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ABSTRACT 
In this paper, we address a pattern of diagnosis problems in which 
each of J entities produces the same K features, yet we are only 
informed of overall faults from the ensemble. Furthermore, we 
suspect that only certain entities and certain features are leading to 
the problem. The task, then, is to reliably identify which entities 
and which features are at fault. Such problems are particularly 
prevalent in the world of computer systems, in which a datacenter 
with hundreds of machines, each with the same performance 
counters, occasionally produces overall faults. In this paper, we 
present a means of using a constrained form of bilinear logistic 
regression for diagnosis in such problems. The bilinear treatment 
allows us to represent the scenarios with J+K instead of JK pa-
rameters, resulting in more easily interpretable results and far 
fewer false positives compared to treating the parameters inde-
pendently. We develop statistical tests to determine which fea-
tures and entities, if any, may be responsible for the labeled faults, 
and use false discovery rate (FDR) analysis to ensure that our 
values are meaningful. We show results in comparison to ordinary 
logistic regression (with L1 regularization) on two scenarios: a 
synthetic dataset based on a model of faults in a datacenter, and a 
real problem of finding problematic processes/features based on 
user-reported hangs.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Parameter learning; 
I.5.1 [Pattern Recognition]: Models – Statistical; G.3 [Probabil-
ity and Statistics]: Nonparametric statistics; C.4 [Computer 
Systems Organization] Performance of Systems – Reliability.  

General Terms 
Algorithms, Reliability, Measurement, Performance, Experimen-
tation.  

Keywords 
Bilinear Models, Logistic Regression, Bilinear Logistic Regres-
sion, Diagnosis Problems, Factored diagnosis, Non-Parametric 
Statistics, False Discovery Rate Analysis. 

1. INTRODUCTION 
Diagnosis problems appear everywhere in society: determining 
what disease an individual might have, determining who is re-
sponsible for a crime, and determining what may be causing a 
complex datacenter to fail are all important scenarios. In some 
instances, such as the datacenter, there are J instances of entities 
(computers), each of which produce a distinct set of the same K 
features (performance counters), yet faults are only labeled in 
terms of the entire ensemble (i.e., the datacenter failed to re-
spond), and occur only rarely. In other words, the JK available 
features can be factored into J entities with K features each, while 
the labels are on the ensemble. 

Such problems abound in the computer systems world: not only 
are there a variety of problems involving multiple computers as 
above, there is the more local problem of a single computer with 
hundreds of processes, each of which has dozens of performance 
counters associated with it. Furthermore, as in many diagnosis 
scenarios, each suspected cause can be very expensive to pursue. 
Missing a true cause is also undesirable, but if we find and elimi-
nate other problems that may be masking it we can expect such 
missed causes to show up in later measurements. As such, while 
we still wish to achieve high detection rates, we are particularly 
concerned with minimizing the number of type I errors (false 
positives); this coupled with the small number of available labels 
makes such diagnosis tasks rather challenging.  

Fortunately, the faults in such scenarios often also have a factored 
nature. For instance, in a datacenter, we expect that while only 
certain machines may be failing, it is often the case that they are 
failing for the same reasons. Such machines may be more prone to 
failure due to a common manufacturing defect (insufficient fan 
speed, improper disk mount, etc.), which is exacerbated when a 
certain set of features (CPU load, disk I/O) reach a certain level. 
Similarly, for the single machine case, while there may be several 
rogue processes, they are likely causing the system to hang in a 
similar (but unknown) manner – by using too much memory, 
CPU, etc., which the user’s particular machine may be especially 
sensitive to.  

Without the factored structure, a sensible approach would be to 
apply logistic regression with JK parameters, i.e., one for each 
entity-feature combination, using the labels as a target, and look 
for high-magnitude values amongst the resulting parameters. Of 
course, given the large number of parameters, a great deal of data 
would be necessary to avoid overfitting. In our approach, we still 
begin with logistic regression, but in bilinear form (as introduced 
in [9]) with only J+K parameters: one � for each entity and one � 
for each feature. To further improve the interpretability of the 
parameter and reduce symmetries in the solution space, we con-
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strain the entity weights � to be positive. With many fewer pa-
rameters, it follows that we should be able to find meaningful 
parameter values (and hence far fewer false alarms) with far less 
data. Later, in Section 7, we develop an extension to the method 
that can model multiple modes of failure (multiple sets of � and � 
values). 

We develop a test for finding causes from amongst the estimated 
parameters by examining the distributions of parameter values 
over multiple rounds of true and false labels. We then use false 
discovery rate (FDR) analysis [21] to ensure an acceptably low 
rate of false positives. We call the entirety of the procedure BLR-
D, for bilinear logistic regression applied to diagnosis. We show 
empirical results on two data scenarios: synthetic data based on a 
model of a data center and real data from perceived hangs on an 
individual machine. We also compare our results against ordinary 
logistic regression (with L1 regularization and augmented with the 
same statistical tests) and show that our method can correctly 
identify causes with far fewer false alarms. 

2. RELATED WORK 
There is a long history of research in diagnosis problems in ma-
chine learning: the most prominent is the work on medical diag-
nosis as with the QMR-DT scenario (see, for instance [19, 13]). 
This and many other classically studied problems, though, tend to 
have a variety of causes (diseases) that lead to a set of common 
symptoms where the conditional probabilities of the symptoms 
given the diseases are known or can be estimated. The problem 
structure is thus inherently a graph and the natural approach is to 
apply inference or approximate inference in the hopes of deter-
mining the posterior over possible causes. The problems we are 
concerned with in this work do not have this structure, both in the 
sense that each entity produces an independent set of features, and 
in that we receive multiple instances of the data with an overall 
label as to the state of the ensemble. Another related area in this 
vein is multi-task learning (MTL) [3], in which the same observa-
tions (symptoms) are used to develop classifiers for multiple tasks 
(causes) that share a common representation; however, MTL re-
quires separate labels for the individual tasks (causes), whereas 
we only have labels on the ensemble (the presence or absence of 
an overall fault).  

There has also been much past work in using logistic regression 
for diagnosis problems that are not of a graphical form; this is 
particularly common in the medical domain. In many of these 
cases, researchers have interpreted regression parameters to iden-
tify causes as in [14], in which the authors are investigating the 
causes of spinal problems. To determine the statistical signifi-
cance of these parameters, Wald’s test is typically used, which 
computes a statistic on a single maximum likelihood estimate of 
the parameters from the data.   

In terms of our methods, we are not the first to explore the use of 
bilinear structure in logistic regression problems. Dyrholm et al. 
[9] worked out the bilinear form for classification problems in-
volving brain signals; they referred to it as bilinear discriminant 
analysis since their goal was classification. Each trial would con-
tain J sensors producing K timepoints of data; their goal was to 
correctly classify whether the trial contained a stimulus or not. 
Our work, on the other hand, applies bilinear logistic regression to 
factored diagnosis problems, where the goal is not accurate classi-
fication but instead to determine the parameters that are likely to 
be responsible for the ensemble-level faults. In order to make the 
results more interpretable and to reduce symmetries amongst the 
possible solutions, we have adjusted the formulation so that the 

entity weights are constrained to be positive. We also construct a 
statistical test to determine when a parameter should be consid-
ered meaningful, and finally apply FDR analysis to determine 
appropriate significance levels for that test. Our contribution, 
then, is this overall technique, which we call BLR-D, the applica-
tion of constrained bilinear logistic regression to diagnosis prob-
lems.  

There has also been a variety of work in the systems world on 
diagnosing problems based on fault reports. In addition to algo-
rithmic innovations, such work has introduced techniques for 
generating more useful features [17, 22, 23] and enabling hypoth-
eses to be cheaply tested through sandboxing techniques [20]. The 
algorithmic techniques in this prior work have included hand-
coded heuristics [11], hierarchical clustering [5], signal processing 
techniques [1], metric attribution [6], Bayesian techniques [24], 
factor graphs [15] and others. Some of the problems considered in 
this prior work can be modeled as a mapping of potential causes 
to features, e.g., determining which configuration setting is re-
sponsible for a certain application failure [24]. However, we are 
not aware of any prior technique that takes advantage of factora-
ble data scenarios as we do here. 

3. BILINEAR LOGISTIC REGRESSION 
Since we have J entities (each with its associated ��) that each 
produce K features (each with its associated ��), we have a total 
of JK features �	
� for each i of N samples; we begin by normaliz-
ing all features to have unit variance and zero mean. We also have 
N labels �
 ��� which we wish to explain with the model. As in 
ordinary logistic regression (see, for instance, [2]), we define a 
probability model for the labels as follows: 

���	� � �
� � ���� � ���	� 

In the bilinear formulation, the weights for each feature contain 
both an entity specific (�) and a feature specific (�) weight:  

�	 ����
���	
�
�


� � 

where � is a bias term. In order to constrain the entity parameters �
 to be positive, we parameterize them as the square of a corres-
ponding �
, i.e., �
 � �
 . While it is more traditional to do such a 
parameterization via the monotonic !"#$�
% function, since there 
is then a unique mapping between the two parameters, we found 
empirically that this approach makes it difficult for the �
 to reach 
zero as it requires �
 to go to &'. Our approach remedies this 
problem; furthermore, while there are now two possible values for �
 for a given �
, we are only interested in the uniqueness of the 
latter – it is the �
 that we wish to interpret. 

We can express the total likelihood of all the observed data as 

��(� �)$���	�%*�$� & ���	�%
�*�
	

 

and the negative log likehood (NLL) as 

& +,-��(� � &��	 +,- ���	�.
	

&��� & �	� +,-�� & ���	��.
	

 

Our goal is now to minimize the NLL; to do this, we need the 
gradients with respect to each of the parameters, �
, ��, and �. 
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We first note that the gradient with respect to any parameter, e.g., �
, can be written via the chain rule: 

/011
/2� ��/011

/344
. /34/��

/��/2� ���5�34� & �4�
4

. /34/�� .
/��/2� 

We thus only need to find the partials of �	 with respect to the 
parameters, which are as follows: 

6�	6�
 �����	
�
�

....................../��/2� � 7�
....
6�	6�� ���
�	
�



......................6�	6� � � 

Given these partials, we perform the minimization of the NLL 
with respect to the J+K+1 parameters using the L-BFGS method 
for quasi-Newton optimization [18]. 

Notice that the bilinear form is no longer strictly convex even 
with our positive constraint for the �
: there are now a continuum 
of solutions which provide alternate and equivalent NLL values. 
For instance, we could reduce all � values by half and double all 
the � values to achieve the same solution. However, this will not 
adversely affect our gradient descent approach, as moving along 
such a continuum would always result in a zero gradient, and if 
the smallest possible gradient were zero L-BFGS would termi-
nate. Thus we expect to land at some point along the optimal con-
tinuum; to achieve consistency between trials, we normalize the 
final � parameters by the sum of their values and scale the � val-
ues accordingly. 

4. TESTING PARAMETERS FOR SIGNIF-
ICANCE 
Once we have optimized the parameters, there still remains the 
question of whether a particular �
 or �� is significant. Because 
we wish to operate in regimes with small amounts of data with 
respect to the number of features, we expect some degree of over-
fitting, and as such a simple threshold would be a poor option. As 
a result, we seek a statistical test to distinguish meaningful param-
eters from noise. 

For this purpose, we look to the work of Friedman et al. [12] on 
estimating the significance of proposed links in a learned Bayesi-
an network. In their work, the authors used Efron’s Bootstrap 
[10], i.e., they resampled their data with replacement, in order to 
get a distribution over whether a given link was deemed present or 
absent; they then made the decision to keep a link when the prob-
ability of the link occurring under this method was above a 
threshold. 

In our case, the algorithm produces not a binary answer but a 
continuous parameter; comparing it to zero is not inherently 
meaningful. Instead, we draw a first population from the distribu-
tion over each estimated parameter value with the true labels us-
ing the Bootstrap, as well as a second population from the distri-
bution over the values with sets of randomly permuted labels (i.e., 
null distributions). We then compare the two populations to see 
with what probability they are coming from different distribu-
tions. If the populations are indeed different with sufficient statis-
tical significance and the mean parameter value from the true 
labels is larger (in absolute value), we declare that the candidate 
parameter is among the causes of the observed faults. Because we 
do not know that the two populations will have normal distribu-
tions or even the same variances, it is not appropriate to use the 

standard Student’s t-test. Instead, we use the non-parametric two-
tailed Mann-Whitney U-test [7], which makes no assumptions 
about the underlying distributions. Like the t-test, this test also 
returns a 8 value, the probability with which the two populations 
come from the same distribution. The smaller this 8 value is, the 
greater our confidence that the populations are distinct. When the 
value is below a threshold, we declare the parameter to be signifi-
cant; we discuss how to pick this threshold in the next section. 

Such statistical tests come at substantial computational cost: by 
making multiple estimates of the parameters under true and false 
labels, we incur 40 times the cost in our experiments (20 rounds 
of each). The reader may wonder whether one could not simply 
apply a threshold to the parameter value from a single round and 
achieve the same results. To show the advantages of the statistical 
method, we trace out the ROC curves for this approach (varying 
the significance level) vs. choosing a simple threshold (varying 
the threshold) on the baseline conditions from our datacenter ex-
periments in Figure 1 below. While expensive, it is clear that there 
is a substantial advantage to using the statistical approach, both in 
terms of detecting causes and in reducing false alarms. 

 

Figure 1. ROC for BLR method using proposed statistical 
tests (BLR-D, blue +) and a simple threshold (BLR-threshold, 

red o) under the baseline condition averaged over 10 trials. 

5. COMPUTING THE FALSE DISCOVERY 
RATE 
For our experiments with synthetic data, we know the true causes, 
and as such can report on the detection rate and false alarms from 
the algorithm. In general, though, we need another means to 
measure performance when we do not know the causes a priori. 
Fortunately, our problem coincides well with the recent work in 
biostatistics on estimating the false discovery rate (FDR) for an 
algorithm [21,16]. As in their work, we have the challenge of 
reporting significance on a large number of parameters as well as 
the concerns over the expense of investigating a large number of 
false alarms. They describe their approach in terms of finding 9:;�<� for algorithm a, where a reports whether parameters are 
significant. This FDR quantity is the average number of parame-
ters falsely reported as significant 9�<� under null distributions := (i.e., sets of false labels) divided by the average number of 
parameters reported with true labels, >�<�. The denominator is 
commonly approximated by a single value on the dataset of inter-
est, ?�:@ <�, which is the number of parameters reported by a as 
being significant. The distributions := are then created by assign-
ing random labels to the data. Following [22], we have: 
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The resulting quantity tells us what fraction of the parameters 
reported as significant that we can expect to be false alarms. Ideal-
ly we want this quantity to be close to zero as possible. In prac-
tice, a user of FDR will tune the parameters of the algorithm (in 
our case, this is how we set the threshold for the 8 value of the 
Mann-Whitney U test) in the hopes of achieving a minimal FDR 
while still producing a non-empty set of results for the true labels, 
i.e., ?�:@ <�>0. If a low FDR is not achievable, it is likely that the 
algorithm a cannot produce reliable results for the given dataset. 

6. EXPERIMENTS 
To illustrate our technique, we perform two sets of experiments: 
the first set is on synthetic data generated by a model of a datacen-
ter, in which we can measure true detection rates and false posi-
tives; the second is from real data on process behavior on a per-
sonal computer. 

6.1 Machines in a Datacenter 
Datacenters have recently received enormous attention in the 
software industry for their ability to deliver compelling services. 
Inside the datacenters, these services run on large sets of machines 
with homogeneous software, though they do not always have 
homogeneous roles: a few machines may provide some form of 
coordination function for other machines in the pool. Some of the 
most well-known examples of such software are BigTable [4] and 
Dynamo [8], storage services that runs the same piece of software 
across a large number of machines. On each of the J machines, 
there are K features measuring such aspects as CPU, network, and 
disk utilization. To an external observer, the success or failure of 
one of these systems to meet a Service Level Agreement (SLA) 
will manifest itself as a label on the entire ensemble.  

We developed a synthetic model that captures the characteristics 
of such datacenter systems. We have used this synthetic model for 
this first set of results so that we can manipulate individual pa-
rameters and report accuracies with respect to the true causes. 
This also gives us an opportunity to make the data public, so that 
future researchers can test their own models against it. The da-
tasets and an explanation of their format are available at: 

http://research.microsoft.com/~sumitb/blrd 

In the baseline system, there are 30 machines with 30 features 
each; this means there are 900 features for each timestep. For each 
feature, we generate zero-mean, normally distributed values; the 
variance for each feature is separately drawn from a uniform dis-
tribution for each dataset. We select (as a baseline) five machines 
to be “fault-prone” and we select five features to be “fault-
causing.” We then generate all features for all machines for each 
timestep; if any of the “fault-prone” machines in the ensemble has 
a “fault-causing” feature that is greater than two standard devia-
tions from zero, then with probability 8KLMNO (0.8 in the baseline) 
an SLA violation is generated for the datacenter. The baseline 
dataset contains 1000 labeled samples of data with balanced num-
bers of positive and negative examples. 

In each of the three experiments below, we varied one of the pa-
rameters from the baseline. For each unique parameter setting we 
produced 10 synthetic trials. All values displayed in the figures 
below are averaged over the ten corresponding trials to smooth the 
effects of individual variations. For each setting, we then comput-
ed the distributions of all parameters under false and true labels 

values as described in Section 4 over 20 rounds each with a Boot-
strap fraction of 0.8; we then used the Mann-Whitney test on each 
parameter with a 8 value of 0.01 (for BLR-D) and 0.001 (LR-D). 
We chose these particular values as they tended to give commen-
surate detection performance for both methods. 

In all experiments, the true j fault-prone machines and k fault-
causing features result in j+k significant features for BLR-D to 
detect, whereas for LR-D there are jk significant features. The 
detection rates reported are in terms of these total numbers. We 
also report the number of false positives, i.e., the number of pa-
rameters incorrectly identified as significant, as opposed to the 
probability of false alarms, to illustrate the true cost to the analyst 
of investigating these false leads. For comparison, we show a 
traditional ROC for the baseline parameters in Figure 2 below. 
BLR-D still performs better in terms of probabilities, but the real 
costs of LR-D become clear in Figures 3-5. 

 

Figure 2. Traditional ROC comparing our method, BLR-D 
(blue +), to LR-D (red o) showing probabilities of false alarms 
for the baseline parameter values; later figures show the num-

ber of false alarms to illustrate the true cost of investigating 
false leads.  

6.1.1 Varying the Number of Samples 
The first experiment involved varying the number of samples for 
the dataset; the results are shown in Figure 3. In this case, we took 
these samples from a larger set of generated samples so that we 
could have a balanced number of positive and negative examples. 
As we would expect, increasing the number of samples results in a 
higher probability of detecting the true culprits for both methods.  
However, our method achieves similar levels of detection to LR-D 
with far fewer numbers of false alarms.   

��
�
��
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��	

�
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��
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�
��
��
�
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Figure 3. Detection rate for the true causes of datacenter 
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of labeled samples. 

6.1.2 Varying the Number of Fault-Prone Machines 
The second experiment involved changing how many of the 30 
machines in the baseline datacenter were prone to having faults 
while maintaining a fixed number of (balanced) samples. This 
problem becomes more difficult as more machines become fault-
prone, as there are more possible (true) causes that each fault can 
be attributed to, and thus we see fewer faults for each individual 
cause.  In Figure 4, we see an expected decline in detection per-
formance for both methods as the number of fault-prone machines 
increases, but again our method has a much smaller number of 
falsely identified causes. 

 

 

Figure 4. Detection rate for the true causes of datacenter 
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of fault-prone machines. 

6.1.3 Varying the Number of Machines in the Data-
center 
In this experiment, we increased the number of machines in the 
datacenter while keeping the number of (balanced) labeled sam-
ples constant. This made things increasingly difficult as there 
were more opportunities to overfit to the data. As the number of 
machines increases, the number of parameters for our method 
increases as J+K and as JK for LR-D. As a result, with 95 ma-
chines in the datacenter, our method had 125 possible causes to 
contend with, while LR-D had all 2850 to sort out. This resulted 
in a linear increase in false alarms for LR-D with the number of 
machines (see Figure 5). 

�
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�
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Figure 5. Detection rate for the true causes of datacenter 
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of machines in the datacenter. 

For this experiment, we chose a higher point in the ROC curve for 
BLR-D (8 P QR�) to show that we can achieve a higher accuracy 
than LR-D while still producing many fewer false alarms.  At our 
standard setting of 8 P QRQ� for BLR-D on this experiment, the 
detection rate falls by about 10% (absolute) on average, but the 
average number of false alarms drops by 66%, from 15 to 5. 

6.2 Processes on a Machine 
The second scenario we considered was diagnosing user-reported 
machine hangs. Based on well-known causes of unresponsiveness 
problems (such as swapping), we created a process called WhyS-
lowFrustrator that occasionally and intentionally caused such 
unresponsiveness by increasing CPU, memory, and IO loads. The 
user generated a label by pressing a hotkey whenever the machine 
became unresponsive, which brought up a labeling UI (the WhyS-
low process). Our dataset (from one user) is particularly difficult 
in that labels are few and far between: over two months and 
86,400 samples, there were only 63 positive labels, yet there were 
104 active processes, each with 28 features, for a total of 2,912 
features per timestep. To add to the difficulty, the user did not 
press the key for all instances (the user wasn’t there, didn’t notice, 

etc.); there were also cases when he did press the key but WhyS-
lowFrustrator was not active (i.e., he was frustrated by some other 
process). 

    

 

Figure 6. Learned entity weights (left) and feature weights 
(right) for processes on a machine under true labels (black x) 

and false labels (red o) of system hangs. 

We sampled 100 negative examples per positive example, result-
ing in 6,363 samples. We then performed BLR-D over 20 rounds 
(with a bootstrap fraction of 0.99 given the sparsity of positive 
labels) for the true labels as well as the false labels. Computing 
the FDR then meant doing the same procedure, now for multiple 
rounds of :I, i.e., data with false labels. We then adjusted the 
threshold on the p value from the Mann-Whitney test until we 
achieved the smallest possible FDR while maintaining a non-
empty set of identified causes for the true labels. In our data, we 
were able to reduce the FDR to zero with a 8 value of 0.02 while 
still identifying three entities as causes under the true labels. 

The mean estimated entity weights and feature weights are shown 
in Figure 6. Only WhySlowFrustrator, Presentation-FontCache, 
and WhySlow were identified as causes at the required signifi-
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cance level (8 P QRQ7), as well as nine features, all related to 
memory, CPU, and IO utilization. We know that WhySlowFrus-
trator is a true cause, and the selected features correspond well to 
its modes of behavior. WhySlow is a classic case of correlation vs. 
causation (GUI appearing when the hotkey was pressed). Presen-
tationFontCache was unexpected: this is a Windows process 
which often takes up a significant amount of memory. It is possi-
ble that the large amount of swapping caused by WhySlowFrus-
trator may have resulted in this process being consistently 
swapped out; it is also possible that it was an independent source 
of frustration. Even if we consider it to be an error, though, this 
experiment shows that our method can identify true causes of 
problems in real-world scenarios with low numbers of false 
alarms. 

7. EXTENDING BLR-D TO MULTIPLE 
MODES 
As we discussed earlier, BLR-D works best for situations where 
there are multiple entities at fault that are failing in the same way. 
But what happens if there are multiple modes of failures for dif-
ferent subsets of entities? Consider a case where one set of ma-
chines has a problem when the network I/O is too high and disk 
I/O too low, and another has a problem when the disk I/O and 
CPU usage are too high. In our representation above, both condi-
tions would have to be represented in the same set of �’s and �’s; 
since no assignment of values could cover both, the best “com-
promise” fit might be achieved by snapping to one of these 
modes, treating the other as unexplained noise, or worse yet by 
settling on other (erroneous) parameter values. Fortunately, a 
small extension to our method can cover such situations, at the 
expense of additional free parameters and identifiability issues. 

Remember that the core of our formulation is simple logistic re-
gression but with a parametric form for the JK weights: if we were 
to index the parameters as a single list, the weight for feature �
ST� would be �
��. Imagine now that we put all of the weights 
into a J by K matrix U, where V
� � �
��.  Representing the 
vectors of parameters now as � and .�, we can express this as 

U � ��W 

We are thus forming a rank-1 model of the underlying U. This 
gives us the greatest parsimony of description, but we can easily 
extend this to higher rank models: 

U � �X�XW � �
�
W �Y 

Or, more generally,  

U ���N�NW � Z[\
N

 

Where the +th column of the rank-] matrices Z and [ are the vec-
tors of parameters �N and �N respectively. This expands our over-
all model to be 

8��	� � ���	�  

�	 �����N
�N��	
�
�
N

� � 

With each new mode l, we increase the number of parameters by 
J+K, but we also allow for an additional mode of fault behavior. 
In this way, we can increase the number of parameters from  J+K 
to JK  by steps of J+K, depending on our modeling needs. The 
partials remain mostly the same, though there are now + times as 
many: 

6�	6�N
 ���N��	
�
�

....................../�N
/2N
 � 7�N
....
6�	6�N� ���N
�	
�



......................6�	6� � � 

We can apply the same optimization approach as in Section 4 to 
estimate the parameters and then normalize each column of Z by 
its sum (and multiply the corresponding column of [ by that sum). 
However, there is a substantially increased challenge for identifi-
ability due to the multiple modes: if we perform the multiple 
bootstrap runs required by the BLR-D procedure, we cannot as-
sume the same modes will be assigned to the same index + each 
time.  

There are a variety of approaches by which we could attempt to 
find the correspondence between the modes �N�NW; the simplest 
would be to choose assignments by minimizing distance measures 
between them. Another approach, in analogy to the singular value 
decomposition, would be to order the modes in terms of their 
explanatory power (their ability to reduce the NLL). We could 
thus greedily select modes in decreasing order of additional ex-
planatory power. Missing a single mode in a scheme like this, 
however, could wreak havoc on the remaining correspondences. 

Alternatively, since Z is constrained to be positive, if a given enti-
ty ^ is responsible for some faults, on each run there should be 
some columns in row ^ of Z that would have a value significantly 
greater than 0 (though these could be different columns on differ-
ent runs). One approach would then be to take a sum over the 
columns of Z (�_ � Z ` �), and then perform the statistical tests 
described in Section 4 on the elements of the resulting vector. 
This approach would only allow us to identify fault-causing enti-
ties and not features, but the underlying model would be able to 
account for the multiple modes and not be forced into compromise 
solutions as described above. 

8. DISCUSSION 
For certain applications, such as the systems scenarios presented 
in the Experiments section, a factored diagnosis model can be 
quite natural. For those cases, our method of using a bilinear form 
of logistic regression paired with (1) constraining the entity 
weights to be positive, (2) testing for the significance of individu-
al parameters, and (3) using the FDR to find appropriate thresh-
olds of significance proved to be an effective means of providing 
interpretable results and diagnosing causes with very low rates of 
false positives. 

In our future work, we plan to gather machine data from datacen-
ters to see how well our method works under real-world condi-
tions. We also wish to explore the behavior of the multimodal 
extension of BLR-D, particularly in terms of resolving its identifi-
ability issues, and considering the tradeoff of its greater explana-
tory power with its greater complexity. 
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