

BlueRendezvous: Simple Pairing for Mobile Devices

Raman Sarin, Ken Hinckley

Microsoft Research, One Microsoft Way, Redmond, WA 98052

{ramans, kenh}@microsoft.com

ABSTRACT

A major user experience challenge for Smartphones and

other mobile devices is to find ways that allow users to

dynamically interconnect devices in a quick, simple, and

intuitive manner. BlueRendezvous is a prototype

application for the SmartPhone that greatly simplifies the

Bluetooth discovery process. BlueRendezvous also makes

it extremely simple to connect devices in different ways or

for different purposes. For example, users can employ the

same basic mechanism for mutual sharing of contact

information, one-way sharing of images, or establishing a

longer-term relationship between devices.

This document presents currently implemented scenarios as

well as alternative embodiments, extensions, and design

scenarios that we have invented.

Keywords

Bluetooth, wireless networking, CSCW (computer

supported collaborative work), multi-device interaction,

networking, communication, file sharing, synchronous

gestures, distributed interaction techniques.

INTRODUCTION

BlueRendezvous hides much of the complexity of forming

a Bluetooth connection from users, so that users can focus

on their face-to-face conversation in the real world, instead

of dealing with the details of getting the technology to

work. BlueRendezvous is based on synchronous gestures

[3], which are actions that two or more users take that occur

at the same time, or in a particular sequence [4].

Synchronous gestures allow users to pass signals between

wireless devices to facilitate dynamic connections.

BlueRendezvous extends and adapts these ideas to suit

them to the strengths and weaknesses of Bluetooth

networking on Smartphones. Some embodiments also

consider other networking foundations, such as 802.11, as

well as additional features and capabilities that form

extensions and alternative implementations.

BlueRendezvous contributes capabilities and features

suggested by user task scenarios for the ultra-mobile

SmartPhone form factor.

Fig. 1. Left: BlueRendezvous welcome screen. Users

connect by pressing the same numeric key at about the
same time. Right: After simultaneous key presses, the

devices attempt to discover one another.

THE BLUERENDEZVOUS CONNECTION PROCESS

A BlueRendezvous connection encompasses the following

general steps:

1. Start: Each device must be running the

BlueRendezvous application, which activates the

Bluetooth radio if necessary.

2. Synchronize: One user presses a numeric key from 0-9.

The user of the other device must also press the same

key at about the same time (Fig. 1, left). Typically, the

users would verbally coordinate which key to press.

3. Connect: Each user can simply wait for the devices to

automatically discover one another (Fig. 1, right). To

speed the connection process, one of the users can

press the Find Partner soft key (Fig. 2). This identifies

that user’s device as the client.

4. Choose Action: Once the devices have established a

connection, the action screen (Error! Reference

source not found.) appears on each device. This

screen shows ways that the two connected devices may

share information or resources. Either user, or both

users, may initiate any of the actions.

5. Right of Refusal. If a user initiates an action, typically

the other user is offered the opportunity to accept or

Unpublished white paper 1-26-2006

refuse the results of that action. For example, the user

may be shown a thumbnail of an image offered by the

other user, with a Yes/No option to receive it (Fig. 8).

6. Shutdown. Upon exiting BlueRendezvous, the

application automatically closes the connection and

reverts the Bluetooth radio to its previous state.

Note that this process is extremely simple and does not

require the user to know anything about how Bluetooth

works, the names or addresses of the devices involved, or

any other technical information. It is also a general purpose

mechanism that integrates many different possible cross-

device operations into a single interaction model. Thus the

method is both easy for users to understand yet also

powerful enough to provide many capabilities.

Fig. 2. Left: Expert mode allows one of the users to speed
the mutual device discovery process by pressing Find
Partner. Right: Close-up of the Actions screen, a

ZoneZoom [10] screen that allows either user to choose a
cross-device operation. The available operations depend on
the capabilities and user-controlled configuration of each
device.

RELATED WORK

We explored synchronous gestures across distributed

devices as a way to coordinate activities of wireless

devices. Example gestures that we explored include

bumping devices together [2,3] or making a pen stroke

across multiple pen-operated devices (known as stitching

[4]). These were covered in our previous patent filing

DISTRIBUTED SENSING TECHNIQUES FOR MOBILE

DEVICES.

An early example of a type of synchronous gesture is

Smart-Its Friends [5]. A user can hold two smart-its devices

together, and shake both of them to associate them (make

them ‘friends’). A similar shaking pattern is sensed by each

device via its embedded accelerometer, and shared with

other devices via a low-power radio. The devices then beep

whenever such a ‘friend’ device is sensed entering the

range of the wireless radio.

Simultaneous pressing of a button on two different devices

is a type of synchronous gesture that was explored in

Rekimoto’s SyncTap work [8]. Note that Rekimoto relies

on precise simultaneous timing of the button press; this

means that typically one user will have to press a button on

both devices at the same time.

BlueRendezvous uses the button press differently than

SyncTap. First, BlueRendezvous accommodates the simple

fact that each user has his own personal device and would

likely prefer to press a button himself rather than ceding

control of their device to the other user. Second,

BlueRendezvous only requires the button presses to be

close together in time, not precisely synchronized.

Bluetooth discovery takes several seconds to occur. During

Bluetooth discover one device must transmit that it is

‘discoverable’ while the other device must listen for

discoverable devices. Thus, during our automatic

connection process, each device randomly alternates

between searching and discovering until the devices find

one another. The button presses only must be close enough

together so that there is time to for one device to discover

the other device before it stops transmitting.

BlueRendezvous also builds on MSR’s ZoneZoom [10]

technique to integrate the selection of multiple ways to

connect the devices into a simple choice mechanism that is

well suited to the SmartPhone form factor.

Pick-and-Drop is another early cross-device interaction

technique that assumes the existence of a pen with an

encoded unique ID that can be read by each device [6,7].

However, pick-and-drop depends on a shared ID code

rather than synchronous gestures. A number of other efforts

have subsequently explored proximity-based device

discovery and identification based on RFID tags [1] or

similar technologies [9,12]. The near-field communication

standard (NFC forum) is a current commercial realization

of these technologies. Note that RFID does not naturally

differentiate the receiving device from the sending device;

it also typically forces the devices to be touching or in very

close proximity, and thus places restrictions on how devices

can be connected in a meeting room scenario, for example,

where other users may be out of reach beyond arm’s length.

EXTENDED DISCUSSION OF CONNECTION STEPS
Start (Step 1)

In some embodiments, BlueRendezvous runs as a

background process that responds to particular keypresses.

For example, and time that the user hits the # key or a

dedicated Rendezvous keys, the device could automatically

attempt to discover a partner device that had experienced a

nearly simultaneous keypress.

Syncrhonize (Step 2)

Alternatively, users can press different numeric keys or a

combination of keys as a more secure connection

mechanism. For example, we each could key 7109 on our

numeric keypads as a private key to unlock a message

encrypted with a well-known public key.

Connect (Step 3)

For the automatic discovery process, the device with the

lowest Bluetooth address or unique device ID becomes the

server. For the explicit Find Partner process, the device that

does not see any keypress defaults to being the ‘server’,

that is, it simply continues waiting for another device to

discover it. A Bluetooth connection can be established

more quickly in the latter case because each device knows

which role to take; otherwise the devices must interleave

acting both as server and client, until they successfully

discover one another. This may take numerous tries

because Bluetooth devices can transmit signals that allow

other devices to discover them, or they can search for

discoverable devices; but they cannot do both at the same

time. Note that in some embodiments, buttons or gestures

instead of or in addition to the Find Partner soft key may

be used to distinguish the client device.

Pressing the numeric key twice, or tapping and then holding

the key (Fig. 3), offer alternative ways to distinguish the

client device. Note that such patterns may be faster for

experienced users, since the user does not have to move

their fingers between the keys or buttons, and pressing the

same key twice (for example) is a fast motion that requires

little or no diversion of attention to the keypad.

Fig. 3. Double-tap, Tap then hold, or just holding a key for
longer than a usual keypress offer other ways to distinguish
the client vs. server devices.

A further way to speed connections is to look specifically

for device(s) with known Bluetooth addresses. For

example, these could be acquired via previous

BlueRendezvous connections. The user can choose a

specific device, scan through a list of Favorite Devices or

Recent Rendezvous Devices, or even start with these

mechanisms but default to the standard process (i.e. the

Connect step for unknown device discovery) if the ‘known’

device is not found. Searching for a known device address

is particularly advantageous in an environment with many

discoverable devices, since otherwise a device may have to

query many other devices to determine which is the desired

one. Searching by address also offers a way to ease

interactions with known or commonly used devices. Note

that the user interface need not expose the address itself to

the user; it could replace this with a thumbnail photograph

of the device’s user, or the name of the device’s owner,

which presumably would be exchanged the first time two

devices discovered one another as ‘unknown’ devices.

This designates one device as the client, which speeds

device discovery: once each device knows its role, one can

advertise itself as discoverable, while the other can spend

all its time discovering.

In expert mode, one of the users performs an action (e.g.,

pressing the # key and then the Find Partner soft key, or

tapping numeric key associated with the desired operation

twice) that specifies his device as the sender (initiating

device). Due to current technical limitations of Bluetooth,

having the users distinguish the server vs. client device up

front may speed the discovery of the desired partner

devices.

Multi-Purpose Key Presses and Temporary Connections

In some embodiments, the same keys might be used for

both alphanumeric entry and for synchronization between

devices. For example, pressing and holding a key could be

used to initiate a BlueRendezvous connection.

A connection also might be held open only so long as one

or both users hold down a button. This would be

particularly useful for transient connections, and would

offer a way for users to explicitly control how long the

other user had to respond. For example, if a device received

a connection after the user lets go of the key, the device

could refuse that connection.

Choose Action (Step 4)

The actions may vary depending on the specific devices

connected, as well as the context of use (e.g. time of day,

where the phones are located, current phone profile, etc.).

Multiple screens of actions or hierarchically nested actions

may be available.

Once two devices have discovered one another, the screen

shows up to 12 icons arranged in a grid pattern. The grid

pattern corresponds to the physical keypad of the phone,

and activates the corresponding functions in a manner

similar to our previous work with the ZoneZoom technique.

Note that the options presented in the grid may depend on

the type of the devices that connect, who the person is that

you are connecting to, or the user-specified settings on each

device. If a zone is empty, hitting the corresponding key

may be ignored, bring up a dialog to define a custom cross-

device function, or trigger a default action.

Spatial Parameters for Actions

One straightforward extension for some actions is to use the

ZoneZoom grid to specify spatial parameters of the

connection. For example, one could share an image with

another device such that the two devices show the selected

image spanning the two screens. If each user simply selects

the direction of the other user, this provides enough

information for the system to correctly rotate the portion of

the image shown on each display to create the illusion of a

cross-device tiled display. The design shown below (Fig.

4) mixes keys that select the type of action with keys that

specify the relative orientation of the device to act upon.

For example if I hit ‘4’ and my friend hits ‘6’, this might

share the image across the two screens such that his screen

is to my left, but my screen is to his right.

Fig. 4. The combination of keys pressed may indicate
spatial operations as well as the type of function. The
system does not sense the relative spatial location of the
devices: users hit the arrow keys to specify this.

We explored similar ideas in for bumping devices together

and stitching [4], and Rekimoto proposed a related idea for

SyncTap [8].

In a system that actually does have some capability to sense

the relative orientation or proximity of other devices,

BlueRendezvous’ ZoneZoom connection metaphor may be

use to distinguish between various proximal devices. The

following figure (Fig. 5) shows a design that distinguishes

designs by signal strength (weak, medium, strong) and

presents them in a perspective view. This may make it

easier to determine which nearby device to connect to or

use for a joint operation. Note that in this case, the other

devices may not belong to a particular user (e.g., a projector

or printer) and thus may not be any way to perform a near-

simultaneous key press on the other device.

Fig. 5. Selecting among proximal devices ranked by signal
strength.

Selection: Specifying the Scope of an Action

Note that users also may specify the scope of an action by

forming selections prior to or as a consequence of selecting

an action. For example, the user may choose one or more

files to transmit to the other device (Fig. 6).

Fig. 6. Top Left: A file control allows users to specify
which file(s) to transmit. Top Right: Selecting a file to send.
Bottom Left: When the user hits Send, a progress bar gives
feedback on the transfer. Bottom Right: Similarly, hitting 6
(send contact) brings up a contact chooser.

Choosing a file to send. In this embodiment, the user can

navigate a file control to choose any file on their device to

transmit. Middle: Choosing the final file to send. In some

embodiments, users may start from a default directory or a

list of recent files, images, or other content to speed the

selection process. Right: Once a file is selected, the sender

sees a progress bar that gives feedback on the transfer.

Hitting ‘6’ allows the initiating user to select any contact to

send to another device.

Rather than using the standard folder and list controls,

content selection controls that build on the ZoneZoom

approach can also be envisioned. The following design

(Fig. 7) shows one user selecting a contact to send to the

other device. This design also helps to emphasize which

device is sending and which device is receiving. Simple

feedback of this sort could help users avert mistakes or

erroneous connections, and is helpful particularly if both

users initiate actions at the same time (as supported by

BlueRendezvous).

Fig. 7. Using a ZoneZoom based selection metaphor for
choosing which contact to send. This design also provides
additional feedback to distinguish the sender from the
receiver.

Right of Refusal (Step 5)

Some actions may not offer any refusal. Some actions may

offer an ongoing option to terminate the connection or undo

the results of the operation.

Fig. 8. Left: A user sees a thumbnail preview of the image

that another user is transmitting, and can choose whether or
not to accept it (Yes/No). Right: Hitting NO allows the

receiving user to veto the transfer from the other device.

If the sending user hit 4 (send image), once that user selects

an image, the other user will see a small preview of that

image. This helps the sender to know exactly what they are

agreeing to receive before they actually receive it. The

receving user can hit YES (or in some embodiments, simply

wait) and the image will complete downloading. In some

embodiments, the information is prefetched while the

system waits for the user to answer YES or NO. Right:

Hitting NO allows the receiving user to veto the transfer

from the other device. Note that the sender receives similar

tentative feedback and can also choose to cancel the

operation prior to its completion.

Shutdown (Step 6)

The connection may be broken, and the radio also may be

turned off, after completing an action, after a timeout, after

the devices move beyond wireless range of one another,

when one device enters a low battery power state, or upon

explicit selection of a Disconnect command by either user.

Other Options and User-Controlled Settings

BlueRendezvous may expose numerous options and

configuration settings to the user (Fig. 9). The ability to

shortcut the device discovery using the Find Partner soft

key is controlled by an option known as Expert Mode,

which is enabled by default. The user can also specify the

default locations to send or receive files, as well as which

contact to use for the business card swap action; another

dialog (Fig. 9, right) allows the user to control exactly what

fields of the contact should be shared as part of the business

card. The bottom of the main options panel (Fig. 9, left)

currently displays the device’s Bluetooth address, which

may be useful for troubleshooting with support staff.

Fig. 9. Left: Main options panel for BlueRendezvous.
Right: Options dialog that specifies which contact fields
should be included with the user’s digital ‘business card.’

IMPLEMENTATION DETAILS
How BlueRendezvous makes a connection

The non-expert mode connection of BlueRendezvous is

unfortunately not as straightforward as I might have liked it

to be. The problems are two fold, number one is that both

devices are running the exact same piece of code, now this

in of itself is not a huge issue. However the second issue is

a much larger technical challenging owing to the design of

the Bluetooth chip which is used in most windows mobile

devices. This chip it seems is incapable of both advertising

it’s availability as a useable device and searching for

available devices at the same time.

In other words if both devices are shouting trying to find a

partner neither one would hear the other. It can be seen that

because of this second limitation the first limitation, that

both devices are running the same code, becomes a more

interesting and difficult bar to pass over.

Essentially what we need to do is guarantee that there is an

interval in which one device is looking and the other is

listening. The simplest description of my algorithm is that I

randomly pick a string of 1’s and 0’s on each device and

iterate through it. On zero I look for other servers, on 1 I

patiently sit and wait to be discovered.

First in order to attempt to make sure the strings will be

different as a random seed I thought of using the current

time, but one must assume that two network enabled

phones could possibly be time synchronized to a third

server, and that this would not be truly unique. Next I

thought about using the address of each device as a random

seed, this is guaranteed unique, but is non-variable for the

individual device and therefore each device would always

use the same string, not super desirable. In the current

version of the code I use the current TickCount on the

device. In windows the TickCount is the number of

milliseconds the device has been up and running for (time

since last power cycle), so this is likely to be unique on

each device.

I further attempt to optimize this by measuring how long it

takes to look for servers, and then using that value as the

amount of time I wait if my string has 1. Each string of

possible values is 6 digits long. After we’ve failed six times

we will revert back to the “Expert Mode” where the user of

one device can press a key, which will force the device into

the “Looking for servers” mode, if the other user has not

pressed that “Find Partners” button their device will be in

listen for clients mode, and will therefore rapidly be found.

Okay so we’ve now got an understanding of the iteration

process works, what exactly is going on when a BR server

starts, and what is the client looking for?

Once a number has been pressed on the keyboard BR starts

a Bluetooth service using a GUID, the last digit of which is

the key pressed by the user. What this means is that when

the prospective client is looking for a server it won’t find

one on which someone has pressed a different number.

The device which is attempting to discover a server

basically looks for all discoverable Bluetooth devices in

range, and makes a list of what it finds, from this point it

queries each one to see if they support a service with this

GUID. If they do, it immediately attempts to connect to that

device, if it succeeds we move into the main BR screen of

asking the users what operations they would like to do. The

other devices being in waiting to be a server mode will

detect the connection and also enter this mode.

From here it doesn’t really matter which device is the client

and which is the server they’re both just sitting their

waiting for data coming in, and sending it out when

necessary.

A word on Bluetooth bonding or pairing

All it seems to be (by inspection) is a way of having two

devices remember each others address so that the process of

discovery is unnecessary the next time a connection is

required. There is no requirement that to devices be paired

together in order for the communication to occur, if one of

the devices knows the other’s Bluetooth Address than a

connection can occur if the other device will allow it. It is

because of this that there is no requirement for two devices

to know about each other prior to BlueRendezvous running,

and they will not know about each other afterwards either.

Architecture and API’s

<Some discussion of the Sink/Source architecture and

API’s may also be appropriate. However my current

inclination is that this might be the basis for a future patent

when we have evolved the architecture a bit further…>

EXAMPLE CROSS-DEVICE RELATIONSHIPS

The activities shown in the actions screen of Fig. 2 are only

a few representative actions. Additional actions may be

offered by having multiple action pages that the user can

flip through using the soft keys, miniature joystick, or other

keys, or by organizing actions hierarchically as afforded by

ZoneZoom [10].

The following sections list various ways that we anticipate

BlueRendezvous could be used to link devices and share

information between devices, organized by general feature

areas. <TODO: sketches of some of the more interesting

scenarios?>

Communication Channels

 Chat (via SMS or immediately over the wireless)

 Initiate phone call with other device (pairing used to

obtain phone number, then auto-dialed)

 Teleconference (add other device to existing call)

 Email (send a new email, forward an existing email)

 Start a chat (text and/or voice and/or ink markup if

device has a touch screen).

Content

 Swap business cards (e.g. a designated contact)

 Send a contact

 Send a file

 Send a photo

 Slide show (send series of photos; other user watches

as I step through them, but also has option to override

me and take control)

 Send a task (todo item)

 Add a task to TODO list based on info from other

device (e.g. send action item, exchange action items)

 Send an email (existing message)

 Send my phone number

 Send a calendar entry

 Send a location (e.g. sensed by GPS or wireless/cell

signal strengths) to other user

 Send *this* location to other user (e.g. from a GPS

phone to one without GPS)

 Send voice memo to other device. This might be an

existing audio file or one I generate right now as part

of the connection process.

 Send favorites (one or more links) to other device.

Other user may be offered option to click on one of

them now.

 Send screen capture to other device

 Pass permissions, public/private key, or certificates to

other device that will allow it to access some other

service at a later time.

 Temporary content: Loan / Offer to share. Other user

may have read access only; file self-deletes after a set

time period; rights may change or expire after a default

or selected time interval.

 Send comments / mark-up on a document. Ink, voice,

and textual comments associated with a particular file.

Meetings

 Set up a meeting (new one that is pre-populated with

the two users involved)

 Set a meeting with (owner of) other device (add only to

my calendar?)

 Invite to a meeting / calendar appointment (an existing

one from my calendar; option to formally add other

user to the meeting request)

 Forward a meeting request (may not be my meeting;

other user not added to meeting request)

 Set up recurring meeting with other person “at this

time”: e.g. once a week starting at the hour or half-hour

closest to now; once a month; biweekly; daily.

People & Social Networking

 Befriend other device. Sounds cool but what exactly

does this mean? Perhaps this is just a catch-all for

accessing all the other features in this category.

 Add to quick-connect list (accelerates pairing process

when we next attempt to connect these devices).

 Save status of joint task / connection state with other

device. When we next pair these devices the same state

(applications, documents, etc.) is restored.

 Notify me when other device is nearby (e.g. via

Bluetooth discovery or 802.11 multicast strategies).

Notification via sound, vibration, and/or pop-up

window. Related to concept of Smart-Its Friends [5].

 Refer / introduce other device to a ‘friend’ device

 Collaborative filtering: have a way of rating the other

device or person; “don’t link up with this idiot”; “has

good content to share” etc.

 Add other device to a preexisting social networking

service on the Web or a physical-device-specific one.

 Temporary Friend/Contact. Expires after a given time

period, e.g. after a meeting or after a week without

contact.

 Invite other device to multi-person game.

 Wormhole between devices. This means the current

synchronous connection creates an object on each

device that allows them to communicate further at a

later time. So I could select a file later and drop it on

the wormhole, and the other person would get it.

Wormholes may be restricted to certain

communication channels (e.g., it might only remain

valid while the other device remains within wireless

communication range).

Combined Resources

 Dual display, Connect screens of one or more devices

together in various relative orientations (Fig. 4). See

also synchronous gestures [3] and stitching [4] work.

 Use my location sensor and your location sensor to get

a refined location estimate. Could be extremely cool if

our two devices have complementary networks,

connection media, sensors, signal strengths.

 Combine input capabilities from the two devices, e.g.

now you have miniature joysticks for different

purposes. Use two-thumb keyboard on my friend’s

phone to enter comment on my phone (which has only

the numeric keys).

Remote control

 Send web browser on other phone to a web address

from my favorites list.

 Remotely trigger other device to take a picture. (e.g.

we pair our phones, I set my phone down and we stand

together, then you trigger my phone to snap the photo).

In general remote control various features of other

device.

 Remote administrate other device (e.g. fix or change

settings for other user)

 Accept input or output from another device. For

example, my phone could send a type-in box to the

other phone for the other user to fill out. When that

user hits enter, the results are sent back to me.

Similarly, a portion of my screen output could be

mirrored on the other device. See Tan’s WinCuts work

for related concepts [11].

e-Commerce and gift giving

 Buy something and have it shipped to the owner of the

other phone. For example, I find a book on Amazon

using my phone. Then I BlueRendezvous my friend

and complete the order such that he receives the item.

A similar feature would be the equivalent of “collect

calling”: my friend pays for the item, but it goes to me.

 Share ring tone, music. This might be a “for trial only”

and one has to pay the provider / copyright holder at a

later time to keep using the object.

 Send gift to other device (e.g. gift of credits / eCash,

talk minutes, …)

Putting off, non-connection, blocking, ambiguous refusal

Even if one wants to connect to another person’s device,

one may not actually want to do it right now, so deferring

the immediate connection request to an asynchronous

channel could be desirable. Furthermore an undesired

person may seek to discover or connect to your device. In

social settings, it may be rude or embarrassing to outright

refuse the person’s offering. Having various mechanisms

available to block connections, fake failed connections, or

send incorrect contact information may be desired to escape

these situations without a confrontation.

 Defer synchronous connection with this device, and

move over to an asynchronous channel (e.g. send email

with contact info or link to information or a shared web

site where users may exchange messages, files, etc. at a

later time).

 Block this device (similar to adding an email address to

blocked sender’s list)

 Send ‘bogus’ contact info to other device, e.g. an

intentionally incorrect phone number

 Face-saving connection refusal. Methods to decline

connection in a face-saving manner. This allows one or

both devices to feign technical errors or lack of

connectivity as a way for one of the users to opt out of

the connection/transfer without causing the other

person to lose face. Feigning low battery, poor signal,

connection dropped, etc. are also likely sneaky ways to

opt-out.

 Non-ambiguous refusal. ‘NO’, “Connection denied”,

“you do not have permission to connect to the other

device”, “permission refused”, “Sorry”, “Busy”, etc.

Actions in Context

 Offered actions depend on other device that is

connected to

 Offered actions depend on multiple other devices that

are also detected nearby

 Offered actions depend on our physical location, e.g. at

home, there are options to share media; at work,

options to share files and data are emphasized; in

different cities or countries, socially appropriate

features are the default.

 The options may be completely absent, or just

emphasized/deephasized depending on the context

 Offered actions depend on the day of the week or the

time of day, e.g. weekend (fun, dating, stupid party

tricks) vs. weekday (work, calendar, emails, etc.)

CONCLUSION

xxx

REFERENCES

1. Harrison, B., Fishkin, K., Gujar, A., Mochon, C., Want,
R. Squeeze Me, Hold Me, Tilt Me! An Exploration
of Manipulative User Interfaces. Proc. ACM CHI'98
Conf. on Human Factors in Computing Systems,
17-24.

2. Hinckley, K. Distributed and Local Sensing Techniques
for Face-to-Face Collaboration. ICMI-PUI'03 Fifth
International Conference on Multimodal Interfaces,
81-84.

3. Hinckley, K. Synchronous Gestures for Multiple Users
and Computers. UIST'03 Symposium on User
Interface Software & Technology, 149-158.

4. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch,
P., Smith, M. Stitching: Pen Gestures that Span
Multiple Displays. ACM 7th International Working
Conference on Advanced Visual Interfaces (AVI
2004), 23-31.

5. Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P.,
Beigl, M., Gellersen, H. Smart-Its Friends: A
Technique for Users to Easily Establish
Connections between Smart Artefacts. Ubicomp,

Springer-Verlag, 116-122.
6. Rekimoto, J. Pick-and-Drop: A Direct Manipulation

Technique for Multiple Computer Environments.
Proc. ACM UIST'97 Symp. on User Interface
Software & Technology, 31-39.

7. Rekimoto, J. A Multiple Device Approach for Supporting
Whiteboard-based Interactions. CHI'98, 344-351.

8. Rekimoto, J., Ayatsuka, Y., Kohno, M. SyncTap: An
Interaction Technique for Mobile Networking.
Mobile HCI 2003, Springer, 104-115.

9. Rekimoto, J., Ayatsuka, Y., Kohno, M., Oba, H.
Proximal Interactions: A Direct Manipulation
Technique for Wireless Networking. INTERACT
2003.

10. Robbins, D. C., Cutrell, E., Sarin, R., Horvitz, E.
ZoneZoom: Map Navigation for Smartphones with
Recursive View Segmentation. ACM Advanced
Visual Interfaces (AVI 2004).

11. Tan, D. S., Meyers, B., Czerwinski, M. WinCuts:
Manipulating Arbitrary Window Regions for More
Effective Use of Screen Space. Short paper at CHI
2004.

12. Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz, N.
A., Steinmetz, R. Connectables: dynamic coupling
of displays for the flexible creation of shared
workspaces. UIST 2001, 11-20.

13.

