two protocols to prove that the user’s credential has
not been revoked. However, often the protocols will be based on different commit-
ment schemes, or even worse, on schemes that operate in different sized groups.
(For example UProve credentials can be instantiated in standardized elliptic curve
groups like those used for EC-DSA, while revocation systems like that in [Ngu05]
require pairing groups; to combine the two we would need to find a pairing group
whose group order matches one of the standardized curves. Finding a pairing group
to match a specific group order often incurs a significant cost in efficiency.) With
our protocol for converting between commitment schemes we could choose the
most efficient groups for each, and then the user would merely prove that he has
used the same attributes in each. Before our work, the only known approach to con-
vert between groups of different sizes was to use integer commitments, which as
described above can be quite expensive.

— Other privacy-preserving protocols. We note that while anonymous credentials
make a good motivating application, these problems (converting between commit-
ments schemes, comparing committed values, or proving other non-algebraic state-
ments) come up in many other privacy/anonymity scenarios.

— 2PC with authenticated input. As input to a secure computation protocol, some-
times it is desirable to use previously committed [JSO7] or signed [CZ09] inputs. In
our constructions, we show how to commit to an input = and prove knowledge of x
(or prove knowledge of a signature on x) and a non-algebraic statement f(z) = 1
using garbled circuits. As we discuss in section 3.4, it is relatively easy to extend
our construction to also allow secure two-party computation of g(z,y) where x is
the prover’s input and y the verifier’s, hence obtaining secure two-party computa-
tion on signed/committed inputs. The benefit of this approach is that checking the
signature takes place outside the secure two-party computation and can be signifi-
cantly more efficient.

2 Preliminaries

2.1 Simulation-based Security

We use a simulation-based definition of security in the ideal/real world paradigm, which
is formulated by specifying an ideal functionality. A protocol is secure if it “emulates”
this ideal functionality in the presence of any adversary. Our definitions are in the stand-
alone setting (as opposed to the UC framework). We formulate the simulation-based
definitions by defining a functionality F in the ideal world. In the ideal world, all parties
and the adversary A interact via . Let IDEALx 4(x1,z2) denote the output vector
of the adversary and the honest party from the execution in the ideal world. In the real
world, a protocol 7 is executed among the parties, and let REAL, 4(x1,x2) denote
the output of the adversary and the honest party from the execution of 7. A two party



protocol 7 securely realizes the functionality F if for any PPT adversary A in the real
world, there exists a PPT adversary S in the ideal-world, such that

{IDEALF s(x1,22)} = {REAL, a(z1,22)}

x1,x28.t|T1|=|x2| z1,x28.t|T1|=|z2|

that is, the two distributions are computationally indistinguishable.

2.2 Commitment Scheme

A commitment protocol involves two parties: the committer and the receiver. At a high
level, it consists of two stages, a commitment phase and a de-commitment phase. In
the commitment stage, the committer with a secret input m engages in a protocol with
the receiver. At the end of this protocol, receiver does not know what m is (hiding
property), and at the same time, the committer, can subsequently in the de-commitment
phase, open only one possible value of m (binding property). Throughout the paper,
we use algebraic commitment schemes that allow proving linear relationships among
committed values. An example of such a scheme with computational binding and un-
conditional hiding properties based on the discrete logarithm problem is the one due to
Pedersen [Ped91]. It works in a group G of prime order ¢. Given two random genera-
tors g and h such that log, h is unknown, a value x € Z, is committed to by choosing
r randomly from Z,, and computing C, = ¢g®h". Protocols are known in literature to
prove knowledge of a committed value, equality of two committed values, and so on,
and the protocols can be combined in natural ways. In particular, Pedersen commit-
ments allows proving linear relationships among committed values: Given C,, and C,,,
prove that y = ax + b for some public values a and b.

2.3 Committing OT

Similar to [JKO13] we need to need an OT protocol with a sender verifiability property-
i.e. that at the end of the OTs, the sender is committed to its messages, and can be asked
to reveal all its input messages to the receiver. This is closely related to the notion
of committing OT [KS06], but can be achieved even more generally since we do not
require individual commitments to sender’s messages. In particular, as discussed in
[JKO13] it can be satisfied by a protocol where the sender commits to a seed in the
beginning of the protocol, and then runs any secure OT protocol using the output of
a pseudorandom generator on the seed as its random tape. Then the open phase can
be realized by letting the sender reveal the seed and all the input messages. The ideal
functionality Foor is defined in Figure 1.

Fig. 1. The ideal functionality Fcor

— The receiver inputs (choose, b),b € {0, 1}, and the sender inputs (mo, m1).
— Output my, to the receiver.
— On input open from the sender, send (mo, m;) to the receiver.




2.4 Garbled Circuits

We assume some familiarity with standard constructions of garbled circuits. We employ
the abstraction of garbling schemes [BHR12] introduced by Bellare et al., but similar
to [JKO13] we add a verification algorithm that can check correctness of the garbled
circuit given all input labels to the circuit.

A garbling scheme is defined by a tuple of algorithms G = (Gb, En, De, Eval, Ve)
such that:

— Gbis a randomized garbled circuit generation function that takes a security param-
eter, and the description of a boolean circuit f and outputs a garbled circuit GC
and the encoding and decoding information e and d, respectively.

— The En algorithm takes the encoding information e output by Gb, and an input = to
f, and outputs the garbled input corresponding to x.

— The Eval algorithm takes the garbled circuit GC' and the garbled input, and outputs
an encoded output.

— The De algorithm gets the encoded output and the decoding information d as input
and returns a decoded output.

— The Ve algorithm gets as input a garbled circuit GC, the encoding information e,
and a boolean function f, and outputs d or L.

In our constructions, we assume that the encoding information e is a vector of pairs
of input labels, where the pair (K?, K}') denotes the input labels for 0 and 1 for input
wire ¢ in the circuit. Similarly, we assume that the decoding information d is a vector of
pairs of output labels.

A garbling scheme may satisfy several properties such as correctness, authenticity
and privacy. We review these notions next.

Definition 1. A garbling scheme satisfies correctness if-
— for all boolean circuits [ and all input =,
De(d, Eval(GC, En(e,z))) = f(x) whenever (GC, e, d) < Gb(f,1%)

— for all boolean circuits f and all (possibly malicious) garbled circuits GC and
encoding information e, decoding information d, and all input z,

ifd < Ve(GC,e, f)and d # L then De(d, Eval(GC,En(e, x))) = f(z)

Definition 2. A garbling scheme has authenticity if for every circuit f, input x, and
PPT algorithm A, the following probability

Pr[3y # f(z),y = De(d,d’) : (GC,e,d) + Gb(f,1%),d" < A(GC,En(e,z))]
is negligible in k.

Definition 3. A garbling scheme has privacy if there exists a PPT simulator S such
that the following two distributions are indistinguishable:

- Real(f,z) : run (GC,e,d) < Gb(f,1%), and output (GC, En(e, x), d).

= Ideals(f, f(x)): output S(f, f(x))



2.5 Zero-knowledge Proofs

A Zero-knowledge (ZK) proof allows a prover to convince a verifier of the validity of
a statement, without revealing any other information. Let £ be the language associated
with an NP relation R: £ = {z | 3w : R(x,w) = 1}. A zero-knowledge proof for £ lets
the prover convince a verifier that x € £ for a common input . A proof of knowledge
captures not only the truth of a statement € £, but also that the prover “possesses”
a witness w to this fact. A proof of knowledge for a relation R(-,-) is an interactive
protocol where a prover P convinces a verifier V' that P knows a w such that R(z,y) =
1, where x is a common input to P and V. The prover can always successfully convince
the verifier if indeed P knows such a w. Conversely, if P can convince the verifier with
reasonably high probability, then it “knows” such a w, that is, such a w can be efficiently
computed given x and the code of P. The formal definition follows. In the following,
viewy is the “view” of the verifier in the interaction, consisting of its input x, its random
coins, and the sequence of the prover’s messages.

Definition 4 (ZK proof of knowledge). An interactive protocol (P, V') is a zero-knowledge
proof of knowledge for an NP relation R if the following properties are satisfied.

1. Completeness: Vx,y such that R(x,y) = 1,
Pr[(P(z,w),V(z)) =1] =1

2. Proof of Knowledge: For every polynomial time prover strategy P*,3 an oracle
PPT machine K called the extractor such that K~ () outputs w' and

Pr((P"(z,w),V(2)) = 1A R(z,w') = 0]

is negligible in k.

3. Zero-knowledge: For every polynomial time verifier V'*, there is a PPT algorithm
S called the simulator such that for every x € L, the following two distributions
are indistinguishable:

- viewy~ ((P(z,w), V*(z)))
- S(x)

Honest-verifier zero-knowledge: An interactive proof system (P, V') for a language £
is said to be honest-verifier zero knowledge if there exists a PPT algorithm & called
the simulator such that for all x € L, viewy ((P(z,w),V(x))) and S(z) are indis-
tinguishable. This definition says that the verifier gains no knowledge from the in-
teraction, as long as it runs the prescribed algorithm V. If the verifier tries to gain
some knowledge from its interaction with the prover by deviating from the prescribed
protocol, we should consider an arbitrary (but efficient) cheating verifier V* as in
the property 3 of the above definition which is full zero-knowledge. Efficient zero
knowledge proofs are known which are based on sigma protocols. Sigma protocols
are three round public-coin protocols and are honest-verifier zero-knowledge proof sys-
tems. There exist sigma protocols for various tasks like proving knowledge of discrete
logarithm of a value, that a tuple is of the Diffie-Hellman type etc., and it is also
possible to efficiently combine sigma protocols to prove compound statements. It is



possible to efficiently compile a sigma protocol (which is honest-verifier ZK) into a
zero-knowledge proof of knowledge. The Fiat-Shamir transform [FS86] converts any
public-coin zero-knowledge proof into a zero-knowledge proof of knowledge and re-
moves interaction, and is secure in the random oracle model [PS96]. Transformations
in the common reference string model [Dam00,Lin15] are also known. The transfor-
mation of [DamO00] gives a 3-round concurrent zero-knowledge protocol in the CRS
model, whereas [Lin15] is non-interactive.

In our constructions and protocols, we make use of interactive zero knowledge
proofs of knowledge of discrete logarithms and relations between discrete logarithms.
We use the following notation:

PK{(x,y,---) : statements about z,y,---}

In the above, x, y, - - - are secrets (discrete logarithms), the prover asserts knowledge of
x,9, -, and that they satisfy statements. The other values in the protocol are public.

2.6 ZK Proof Based on Garbled Circuits

Here, we review an important building block for our construction, i.e., the garbled-
circuit-based ZK protocol of [JKO13]. To prove a statement Jw : R(z,w) = 1 (for
public R and z), the protocol proceeds as follows:

1. The verifier generates a garbled circuit computing R(x,-). Using a committing
oblivious transfer, the prover obtains the wire labels corresponding to his private
input w. Then the verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output (wire
label). He commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the prover
all garbled inputs. From this, the prover can check whether the garbled circuit was
generated correctly. If so, the prover opens his commitment to the garbled output;
if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output wire
label corresponding to TRUE.

Security against a cheating prover follows from the properties of the circuit garbling
scheme. Namely, the prover commits to the output wire label before the circuit is
opened, so the authenticity property of the garbling scheme ensures that he cannot pre-
dict the TRUE output wire label unless he knows a w with R(x,w) = TRUE. Security
against a cheating verifier follows from correctness of the garbling scheme. The garbled
output of a correctly generated garbled circuit reveals only the output of the (plain) cir-
cuit, and this garbled output is not revealed until the garbled circuit was shown to be
correctly generated.

Note that in this protocol, the prover evaluates the garbled circuit on an input which
is completely known to him. This is the main reason that the garbled circuit used for
evaluation can also be later opened and checked for correctness, unlike in the setting
of cut-and-choose for general 2PC. Along the same lines, it was further pointed out in
[FNO15] that the circuit garbling scheme need not satisfy the privacy requirement of



[BHR12], only the authenticity requirement. Removing the privacy requirement from
the garbling scheme leads to a non-trivial reduction in garbled circuit size.

In one of our constructions (section 3.2), the verifier does have a private input, but
its input only needs to be kept private until the circuit is evaluated and the prover has
committed to the output. In that scenario, we also invoke the privacy property of the
garbling scheme as defined above.

Efficiency of Garbling Schemes. The state of the art garbling scheme uses the free-XOR
technique [KS08] to garble XOR gates and the half-gate technique to garble AND gates
[ZRE15]. For a circuit with g non-XOR gates, the total number of ciphertexts is 2¢g, and
the number of hash invocations is 4g for the garbler and 2g for the evaluator.

For privacy-free garbling, the costs are reduced by factor of two (see [FNO15,ZRE15]).
In particular, for a circuit with g non-XOR gates, the total number of ciphertexts is g,
and the number of hash invocations is 2g for the garbler and g for the evaluator.

We need to garble a few common building-block circuits in our constructions. It is
helpful to review the size of these circuits based on the concrete constructions given in
[KSS09]. The circuit for comparing ¢ bit integers requires 4¢ non-XOR gates. The cir-
cuit for testing equality of £ bit integers also requires 4¢ non-XOR gates. The circuit for
adding two ¢ bit integers requires 4¢ non-XOR gates, while the circuit for multiplying
two £ bit integers requires 8¢2 — 4/ non-XOR gates.

3 Proving non-Algebraic Statements on Algebraic Commitments

An important sub-protocol used in our constructions, is to commit to an input z using
an algebraic commitment Com(x) (e.g. pedersen commitment), and perform a zero-
knowledge proof of a non-algebraic statement about x, i.e. that f(z) = 1 for a boolean
circuit f.

Such a protocol allows one to efficiently switch between proving algebraic state-
ments on a committed input (e.g. proof of knowledge of a signature on a committed in-
put) and non-algebraic statement (e.g. hashing, comparison, equality testing and more).

All our protocols are defined in terms of an ideal functionality, and are proven se-
cure in the ideal/real world paradigm. We start by defining this task in terms of an
ideal functionality in Figure 2. We provide two instantiations for this functionality that
provide different efficiency trade-offs depending on the input size and the algebraic
commitment scheme used.

Fig. 2. The ideal functionality Fcom,

— The verifier inputs Com(x) and prover inputs the opening information x and the ran-
domness.
— If f(x) = 1 and the opening to the commitment verifies, output accept to the verifier.

The starting point for both instantiations is the ZK-proof of non-algebraic state-
ments based on garbled circuits [JKO13] (see section 2.6). As the naive solution we



could garble a circuit that takes x and the opening of Com(z) as prover’s input and
outputs 1 if f(z) = 1 and Com(x) correctly opens to x. The main drawback of this
solution is that checking correctness of opening for an algebraic commitment requires
performing expensive group operations (e.g. exponentiation) inside the garbled circuit
which would dominate the computation/communication cost. Our two instantiations
show how to avoid these costs and perform all algebraic operations outside the garbled
circuit.

3.1 First Instantiation

In our first construction, we have the prover commit to each bit of z, i.e. Com(z;) for
all ¢ € [n], and prove that when combined they yield .

Then, following the GC-based approach, the verifier constructs a garbled circuit that
computes f(x), parties go through the steps of the GC-based ZK proof for the prover to
prove knowledge of a value =’ such that f(z’) = 1. The main issue is that a malicious
prover may use a different input 2’ # x in the circuit than what he committed to.

But we observe that the input keys associated with z’ in the GC (which are obtained
through the COT), can function as one-time MACs on each bit of 2’ and can be used
to enforce that 2’ = x using efficient algebraic ZK proofs that take place outside the
garbled circuit. In particular, immediately after the COTs, the prover commits to its

input keys i.e. K  for the ith bit of 2’. When the GC is opened and both input keys
K?, K} are opened, the prover can provide ZK proofs that K" = z; K} + (1 — z;) K?
if the commitment scheme provides efficient proofs of linear relations.

The complete protocol description in the COT-hybrid model is given in Figure 3.
We point out that steps 1, 6 and 13 are additions compared to the protocol of [JKO13].

Theorem 1. Let G be a garbling scheme satisfying correctness and authenticity prop-
erties as defined in 2.4. Let Com be a secure commitment scheme, and let the proofs PK
be implemented with a zero knowledge proof of knowledge. Then, the protocol Ilcom,
in Figure 3 securely implements Fcom, s in the presence of malicious adversaries in the
Fcoor-hybrid model.

Proof. Corrupt Prover.

The simulator works as follows: It uses the OT simulator to extract the prover’s input
z' to the OT. It then plays the role of the honest verifier in the rest of the simulation -
it constructs the garbled circuit honestly and uses its input keys as verifier’s inputs to
the COT functionality. The simulator then extracts the value 7’ committed to by the
prover from the proofs of knowledge of opening in step 8. It also extracts prover’s
committed input x and the values K that prover committed to in the protocol, using
the extractor for the ZK proof of knowledge in step 13. The simulator finally outputs
x and the opening extracted from the ZK proofs, iff all the following hold: xz = z’,
f(z) =1, Z is the one-key of the output wire, K] = K[ for all 7, the commitment in
step 8 is opened to Z, and the ZK proofs of step 13 verifies. Note that in the ideal model
the functionality will always output accept when the simulator sends this witness.

We now prove that a corrupt prover’s view in the real protocol is indistinguishable
from his view with the simulator via a series of intermediate games.



Fig. 3. The Protocol Ilcom, ¢

Let G = (Gb, En, De, Eval, Ve) be a verifiable garbling scheme. Let F' be the following
functionality: it takes as input , and outputs v such that v = 1 if f(z) = 1 and 0 otherwise.
The prover has input z, the verifier is in possession of C; = Com(x) and both parties have
as input the security parameter «.

1. The prover commits to the bits of x by sending bit-wise commitment to z: C; =
Com(z;),V1 <i < n.
2. The verifier constructs a garbled circuit for F'.

(GC,e,d) + Gb(1*, F)

3. The prover inputs his choice bits by sending (¢, z;) for all ¢ € [n] to Fcor.

4. The verifier inputs the wire labels corresponding to the prover’s input by sending
(i, K2, K}) forall i € [n] to Fcor.

5. Fcor outputs K; for all 7 € [n] to the prover where K; = K.

6. The prover commits to the received input wire labels by sending Cx;, = Com(Kj) for
all 4.

7. The prover evaluates the garbled circuit

Z «+ Eval(GC, {Kz{}ie[n])

8. Prover commits to the garbled output Z by sending Com(Z) to the verifier and proves
knowledge of opening.
9. Verifier sends open to Fcor.

10. Fcor sends (K?, K}) to the prover for all i € [n].

11. Prover verifies that the correct circuit was garbled by running Ve(GC, { K7, K }icjn))-
If the output is not accept, the prover terminates. Otherwise if Ve outputs accept, he
opens the commitment to the output Z by sending Z and the randomness used in
Com(2).

12. Verifier checks that the opening is correct and that De(d, Z) = 1. If the opening is not
correct or if De(d, Z) # 1, the verifier outputs reject and terminates.

13. If the verifier did not terminate, the prover and the verifier engage in a Zero-knowledge
protocol to prove the following:

- PK{(2;,K/,m, R) : C; = Com(z;) A Cx, = Com(K}) AN K| = ; K} + (1 —
)KL V1 <i<n.

- PK{(z,z1, - ,zn,7,71, - 1n) : Cu = Com(z) A C; = Com(z;) ANz =
Z Qil‘i}

14. If the zero-knowledge proof verifies, the verifier outputs accept.

— Game Ideal: This is the interaction of the corrupt prover with the simulator and
functionality as described above.

— Game Gq: This is the interaction of the corrupt prover with the simulator as de-
scribed above, with the exception that instead of the simulator sending = and the
opening to F', which outputs accept iff f(x) = 1, the game will output accept iff
f(z') = 1 for the 2’ extracted from the OT (and all the other conditions listed hold).
Since one of the conditions checks z = 2/, this is identical.



— Game G;: This game, behaves exactly as in Gy except for a slight change in the
accept condition. It outputs accept if f(z’) = 1 and K] = K for all ¢ and Z is
the one-key of the output wire and the commitment in step 8 is correctly opened to
Z, and all the ZK proofs verify (i.e. no z = x’ check).

Indistinguishability:

Define the event Bad as the event that = # 2/, f(z') = 1, Z is the one-key of the
output wire, K] = K" for all ¢, and the opening to Z is correct and the ZK proofs
of step 13 verify.

Observe that G is identical to G; conditioned on Bad. We now argue that Pr[Bad]
is negligible, by observing that an adversary who makes us reject Gy but accept in
Gy, can only succeed with probability 1/2° where s is a statistical security param-
eter, given the COT hybrid model. Without loss of generality lets assume the +th bit
of z is 0 and ith bit of 2’ is 1. Then, the probability of the adversary guessing K
given only K is less than 1/2/%7|. Note that |K?| is the computational security
parameter, which is 128 bits for an AES key. But without loss of security we can
used a truncated K (to its least significant s bits) in the ZK proofs of step 13.
Hence Games Gy and G; are indistinguishable except with negligible probability
in s.

— Game Gs: This game behaves as in G; except for another change in the accept
condition. We accept if f(z’) = 1 and ZK proofs of step 13 verifies and Z is the
one-key of the output wire, and the commitment in step 8 is correctly opened to Z
(i.e. no K] = K"* check).

If an adversary can distinguish between Games G; and G, we can break the sound-
ness of the ZK proof of step 13. Therefore, G; and G, are indistinguishable.

— Game Gs: This game behaves as in Gy except for a small change in accept condi-

tion. We accept if ZK proofs of step 13 verifies and Z is the one-key of the output
wire, and the commitment in step 8 is correctly opened to Z (i.e. no f(a') = 1
check).
Games Gy and Gj are identical, except when the following event occurs: f(z') # 1
and ZK proof of step 13 passes, and Z is the one-key of the output wire. When this
event occurs, we accept in Gg and rejects in Go. We now argue that the probability
of this event is negligible. For the sake of contradiction, assume the prover’s input
to OT is ' such that f(z') # 1, but the value committed to is the correct one-key
Z for the output wire. We can use such a prover to break the authenticity of the
garbling scheme (See definition 2).

— Game G4: This game behaves as in G3 except for the accept condition. We accept if
the ZK proofs of step 13 verifies and the the commitment in step 8 opens correctly
(i.e. no check that it is the same as extracted Z).

An adversary who can distinguish between Gz and G4 can be used to violate the
binding property of the commitment scheme.
G, is identical to the real world game with an honest verifier.

Corrupt Verifier. The simulator commits to bits of a random value. It also uses a
random value as prover’s inputs to the COT, and receives the verifier’s inputs to the COT
functionality (K?, K}') for all 4, i.e. the input keys to the verifier GC. The simulator
then commits to the keys corresponding to the random input it used in the OTs.



It then runs Ve(GC, (K?, K}), f) to either obtain reject, or the decoding informa-
tion d. If the output is reject it commits to a dummy value, else it commits to the one-key
for the output wire, denoted by Z.

It then receives the “open” message from the verifier. If Ve had not output reject
earlier, the simulator opens the commitment to Z and uses the simulator for the ZK
proof to simulate the proofs of step 13. Otherwise, the simulator aborts.

— Game Gg: This is the interaction of the corrupt verifier with the simulator as de-
scribed above.

— Game Gy : Is similar to game G except that the real input x of prover is committed
to.
The two games are indistinguishable due to the hiding property of the commitment
scheme.

— Game Go: Is similar to G; except that instead of computing Z by running Ve, we
run Eval(GC, K['*) to compute and commit to Z.
The two games are indistinguishable due to the second condition in the correctness
property of the garbling scheme. Note that we are also implicitly using the com-
mitting OT property (the protocol described in the COT hybrid model) as the keys
extracted in the OTs and what the functionality sends to the honest prover are the
same.

— Game Gg: Is similar to G except that the honest input « of the prover is used in the
OTs.
The two games are identical in the OT hybrid model.

— Game Gy: Is similar to G except that the simulator commits to inputs keys associ-
ated with the real input z.
The two games are identical due to the hiding property of the commitment scheme.

— Game G5: Is similar to G4 except that in step 13, the simulator performs the proofs,
honestly.
The two games are indistinguishable due to zero-knowledge property of the ZK
proof.
Note that G5 is the real game with the honest prover.

3.2 Second Instantiation

We now give an alternative construction that implements the functionality in Figure 2.
In particular, we avoid the bit-wise commitments to each bit of x;, and the associated
bit-wise ZK proofs, and hence require fewer public-key operations (exponentiations) in
the construction. On the other hand, the garbled circuit is augmented and hence a larger
number of symmetric-key operations are needed.

The idea is as follows. In order to ensure that the prover uses the same input z in
the GC, we have the circuit not only compute f(z) but also a one-time MAC of z, i.e.
t = ax + b for random a and b of the verifier’s choice. a and b are initially unknown to
the prover, but are opened along with the GC after the prover has committed to ¢. Given
a and b, the prover then provides a ZK proof that Com(t) is indeed the one-time MAC
of z (using efficient proofs of linear relations). We note that the ¢ = az + b operation
performed in the circuit is on integers.



We note that our construction deviates from the standard construction of GC-based
ZK where the verifier has no input, and privacy-free garbling is sufficient. In particular,
we do invoke the privacy property of the garbling scheme in our construction to ensure
that the prover does not learn a and b, until the opening stage.

The complete protocol description in the COT-hybrid model is given in Figure 4.

Theorem 2. Let G be a garbling scheme satisfying correctness, authenticity, and pri-
vacy properties as defined in section 2.4. Let Com be a secure commitment scheme, and
let the proofs PK be implemented with a zero knowledge proof of knowledge. Then, the
protocol Ilyac, s in figure 4 securely implements Fcom 5 in the presence of malicious
adversaries in the Fcor-hybrid model.

Proof. Corrupt Prover.

The simulator works as follows: It uses the OT simulator to extract the prover’s
input 2’ to the OT. It then plays the role of the honest verifier in the rest of the sim-
ulation - it chooses a, b randomly as the honest verifier would, constructs the garbled
circuit honestly and uses its input keys as verifier’s inputs to the COT functionality.
The simulator then extracts the value Z’' committed to by the prover from the proofs of
knowledge of opening in step 8. It also extracts prover’s committed input = and the tag
t’ that the prover committed to in the protocol, using the extractor for the ZK proof of
knowledge in step 16. The simulator finally outputs x and the opening extracted from
the ZK proofs, iff all the following hold: = = 2/, f(x) = 1, Z is the one-key of the
output wire, ¢’ = ax + b, the commitment in step 8 is opened to Z, and the ZK proof of
step 16 verifies. Note that in the ideal model the functionality will always output accept
when the simulator sends this witness.

We now prove that a corrupt prover’s view in the real protocol is indistinguishable
from his view with the simulator by a series of intermediate games.

— Game Ideal: This is the interaction of the corrupt prover with the simulator and
functionality as described above.

— Game Gq: This is the interaction of the corrupt prover with the simulator as de-
scribed above, with the exception that instead of the simulator sending x and the
opening to F, which outputs accept iff f(x)=1, the game will output accept iff
f(z') = 1 for the 2" extracted from the OT (and all the other conditions listed
hold). Since one of the conditions checks x = 2/, this is identical.

— Game Gy: In this game, the simulator behaves exactly as in Gy except that it does
not check the x = 2’ condition.

Define the event Bad as the event that x # z’ but ¢ = az + b. Observe that G
is identical to G; conditioned on Bad. We argue that Pr[Bad] is negligible due
to the unforgeability property of the one-time MAC, the hiding property of the
commitment scheme, and the privacy of the garbled circuit.

Consider a game where we run as in Gy but stop after step 10, and look at the
probability that in this gane ¢’ = axz + b but = # z’; if Pr[Bad]| is nonnegligible,
this will be nonnegligible as well. Now, by the privacy of the garbled circuit, this is
indistinguishable from a game where the verifier computes a tag ¢ on z’, and then
constructs (GC, e, d) using the privacy simulator: S(F, (¢,1)). Similarly, by the
hiding of the commitment scheme this is still indistinguishable from a game where



the verifier commits to random values instead of a, b. But if in this final game we
gett’ = ax + b and x # x’ with non-negligible probability, then we can break the
unforgeability of the MAC. The probability of forgery is bounded by 1/2!%l, and
hence exponentially small in the statistical security parameter s = |a|.

— Game Ga: In this game, the simulator behaves as in Gy except that it does not check
the condition ¢t = az + b.

If an adversary can distinguish between Games G5 and G;, we can break the sound-
ness of the ZK proof of step 16.

— Game Gg: In this game, the simulator behaves as in Go except that we do not check

the condition f(z’) = 1.
Games Gz and G are identical, except when the following event occurs: f(z') # 1
and ZK proof of tag verifies and Z is the one-key of the output wire. We now argue
that the probability of this event is negligible. For the sake of contradiction, assume
the prover’s input to OT is z’ such that f(x’) # 1, but the value committed to is
the correct one-key Z for the output wire. We can use such a prover to break the
authenticity of the garbling scheme (See definition 2).

— Game Gy: In this game, the simulator behaves as in G3 except for the accept condi-
tion. The simulator accepts if the ZK proofs of step 16 verifies and the commitment
in step 8 opens correctly (i.e. no check that it is the same as extracted 2).

An adversary who can distinguish between G4 and Gg can be used to violate the
binding property of the commitment scheme.
Gy is identical to the real world game with an honest verifier.

Corrupt Verifier. The simulator extracts a and b from the proofs of knowledge of
their openings by verifier. It uses a random value as prover’s inputs to the COT, and
receives the verifier’s inputs to the COT functionality (K7, K}) for all 4, i.e. the input
keys to the verifier GC'

It then runs Ve(GC, (K, K}), F) (and checks against the extracted a, b) to either
obtain reject, or the decoding information d. If the output is reject it commits to dummy
values for Z and ¢, else it commits to the one-key for the output wire denoted by Z, and
dummy ¢.

The simulator receives the openings of Com(a) and Com(b). If the openings are not
what it extracted earlier, or if Ve had output reject earlier, it aborts. Else, the simulator
opens the commitment to Z and uses the simulator for the ZK proof to simulate the
proofs of step 16.

— Game Gg: This is the interaction of the corrupt verifier with the simulator as de-
scribed above.

— Game G;: Is similar to game G except that ¢ = ax + b for the real input  of prover
is committed to.
The two games are indistinguishable due to the hiding property of the commitment
scheme.

— Game Gg: Is similar to G; except that instead of computing Z and ¢ by running Ve,
we run Eval(GC, K"*) to compute and commit to Z and ¢.
The two games are indistinguishable due to the second condition in the correctness
property of the garbling scheme, and binding property of commitments Com(a)



and Com(b). Note that we are also implicitly using the committing OT property
(the protocol described in the COT hybrid model) as the keys extracted in the OTs
and what the functionality sends to the honest prover are the same.

— Game Gg: Is similar to Go except that the honest input « of the prover is used in the
OTs.
The two games are identical in the OT hybrid model.

— Game Gy: Is similar to G except that in step 13, the simulator performs the proofs
honestly.
The two games are indistinguishable due to zero-knowledge property of the ZK
proof.
Note that G, is the real game with the honest prover.

3.3 Efficiency Comparison and Optimizations

Efficiency Comparison In our first instantiation, in addition to the cost associated with
the GC-based ZK, i.e. the oblivious transfer for - and the cost of garbling f, O(n) ex-
ponentiations are necessary to commit to each bit of input x and to perform the bitwise
ZK proofs associated with them in the last step.

In our second instantiation, the bitwise commitments/proofs are eliminated (i.e. only
a constant number of exponentiations) but instead the circuit for ax + b needs to be
garbled which requires O(ns + s?) additional symmetric-key operations when using
textbook multiplication (we discuss range of values for s shortly). Using Karatsuba’s
multiplication algorithm [Knu69], this can potentially be further reduced.

The round complexity of both protocols is essentially the same as the GC-based ZK
proof of [JKO13] (5 rounds), as the extra messages can be sent within the same rounds.
(To simplify presentation, we used a separate step for each operation in our protocol
description, but many of these can be combined.) A more round-efficient GC-based ZK
proof would make our constructions more round efficient as well.

The first instantiation requires more exponentiations which are significantly costlier
than their symmetric-key counterpart, but the total number of symmetric-key operations
in the second instantiation is higher. Hence, when n is small, the first instantiation is
likely more efficient, while when n is larger, the second instantiation will be the better
option. Furthermore, if bit-wise commitment to the input is already necessary as part of
the bigger protocol (as is the case in some of our constructions), the first instantiation
may be the better choice. In the case where a comparison circuit x < ¢ is also computed,
an additional O(n) symmetric-key operations suffices.

Optimizations Next we review a few other optimizations that improve efficiency of our
instantiations.

— Reducing exponentiations. We consider the following optimization for the proto-
col Ilcom,s in Fig. 3 which reduces the number of exponentiations necessary for
the ZK proofs significantly. In step 6, the prover commits to the sum of the keys
received instead of individually to each wire key. The prover sends Com(S) =
Com (3_7_, K}) in step 6. We assume that the bit commitment scheme Com is ho-
momorphic, and each wire key K is truncated to s bits and interpreted as a group



element. Now, in the zero knowledge proofs of step 13, the prover proves the fol-
lowing statements which can be performed with fewer exponentiations:
o PK{(z;, 5,7, R): Com(z;) = g**h" A Com(S) = g h®
NS =0 (K] + (1 - o) KD))
o PK{(z,x1, -+ ,xn,m,r1, - 1y) : Com(x) = g"h" ACom(z;) = g™ h"i Ax =
gz 2'x; hr}
We can show that if the sum extracted by the simulator from the commitment in
step 6 is not equal to the sum of keys corresponding to the input z’ extracted from
COT, but the ZK proofs verify, then for some ¢, the prover must have correctly
guessed K7 such that b # . The probability of this is negligible by the security
of the COT protocol.

— Privacy-free garbling. As discussed earlier, in [FNO15] it is observed that privacy-

free garbling is sufficient for GC-based ZK proofs of non-algebraic statements.
This improves the communication/computation cost of garbled circuits in our first
instantiation by a factor of two. But as mentioned earlier, the same cannot be said
about our second construction since the privacy property of garbling is required to
hide a and b in the earlier stage of the construction.
But we can think of bigger circuit as consisting of two smaller circuits: one com-
puting the function f and the other computing ax + b. If we split the computation
into two garbled circuits with shared OT, then we can use the privacy free garbling
scheme of [FNO15,ZRE15] for the first circuit as the verifier has no input, and use
a standard garbling scheme for the ax + b circuit.

— Smaller multiplication circuit. For the one-time MAC in the second protocol, a
small a is sufficient for security - if the security (unforgeability) desired is 277, it
suffices for a to be s bits long. Hence, for a 512-bit input, a 40—80-bit a is sufficient
to compute ax + b which reduces the size of the multiplication circuit significantly.

3.4 Secure computation on committed/signed inputs

In the protocols described above, we have shown how to commit to a value Com(z) and
then use a GC-based ZK proof to prove non-algebraic statements about x.

It is not hard to show that one can extend this approach, to a full-fledged secure
two-party computation (2PC) of any function g(z, y) where x is the committed input of
the prover. In particular, note that in the ZK proof, the prover feeds its input x into the
COTs in order to obtain its inputs keys to the GC of the ZK proof. In order to extend
this to a secure 2PC based on garbled circuits, we let the prover play the role of the
evaluator in a cut-and-choose 2PC based on garbled circuits, and use the same COT as
above for the prover to obtain the garbled inputs for = in the 2PC. This would ensure
that the same x that was used in the ZK proof is also used in the 2PC, and the ZK proof
already ensures that this is the same input committed to in Com(z).

A subtle point here is that we need to open the sender’s input to the COTs for the
GC for the ZK but not for the GCs for the 2PC. This is supported by the committing OT
of [ST11] (also see the discussion on COTs in [MR13]). It is interesting to explore the
use of OT extension in such COTs where some sender inputs are opened while others
are not.



We emphasize that the GCs for the 2PC only garble the desired function g, and
hence the GC for the ZK proof is not part of any cut-and-choose. However, we note
that the above technique is currently limited to the evaluator’s input since the OTs for
evaluator’s input enable an almost-free check of equality of inputs in the 2PC and the
7K. Extending the ideas to both party’s inputs is an interesting future direction.

This approach can be easily extended to prove other statements about x, such as
proof of knowledge of a signature on x (hence signed-input 2PC) either using the tech-
niques we give below in the case of RSA/DSA signatures, or using previous techniques
to give a proof of knowledge of a CL signature[CLO1].

4 Building Blocks for Privacy-Preserving Signature Verification

We introduce three important building blocks for our privacy-preserving signature ver-
ification protocols. Two of them can be directly instantiated using our Fcom, r function-
ality introduced in section 3, while for the third one we provide a customized construc-
tion.

4.1 Proving that a committed value is the hash of another committed value

Here, the goal is to commit to a message m and its hash H(m) and prove in zero-
knowledge that one committed value is the hash of the other. We define the task in
terms of an ideal functionality in Figure 5.

Fig. 5. The ideal functionality Frasn

— The verifier inputs Com(m), Com(M) and the prover inputs the opening information
(m, M) and the randomness.

- If H(m) = M and the openings to the commitments verify, output accept to the
verifier.

We now use the abstract functionality Fcom, f from Fig 2 with a commitment scheme
Comy, to instantiate a protocol that implements Fpy 5. Here, the inputis x = (m, M =
H(m)) and the Comy, is defined as Comy(x = (m, M)) = (Com(m), Com(M)). To
commit to bits of x, one can commit to bits of m and M individually. Com;, inherits
efficient proofs of linear relations from Com as long as the proofs on m and M are
performed separately. Given these, we show in Figure 6 how to implement Fg 55, by
defining the right function f for the ideal functionality Fcom, f.

Fig. 6. The Protocol I1qsh

1. The prover commits to z = (m, M) by sending Comj,(z) = Com(m), Com(M) to
the verifier.

2. The prover and the verifier run I7com, s Where f is the following functionality: f takes
m and M as inputs and outputs v such that v = 1 if H(m) = M and 0 otherwise.




Theorem 3. The protocol Il .5y in figure 6 securely implements Friqsnh, given the
ideal functionality Fcom,f, in the presence of malicious adversaries.

4.2 Proof of equality of committed values in different groups

The goal is to prove that the value committed to in different prime groups of size p and
q are the same. We define the task in terms of an ideal functionality, defined in Fig-
ure 7. This can be achieved using standard techniques which involve using the integer
commitment scheme by Damgard and Fujisaki [DF02] to prove properties about the
discrete logarithms in Z (instead of modulo the order of the group). This requires that
the verifier choose an RSA modulus N such that the factorization is unknown to the
prover, and prove that it is chosen correctly in an initial set-up phase. The prover also
has to compute exponentiations in an RSA group where the exponents are | N| + x bits
long. Since the group order is hidden, chinese remaindering cannot be used to speed up
the exponentiations, and therefore the approach is fairly expensive. We give a protocol
that avoids the integer commitment technique.

Fig.7. The ideal functionality Fgq

— The verifier inputs Com,(x), Comg(y) and the prover inputs (x,y) and the opening
information. p and ¢ are public primes and g < p.

- If0<z<p,0<y<p,z=y mod g, and the openings to the commitments verify,
output accept to the verifier.

In Figure 8, we use the ideal functionality Fcom, ¢ from Fig 2 with a commitment
scheme Com,, to instantiate a protocol that implements Fg4. The scheme is defined
as Comp, () = (Comy(x), Comy(z)), where it is assumed that Com,, and Com,, allow
for proving linear relationships among committed values.

Fig. 8. The Protocol I1g4

1. The prover commits to = and y by sending Com,,(x), Com(y) to the verifier.

2. The prover and the verifier run Ilcom, s where f is the following functionality: f takes
z and checks that it is upper bounded by p and outputs v such that v = 1 if z < p and
0 otherwise.

4.3 Proof of equality of discrete logarithm of a committed value and another
committed value

Let Gy = (G1) and G2 = (G2) be two groups of order p and g respectively with g|p—1
and let g € Gs be an element of order ¢ . Given y; = G‘lﬂ HlR1 and yo = G§H2Rz,
we want to prove that the discrete logarithm w.r.t to base g of the value committed to
in y; is equal to the value committed to in yo. Let k be a security parameter. Following



standard notation, we denote the protocol by PK{(x, Ry, Ra) : y1 = G{l HI Ay =
G3H QRZ }. The technique of our protocol is similar to [Sta96], [CS97a], and is a variant
of [MGGR13]. Our protocol is only honest verifier zero-knowledge. This HVZK pro-
tocol can be compiled into a full zero-knowledge proof of knowledge in the auxiliary
string model using the technique of [Dam00].

Fig.9. PK{(z, R1, Ro) : y1 = G¢ HI' Ay, = GSHE?)}

Giveny, = GY HF' and y, = G5 HI®?

1. The prover computes the following 2k values: u; = G9 H'* and v; = G$*HJ' for
1 < ¢ < k, for randomly chosen «;,v; € Zq and 8; € Zp, and sends u;, v; to the

verifier.
2. The verifier chooses a random string c of length k as the challenge, and sends it to the
prover.
3. For a challenge string ¢ = c¢; . . . ¢k, compute and send the tuple (7, s;, t;)
If C; = 0,
ri = i, 5i = Biti = i
If C; = 1,

ri=a; —x (modq),s; =i — Rig"" (modp),t;i =7 — Rz (mod q)

4. Verification: B
If ¢; = 0, check whether u; = Gi"i H7' and v; = GY H;i
If ¢; = 1, check if u; = yf "H % and v; = y2 G5 H4i. The verifier accepts if Verifica-
tion succeeds for all 7.

We will show that the protocol in Figure 9 is correct, has a soundness error of 1/ 2k,
and is honest verifier zero knowledge.

Proof. — Completeness: If the prover and the verifier behave honestly, it is easy to
see that verification conditions hold.
Ifc; =0:

G Hy = GI HY = w; and Gy HY = G HY = v,
If C; = 1:
yi Hy = (G )" (H{")"" Hy' = G{ "HY' = u;and

Gy Hy = GEHEGY HY =

— Soundness: We show an extractor that computes x, Ry, Ro given two different
accepting views with same commitments but different challenge strings. Say, we
have two accepting views for challenges ¢ and ¢ # c. Without loss of generality, let
us assume that they differ in the jth position, and c¢; = 0. We have,

- .
R g J Sj g7 Sj
uj =G Hy" =y Hj



- . —
g'J Sj g*g'I Rg J 455
Gl H' =Gy H,
gx _ grjfr”j
We can compute (in Z,),

I:’f’jf’f‘j

We have,
S5 = ngﬁj + SAj
and thus,

R, = 5175
1 ez
‘We also have

o Tipgpti 75 rrty
vj =Gy Hy =y2Gy' Hy

T tj _ I+TA]‘ tA]‘+R2
G2 H2 - G2 HQ

and thus,
Ry =t; — 1,

— Honest Verifier Zero Knowledge: We show a simulator such that the output of the
simulator is statistically indistinguishable from the transcript of the protocol with
a prover. The simulator on input ¢, randomly chooses a; = r; € Zg,8; = s; €
Zy,vi = t; € Zq and computes for 1 < ¢ < k:
If C; = 0,
U; = G{’l I{iql and V; = Gngél

if C; = 1,
_ 9" s _ T Iyt
u; =y] Hy*andv; = yoG5' Hy

5 Privacy-Preserving FDH-RSA Signature Verification

The FDH-RSA Scheme. The Full Domain Hash RSA signature scheme FDH = (KeyGen,
Sign, Verify) is defined as follows [BR93]. The KeyGen algorithm on input the security
parameter k, selects two k/2-bit primes p and ¢ and computes the modulus N = pq. It
then chooses an exponent e € Z;( N and computes d such that ed = 1 mod ¢(N).
Return (pk, sk), where pk = (N, e) and sk = (N, d). The signature generation and
verification are as follows and use a hash function H : {0,1} — Z%,.

Signy,q(M) Verifyy (M, 0)

x =H(M) y=o0° mod N

o=12% mod N Yy =H(M)

return o if (y = ) then return 1;

else return O;



5.1 Proof of Knowledge of RSA Signatures

Given Comy (m), a commitment to m in a group of order NV, the following protocol is
a zero knowledge proof of knowledge of a valid RSA signature on m.

1. The prover has input (m, o) and the verifier is in possession of Comy (m) = C; =
gm h”‘l

2. The prover commits to M = H(m), that is, M € Zy, compute Comy (M) =
Cy = gMh", for randomly chosen ry € Z3. Send () to the verifier and prove
knowledge of opening.

3. The prover and verifier engage in the protocol ITp,s, with inputs (m, M) and
(C1, Cy) respectively.

4. The prover proves knowledge of e-th root of a committed value( [CS97a]). Given
y = Cy = gMh", prover proves knowledge of o, such that, y = g° h".

(a) The prover computes the following tuple:

(yla e 7y6—1) “/here yl — go—lhri

for randomly chosen r; € Zy,fori = 1toe — 1.
(b) The prover and the verifier run the following proof of knowledge:

PK{(O{7 (/Bla e HBE)) ‘Y1 = gahﬂl Ny2 = y?hﬁQ NNy = y?—lhﬁc}

When e is one greater than a power of 2, we can employ optimizations like repeated
squaring to prove knowledge of e-th root. Given y = ¢° h”, for e = 2% + 1, step 4 in
the verification protocol can be now be realized as follows:

1. The prover computes the following tuple:

2t )
(Yo, Y1, -+ ,yx) Where y; = g A"

for randomly chosen r; € Zy, fori = 1to k.
2. The prover and the verifier run the following proof of knowledge:

PK{(aaalv"' aakaﬂaﬂ()a"' 36k7R07"' 7Rk) :
yo = g°h’ Ayr = ygh® Ay = g R Ays =yt
Aya = go2RM - Ay = g RO Ay = g R Ay = yRaoey

It might be possible to improve the efficiency for some e’s by using addition chains for
the integer e. An addition chain for integer e is an ascending sequence 1 = ey < €1 <
--e, = e such that for 1 < ¢ < r, we have e; = e; + eg. The prover, now, would
have to provide only the y;’s for which ¢ is an element of the addition chain for e. The
relations among the y;’s will be sightly different, but can be proved in a similar way.
The above verification protocol can also be adapted to support variants of RSA-
based signatures, like the probabilistic signature scheme (PSS) from [BR96]. PSS is a
probabilistic generalization of FDH which uses two hash functions and more compli-
cated padding. We can instantiate protocol Ilcom, r With an f that verifies the additional
checks of PSS to achieve privacy preserving verification of a PSS signature.



5.2 Proof of security

We sketch a proof that the above protocol is a zero-knowledge proof of knowledge of
an RSA signature on a committed message. The completeness follows easily from the
security of protocol Ilf,sp, and from the observation that

y = (yoy) hPe = (( (g°R%)* n2 ...)“hﬁefl)“hﬁe

— gaehﬁe“!‘aﬁeflﬁ‘"“‘rae*lﬁl
in step 4.

— Soundness: We show an extractor, that, given access to the prover, extracts (m, o)
such that Verify 5, .(m, o) = 1. The extractor invokes the simulator for the corrupt
prover of protocol I g osh to extract m and M. It then runs the extractor corre-
sponding to the proof in step 4b to extract o. By the security of I1,s, and the
binding property of Com, it follows that «® mod N = M = H(m).

— Zero-knowledge: We sketch a simulator that simulates the verifier’s view in the
protocol. The simulator commits to a random value on behalf of the prover in step 2
by computing C; = Com(M’). It sends CY to the verifier, proves knowledge of
opening and invokes the simulator for the corrupt verifier of protocol Il ,sp. It
then chooses y1,- -+ ,Ye—1 € Zn at random, and runs the simulator corresponding
to the proof in step 4b. We can show that the view of the verifier in the protocol is
indistinguishable from the view with the simulator.

6 Privacy-Preserving (EC)DSA Signature Verification

The DSA Scheme. The Digital Signature Algorithm (DSA) is a variant of the Elgamal
signature scheme. The key generation, signature generation and verification algorithms
are given next. The KeyGen algorithm chooses two primes p and ¢ such that ¢ | p — 1.

Let g be an element of order g in Zy. It then chooses z randomly from {1,--- ,q — 1}.
The private key is set to be = and the public key is (g,p,q,¥y),y = ¢g* mod p.

Sign(m) Verify(m, (r, s))

M « H(m) M + H(m)

Pick arandom k,1 < k < ¢ w=s"1 modgq

r = (¢* mod p) mod ¢ u; = Mw mod ¢

s=k=YM +rz) mod q us = rw mod ¢

return (7, s) if r = (¢"y** mod p) mod ¢ then

return;

1 else return O;

The ECDSA Scheme. ECDSA is the elliptic curve analogue of DSA. It works in an
elliptic curve group E(Z,). The ECDSA Key generation, signature and verification
algorithms are given below. The KeyGen algorithm chooses an elliptic curve E defined
over Z,, such that the number of points in F(Z,,) is divisible by a large prime n. Pick



apoint P € E(Z,) of order n. Let d € [1,n — 1] be a randomly chosen integer. Set
@ = dP. The public key is (E, P, Q,n) and the private key is d.

Sign(m) Verify(m, (r, s))

M <« H(m) M <+ H(m)

Pick a random & € [1,n — 1] if 7, s & [1,n — 1] then return;
kP = (z0,Y0) 0

r=x9 modn w=s"' modn

s=k7Y(M +rd) modn u; = Mw mod n

return (r, s) ug =rw mod n

(1,91) = w1 P+ u2Q
v=1x1 modn

if » = v then return 1;
else return O;

6.1 Proof of Knowledge of DSA Signatures

Let (r, s) be the DSA signature on m. Let G; = (G1) and G2 = (G3) be two distinct
groups of order p and q respectively where p and q are the parameters of the DSA signa-
ture algorithm. One technical difficulty is that we have to show r in G; and G is equal
modulo g. For that purpose, we use our protocol I/ g, from Figure 8 to prove equality
across groups. We also employ our protocol from Fig. 9 to prove equality of discrete
logarithm of a committed value and another committed value. We now describe the
DSA verification protocol in detail. Given a commitment to m, the following protocol
is a zero-knowledge proof of knowledge of a valid DSA signature on m.

1. The verifier is in possession of C; = Com,(m), and the prover has as input mes-
sage (m, (r, s)) and the opening information of C} to m.

2. The prover commits to M = H(m), that is, M € Z,, compute Cy = Com (M)
Send Cs to the verifier and prove knowledge of opening.

3. Now the prover and verifier engage in the protocol Ilf,sp to prove that M =
H(m).

4. Th(e p)rover commits to the signature (r, s) by sending Com,,, (1) = (Com,,(r), Com,(r))
and Com,(s). The prover also commits to the following values: u; = H(m)s ™!, uz =
rs~l,a = g, B = y"2, where g is the generator of a cyclic group of order ¢ in
Zy used in DSA signing, and y is the DSA public key. Prover sends Comg(u;),
Comy(uz), Comy (), Com, ().

5. The prover and the verifier carry out the following X'-protocol zero-knowledge
proofs of knowledge:

(a) PK{(u1, Ry, Ry) : Comy(a) = G¢" HF' A Comgy(uy) = GY HE2}

(b) PK{(uz, Ry, Ry) : Com,(8) = GY"° HIY' A Com,(us) = G2 HI*2}

() PK{(r,a, 3, R1, R, R3) : Com,(8) = GYH* A Com,(a) = GYHE2 A
Com,(r) = G{H{* Ar = aB)

(d) PK{(M,u1,s, R1, Ry, R3) : Comy(M) = GY HF* ACom,(uy) = G5 H> A
Com,(s) = GSHL A M = uys}

(e) PK{(r,uz,5, R1, Ra, R3) : Comy(r) = G5HF" A Com,(us) = GY2HI> A
Comgy(s) = G5H3® A7 = ups}

6. The prover and verifier engage in II g, with input Com,,q (7).



6.2 Proof of security

We sketch a proof of the soundness and zero-knowledge properties of the above proto-
col. The completeness follows from security of 11,5, and completeness of the proofs
of knowledge in step 5.

— Proof of Knowledge: We show an extractor, that, given access to the prover, extracts

(m, (r,s)) such that Verify(m, (r,s)) = 1. The extractor invokes the simulator
for the corrupt prover of protocol Il ,sp to extract m and M and the opening
information for C;.
It then runs the extractor guaranteed by the proof of knowledge property of the
proofs in step 5 to extract uj,us, a, 3, s, r. Finally it returns (m, (r,s)) and the
opening information. By security of IIf,sh, Il g4 and the binding property of the
commitment scheme Com, it follows that r = ¢gM* 'y and M = H(m).

— Zero-knowledge: We sketch a simulator that simulates the verifier’s view in the
protocol. The simulator commits to a random value on behalf of the prover in step 2
by computing C = Com(M’). It sends C% to the verifier, proves knowledge of the
opening and invokes the simulator for the corrupt verifier of protocol I1z,sp. It
then commits to random values in step 4, and runs the simulator corresponding
to the proofs of knowledge in step 5. Finally in step 6, the simulator invokes the
simulator for protocol II . We can show that the view of the verifier in the protocol
is indistinguishable from the view with the simulator.

6.3 Proof of Knowledge of ECDSA Signatures

Let (r,s) be the ECDSA signature on m. Let G; = (G1) and Gy = (G3) be two
distinct groups of order p and n respectively where p is the order of the field of the
curve and n is the order of point P. Addition of elliptic curve points which is the group
operation requires arithmetic operations in the underlying finite field Z,, of the curve
FE. We use a straight forward variant of the protocol in Fig. 9 to prove statements about
multiples of an elliptic curve point (elliptic curve analogue of exponentiation) inside
commitments.

1. The verifier is in possession of C; = Com,,(m) and the prover has as input (m, o)
and the opening of C'; to m.

2. The prover commits to M = H(m), by computing C; = Com,,(M). Send Cs to
the verifier and prove knowledge of opening.

3. The prover and verifier engage in the protocol ITp,s, with inputs (m, M) and
(C1, Cy) respectively.

4. The prover commits to the signature (r, s) and proves knowledge of an opening.
The prover sends Com,,,(r) = (Comy(r), Com,(r)) and Com,(s). The prover
also commits to the following values: u; = H(m)s™ 1, us = rs—!, and the co-
ordinates of the points w1 P = (0, ay), u2@ = (Bz, By), where P is the point of
order n in E(Z,) used in ECDSA signing, and @ is the ECDSA public key. The
prover sends Com,, (u1), Com,, (u2), Comy,(ay),Comy (), Comy,(B5), Comy(5y).

5. The prover and the verifier carry out the following 3'-protocol zero-knowledge
proofs of knowledge:



(@) PK{(u1, s, vy, R1, Ry, R3) : Com,(a,) = G H" AComy,(av,) = GY H{? A
Comy,(u1) = G”Q“Hf%3 A (ag,0y) = u1 P}

(b) PK{(ug, Bx, By, R1, Ra, Rs) : Com,,(B.) = G2 HI ACom, (8,) = G HI2A
Com,, (uz) = GY2 HI A (B, By) = u2Q}

(©) PK{(r, vz, vy, Bes Bys R1, Ra, Rs, Ra, Rs) - Comy(8,) = G HF* ACom,,(8,) =
G HI? A Com, (o) = G HI A Comy(ay) = GSYHI™ A Com,y(r) =
GTH{® Nr = ((az>ay) + (ﬂw’ﬁv))w}

(d) PK{(M,uy,s, Ry, Ro, R3) : Com,, (M) = GY HF* ACom,, (uy) = G5 HE2 A
Comy,(s) = GSHE* A M = u;s}

(e) PK{(r,uz,s, R1, R, R3) : Com,(r) = GQHQR1 A Comy, (ug) = ngHQR2 A
Com,,(s) = GSHL® AT = ugs)

6. The prover and verifier engage in 11, with input Comy,, ().

The above protocol can be proven to be a zero knowledge proof of knowledge of
ECDSA signature. The proofs for correctness, soundness and zero-knowledge are sim-
ilar to the proofs of the protocol for the DSA signature.
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Fig. 4. The Protocol Iluac, s

Let G = (Gb, En, De, Eval, Ve) be a garbling scheme. Let F’ be the following functionality:
it takes as inputs x, a, b and outputs v, ¢ such that v = 1 if f(x) = 1 and O otherwise, and
t = ax + b. The prover has input x, the verifier is in possession of C; = Com(z). Both
parties have as input the security parameter .

1.

11.
12.
13.
14.

15.

17.

The verifier generates uniformly random integers a and b of length s and n + s re-
spectively. It commits to them by sending C, = Com(a), C, = Com(b) and proves
knowledge of their opening.

. The verifier constructs a garbled circuit for F'.

(GC,e,d) «+ Gb(1", F(z,a,b) = (f(z),azx + b))

. The prover inputs his choice bits by sending (¢, z;) for all ¢ € [n] to Fcor.
. The verifier inputs the wire keys corresponding to the prover’s input by sending

(i, K2, K}) forall i € [n] to Fcor.

. Fcor outputs K for all i € [n] to the prover where K| = K;*.
. The verifier sends the garbled circuit GC to the prover. Note that in what follows, for

simplicity, we consider the input keys for a and b to be part of the GC' itself, and hence
not sent separately.

. The prover evaluates the garbled circuit

(t',Z) + Eval(GC,{K}iem))

. Prover commits to the garbled output Z by sending Com(Z) to the verifier and proves

knowledge of opening.

. Verifier sends the decoding information d; for ¢.
. Prover decodes

t = De(ds, t")

and commits to the decoded output by sending C; = Com(t), and proves knowledge
of opening.

Verifier sends open to Fcor.

Feor sends (K?, K}') to the prover for all i € [n].

Verifier opens Com(a) and Com(b). Prover checks the openings and aborts if they fail.
Prover verifies that the correct circuit was garbled by running
Ve(GC, {K?, K}}ie[n], F). It also checks that garbled inputs for z,a,b are the
correct one. If any of checks fail, the prover terminates. Otherwise, it receives the
decoding vector d, and he opens the commitment to the output Z by sending Z and
randomness.

Verifier checks that the opening is correct and that De(d, Z) = 1. If the opening is not
correct or if De(d, Z) # 1, the verifier outputs reject and terminates.

. If the verifier did not terminate, the prover and the verifier engage in a Zero-knowledge

protocol to prove the following:
PK{(z,t,7, R) : C; = Com(z) A Cy = Com(t) At = ax + b}

If the zero-knowledge proof verifies, the verifier outputs accept.




