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ABSTRACT

Motivation and results:Motivated by the ability of a simple threading

approach to predict MHC I—peptide binding, we developed a new

and improved structure-basedmodel for which parameters can be esti-

mated from additional sources of data about MHC-peptide binding. In

addition to the known 3D structures of a small number of MHC-peptide

complexes that were used in the original threading approach, we

included three other sources of information on peptide-MHC binding:

(1) MHC class I sequences; (2) known binding energies for a large

number of MHC-peptide complexes; and (3) an even larger binary

dataset that contains information about strong binders (epitopes)

and non-binders (peptides that have a low affinity for a particular

MHC molecule). Our model significantly outperforms the standard

threading approach in binding energy prediction. In our approach,

which we call adaptive double threading, the parameters of the

threading model are learnable, and both MHC and peptide sequences

can be threaded onto structures of other alleles. These two properties

make our model appropriate for predicting binding for alleles for which

very little data (if any) is available beyond just their sequence, including

prediction foralleles forwhich3Dstructuresarenotavailable.Theability

of ourmodel to generalizebeyond theMHC types forwhich trainingdata

is available also separates our approach from epitope prediction meth-

ods which treat MHC alleles as symbolic types, rather than biological

sequences. We used the trained binding energy predictor to study viral

infections in 246HIV patients from theWest Australian cohort, and over

1000 sequences in HIV clade B from Los Alamos National Laboratory

database, capturing the course of HIV evolution over the last 20 years.

Finally,we illustrate short-,medium-, and long-termadaptationofHIV to

the human immune system.

Availability:http://www.research.microsoft.com/�jojic/hlaBinding.html

Contact: jojic@microsoft.com

1 BACKGROUND AND DATASETS

The development of computational methods that predict protein

folding and binding is of considerable interest to the scientific

community. In addition to furthering our understanding of basic

chemical-physical principles that govern the complexity of protein

structure, results in this area may also lead to important medical

applications. Current research in this area focuses on complex

physics-based models using a large number of particles to describe

not only the proteins, but also the solvent molecules that surround

them.

This paper is motivated by the following observation: Protein

binding is at heart of many biological processes which have been

heavily studied at a higher level, and so a number of studies have

provided indirect sources of information that could be mined to infer

unknown parameters of a physics-based binding model. For exam-

ple, many of the binding configurations bear significant similarities,

and therefore the known structures of representative protein com-

plexes can be useful in inferring geometry of binding or binding

strength for new proteins. In addition, in some cases, there are pub-

licly available datasets of experimental binding energies (or affini-

ties) for mutated proteins and certain molecules. Other biological

experiments are concerned only with the result of a binding process

within a more complex system, and so their results may provide only

binary information (whether or not the proteins of interest bound or

not in a specific context). If interpreted jointly, these diverse sources

of data could significantly contribute to our understanding of a

system, improve our ability to predict binding partners, and may

eventually allow us to manipulate interactions of interest.

Here we focus on one example of such joint data interpretation

grounded in a simple physics-based binding model whose purpose is

the prediction of the binding energy of peptides to Major Histo-

compatibility Complex (MHC) class I molecules. MHC class I

molecules participate in the detection of foreign proteins expressed

within cells. Proteins in the cell are processed to peptides of 8-11

residues length, and some of them are loaded onto MHC molecules

which travel to the cell surface and present them to other compo-

nents of the immune system. In particular, presented peptides may

be recognized by cytotoxic T cells, which can destroy the cells

deemed to be operating improperly because they present unexpected

MHC-peptide complexes. The ‘‘unusual’’ complex can be formed

as a consequence of a variety of events, such as cell damage, mut-

ation (e.g., cancer), or viral infection, and more recently, organ

transplantation.

Due to the importance of this process, it has been experimentally

studied in a variety of ways. We describe how we used these studies

to train a novel adaptive double threading model of MHC-peptide

binding which does not only point out peptides with very low

binding energies (good binders, or potential epitopes), but also

ranks the peptides with intermediate levels of binding. Adaptivity

and double threading make our model appropriate for predicting

binding for alleles for which very little data (if any) is available

beyond just their sequence, including prediction for alleles for

which 3D structures are not available. Armed with this tool, we
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are able to demonstrate the effects of immune pressure on HIV

sequence evolution within a host and on a population level.

To train the model we can use the following types of data:

MHC I sequence data. We focus here on human MHC class I

molecules: they are encoded in three regions of the human genome,

labeled A, B, and C. These regions are among the most variable in

the human genome, with dozens to hundreds of different MHC

variants in each region. Since each individual inherits genes

from two parents, each of us has at least three and up to six different

MHCmolecules operating in our cells. As different MHCmolecules

typically bind to different peptides, it has been very important to

immunologists to classify MHC types. For example, organ trans-

plant recipients may reject organs of donors with non-matching

MHC types, as the cells in these organs will present MHC-peptide

complexes that are new to the immune system of the recipient.

Modern MHC typing is performed by sequencing, and the sequence

data for all known MHC variants is available.

MHC-peptide complex structure data. The importance of

peptide-MHC interactions to the immune response has motivated

crystallographers to solve the structures of a range of different

MHC-peptide complexes. In several cases, the structural variability

of a specific MHC allele could be assessed by solving the structure

of this allele when bound to a range of different peptides. An

example of such a MHC-peptide complex structure and sequence

is given in Fig. 1.

The present study is based on a dataset of 37 different MHC-

peptide complex structures that was also used by (Furman et al.,
2000). The structures were downloaded from the RCSB protein data

bank (Berman et al., 2000: http://www.rcsb.org/pdb/).
MHC-peptide binding affinities. The relative binding ability

of different peptides to a specific MHC molecule can be directly

assessed by competition experiments. The peptide concentration

that leads to 50% inhibition of a standard peptide, IC50, is mea-

sured, and the relative binding energy can be described as the ratio

between the IC50 of the standard peptide and that of a test peptide

(Sette et al., 1994). The result of such experiments is a set of

relative binding energies (negative logarithms of the relative con-

centrations), for different MHC-peptide combinations. This study

used a dataset of 870 different combinations from Furman et al.,
2000, which capture a large range of different binding energies, as

discussed in Section 3.

Known good binders (epitopes) and nonbinders. Viral or

cancer epitopes, and other excellent binders are often discovered

by EliSPOT essays that capture the reaction between T-cells of

exposed patients with peptides containing suspected epitopes.

Other peptides are known to evoke only very low reactivity in

binding essays. Large databases of known epitopes, as well as

nonbinders, for various MHC molecules are publicly available.

We have used the SYFPEITHI database (Rammensee et al.,
1999: http://www.syfpeithi.de/), Los Alamos National Laboratory

Fig. 1. 3D structure ofMHCA0201 bound to peptide GILGFVFTL (PDB code 1hhi; Madden et al., 1993). The centers of the peptide residues are marked in

3D space by triangles and the centers ofMHC’s residues are marked by circles. Residues in the peptide binding groove of theMHC (i.e. within 4A of the peptide)

are marked by filled circles. The lower panel shows the MHC A0201 sequence, with groove sites indicated by increased font size.
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HIV Database (http://www.hiv.lanl.gov/) and the MHCBN Data-

base (Bhasin et al., 2003: www.imtech.res.in/raghava/mhcbn/

third.html). These databases provided us with ‘‘binary’’ energy

data for many peptides (by simply indicating if a peptide is a strong

binder, or a non-binder with respect to a particular MHC type).

2 THE BINDING ENERGY MODEL

Our binding energy model is based on the geometry of MHC-

peptide complexes, and is motivated by the threading approach

(Jones et al., 1992). Its implementation in (Furman et al., 2000)
is here augmented by including learnable parameters. We demon-

strate that these parameters can be estimated by using all of the

described data jointly.

In general, threading aims at evaluating the compatibility of a

certain protein sequence with a certain protein structure: The

sequence is threaded onto the structure, and a list of contacting

amino acid pairs is extracted, based on contacting residue positions

(defined as residues in close proximity, e.g. that have at least one

pair of atoms less than 4.5A apart). In order to allow estimation of

the binding energy of any peptide with an MHC molecule whose

structure in complex with some other peptide is known, we assume

that the proximity pattern to the peptide in the groove does not

change dramatically with the peptide’s sequence.

Assuming that energy is additive, and that the pairwise potentials

depend only on the amino acids themselves—and not on their context

in the molecule—the energy becomes a sum of pairwise potentials

taken froma symmetric 20·20matrix of pairwise potentials between

amino acids. These parameters are computed based on the aminoacid

bindingphysics,or fromstatistical analysesofaminoacidpair contact

preferences in large setsof available protein structures. Several setsof

pairwise potentials have been described in the literature, each derived

in a different way (for review see Melo et al., 2002). Obviously, the
choice of pairwise potential matrix can dramatically alter perfor-

mance of the energy predictor (Furman et al., 2000).
The advantage of the original threading-based approach lies in

its independence on binding data. In this approach, as long as a

structure of the MHC-peptide complex is available, an allele can in

principle be characterized without the need of multiple tedious

binding experiments. However, the very same data used for

verification of the original threading approach could be used to

refine it in a data-driven way. Furthermore, over the last few

years a large amount of additional data about binding peptides

has been produced for a range of different alleles. Combining

the threading approach with a machine learning philosophy of fit-

ting to data, we show that it is possible to estimate a pairwise

potential matrix and also learn additional parameters that make

the results less sensitive to approximations made in the original

threading model.

In order to motivate the parameterization of our model, we start

with a slightly more general mathematical definition of the basic

threading model, which predicts the binding energy E as a function

of the structural template m, the MHC sequence s, and the peptide

sequence e, as

Eðm‚s‚eÞ �
X
i

X
j

fsi‚ ej
hðdmi‚ jÞ‚ ð1Þ

where i and j are sequence positions in the MHC molecule and the

peptide respectively, f are the pairwise potentials discussed1, and

dmi‚ j is the distance between the i-th MHC residue and the j-the
peptide residue in the m-th 3D structure (as we have different

structures for different molecules)2. Finally, in the threading

approach, function h is simply the step function

hðdÞ ¼ 1‚ d � dthr
0‚ d > dthr

:

�
ð2Þ

The threading model is based on the rational approach, which uses

physical models to predict the binding energy for a new MHC-

peptide complex when a crystal structure (indexed by m) and the

sequence of both the MHC molecule and the peptide (s and e,

respectively) are given.

In order to use the abundant direct or indirect information about

binding to improve the threading model, and to allow reliable pre-

dictions even in the absence of the known structural templates, we

make a few adjustments to this model. First, we consider parameters

f as hidden variables, with the previously published pairwise poten-

tial matrix serving as a basis of the prior on f to avoid over training.

Second, instead of the step function, we use a soft step (sigmoid),

hðdÞ ¼ 1

1þ e�aðd�dthrÞ
ð3Þ

increasing the robustness of the predictor to slight variations in the

geometry of the structural model (residue pairs with a close-to-

threshold distance might suddenly be turned off if the distance is

only slightly above the threshold). The parameters of h can be

learned, setting the threshold (dthr) and the softness a of the step.

Finally, we add weights wm
j to allow our model to adapt to the errors

introduced by the strong assumption that all close residue pairs (as

defined by h) will contribute to the energy independently. A strin-

gent threshold parameter will produce a very sparse set of pairs i, j
that contribute to the energy, and in this case each pair can be

assumed to contribute independently. However, many important

interactions might be missed by applying a stringent threshold.

A loose threshold on the other hand will result in the inclusion

of non-relevant residue pairs (amino acid pairs that in fact do

not significantly interact in the structure). Including these additional

contributions into the energy function might blur the signal. In

addition, residues will likely interact simultaneously with several

neighbors, which could question the additive model.

In order to address this problem, we add MHC-specific weights

wm
i‚ j to the threading equation with altered function h:

Eðm‚s‚eÞ �
X
i

X
j

wm
i‚ jfsi‚ ej

hðdmi‚ jÞ‚ ð4Þ

For these weights we use a Gaussian prior favoring wm
i‚ j ¼ 1. The

model is designed so that it reduces to standard threading when

priors are strong enough to ignore the dataset of energies E for

various peptide and MHC combinations. However, in our experi-

ments the priors are left weak enough so that the data can dominate

the learning process, and the priors simply serve as a measure

against over-fitting.

Note that several variants of the model can be derived from

this basic form, depending on how many parameters we want to

1f is a 20 · 20 matrix of potentials for different pairs of amino acids.

2In fact, the 3D structure of a MHC-peptide complex may vary slightly for

different peptides, in which case a consensus distance is used. See Furman

et al., 2000 for details

Learning MHC-peptide binding

e229

 by guest on N
ovem

ber 4, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://www.hiv.lanl.gov/
http://bioinformatics.oxfordjournals.org/


train and how much data we have. For instance, the weights w
can be shared across all MHC types, leaving only the sequence s
of a molecule to define its behaviour in the model. Furthermore, a

single consensus geometry for all types can be used, removing

index m from the model completely. Another way of reducing

E(m, s, e) to simply E(s, e), is to treat structure index m as a

hidden variable and infer it with help of proper priors, sequence

similarity, or in cross-validation during training. The simpler vari-

ants, more capable of generalization, are especially interesting

when the goal is prediction of binding energies for new alleles

for which no binding data is available. In fact, all forms of this

model are based on a physics-based approach which primarily

uses the protein sequences into account when evaluating the

binding affinity. The MHC type is not primarily captured by its

symbolic name (e.g., A0201), but by its sequence as shown in Fig. 1.

Thus, applications beyond epitope or energy prediction for each

molecule in isolation are possible, e.g., studying the effect of MHC

mutations on the efficacy of the immune system in different

infections.

We assume Gaussian noise in the energy data (perhaps there

are better models motivated by the physics of the process), and

we fit the model by standard variational learning, which is needed

because of the bilinear dependence of E on f and w. As the optim-

ization criterion becomes quadratic (ignoring parameters of h for

a moment), the variational inference essentially iterates between a

linear regression to find f variables (penalized appropriately by

the prior) and a regression that estimates weights w, again taking

into account the Gaussian prior favoring wi‚ j ¼ 1. Refinement of

step function parameters (dthr and a) is interleaved with these two

steps. For MHC molecules for which we do not have the 3D struc-

ture on which to define di‚ j, we use the available structure of a

related MHC molecule with the highest sequence similarity. This

is motivated by the fact that across all MHC molecules, the geo-

metry of the groove (i.e. the residues that are in proximity of the

peptide) does not change significantly, even when the amino acid

content is significantly different.3 If we view this model as genera-

tive, then m can be considered as a hidden variable influencing

the sequence s, thus allowing inference of m from s. In principle,

in inference of m, both s and d should be taken into account, but

we avoided that in our initial experiments for simplicity. The

prior parameters can be tuned through cross validation on the

training set.

The dataset of binding energies can be directly used in training

our model, but the dataset of known good binders and non-binders

requires a treatment of missing energy values. We simply used the

lowest binding energy in the binding energy dataset for good bin-

ders (epitopes), and similarly, the highest binding energy for the

non-binders. Alternatively, the spread between the binding energies

of the binders and non-binders can be maximized, or a cost function

different than quadratic can be used which punishes bad but not

good binding energies for good binders, and does the opposite for

non-binders.

It is important to note that we fit all MHC-peptide complexes

together, asf parameters are shared across all data. The wm
ij parame-

ters, on the other hand, are specific to a particular MHC geometry

(obtained by crystallography). Joint training helps energy prediction

for individual MHC types (training only on a limited number

of MHC molecules degrades the performance of the predictor on

the test data even for the MHCmolecules included in training). Also
note that the model is set up so that it would provide an energy

prediction after training even for MHC molecules for which no

data other than their sequence is given. The f parameters estimated

from the existing data would then be used together with uniform

weights wm
ij ¼ 1, as dictated by the prior.

3 MODEL PERFORMANCE ON DIFFERENT
TYPES OF DATA

In this section, we empirically illustrate how the model behaves

in different situations, such as the usage of binary and/or

continuous energy data, with different training set sizes and

MHC compositions.

The experimental binding energies (or equivalently IC50 ratios,

whose negative log corresponds to energy) for peptides in the set

used in this section covered a large range, with only some of the

peptides having very low energies (epitopes). To illustrate, we

divide peptides into three categories: good binders (IC50 ratio

>0.1), non-binders (IC50 ratio <0.0001), and intermediate binders

with values in between, as suggested by Furman et al., 2000. Table 1
summarizes the data in terms of the MHC molecules, peptide

lengths and the binding strength.

In order to compare our method to standard threading, we

report the performance of our predictor in terms of peptide ranking

measured by Spearman correlation factor, as proposed by Furman

et al., 2000. This measure varies between �1 and 1, with values

close to one indicating that sorting the peptides by their predicted

energies produces a similar ranking as sorting by the experimentally

measured energies. In a first step, we verified that the numbers

obtained by the original threading approach (Furman et al.,
2000) could be reproduced. In contrast to the threading approach,

the method presented here requires training, and for this purpose,

the data was divided 100 times into random training/testing parti-

tions (70% for used for training, with the data distribution for both

sets kept similar to the above table), and we report the average

performance, as well as the variance across the experiments.4

Table 2 indicates that our model outperforms the threading model

when the direct and indirect information about MHC binding is used

to train the model.

Note that for our model the potentially most influential type of

data are binding energy measurements (i.e. IC50 values), but this

Table 1. Summary of the IC50 dataset used in Sect. 3

Good binders Intermediate Non binders

A0201, peptide length 9 62 254 202

A0201, peptide length 10 27 138 100

A6801, peptide length 9 21 74 35

B2709, peptide length 9 11 11 44

3In fact, different MHC molecules align well and only 10% of the residues

show sequence variability. The ‘‘groove’’ residues, however, are the most

variable with about 30% of them showing sequence variability, even

between two molecules coded in the same region of the genome (A, B or C).

4Threading approach, on the other hand, is rational, not data-driven and so it

uses no training data and provides a single number as an output.
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kind of data is scarce and is not available for many protein binding

problems (but see Sect. 5 about the recent availability of this data for

some MHC types). It is therefore of interest to investigate whether

the present approach could also be applied to MHC types not

experimentally tested in this way, by using information from

related, experimentally scrutinized alleles. For this purpose, we

evaluate the ability of our model to predict binding energies

when some types of training data are not available for MHC

types of interest. For each of three MHC types (A0201, A6801

and B2705), two models of nonamer binding were trained: the

first using only the experimental binding energies for the remaining

two MHC molecules (simulating the situation where the peptide

binding to a newMHC allele is modeled), and the second using both

the experimental binding energies for the remaining two MHC

molecules and 869 binary energies for all three MHC types (simu-

lating the situation where binary data is available for the allele of

interest, e.g., through related research, such as epitope discovery, or

tracking evolution of a pathogen; but the direct IC50 experiments

are not available). In all cases, of course, the test set of known

binding energies, was unrelated to the training data. These experi-

ments are summarized in Table 3 and they illustrate how much the

peptide preference of a particular allele can be characterized by

including binding data for other MHC alleles.

As can be seen, without the information about the specific allele

in the training set (column 1), the performance is reduced to values

similar to the original threading approach, highlighting the signifi-

cant contribution of this source of information (compare to Table 2).

Note that this experiment could not be performed for A0201 due to

insufficient data (around 100 examples, whereas just the number of

parameters in the potential matrix is over 200). On the other hand,

addition of binary energies from the alleles significantly improved

the prediction (see column 2), indicating good generalization capa-

bilities of the model. It is important to note that this experiment was

performed on a small dataset in order to study the effects of prior

knowledge (3D structure, MHC sequence, and threading model) as

well as the value of binary data. In the next section, we revisit the

issue of predicting binding for an allele based only on its sequence

and the IC50 data for other alleles, but this time using much more

data that recently became available.

In order to further evaluate the performance of our method on

the data for which only binary energies are known, we used the

whole set of binding energies in Table 1, all available 3D structures

(for inference of m, when the structure of an MHC molecule is not

known), and some of the binary data for training, leaving the rest of

the binary data for testing. Again, the training and testing sets are

chosen randomly 10 times, and both average performance and the

standard deviation are reported. The training set spanned 9 MHC

types (A0201, A6801, B2705, A1101, B3501, B5301, A0301,

B4402, and B0702), with peptides of lengths 9–10. Since both

threading and our method output binding energy, and not a binary

decision, we compared the two in terms of ROC curves obtained by

varying the good-binder (or epitope) threshold and measuring the

number of false positives and false negatives. Our method again

significantly outperformed threading (some examples are in Fig. 2),

and produced results almost as good as the recently published

state of the art in (binary) epitope prediction5 (Heckerman et al.,
2006) (more figures available at www.research.microsoft.com/
�jojic/hlaBinding.html). Note that for A0301 and B0702 we did

not have crystal structures, and yet, our adaptive double threading

approach was able to adequately predict peptide binding based on

the known sequence of the allele, and a structure of a related allele.

Additional examples of predictions based on structures of related

alleles, compared to predictions based on the actual crystal structure

are available at the above web site.

While the results in this section indicate that the use of binary

data is justified, we should point out the important caveat. The

epitope data in literature comes form different sources, and some

ways of experimentally discovering epitopes do not capture only

MHC binding but also other processes that lead to immune reaction

(e.g., cleavage and T-cell binding). This means that any tunable

model, including ours, when trained on lots of binary data, may

capture some of these other effects, becoming better at predicting

known epitopes, but worse in predicting strictly MHC binding. At

the same time, the constrains in the model structure make our model

more suited to modeling IC50-derived energies, then to general

purpose classification, and may thus limit its performance in binary

epitope classification, when this classification includes factors

other than MHC-peptide binding.

For example, when we trained a recently published epitope

predictor (Heckerman et al., 2006) on binary data only, we find

that this method produces good binary classification results, but

without significant correlation of the epitope probabilities with

true binding energies for intermediate binders in the test set. On

the other hand, the model presented here when trained on the same

binary data, still recovers peptide ranking for intermediate binders

with statistical significance, but with much less accuracy than is the

Table 2. Comparison of the standard threading and the trained bilinearmodel

Threading Bilinear model Standard deviation

A0201, 9mers 0.57 0.78 0.03

A0201, 10mers 0.61 0.82 0.03

A6801, 9mers 0.20 0.67 0.13

B2705, 9mers 0.39 0.71 0.09

Table 3. The ability to predict binding for one type by training on other two

(transfer)

Full transfer Partial transfer

A0201 NA 0.6067 (196 + 869)

A6801 0.23 (584) 0.2974 (584 + 869)

B2705 0.33 (648) 0.5958 (648 + 869)

Full transfer refers to the use all the available training data (continuous and binary) for

twoMHC types and predicting binding on the third based on its sequence. Partial transfer

refers to using all available data for two types as well as the binary energies (but not

continuous) of the third type to predict binding energies in the test set for the third type.

The results are quantified in terms of Spearman correlation factor between predicted and

true binding energies. The numbers in parenthesis are the numbers of training samples

(continuous+binary) in different experiments. Full transfer for A0201 could not be

performed as removing all A0201 data did not leave enough data for training. See

Sect. 5 for results on larger datasets.

5Epitope prediction algorithms specialize on binary classification and

usually do not predict well the quality of binding for intermediate binders.
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case when the model is trained on IC50 data. We found that on the

binary classification task on epitope data, in comparison to

Heckerman et al., 2006, the bilinear model suffers a 1% increase

in false positive and false positive rates due to its bias towards

capturing only the MHC-peptide binding component of being an

epitope. This indicates that the tunability of the model makes it

possible to tradeoff its energy predictions with its epitope classi-

fication capabilities, but it the model may not necessarily extract

the single effect (MHC-peptide binding) fully. We are now inves-

tigating ways to separate the effects of MHC binding from other

effects in binary data and train a combined predictor.

Next, in Sect. 4 we investigate if the predictive power of our

model can be used to study the global changes the immune system

causes in pathogens, once the model is trained on all available

binary and continuous data. Then, in section 5 we evaluate our

model on the recently published dataset of IC50 energies.

4 VIRUSES EVOLVE TO MODULATE THEIR
BINDING TO MHC MOLECULES

MHC A0201 is one of the most frequent MHC types, especially in

the Western world. Using our model, we computed the average

binding energy of all HIV 9mers (taking each overlapping peptide

from all proteins of the current consensus sequence for clade B) and

found it to be equal to 9.74 (the units are of no importance, only the

ranking of energies matters). On the other hand, the average binding

energy in a randomized HIV is 9.3. The randomized HIV contained

the same set of proteins with same lengths but with random ami-

noacid sequences. The difference in average binding energies has a

very strong statistical significance (p < 10�5 based on 50 different

randomizations), and can be explained by viral evolution—higher

average binding energy translates into a smaller total number of

presented peptides which trigger immune reaction. Similar patterns

should be expected from other viruses, variable enough to use

mutation as an escape mechanism. (It is possible that less variable

viruses, evolving over a very long time, may still have the same

property, and we are planning on investigating this next.)

It has been shown previously that some HIV mutations correlate

(weakly) with the MHC types of the host (Moore et al., 2002). The
binding energy estimators that we developed allow us now to begin

to explain these correlations. In Fig. 3, we demonstrate significant

correlation (p < 0.05) between the average A0201 binding energy

and the viral load in the A0201 positive patients from theWA cohort

obtained by Moore et al., 2002 (as would be expected, in A0201

negative patients we do not find any correlation).

For each chronically infected and untreated A0201 positive

patient in the cohort, we plot the patient’s viral load v.s the sum

of 9mer and 10mer average binding energies for A0201 (each

patient’s HIV was sequenced providing a source of 9mers and

10mers for this computation). The virus whose peptides bind

well to a particular MHCmolecule is typically under strong immune

pressure in patients with this MHC type, and is forced to mutate

away from its fittest form towards a form that binds less well to

MHC. But, as HIV damages the immune system, the high viral

load in the figure indicates a removal of the pressure to escape

A0201 binding. Therefore, the negative trend in the figure could

be explained by reversion of the viral sequence towards the wild

type with higher replicative fitness and lower adaptation to

A0201, in patients whose immune system is starting to fail, but

other alternative explanations are possible (such as that the inter-

mediate binders in the sequence, become better binders as that

serves some purpose to the virus, which after all, infects the

immune system). We are investigating these trends further

experimentally.

Finally, in Fig. 3, we also track the average binding energy of

MHC A0201 to HIV peptides over the last 23 years. The sequences

of various proteins from over 1000 patients were obtained from the

Los Alamos National Laboratory database. To smooth out the

sampling density over time, all sequences were grouped into 3

year time intervals: 1982–1984, 1985–1987, . . . , 2003–2005. The
apparent upward trend is statistically weak, but may still indicate

that HIV as a population is adapting to the immune systems of

the host population. Recently, a trend of HIV fitness attenuation

has also been indicated (Arien et al., 2005) which would be con-

sistent with this. In order to find out if the trend of modulation
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Fig. 2. ROCcurves produced by varying the epitope binding energy threshold and computing the number of false positives and false negatives on the SYFPEITHI

database. Note that for B3501 only binary energy data was available, while for A0301 no crystal structure was available (The known structure of the MHC

moleculewith the highest sequence similaritywas used, as described in the text.) For the standard threading approach,we used two previously proposedmatrices,

labeled ‘bet’ and ‘miy’ (Furman et al., 2000, Betancourt et al., 1999,Miyazawa et al., 1985), while for our trained bilinearmodel (‘bil’), we also provide standard

deviation curves computed over different data splits into training and testing. Over all MHC types, the area under the ROC curve was between 2.5 to 15 times

lower for the bilinear model than for either of the threading models.
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of MHC binding is significant, we plan to take all MHC alleles into

account.

5 PERFORMANCE OF THE MHC-PEPTIDE
BINDING MODEL ON A RECENTLY
PUBLISHED LARGE DATASET OF
IC50 VALUES

Recently, Peters et al., 2006 have assembled a large database

of experimentally acquired binding energies for a range of MHC

molecules. The experiments were performed at the Sette and Buus

labs, and Peters et al., 2006 go on to also test a variety of published

algorithms that can predict MHC-peptide binding. Their published

dataset may prove to be the most useful community resource for

studying MHC-peptide binding so far. In particular, a very useful

feature of their dataset is that the data has been acquired relatively

uniformly, with some potential variability due to the fact that the

experiments were performed in two different labs.6 The data con-

sists entirely of IC50 values for 49 different MHC class I alleles,

both human and animal. Here, we focus on human alleles from

this dataset (the total of 35 A and B alleles), for which the total

of 29,371 IC50 values for different MHC-nonamer combinations

were tested. Peters et al., 2006 show that among the tools available

in their labs and on the web, the best performing tool is a neural

network proposed by Nielsen et al., 2003.
Such a rich dataset and comprehensive comparisons provide

several opportunities for additional evaluations of our approach.

In particular, as discussed in Sect. 3, the use of heterogeneous data

improves overall results, but may skew our model away from solely

predicting MHC-binding energy and towards partially capturing

additional effects present in the binary experimental data. Nielsen

et al., 2003 consists solely of the continuous binding energy mea-

surements, and can thus be used to better asses some of the inter-

esting properties of our model. In addition, the amount of data

reduces the effects of regularization priors.

5.1 Predicting binding for new alleles: adaptive

double threading

First, we asses the ability of our model to predict binding for a

new MHC allele, for which no other data is available but its

sequence. This is possible as our trained model performs double

threading: not only does it thread a peptide onto the known structure

and content of the particular MHC molecule, but it can also use

another MHC molecule’s structure to thread the new allele’s

sequence and the peptide on it. When the 3D structure for the allele

of interest is available, it is used, but otherwise the best structure

from the available database of structures is used (inference of

variable m in the model).

To illustrate this empirically, we first focused on the well stud-

ied allele A0201, and trained our model on three data subsets and

tested the trained models on A0201 test sets in five-fold cross-

validation. The first model was trained on IC50 training data for all

35 available molecules in the dataset. The second model was

trained on all the data for 34 molecules, but no data whatsoever

for A0201 allele, including its 3D structure. The third model is

trained on an even more limited dataset which further excluded all

A02 types (in this data, A0202, A0203 and A0206), leaving 31

alleles for training. The first model, which was exposed to around

2400 binding energies for A0201 in each fold, achieved the Spear-

man correlation factor of 0.82, which is comparable to the best

result (0.83) reported in Peters et al., 2006, and better than all

other techniques tested there. However, a more interesting obser-

vation is that the second model, which had no exposure to A0201

data in training, still predicted A0201 with the Spearman correla-

tion at 0.8, which is only slightly lower than that of the first model.

It is important to note that the model did not have the A0201

structure available, and so it could not reduce to standard thread-

ing. The model chose to use the structure of the most similar

available allele by sequence similarity (A1101). Furthermore,

the third model, which had no exposure to any of the A02

types in training, nor the A02 3D structures, still predicted binding

with Spearman correlation factor of 0.42. All results are strongly

significant with p values virtually zero. Similarly, the Spearman

correlation factor for A1101 binding prediction goes from 0.79 to

0.61 when all A1101 data is excluded from training, and only
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Fig. 3. HIV-MHC A0201 binding energy trends as a function of viral load in individual patients, and the time of sampling.

6In fact, the authors provide a brief analysis of this potential source of error in

the paper.
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A1101 sequence is fed to the trained model, but not its structure.

This illustrates that our model degrades gracefully as the data

related to a particular allele is removed from training, as long

as the data for other alleles is available. Therefore, the model

is leveraging data for multiple alleles in each of its predictions,

and can potentially be used to predict binding for new alleles,

given only by their sequences.

5.2 Geometry estimation

The known 3D structure of several alleles is the basis of our

bilinear model and it affects the predictions through terms hðdmij Þ
in (4). For large pairwise distances dij, these terms will be virtually

zero, thus making the appropriate amino acid pairs irrelevant in

prediction. Another way of thinking about the effect of these dis-

tances is as a way of regularizing the combined set of parameters

uij ¼ wijhðdmij Þ in the model Eðm‚s‚eÞ �
P

i

P
j u

m
ijfsi‚ ej

, in which

distance function is merged with the weights for the pairs. But, if

enough data is available, this regularization should not have to be

so strongly informed by the structure, and could instead be based

on usual norm-regularization. Since our model is grounded in

physics, so estimated weights uij may in fact capture the relevant

structure: wherever the distances are large the importance of the

pair should be low, and thus the inferred weight should be close

to zero.

To test this hypothesis, we selected 8 diverse A alleles and trained

the model without the step function h, and with regularization of the
norm of u. We limited the pairs i, j only to those that involved

variable sites on theMHCmolecule (as the conserved sites will have

no discriminating effect in training). Then, we compared the learned

pairwise weights uij with the appropriate Euclidean distances dij
between allele and peptide residues in the consensus A0201 struc-

ture. Indeed, the Spearman correlation factor between the absolute

value of the estimated weights uij and distances dij in the 3D struc-

ture was negative (�0.16), as expected, and the result is statistically

significant (p < 0.05). Therefore, by training our model, it is pos-

sible, at least to a certain extent, to recover relevant parts of the

3D structure of the binding configuration.

We also note that we have experimented with a simple linear

version of the model for binary prediction, which learns directly the

products vi‚ j‚ si‚ ej ¼ umijfsi‚ ej
, without constraining the weights to

satisfy a bilinear form. Such a model is forced to learn a weight

for any combination of amino acids at any pair of positions in the

MHC molecule and the peptide, and is thus vastly over-

parameterized. Therefore most of the weights should be equal to

zero to avoid over-training. However, we have found that, when

nonzero weights are selected using a wrapper method (Kohavi et al.,
1997), the linear model makes binary predictions as well as the

bilinear model, and it also tends to choose i, j pairs with small

distances for its nonzero weights, thus performing some structure

estimation, as well. We are extending these experiments to the non-

binary case.

5.3 Comparison to other techniques

We have also trained our model have trained our model on the

nonamers for 35 human alleles on the same folds as Peters et al.,
2006 and compared with the techniques they analyzed in five fold

cross validation. These techniques treat each different MHC allele

in isolation from other, which means that they tend to get punished

for not using all available data when the allele is not supported by a

large amount of training data. On the other hand, when a lot of data

for an allele is available, these techniques may have an advantage as

they do not have to sacrifice performance on one allele in order to

better capture the others and generalize.

Our model achieved an overall test Spearman correlation factor

of 0.75, in line with the best performer of Peters et al., 2006, which
was a neural network proposed by Nielsen et al., 2003, and whose

Spearman correlation factor on this data was 0.76. In terms of binary

classification, the Nielsen et al., 2003 beats our model in 18 out

of 35 alleles in this data, with our method typically outperforming

when the available training data for an allele is small, as would

be expected given the ability of our model to generalize over dif-

ferent alleles. Both our model and Nielsen et al., 2003 seem to

outperform all other techniques compared in Peters et al., 2006
by a significant margin. It should be noted again, however, that

this data consists of a consistently measured IC50 values for dif-

ferent peptides, and for binary classification tests, only the test data

is binarized by thresholding.

The full set of comparisons is available at:

http://www.research.microsoft.com/�jojic/hlaBinding.html.

6 CONCLUSIONS

We have introduced a new model of MHC-peptide binding, which

rather than focusing on binary classification of epitopes, can be

used to estimate a high range of binding energies for high resolution

MHC types (four digits, based on MHC sequencing). Both in

terms of peptide ranking and binary classification performance,

our model significantly outperforms the threading model which

was the basis of our bilinear model with hidden variables. In indi-

vidual allele predictions, our model is comparable to the best

among the models in the recent comprehensive study (Peters

et al., 2006). Furthermore, as the model is physics-based there is

a potential for its use in settings where the existing models cannot

be used. For example, we demonstrated that we can predict

binding for new alleles and infer (to a certain extent) the geometry

of the binding configuration from binding energy data. The predic-

tive power of our model enabled us to capture HIV evolution pat-

terns in response to the immune pressure of the human hosts (the

threading model alone did not show statistically significant trends).

We are now investigating medium- and long-term evolutionary

response of other pathogens to the pressure created by the cellular

arm of the human immune system. The model can also be used to

provide binding energies for epitome learning (Jojic et al., 2005).
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