Electronic Notes in Theoretical Computer Science 1 (1995)
URL: http://www.elsevier.nl/locate/entcs/volumel.html 21 pages

Bisimilarity as a Theory of Functional
Programming

Andrew D. Gordon

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, United Kingdom.
adg@cl.cam.ac.uk.

Abstract

Morris-style contextual equivalence—invariance of termination under any context
of ground type—is the usual notion of operational equivalence for deterministic
functional languages such as FPC (PCF plus sums, products and recursive types).
Contextual equivalence is hard to establish directly. Instead we define a labelled
transition system for call-by-name FPC (and variants) and prove that CCS-style
bisimilarity equals contextual equivalence—a form of operational extensionality. Us-
ing co-induction we establish equational laws for FPC. By considering variations of
Milner’s ‘bisimulations up to ~’
of contextual equivalence in terms of reduction behaviour and production of values.
Hence we use co-inductive proofs to establish contextual equivalence in a series of
stream-processing examples. Finally, we consider a form of Milner’s original con-
text lemma for FPC, but conclude that our form of bisimilarity supports simpler
co-inductive proofs.

we obtain a second co-inductive characterisation

1 Objectives

The object of this paper is to offer a new perspective on the behaviour of
functional programs based on CCS-style labelled transitions and bisimilarity.

Morris-style contextual equivalence is widely accepted as the natural notion
of operational equivalence for PCF-like languages [24]. Two programs are
contextually equivalent if they may be interchanged for one another in any
larger program of integer type, without affecting whether evaluation of the
whole program converges or not. The quantification over program contexts
makes contextual equivalence hard to prove directly. One approach to this
difficulty is to characterise contextual equivalence independently of the syntax
and operational semantics of PCF. This is the ‘full abstraction’ problem for
PCF; see Ong [18] for a discussion and review of the literature.

Instead, our approach is to characterise contextual equivalence as a form
of bisimilarity, and to exploit operationally-based co-inductive proofs. Our
point of departure is Milner’s [16] entirely operational theory of CCS, based
on labelled transitions and bisimilarity. A labelled transition takes the form

(©1995 Elsevier Science B. V. Open access under CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/3.0/

GORDON

a =5 b, where a and b are programs, and « is an action; the intended meaning
of such a transition is that the atomic observation a can be made of program
a to yield a successor b. In CCS, the actions represent possible communica-
tions. Given a definition of the possible labelled transitions for a language,
any program gives rise to a (possibly infinite) derivation tree, whose nodes are
programs and whose arcs are transitions, labelled by actions. Bisimilarity is
based on the intuition that a derivation tree represents the behaviour of a pro-
gram. We say two programs are bisimilar if their derivation trees are the same
when one ignores the syntactic structure at the nodes. Hence bisimilarity is a
way to compare behaviour, represented by actions, whilst discarding syntactic
structure. Park [19] showed how bisimilarity could be defined co-inductively;
the theory of CCS is heavily dependent on proofs by co-induction.

Bisimilarity has been applied to deterministic functional programming be-
fore, notably by Abramsky in his study of applicative bisimulation and lazy
lambda-calculus [1] and by Howe [11], who invented a powerful method of
showing that bisimilarity is a congruence. Both showed that their untyped
forms of bisimilarity equalled contextual equivalence—a property known as
operational extensionality [4]. If Q is a divergent lambda-term, both these
untyped formulations of bisimilarity distinguish Az.{)} from €2, because one
converges and the other diverges. But in a typed call-by-name setting, con-
textual equivalence would identify these two functions, because they have the
same behaviour on all arguments. Hence Turner [29, Preface] expressed con-
cern that applicative bisimulation would fail to be operationally extensional
for languages such as Miranda or Haskell.

We use Gunter’s [10] FPC (PCF plus sums, products and recursive types;
see Winskel [31] for a similar language) as the vehicle for this study. Our first
main contribution is to answer Turner’s concern by showing that by defining
a labelled transition system for FPC and then defining bisimilarity exactly as
in CCS, we obtain operational extensionality for call-by-name, call-by-name
plus convergence testing, and call-by-value variants of FPC. In particular, in
the call-by-name variant we have Q48 bisimilar to Az:A. Q5. Our second
contribution is to investigate how operational methods developed in the the-
ory of CCS apply to (deterministic) functional programming. We consider
various refinements of co-induction, analogous to the idea of ‘bisimulation up
to ~’ in CCS. In particular, by taking advantage of determinism, we obtain a
new co-inductive characterisation of contextual equivalence based on reduction
behaviour and production of values.

Before Park’s invention of bisimilarity, Milner [15] developed operational
methods for proving contextual equivalence based on his context lemma for
(combinatory) PCF. Our third contribution is to prove a generalisation of the
context lemma for FPC, and show how it gives rise to another co-inductive
characterisation of contextual equivalence. However we suggest that in a cer-
tain sense it is less useful than bisimilarity.

We begin by recalling the dual foundations of induction and co-induction
in Section 2. We introduce the syntax and operational semantics of FPC and
PCF in Section 3. Section 4 is the heart of the paper in which we define a

2

GORDON

labelled transition system for call-by-name FPC, and replay the definition of
bisimilarity from CCS. We prove that bisimilarity equals contextual equiv-
alence, and develop an equational theory. We prove that bisimilarity is a
congruence in Section 5, by adapting Howe’s method. We derive a range
of co-inductive characterisations of bisimilarity in Section 6, motivated by a
collection of stream-processing examples. In Section 7 we generalise Milner’s
context lemma to FPC, to yield another co-inductive form of contextual equiv-
alence. We sketch several variations of FPC in Section 8 and discuss related
work and the significance of our results in Section 9.

2 Induction and Co-induction

We briefly recall how induction and co-induction principles derive from the
Tarski-Knaster fixpoint theorem. Aczel [2] and Davey and Priestley [7] are
good references. Let U be some universal set and F : p(U) — p(U) be a
monotone function (that is, F(X) C F(Y) whenever X C Y). We say a
set X C U is F-closed iff F(X) C X. Dually, a set X C U is F-dense iff
X C F(X). A fizpoint of F is a solution of the equation X = F(X). Let
pX. F(X) and vX. F(X) be the following subsets of U.

WX F(X) % 0{X | F(X) € X}

def

vX.F(X) = {X | X CF(X)}
Theorem 2.1 (Tarski-Knaster)
(1) pX. F(X) is the least fizpoint of F.
(2) vX.F(X) is the greatest fizpoint of F. O
We say that puX. F(X), the least solution of X = F(X), is the set in-
ductively defined by F, and dually, that vX. F(X), the greatest solution of
X = F(X), is the set co-inductively defined by F. We obtain two dual proof

principles associated with these definitions.

Induction: pX. F(X) C X if X is F-closed.
Co-induction: X CvX.F(X)if X is F-dense.

Winskel [31], for instance, explains how structural and rule induction follow
from this basic induction principle. Here we use co-induction extensively.

3 PCF and FPC

In this section we introduce two call-by-name languages: PCF—simply typed
lambda-calculus plus arithmetic and recursion—and FPC—an extension of
PCF with products, sums and recursive types. We define syntax, type as-
signment, a ‘one-step’ reduction relation, ~+, and a corresponding ‘many-step’
evaluation relation, |}.

Let X, Y, Z range over a countable set of type variables, and z, y, z over a
countable set of (program) variables. The type ezpressions, E, and (program)

3

GORDON

ezpressions, e, of PCF are given by the grammars
E:=Num|Bool | E > E
e::=n | succ(e) | pred(e) | bu | zero(e) | if etheneelsee
| Az:E.e|ee|recz:E.e

where n € N and bv € {tt,ff[}. FPC is the PCF language extended with the

following kinds of type and program expressions.
E:=Unit |EXE|E+E|X |recX.E
e :=unity| (e,e) | spliteas(z,z)ine
| inl[E + E](e) | inr[E + E](e)
| caseeof inl(z) = eorinr(z)=e
| intro[rec X. E](e) | elim[rec X. E](e)

We identify (type and program) expressions up to alpha-conversion, that is,
consistent renaming of bound variables. We write e[€/z] for the substitution of
expression e’ for each variable free in expression e. Similarly E[E/X] denotes
substitution of a type expression for a type variable. We write fv(e) and ftv(E)
for the sets of program and type variables free in e and E, respectively. We
often omit type information when writing program expressions.

Let a type, A or B, be a closed type expression. The type assignment
relation is of the form I' - e : A where I' is an environment, a finite map from
variables to types. If I' = #1: 44, ..., 2, Ay, we write Dom(I") for the domain
of T, that is, {z1,...,2,}. We write o for the empty environment. We omit
the type assignment rules, but they are similar to those in Gunter’s book [10].
Given the type assignment relation, we can construct the following universal
sets and relations.

Prog(A) L le|ote: A}
Use Type Prog(4)

Rel(A) ¥ {(a,b) | a € Prog(A) & b € Prog(A)}
R,S C Rel & Rel(A)

a,b € Prog &

Use Type

If Ais a type, Prog(A) is the set of programs of type A, that is, closed, well-
formed program expressions. Prog is the set of programs of arbitrary type,
ranged over by a and b. The type of each program is unique. We shall write
a1, ...,a,:A to mean {aq,...,a,} C Prog(A). If Ais a type, Rel(A) is the
universal (total) relation between programs of type A, and Relis the universal
relation between programs of the same arbitrary type. We typically use R and
S to denote arbitrary relations between programs of the same type.

The operational semantics is a one-step reduction relation, ~» C Rel. It is
inductively defined by the axiom schemes in Table 1 closed under the structural
rule that &[a] ~ E[a’] if a ~ o’ where £ is an ezperiment (a kind of atomic
evaluation contexzt [8]), a context generated by the grammar

4

GORDON

if buthenaselseag~ ap succ(n)~n+1

0 ifn=0 ttifn=20
pred(n) ~ zero(n) ~
n — 1 otherwise ff otherwise

(Az.e)a~ e[Yz] split(a,b)as (z,y)ine ~ e[® bz, 4]
(caseinl(a) of inl(z1) = ey or inr(z;y) = ez) ~ e1[¥z]
(caseinr(a) of inl(z1) = ey or inr(z;y) = ez) ~ e3[¥z,]

(recz.e) ~ e[TeCT.€/p] elim(intro(a)) ~ a

Table 1 Axiom schemes for reduction

= (H) | pred([]) | zero([]) | if [thenb, elseb, | []b
| it[]as(z,y)ine | elim([])
| ¢ [] of inl(z1) = e; or inr(zy) = e,
Our choice of experiments gives rise to a deterministic, call-by-name evaluation

strategy. We sketch call-by-value and other variations in Section 8. We define
the usual notions of evaluation, convergence and divergence as follows.

a~ db(a ~ b) ‘a reduces’

alb Lo b & (b ~) ‘a evaluates to b’
all e db(a | b) ‘a converges’
af) 4f whenever q ~+* b, b~ ‘a diverges’

By expanding the definition we can easily check (in this deterministic setting)
that || and {} are complementary, that is, af} iff =(al}). There is a divergent
term at every type. Define Q4 & recz:A.z. We have Q4 ~ Q4 and hence
QAN. Let the set of values, ranged over by u and v, be the set of programs
generated by the following grammar.

vi=£| Az.e| unity | (a,b) | inl(a) | inr(a) | intro(a)

It is not hard to check that a program a is a value iff it is ~»-normal, that is,
that =(a ~). Hence the set of values is exactly the image of the evaluation
relation, that is, {b | Ja(a | b)}.

Now we can define a form of Morris’ contextual equivalence [17]. Let a
contezt, C, be a program expression possibly containing holes, each written as
[]. Contexts are not identified up to alpha-conversion. Conteztual equivalence,
~ C Rel is given by:

a ~ biff whenever C|a], C[b]:Num, C[a]{} iff C[b]{).

It would be equivalent but less wieldy to formulate contextual equivalence in
terms of convergence to a particular integer.

5

GORDON

4 Bisimilarity for FPC

We begin with a labelled transition system that characterises the immediate
observations one can make of a program. It is a family of relations (— C
Prog x Prog | a € Act), indexed by the set Act of actions. If we let Lit, the

set of literals, indexed by £, be {tt, £} U{0,1,2,...}, then Act, ranged over by
a, is the set

Lit U {fst, snd, inl, inr,elim} U {@a | a € Prog}.

We partition the set of types into active and passive types. The intention
is that we can directly observe termination of programs of active type, but
not those of passive type. Let a type be active iff it has the form Bool,
Num, A X B or A+ B. Let a type be passive iff it has the form Unit, A —
B or rec X. E. We define 0 to be some arbitrary divergent term of active
type. Given these definitions, the labelled transition system may be defined
inductively as follows.

£

{—0
(a,0) =5 a (a,b) =50
inl(a) Al inr(a) A e
a:B — A b:B arecX. FE
a2 ab a 3 elim[rec X. E](a)
aA A active a~a” a’ = o
a — o

The derivation tree of a program a is the potentially infinite tree whose
nodes are programs, whose arcs are labelled transitions, and which is rooted
at a. For instance, if A is an active type, the derivation tree of the combinator
04 is empty. In particular, the tree of 0 is empty. We use O in defining the
transition system to indicate that after observing the value of a literal there
is nothing more to observe. Following Milner [16], we wish to regard two
programs as behaviourally equivalent iff their derivation trees are isomorphic
when we ignore the syntactic structure of the programs labelling the nodes.
We formalise this idea by requiring our behavioural equivalence to be a relation
~ C Rel that satisfies property (*): whenever (a,b) € Rel, a ~ b iff

(1) whenever a — o' 3¥' with b —> b’ and o’ ~ b
(2) whenever b — b’ Ja’ with @ — o’ and o’ ~ ¥'.

As usual we can characterise this property as being a fixpoint of a certain
monotone functional on relations, and then take bisimilarity to be the greatest.

If § C Rel, define (S) C Rel such that a (S) b iff
(1) whenever a — o' 3¥' with b —> b’ and o’ S ¥/;

6

GORDON

(2) whenever b 2, ¥ Ja' witha =5 o' and o' S V'.

It is easy to check that function (—) is monotone. Let a bisimulation be a
(—)-dense relation, and let bisimilarity, ~ C Rel, be vS.(S), the greatest
bisimulation. Clearly a relation satisfies property () iff it is a fixpoint of
function (—). By definition bisimilarity is such a relation, and indeed is the
greatest.

Let stmalarity, <, be the preorder form of ~, that is, the greatest fixpoint
of the function obtained by omitting clause (2) of (—). We can easily establish
the following basic facts.

Lemma 4.1

(1) < is a preorder and ~ an equivalence relation.
(2) a~biffa<bandb<a.
(3) ~ C ~ and hence || C ~. 0

Parts (2) and (3) depend on the determinacy of ~+; they would fail, for
instance, if we added nondeterministic choice to FPC.

4.1 Operational Eztensionality

We have an obligation to show that bisimilarity, ~, equals contextual equiva-
lence, ~. The key fact we need is the following, that bisimilarity is a congru-
ence.

Theorem 4.2 (Congruence) If a ~ b then Cla] ~ C[b] for any contezt C.

We shall postpone the proof till Section 5. We now have operational ex-
tensionality:

Theorem 4.3 ~ = ~.

Proof. The proof of ~ C ~ follows from the congruence of ~. The reverse
inclusion follows by co-induction after showing that ~ is a bisimulation. For
full details of a similar proof see Lemma 4.29 of Gordon [9], which was based

on Theorem 3 of Howe [11]. If bisimilarity distinguished Q48 from Aa. Q5
we would be unable to prove that ~ was a bisimulation. a

4.2 A Theory of Bisimilarity

We have defined bisimilarity as a greatest fixpoint and shown it to be a co-
inductive characterisation of contextual equivalence. In this section we shall
note without proof various equational properties needed in a theory of func-
tional programming. Proofs of similar properties, but for a different form of
bisimilarity, can be found in Gordon [9]. We noted already that ~» C ~, which
justifies a collection of beta laws. We can easily use co-induction to prove the
following eta laws for passive types.

Proposition 4.4
(1) Ifa:A— B,a~ Az:A.az.

GORDON

(2) If a:rec X. E, a ~ intro(elim(a)). 0
We have an unrestricted principle of extensionality.

Proposition 4.5 Suppose f,g:A — B. If fa ~ ga for any a:A, then f ~
g. O

Undefinedness propagates through experiments.
Proposition 4.6 £[Q] ~ Q for any ezperiment &. O
We have the following adequacy result.

Proposition 4.7 Suppose a:A.

(1) If A is active, a ~ Q4 iff afy.

(2) If A is passive, a ~ Q4 if af). O
As promised, we can prove that Az:A. Q8 ~ Q4B in fact by proving that

Az:A. Q8 ~ Q428 Consider any a:A. We have (Az:A4.0QF)a ~ QF by beta

conversion and Q478 a ~ OF by Proposition 4.6. Hence Az:A. Q8 ~ Q45

by extensionality. The converse of (2) is false, then, for Az:A. Q8 ~ Q48
but Az:A. Q8.

Subject to the following conditions, every program has a value.

Proposition 4.8 Suppose a:A.
(1) If A is active, Fv(a ~v) iff all.
(2) If A is passive, Fv(a ~ v) unconditionally. O

Finally, the value constructors are injective.

Proposition 4.9

1) If £ ~ £ then £ =1

2) If \x:A.e ~ Az:A. € then e[¥z] ~ €'[%z] for any a:A.

3) If (a1,az2) ~ (b1, bs) then a; ~ by and ay ~ b,.

4) If inl(a) ~ inl(d) then a ~ b.

5) If inr(a) ~ inr(b) then a ~ b.

6) If intro(a) ~ intro(b) then a ~ b. O

(
(
(
(
(
(

5 Bisimilarity is a Congruence

In this section we shall sketch a proof that similarity is a precongruence,
that is, preserved by arbitrary contexts. Since ~ is the symmetrisation of
<, it follows that bisimilarity is a congruence (a precongruence that is an
equivalence), Theorem 4.2. Howe [11] originally proved that similarity was a
precongruence for a broad class of ‘lazy computation systems.” These were
untyped and based on an evaluation relation. As in earlier work [6], we recast
his proof in a typed setting and using labelled transitions. The proof in this
section would not work for a nondeterministic calculus, where ~ does not equal

8

GORDON

I'tzRa THLRZ I‘l—unityﬁunity

F'teRe
T+ k(e) R s(e')

k € {succ,pred, zero, inl, inr, intro, elim}

'ke;Re: (i=1,2,3)

' ife; theneyelsees R if e} thenejelseey
I,z:AFeRe I,z:AFeRe
TFMz:A eR Az:A. e T'Frecz:A. e Rrecz:A. e

T'ke Rej T'keyRey
T F (e1,e2) R (e}, €5)

I'keRel:Ar X Ay T,z1:A4;1,29: A5 F ea R €,

I'F splite; as(z1,22) iney R splite] as (z1,2) in e)

T'FeyRey: Ay + Ay I,z;:A; Fe;Re; (1=1,2)

case egof case ejof
' | inl(z1) = ejor | R | inl(z;) = €jor

inr(zy) = ey inr(zy) = e

Table 2 The compatible refinement of a relation

mutual similarity, that is, the symmetrisation of <. Howe [12] has recently
shown how his method can be applied directly to bisimilarity, and hence is
applicable to nondeterministic languages.

We need to extend relations such as bisimilarity to open expressions rather
than simply programs. Let a proved ezpression be a triple (I', e, A) such that
I'te:A UT = z:A1,...,z,:A,, a ['-closure is a substitution -[5/55’] where
each a;:A. Now if R C Rel, let its open eztension, R°, be the least relation
between proved expressions such that

(T, e, AYR° (T, ¢, A) iff e[%z] R €'[@z] for any T-closure [#/z].

For instance, relation Rel’ holds between any two proved expressions (I, e, A)
and (I, €', A") provided only that I' = I and A = A’. As a matter of notation
we shall write I' F e R €’ : A to mean that (I',e, A) R (T, €', A) and, in fact, we

shall usually omit the type information.

We need the following notion, of compatible refinement, to characterise
what it means for a relation on open expressions to be a precongruence. If
R C Rel’, its compatible refinement, R C Rel’, is defined inductively by the
rules in Table 2.

GORDON

Define a relation R C Rel’° to be a precongruence iff it contains its own
compatible refinement, that is, R C R. This definition is equivalent to saying
that a relation is preserved by substitution into any context.

Lemma 5.1 Assume that R C Rel’ 1s a preorder. R 1s a precongruence iff
whenever I' F e R €' and C is a conteat, it holds that I' F Cle] R C[e']. O

Howe’s general congruence proof does not apply to our form of similar-
ity, based on a labelled transition system, but we can adapt it as follows.
Inductively define relation <* C Rel’ by the following rule.

F'Fe<te ke’ <€
'Fe<®é
Following Sands [27], we can present some basic properties of <* from Howe’s
paper as follows.

Lemma 5.2 <°® is reflezive and the following rules are valid.

F'kFe<®e FFe" <€ F'Felte F'Fe<®é
F'kFe<*¢ F'Fe<*¢ F'Fe<*¢
Moreover, <* is the least relation closed under the first two rules. a

The proof strategy is to show that <° = <*, and then since <°® is a pre-
congruence (by the previous lemma) it follows that <° is too, as desired. We
have <° C <* already, so it remains to prove the reverse inclusion. We do so
by co-induction. Here is the key lemma.

Lemma 5.3 Let S & (a,b) | o F a <* b}
(1) Whenever a S b and a ~ o' then o' S'b.
(2) Whenever a Sb and a 25 a there is b withb —> b and o' S}V, O

The proofs are by induction on the depth of inference of reduction a ~+ a’
and transition a — a' respectively. Details of similar proofs may be found in
Howe [11] and Gordon [9]. Given this lemma, it is routine to show that <* C <°
and hence it follows that <° = <*, and hence similarity is a precongruence.

6 Refining Bisimulation

We have developed equational laws of bisimilarity and shown it to be a co-
inductive characterisation of contextual equivalence. The basic co-induction
principle for bisimilarity is to prove a ~ b by exhibition of a bisimulation &
containing (a,b). Since ~ is the union of all bisimulations, it follows that
(a,b) € ~. Our purpose in this section is to illustrate co-inductive proofs
about a derived FPC type of unbounded streams. We begin with a direct
bisimulation proof, but then develop three techniques to simplify the details.

The FPC type of streams of type A is the following.
Stm(A) 4f rec X.Unit + (A x X)
10

GORDON

o
L

stm(A) £ rec X.Unit + (4 x X)
nillA]

o
[]
LN

intro[Stm(A)](inl(unity))

o
[]
LN

o
L

€

= caseelim|[Stm(A)|(e1)of

(
cons[A](e) = intro[Stm(A)](inr(e))
lcase[A](e, €2, €3) (
inl(z) = ey or
inr(zy) = splitzyas (z,y)ineszy
I'Fe:AxStm(A)
I' Fnil[A]:Stm(A4) I' - cons[A](e) : Stm(A)
I'Fep:Stm(A4) I'Fey:B I'Fes:A— Stm(A) —» B

I'F 1lcase[A](e1,ez,€e3): B
nil cons(a)
lcase(a, by, bs) ~ lcase(a’, by, bs) if a ~ o
lcase(nil, by, by) ~ by
lcase(cons(a), b1, b2) ~ lcase(cons(a’), by, bs) if a ~ a’

lcase(cons((a1, az)), b1, b2) ~ baaj as

Table 3 Definition and properties of the FPC stream type

We show in Table 3 definitions of nil and cons constructors, and a Martin-
Lof style 1case destructor. As in ML, we shall write a :: as for cons(a, as)
(but remember these are possibly unbounded streams). We need the following
exhaustion lemma, provable from the theory in Section 4.

Lemma 6.1 If as:Stm(A) then either (A) as ~ Q54 (B) as ~ nil, (C)
as ~ cons(QA5(4)) or (D) as || a:: as’ where a:A and as':Stm(A). O

Suppose we have map and iterate combinators specified by the following
equations.

map £ nil = nil
map £ (x::xs) = f x :: map f xs
iterate f x = x :: iterate f (f x))
These could easily be turned into formal definitions of two combinators. Pat-

tern matching on streams would be accomplished using lcase, but we omit
the details. Intuitively the streams

iterate f(fz) and mapf(iteratefz)
are equal, because they both consist of the sequence

fa, f(f=), F(f(F2), F(F(f(f=))),

Here is how to prove this equality by co-induction.

11

GORDON

Lemma 6.2 If relations 51,8,,83,S C Rel are
S & {(iterate f(fc),map f (iteratefc)) | cA & f:A — A}
Sz € {((c,a),(c,b)) | c:A & (a,b) € Si}
Ss ¥ {(elim(a), elin(d)) | (a,b) € S}
def

8 - 81U82U83UId

(where Id C Rel is the relation of alpha-conversion restricted to Rel) then S
15 a bissmulation.

Proof. Let property (*) be S3 C (S). For now we shall assume (%) and hence
show that S is a bisimulation; then we shall return and prove (*). We consider
each of the four ways in which (a,b) € S and show that (a,b) € (S) in each

case.

(1) (a,b) € S;. Since the type of streams is a recursive type, the only tran-
sitions are a <3 elim(a) and b <=3 elim(b), hence (a,b) € (S3) C (S).

(2) (a,b) € S;. Both a and b are values of pair type, say (c,a’) and (¢, ')
respectively, with ¢:A and (a’,d') € S;. They each have two transitions.

fst fst snd snd
—c b—c¢ a—a b— b

Hence (a,b) € (IdU S;) C (S).

(3) (a,b) € S3. Our assumption (*) is that (a,bd) € (S).

(4) (a,b) € Id. Trivially (a,b) € (Id) C (S).

Hence it remains to prove (x). Suppose then that (a,bd) € Ss, in which case
a=elim(iterate f (fc))
b=elim(map f (iterate f ¢))

for some f:A — A and c:A. By computing the reduction behaviour of a and
b it is not hard to check the only transitions of a and b are

a 25 (fe,iterate f(f(fc)))
b 25 (fc,map f (iterate f (fc))).
Property () follows, then as (a,bd) € (Ss) C (S). O
Now, since § is a bisimulation it follows by co-induction that it, and indeed
81, 1s contained in bisimilarity. A corollary then is that
iterate f (f ¢) ~ map f (iterate f¢)

for any suitable f and ¢, what we set out to show.

6.1 Variant Greatest Fizpoints

We can refine the proof of Lemma 6.2 in various ways. First, the following
lemma provides alternative characterisations of a greatest fixpoint.

12

GORDON

Proposition 6.3 Let U be an arbitrary universal set and let F : p(U) —

p(U) be some monotone function. If v = F(X) we have:

v=vX F(X)Uv (v.I)
=vX. F(X Uv) (v.1II)
=vX. F(XUv)Uv (v.II) O

These equations strengthen co-induction. For instance, we can slightly
simplify the proof of Lemma 6.2 by setting S to be §; U Sy U Sz, but with no
mention of Id. A replay of our calculations shows that S C (S U Id). Since
Id C ~ it follows that &, though not a bisimulation, is dense with respect to
the map S — (S U ~). Hence by co-induction § C vS. (S U ~) and therefore
S C ~ by (v.II).

Paulson [20] implements co-induction principles based on these equations
in Isabelle. Dual equations strengthen induction; for instance, the dual of
(v.II), p = pX. F(X N p), corresponds to Melham’s strong induction [14] in
HOL.

6.2 Bisimulation via Values

Our second refinement further simplifies the proof of Lemma 6.2. If S C Rel,
define S C Rel by

e[yz] S €'[%z] (Va:A)

LS¢ _
dx:A.eS dz:A. €
aShb a1 S b a; S by
intro(a) S intro(b) (a1,a3) S (b1, by)

aSh aSh
inl(a) S inl(b) inr(a)S inr(b)
If S C Rel, define (S)y C Rel such that (a,b) € (S)y iff Fu,v(a ~uSv ~ b).
Let vy LS. (S)y. We can prove that it approximates bisimilarity.

unity S unity

Proposition 6.4 vy C ~

Proof. The key lemma is that whenever S C (S), R, then ~S~ C <. Given
this lemma and symmetry we have ~vy~ C ~. In fact vy C ~ since Id C~.
The inclusion is strict because, for instance, 0 ~ 0, although (0,0) ¢ vy
because no value is bisimilar to 0. O

Intuitively (a,b) € vy iff @ and b are bisimilar, and they both have a value,
and so do their immediate subterms, ‘all the way down’.

Co-induction with respect to (—)y relies on matching of immediate sub-
terms. We can allow matching via non-immediate subterms as follows. If we
define (S)yx = (pR.S UR)y then by use of both induction and co-induction
We can prove

Proposition 6.5 vy = vX. (X)y.. O
13

GORDON

Roughly speaking, unwinding the inner inductive definition permits arbi-
trary nesting of value constructors. Returning to Lemma 6.2, if we make
the assumption that each f™c¢ has a value, it is not hard to check that
81 C (81 U vy)va, and hence by co-induction and (v.II) that S; C vy and
indeed §; C ~. The reason for the restriction on each f” ¢ is essentially that
vy is an incomplete co-inductive characterisation of ~. Our third refinement
provides a complete such characterisation.

6.3 Bisimulation via Reductions

We begin with another functional, (—),.
a(S), biff 3a’,b'(a ~tTa bt &a S
If § C (S);, starting from any pair in & we can make reductions in both

programs to end up back in S.

Proposition 6.6 Let v, & vS8.(S),.
(1) (a,b) € vy tff af) and b).
(2) vy C ~. O

The greatest fixpoints of both (—)y. and (—); fall short of bisimilarity,
but combining them we exactly match bisimilarity.

Theorem 6.7 ~ = vS.(S)y U (S)4. O

We omit the proof, but the significance of this equation is that it is a
complete co-inductive characterisation of bisimilarity (and hence contextual

equivalence) without mentioning labelled transitions. Let F(S) e (S)ya U
(S)+. Returning again to Lemma 6.2, we can easily check that §; C (S;U~)ya,
indeed that S; C F(S; U ~) and hence by co-induction and (v.II) that S; C
vS. F(S) = ~. This time we need no restriction on each f”ec.

Here is an example that depends on matching reductions. If filter is

defined by

filter £ nil = nil

filter £ (x::xs) =
if £ x then x :: filter f xs
else filter £ xs

we can prove the following equation (where o is function composition).

Proposition 6.8 For any f:B — Bool and ¢g:B — B,
filter f omapg ~ mapg o filter(fog)

Proof. Let S be the following relation.
{(filter f (mapgas),mapg(filter(f og)as)) | as:Stm(B)}
The result will follow if & C ~. We will show that
SCEU~MmU(S) U~
14

GORDON

and hence by co-induction and (v.III) that S C ~. Consider, then, any pair
(a,b) € S,

a=filter f (mapgas)

b=mapg (filter(f og)as).
We proceed by a case analysis of as according to Lemma 6.1. There are four
cases: (A) as ~ Q, (B) as ~ nil, (C) as ~ cons(Q) and (D) as | a':: as’.
Only case (D) is of interest; the other cases follow easily. We must examine
the three possible evaluations of f(ga'): (DA) f(ga')t, (DB) f(ga') || true
and (DC) f(ga') | false. Only (DB) and (DC) are of interest. In case (DB)

let w and v be the values
u =ga'::filter f (mapgas’)
v=ga mapg(filter(f og)as’).

We have a ~ u and b ~ v and hence (a,b) € (S U ~)y,. Finally, in case (DC)
we cannot find matching values, but instead we have the matching reductions

a ~T filter f (mapg as’)
b~T mapg (filter(f og)as’)

and so have (a,b) € (S);. By consideration of all these cases we have shown
the desired inclusion and hence & C ~ follows by co-induction. O

Since filter is a partial function (think of filter(Az.false)) this ex-
ample cannot be programmed in a co-recursive framework such as Paulson’s
[20].

We conclude with a more substantial example: a proof of the monad laws
for streams [30]. Let ++ be the stream append operation, join the function
that appends together a stream of streams, id the identity function and let
valz = z::nil.

Proposition 6.9

(1) mapid ~ id

(2) map(fog)~mapfomapyg

(3) mapfoval ~valo f

(4) map f o join ~ join o map (map f)
(5) joinoval ~ id

(6) join omap val ~ id

(7) joinomapjoin~ joino join

Proof. Parts (3) and (5) follow by routine equational reasoning. Parts (1),
(2) and (6) follow by straightforward co-inductions. If S is the relation

{(map f (joinass), join (map (map f)ass)) | ass:Stm(Stm(B))}
it is possible to prove that Sy C (S U ~)y, U (S4); and hence part (4) follows
15

GORDON

by co-induction, (v.II) and extensionality. Finally, if S7 is the relation
{(joinass ++ join(map joinasss), join(ass ++ joinasss))
| ass:Stm(Stm(B)), asss:Stm(Stm(Stm(B)))}

we can prove Sz C (87 U ~)yu U (S7)+ U ~ and hence part (7) follows by
co-induction, (v.III) and extensionality. O

7 A Context Lemma for FPC

Our final contribution is to rework Milner’s context lemma for FPC and show
it yields yet another co-inductive characterisation of contextual equivalence,
but one that is less wieldly than bisimilarity. Milner [15] showed that contex-
tual equivalence on PCF is unchanged if we restrict attention to ‘applicative
contexts’ of the form [] a; ... an. The analogue in FPC is an evaluation context
of the form &[], where if € = &, ..., &, then &[] is the context &[--- &[] - -]

Let ezperimental equivalence, ~ C Rel be the relation such that
a = b iff whenever £[a], £[b]:Num, that £[a]l iff £[b]{).

By a straightforward modification of Milner’s argument, we can prove the
following context lemma by induction on n.

Lemma 7.1 Suppose a = b and that Cla],C[b]:Num. If Cla|l} in n steps, then
C[b]l} too. 0

An easy corollary is that ~ = ~. Since it is straightforward to prove
that ~ C =, for instance, experimental equivalence and the context lemma
form a useful technique for establishing equational properties of contextual
equivalence, independently of bisimilarity.

Furthermore, we can co-inductively characterise experimental equivalence
as follows. If § C Rel, define functional ! F(S) C Rel such that (a,b) € F(S)
iff
(1) if a, b:Num then al} iff b{);

(2) whenever £[a], £[b] € Prog, (Ela],E[b]) € S.

Proposition 7.2 ~ =vS. F(S).

Proof. Let v = vS. F(S). It is easy to see that ~ is F'-dense and so ~ C v by
co-induction. For the reverse inclusion, suppose that (a,b) € v, g[a], g[b]:Num
and g[a]ll Since v = F(v), it follows by induction on the size of £ that
(g[a],g[b]) € v. Hence if £[a]l} it must be that £[b]l}, by clause (1) of the
definition of F'. Hence v C ~. O

This yields a co-induction principle for contextual equivalence, but we can
improve it as follows.

1 We took atomic experiments as primitive—rather than compound evaluation contexts—
to allow a simple presentation of this functional.

16

GORDON

Proposition 7.3 ~ =vS. F(=S~). O

The proof is a variation on the proof that in CCS a ‘bisimulation up to
~’ is contained in bisimilarity [16, p93]. On the face of it, this yields a useful
co-induction principle, intuitively via ‘matching experiments.” To show & 1is
contained in experimental equivalence, it suffices to show that S C F(=S=~).
For instance, if our candidate relation S contains a pair (a, b) of function type,
we must show for every experiment £ of form [] ¢ that [a] = ac xS~ bec =
E[b], which is equivalent to the bisimulation condition. But suppose S contains
a pair (inl(a),inl(b)); we must show that £[inl(a)] S~ £[inl(b)] for all
suitable experiments, £, which must be of the form

case|] of inl(z;) = e; or inr(zy) = e.

Hence we must show e;[%/z,] ~S~ e;[V/z1] which, because of the quantification
over the arbitrary term e; is almost as hard as proving contextual equivalence
directly, and certainly harder than proving (a,b) € S, the condition for S to
be a bisimulation. This is evidence that although the context lemma justifies
a certain co-inductive characterisation of contextual equivalence, it is harder
to apply than bisimilarity.

8 Variations on FPC

We have presented one particular form of call-by-name FPC in detail. Our
main results hold under several variations of the language.

As case (C) of Lemma 6.1 shows, our type of streams contains junk pro-
grams such as cons(f)). Miranda and Haskell have primitive sum-of-product
types on the grounds that the possibility of such programs causes implemen-
tation inefliciency [21]. If we include primitive sums-of-products we can rule
out case (C) of Lemma 6.1 and our type of streams becomes isomorphic to
that in Miranda or Haskell.

Gunter [10] has fst and snd operations on pairs instead of split. In
the absence of sums-of-products we needed split—which gives control of
evaluation of pairs—to simplify proofs about streams. If we had fst and snd
operations instead of split we could make the product type passive, modify
the labelled transition system to allow unconditional fst and snd transitions,
and hence derive a surjective pairing law, that a ~ (fsta,snda) whenever
a:A x B.

In our language there are no experiments to determine whether programs of
passive type terminate. We can add a convergence testing operation, seq(a, b),
which first evaluates a—of arbitrary type—and if it terminates, evaluates b
and returns its value. This is sometimes known as a ‘lazy’ variation [25],
though implementations of call-by-name using lazy evaluation do not depend
on convergence testing. Contexts can now distinguish Q4= and Az:A. OB, for
instance. We can still prove operational extensionality, but we must modify
the labelled transition system so that every transition a — b is contingent
on convergence of a. Every type must be active.

Similarly we can obtain a call-by-value version and prove operational ex-

17

GORDON

tensionality. Every type is active. Variables stand for values, not arbitrary
programs. We must eliminate the PCF recursion expression, recz:E. e, be-
cause although it is not a value its reduction rule involves substitution of itself
for the variable z. Fixpoint combinators can be coded in FPC anyway using
contravariant recursive types [10]. Recursion (and hence divergence) can be
recovered in call-by-value PCF by adding recursively-defined constants.

9 Discussion and Related Work

We have developed a ‘CCS-view of lambda-calculus.” Using a novel labelled
transition system for FPC, we replayed the definition of bisimilarity from CCS
and proved that it equals contextual equivalence. Hence we answered Turner’s
[29, Preface] concern that in a typed, call-by-name setting, Abramsky’s ap-
plicative bisimulation makes more distinctions than observable by well-typed
contexts. We developed some refinements of the bisimulation proof technique
that take advantage of the determinacy of our language, and demonstrated
their utility on a series of stream-processing examples. Finally, we generalised
Milner’s context lemma from PCF to FPC, to yield another co-inductive form
of contextual equivalence, but offered evidence that it yields a weaker co-
induction principle than bisimilarity.

The main novelty of our work relative to earlier work on application bisimu-
lation [1,9,11,27] is our use of a labelled transition system to match contextual
equivalence exactly in a typed setting, and our refinements of bisimulation in
Section 6. These refinements ought to be applicable to recent work on ap-
plicative bisimulation for deterministic languages with state [22,26]. Mason,
Smith and Talcott [13] also advocate operational methods for functional pro-
gramming. Their work is based on a form of the context lemma, indeed they
derive a form of fixpoint induction, but they do not emphasise co-induction.

Bernstein and Stark [3] also use a labelled transition system for a functional
language. Their system is more complex than the one of this paper in that
they represent substitutions explicitly using labels.

Domain theory is the classical foundation of languages such as FPC, and
indeed Pitts [23] shows how to derive a co-induction principle for recursively
defined domains. In contrast our approach is based on the operational def-
inition of our language. Working directly with program texts rather than
with abstract denotations has some modest rewards. For instance the idea of
‘bisimulation via reductions,” which formalises a simple intensional intuition,
has no counterpart in Pitts’ work.

Sangiorgi [28] has generalised various refinements of co-induction found in
concurrency theory, in terms of his notion of respectful functions on relations.
The functions (—)yx and (—); do not directly fit Sangiorgi’s framework, but
the possible connections are worth pursuing.

Our approach to proofs about infinite streams rests on Tarski’s impredica-
tive proof of the existence of greatest fixpoints (Theorem 2.1)—the greatest
fixpoint is defined as the union of a set of relations which includes itself.
Coquand [5] is developing a predicative type theory that explains seemingly

18

GORDON

impredicative definitions—for instance of infinite streams—in purely inductive
terms.

Acknowledgement

The idea of defining bisimilarity on a deterministic functional language via
a labelled transition system arose in joint work with Roy Crole [6]. I am
grateful for many conversations with colleagues at Cambridge, Chalmers and
Glasgow. John Hatcliff and Sgren Lassen pointed out errors in an earlier
version of this paper. This work was supported by a Royal Society University
Research Fellowship.

References

[1] Samson Abramsky. The lazy lambda calculus. In Turner [29], pages 65-116.

[2] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739-782. North-Holland, 1977.

[3] Karen L. Bernstein and Eugene W. Stark. Operational semantics of a focusing
debugger. In FEleventh Annual Conference on Mathematical Foundations of
Programmaing Semantics, volume 1 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers B.V., 1995.

[4] Bard Bloom. Can LCF be topped? Flat lattice models of typed lambda calculus.
In Proceedings of the 3rd IEEE Symposium on Logic in Computer Science, pages
282-295. IEEE Computer Society Press, 1988.

[6] Thierry Coquand. Infinite objects in type theory. In Types of Proofs and
Programs, pages 62-78, volume 806 of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

[6] Roy L. Crole and Andrew D. Gordon. A sound metalogical semantics for
input/output effects. In Computer Science Logic’94, Kazimierz, Poland,
September 1994, volume 933 of Lecture Notes in Computer Science. Springer-
Verlag, June 1995.

[7] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[8] M. Felleisen and D. Friedman. Control operators, the SECD-machine, and the
A-calculus. In Formal Description of Programming Concepts 11, pages 193-217.
North-Holland, 1986.

[9] Andrew D. Gordon. Functional Programming and Input/Output. Cambridge
University Press, 1994.

[10] Carl A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, Cambridge, Mass., 1992.

[11] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of the
4th IEEE Symposium on Logic in Computer Science, pages 198203, 1989.

19

GORDON

[12] Douglas J. Howe. Proving congruence of bisimulation in functional
programming languages. Preprint, 1994.

[13]I. A. Mason, S. F. Smith, and C. L. Talcott. From operational semantics to
domain theory. Submitted for publication, 1994.

[14] Thomas F. Melham. A package for inductive relation definitions in HOL. In
Proceedings of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, Davis, California, pages 350-357. IEEE Computer
Society Press, 1991.

[15] Robin Milner. Fully abstract models of typed lambda-calculi. Theoretical
Computer Science, 4:1-23, 1977.

[16] Robin Milner. Communication and Concurrency. Prentice-Hall International,
1989.

[17] James H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, December 1968.

[18] C.-H. Luke Ong. Correspondence between operational and denotational
semantics: The full abstraction problem for PCF. Submitted to Handbook of
Logic in Computer Science Volume 3, OUP 1994, January 1994.

[19] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe,
volume 104 of Lecture Notes in Computer Science, pages 167-183. Springer-
Verlag, March 1981.

[20] Lawrence C. Paulson. Co-induction and co-recursion in higher-order logic.
Technical Report 304, University of Cambridge Computer Laboratory, 1993.

[21] Simon L. Peyton Jones. FLIC—a functional language intermediate code. ACM
SIGPLAN Notices, 23(8):30-48, August 1988.

[22] Andrew Pitts and Ian Stark. On the observable properties of higher order
functions that dynamically create local names (preliminary report). In SIPL’93:
ACM SIGPLAN Workshop on State in Programming Languages, pages 31-45,
June 1993.

[23] Andrew M. Pitts. A co-induction principle for recursively defined domains.
Theoretical Computer Science, 124:195-219, 1994.

[24] Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

[25] Jon G. Riecke. Fully abstract translations between functional languages.
Mathematical Structures in Computer Science, 3:387-415, 1993.

[26] Eike Ritter and Andrew M. Pitts. A fully abstract translation between a
A-calculus with reference types and Standard ML. In Proceedings TLCA’95,
Edinburgh, 1995.

avl ands. perational theories ol improvement in functional languages

27] David Sands. O ional theories of i in functional languag
(extended abstract). In Functional Programming, Glasgow 1991, Workshops in
Computing, pages 298-311. Springer- Verlag, 1992.

20

GORDON

[28] Davide Sangiorgi. On the bisimulation proof method. Technical Report ECS-
LFCS-94-299, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, August 1994.

[29] David Turner, editor. Research Topics in Functional Programming. Addison-
Wesley, 1990.

[30] Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461-493, 1992.

[31] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, Mass., 1993.

21

