
BLR-D: Applying Bilinear Logistic Regression to Factored
Diagnosis Problems

Sumit Basu
Microsoft Research
One Microsoft Way

Redmond, WA
+1 425 706-7971

sumitb
@microsoft.com

John Dunagan
Microsoft

One Microsoft Way
Redmond, WA

+1 425 705-8577

jdunagan
@microsoft.com

Kevin Duh
NTT Labs

2-4 Hikaridai, Seika-cho
Kyoto, Japan

+81 774 93-5315

kevin.duh
@lab.ntt.co.jp

Kiran-Kumar
Muniswamy-Reddy

Harvard University
Cambridge, MA 02138

+1 617 699-4384
kiran

@eecs.harvard.edu

ABSTRACT
In this paper, we address a pattern of diagnosis problems in which
each of J entities produces the same K features, yet we are only
informed of overall faults from the ensemble. Furthermore, we
suspect that only certain entities and certain features are leading to
the problem. The task, then, is to reliably identify which entities
and which features are at fault. Such problems are particularly
prevalent in the world of computer systems, in which a datacenter
with hundreds of machines, each with the same performance
counters, occasionally produces overall faults. In this paper, we
present a means of using a constrained form of bilinear logistic
regression for diagnosis in such problems. The bilinear treatment
allows us to represent the scenarios with J+K instead of JK pa-
rameters, resulting in more easily interpretable results and far
fewer false positives compared to treating the parameters inde-
pendently. We develop statistical tests to determine which fea-
tures and entities, if any, may be responsible for the labeled faults,
and use false discovery rate (FDR) analysis to ensure that our
values are meaningful. We show results in comparison to ordinary
logistic regression (with L1 regularization) on two scenarios: a
synthetic dataset based on a model of faults in a datacenter, and a
real problem of finding problematic processes/features based on
user-reported hangs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Parameter learning;
I.5.1 [Pattern Recognition]: Models – Statistical; G.3 [Probabil-
ity and Statistics]: Nonparametric statistics; C.4 [Computer
Systems Organization] Performance of Systems – Reliability.

General Terms
Algorithms, Reliability, Measurement, Performance, Experimen-
tation.

Keywords
Bilinear Models, Logistic Regression, Bilinear Logistic Regres-
sion, Diagnosis Problems, Factored diagnosis, Non-Parametric
Statistics, False Discovery Rate Analysis.

1. INTRODUCTION
Diagnosis problems appear everywhere in society: determining
what disease an individual might have, determining who is re-
sponsible for a crime, and determining what may be causing a
complex datacenter to fail are all important scenarios. In some
instances, such as the datacenter, there are J instances of entities
(computers), each of which produce a distinct set of the same K
features (performance counters), yet faults are only labeled in
terms of the entire ensemble (i.e., the datacenter failed to re-
spond), and occur only rarely. In other words, the JK available
features can be factored into J entities with K features each, while
the labels are on the ensemble.

Such problems abound in the computer systems world: not only
are there a variety of problems involving multiple computers as
above, there is the more local problem of a single computer with
hundreds of processes, each of which has dozens of performance
counters associated with it. Furthermore, as in many diagnosis
scenarios, each suspected cause can be very expensive to pursue.
Missing a true cause is also undesirable, but if we find and elimi-
nate other problems that may be masking it we can expect such
missed causes to show up in later measurements. As such, while
we still wish to achieve high detection rates, we are particularly
concerned with minimizing the number of type I errors (false
positives); this coupled with the small number of available labels
makes such diagnosis tasks rather challenging.

Fortunately, the faults in such scenarios often also have a factored
nature. For instance, in a datacenter, we expect that while only
certain machines may be failing, it is often the case that they are
failing for the same reasons. Such machines may be more prone to
failure due to a common manufacturing defect (insufficient fan
speed, improper disk mount, etc.), which is exacerbated when a
certain set of features (CPU load, disk I/O) reach a certain level.
Similarly, for the single machine case, while there may be several
rogue processes, they are likely causing the system to hang in a
similar (but unknown) manner – by using too much memory,
CPU, etc., which the user’s particular machine may be especially
sensitive to.

Without the factored structure, a sensible approach would be to
apply logistic regression with JK parameters, i.e., one for each
entity-feature combination, using the labels as a target, and look
for high-magnitude values amongst the resulting parameters. Of
course, given the large number of parameters, a great deal of data
would be necessary to avoid overfitting. In our approach, we still
begin with logistic regression, but in bilinear form (as introduced
in [9]) with only J+K parameters: one � for each entity and one �
for each feature. To further improve the interpretability of the
parameter and reduce symmetries in the solution space, we con-

Reprinted from the proceedings of SLAML’11 with permission.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLAML 2011, October 23, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0978-3/11/10…$10.00

31

strain the entity weights � to be positive. With many fewer pa-
rameters, it follows that we should be able to find meaningful
parameter values (and hence far fewer false alarms) with far less
data. Later, in Section 7, we develop an extension to the method
that can model multiple modes of failure (multiple sets of � and �
values).

We develop a test for finding causes from amongst the estimated
parameters by examining the distributions of parameter values
over multiple rounds of true and false labels. We then use false
discovery rate (FDR) analysis [21] to ensure an acceptably low
rate of false positives. We call the entirety of the procedure BLR-
D, for bilinear logistic regression applied to diagnosis. We show
empirical results on two data scenarios: synthetic data based on a
model of a data center and real data from perceived hangs on an
individual machine. We also compare our results against ordinary
logistic regression (with L1 regularization and augmented with the
same statistical tests) and show that our method can correctly
identify causes with far fewer false alarms.

2. RELATED WORK
There is a long history of research in diagnosis problems in ma-
chine learning: the most prominent is the work on medical diag-
nosis as with the QMR-DT scenario (see, for instance [19, 13]).
This and many other classically studied problems, though, tend to
have a variety of causes (diseases) that lead to a set of common
symptoms where the conditional probabilities of the symptoms
given the diseases are known or can be estimated. The problem
structure is thus inherently a graph and the natural approach is to
apply inference or approximate inference in the hopes of deter-
mining the posterior over possible causes. The problems we are
concerned with in this work do not have this structure, both in the
sense that each entity produces an independent set of features, and
in that we receive multiple instances of the data with an overall
label as to the state of the ensemble. Another related area in this
vein is multi-task learning (MTL) [3], in which the same observa-
tions (symptoms) are used to develop classifiers for multiple tasks
(causes) that share a common representation; however, MTL re-
quires separate labels for the individual tasks (causes), whereas
we only have labels on the ensemble (the presence or absence of
an overall fault).

There has also been much past work in using logistic regression
for diagnosis problems that are not of a graphical form; this is
particularly common in the medical domain. In many of these
cases, researchers have interpreted regression parameters to iden-
tify causes as in [14], in which the authors are investigating the
causes of spinal problems. To determine the statistical signifi-
cance of these parameters, Wald’s test is typically used, which
computes a statistic on a single maximum likelihood estimate of
the parameters from the data.

In terms of our methods, we are not the first to explore the use of
bilinear structure in logistic regression problems. Dyrholm et al.
[9] worked out the bilinear form for classification problems in-
volving brain signals; they referred to it as bilinear discriminant
analysis since their goal was classification. Each trial would con-
tain J sensors producing K timepoints of data; their goal was to
correctly classify whether the trial contained a stimulus or not.
Our work, on the other hand, applies bilinear logistic regression to
factored diagnosis problems, where the goal is not accurate classi-
fication but instead to determine the parameters that are likely to
be responsible for the ensemble-level faults. In order to make the
results more interpretable and to reduce symmetries amongst the
possible solutions, we have adjusted the formulation so that the

entity weights are constrained to be positive. We also construct a
statistical test to determine when a parameter should be consid-
ered meaningful, and finally apply FDR analysis to determine
appropriate significance levels for that test. Our contribution,
then, is this overall technique, which we call BLR-D, the applica-
tion of constrained bilinear logistic regression to diagnosis prob-
lems.

There has also been a variety of work in the systems world on
diagnosing problems based on fault reports. In addition to algo-
rithmic innovations, such work has introduced techniques for
generating more useful features [17, 22, 23] and enabling hypoth-
eses to be cheaply tested through sandboxing techniques [20]. The
algorithmic techniques in this prior work have included hand-
coded heuristics [11], hierarchical clustering [5], signal processing
techniques [1], metric attribution [6], Bayesian techniques [24],
factor graphs [15] and others. Some of the problems considered in
this prior work can be modeled as a mapping of potential causes
to features, e.g., determining which configuration setting is re-
sponsible for a certain application failure [24]. However, we are
not aware of any prior technique that takes advantage of factora-
ble data scenarios as we do here.

3. BILINEAR LOGISTIC REGRESSION
Since we have J entities (each with its associated ��) that each
produce K features (each with its associated ��), we have a total
of JK features �	
� for each i of N samples; we begin by normaliz-
ing all features to have unit variance and zero mean. We also have
N labels �
 ��� which we wish to explain with the model. As in
ordinary logistic regression (see, for instance, [2]), we define a
probability model for the labels as follows:

���	� � �
� � ���� � ���	�

In the bilinear formulation, the weights for each feature contain
both an entity specific (�) and a feature specific (�) weight:

�	 ����
���	
�
�

� �

where � is a bias term. In order to constrain the entity parameters �
 to be positive, we parameterize them as the square of a corres-
ponding �
, i.e., �
 � �
 . While it is more traditional to do such a
parameterization via the monotonic !"#$�
% function, since there
is then a unique mapping between the two parameters, we found
empirically that this approach makes it difficult for the �
 to reach
zero as it requires �
 to go to &'. Our approach remedies this
problem; furthermore, while there are now two possible values for �
 for a given �
, we are only interested in the uniqueness of the
latter – it is the �
 that we wish to interpret.

We can express the total likelihood of all the observed data as

��(� �)$���	�%*�$� & ���	�%
�*�
	

and the negative log likehood (NLL) as

& +,-��(� � &��	 +,- ���	�.
	

&��� & �	� +,-�� & ���	��.
	

Our goal is now to minimize the NLL; to do this, we need the
gradients with respect to each of the parameters, �
, ��, and �.

32

We first note that the gradient with respect to any parameter, e.g., �
, can be written via the chain rule:

/011
/2� ��/011

/344
. /34/��

/��/2� ���5�34� & �4�
4

. /34/�� .
/��/2�

We thus only need to find the partials of �	 with respect to the
parameters, which are as follows:

6�	6�
 �����	
�
�

....................../��/2� � 7�
....
6�	6�� ���
�	
�

......................6�	6� � �

Given these partials, we perform the minimization of the NLL
with respect to the J+K+1 parameters using the L-BFGS method
for quasi-Newton optimization [18].

Notice that the bilinear form is no longer strictly convex even
with our positive constraint for the �
: there are now a continuum
of solutions which provide alternate and equivalent NLL values.
For instance, we could reduce all � values by half and double all
the � values to achieve the same solution. However, this will not
adversely affect our gradient descent approach, as moving along
such a continuum would always result in a zero gradient, and if
the smallest possible gradient were zero L-BFGS would termi-
nate. Thus we expect to land at some point along the optimal con-
tinuum; to achieve consistency between trials, we normalize the
final � parameters by the sum of their values and scale the � val-
ues accordingly.

4. TESTING PARAMETERS FOR SIGNIF-
ICANCE
Once we have optimized the parameters, there still remains the
question of whether a particular �
 or �� is significant. Because
we wish to operate in regimes with small amounts of data with
respect to the number of features, we expect some degree of over-
fitting, and as such a simple threshold would be a poor option. As
a result, we seek a statistical test to distinguish meaningful param-
eters from noise.

For this purpose, we look to the work of Friedman et al. [12] on
estimating the significance of proposed links in a learned Bayesi-
an network. In their work, the authors used Efron’s Bootstrap
[10], i.e., they resampled their data with replacement, in order to
get a distribution over whether a given link was deemed present or
absent; they then made the decision to keep a link when the prob-
ability of the link occurring under this method was above a
threshold.

In our case, the algorithm produces not a binary answer but a
continuous parameter; comparing it to zero is not inherently
meaningful. Instead, we draw a first population from the distribu-
tion over each estimated parameter value with the true labels us-
ing the Bootstrap, as well as a second population from the distri-
bution over the values with sets of randomly permuted labels (i.e.,
null distributions). We then compare the two populations to see
with what probability they are coming from different distribu-
tions. If the populations are indeed different with sufficient statis-
tical significance and the mean parameter value from the true
labels is larger (in absolute value), we declare that the candidate
parameter is among the causes of the observed faults. Because we
do not know that the two populations will have normal distribu-
tions or even the same variances, it is not appropriate to use the

standard Student’s t-test. Instead, we use the non-parametric two-
tailed Mann-Whitney U-test [7], which makes no assumptions
about the underlying distributions. Like the t-test, this test also
returns a 8 value, the probability with which the two populations
come from the same distribution. The smaller this 8 value is, the
greater our confidence that the populations are distinct. When the
value is below a threshold, we declare the parameter to be signifi-
cant; we discuss how to pick this threshold in the next section.

Such statistical tests come at substantial computational cost: by
making multiple estimates of the parameters under true and false
labels, we incur 40 times the cost in our experiments (20 rounds
of each). The reader may wonder whether one could not simply
apply a threshold to the parameter value from a single round and
achieve the same results. To show the advantages of the statistical
method, we trace out the ROC curves for this approach (varying
the significance level) vs. choosing a simple threshold (varying
the threshold) on the baseline conditions from our datacenter ex-
periments in Figure 1 below. While expensive, it is clear that there
is a substantial advantage to using the statistical approach, both in
terms of detecting causes and in reducing false alarms.

Figure 1. ROC for BLR method using proposed statistical
tests (BLR-D, blue +) and a simple threshold (BLR-threshold,

red o) under the baseline condition averaged over 10 trials.

5. COMPUTING THE FALSE DISCOVERY
RATE
For our experiments with synthetic data, we know the true causes,
and as such can report on the detection rate and false alarms from
the algorithm. In general, though, we need another means to
measure performance when we do not know the causes a priori.
Fortunately, our problem coincides well with the recent work in
biostatistics on estimating the false discovery rate (FDR) for an
algorithm [21,16]. As in their work, we have the challenge of
reporting significance on a large number of parameters as well as
the concerns over the expense of investigating a large number of
false alarms. They describe their approach in terms of finding 9:;�<� for algorithm a, where a reports whether parameters are
significant. This FDR quantity is the average number of parame-
ters falsely reported as significant 9�<� under null distributions := (i.e., sets of false labels) divided by the average number of
parameters reported with true labels, >�<�. The denominator is
commonly approximated by a single value on the dataset of inter-
est, ?�:@ <�, which is the number of parameters reported by a as
being significant. The distributions := are then created by assign-
ing random labels to the data. Following [22], we have:

33

9:;�<� � A B9�<�>�<�C D
AE9�<�F
AE>�<�F D

G ?�:=@<�H .I=J

?�:@ <�

The resulting quantity tells us what fraction of the parameters
reported as significant that we can expect to be false alarms. Ideal-
ly we want this quantity to be close to zero as possible. In prac-
tice, a user of FDR will tune the parameters of the algorithm (in
our case, this is how we set the threshold for the 8 value of the
Mann-Whitney U test) in the hopes of achieving a minimal FDR
while still producing a non-empty set of results for the true labels,
i.e., ?�:@ <�>0. If a low FDR is not achievable, it is likely that the
algorithm a cannot produce reliable results for the given dataset.

6. EXPERIMENTS
To illustrate our technique, we perform two sets of experiments:
the first set is on synthetic data generated by a model of a datacen-
ter, in which we can measure true detection rates and false posi-
tives; the second is from real data on process behavior on a per-
sonal computer.

6.1 Machines in a Datacenter
Datacenters have recently received enormous attention in the
software industry for their ability to deliver compelling services.
Inside the datacenters, these services run on large sets of machines
with homogeneous software, though they do not always have
homogeneous roles: a few machines may provide some form of
coordination function for other machines in the pool. Some of the
most well-known examples of such software are BigTable [4] and
Dynamo [8], storage services that runs the same piece of software
across a large number of machines. On each of the J machines,
there are K features measuring such aspects as CPU, network, and
disk utilization. To an external observer, the success or failure of
one of these systems to meet a Service Level Agreement (SLA)
will manifest itself as a label on the entire ensemble.

We developed a synthetic model that captures the characteristics
of such datacenter systems. We have used this synthetic model for
this first set of results so that we can manipulate individual pa-
rameters and report accuracies with respect to the true causes.
This also gives us an opportunity to make the data public, so that
future researchers can test their own models against it. The da-
tasets and an explanation of their format are available at:

http://research.microsoft.com/~sumitb/blrd

In the baseline system, there are 30 machines with 30 features
each; this means there are 900 features for each timestep. For each
feature, we generate zero-mean, normally distributed values; the
variance for each feature is separately drawn from a uniform dis-
tribution for each dataset. We select (as a baseline) five machines
to be “fault-prone” and we select five features to be “fault-
causing.” We then generate all features for all machines for each
timestep; if any of the “fault-prone” machines in the ensemble has
a “fault-causing” feature that is greater than two standard devia-
tions from zero, then with probability 8KLMNO (0.8 in the baseline)
an SLA violation is generated for the datacenter. The baseline
dataset contains 1000 labeled samples of data with balanced num-
bers of positive and negative examples.

In each of the three experiments below, we varied one of the pa-
rameters from the baseline. For each unique parameter setting we
produced 10 synthetic trials. All values displayed in the figures
below are averaged over the ten corresponding trials to smooth the
effects of individual variations. For each setting, we then comput-
ed the distributions of all parameters under false and true labels

values as described in Section 4 over 20 rounds each with a Boot-
strap fraction of 0.8; we then used the Mann-Whitney test on each
parameter with a 8 value of 0.01 (for BLR-D) and 0.001 (LR-D).
We chose these particular values as they tended to give commen-
surate detection performance for both methods.

In all experiments, the true j fault-prone machines and k fault-
causing features result in j+k significant features for BLR-D to
detect, whereas for LR-D there are jk significant features. The
detection rates reported are in terms of these total numbers. We
also report the number of false positives, i.e., the number of pa-
rameters incorrectly identified as significant, as opposed to the
probability of false alarms, to illustrate the true cost to the analyst
of investigating these false leads. For comparison, we show a
traditional ROC for the baseline parameters in Figure 2 below.
BLR-D still performs better in terms of probabilities, but the real
costs of LR-D become clear in Figures 3-5.

Figure 2. Traditional ROC comparing our method, BLR-D
(blue +), to LR-D (red o) showing probabilities of false alarms
for the baseline parameter values; later figures show the num-

ber of false alarms to illustrate the true cost of investigating
false leads.

6.1.1 Varying the Number of Samples
The first experiment involved varying the number of samples for
the dataset; the results are shown in Figure 3. In this case, we took
these samples from a larger set of generated samples so that we
could have a balanced number of positive and negative examples.
As we would expect, increasing the number of samples results in a
higher probability of detecting the true culprits for both methods.
However, our method achieves similar levels of detection to LR-D
with far fewer numbers of false alarms.

��
�
��
��
��	

�
�	

��
�	
�
��
��
�

34

Figure 3. Detection rate for the true causes of datacenter
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of labeled samples.

6.1.2 Varying the Number of Fault-Prone Machines
The second experiment involved changing how many of the 30
machines in the baseline datacenter were prone to having faults
while maintaining a fixed number of (balanced) samples. This
problem becomes more difficult as more machines become fault-
prone, as there are more possible (true) causes that each fault can
be attributed to, and thus we see fewer faults for each individual
cause. In Figure 4, we see an expected decline in detection per-
formance for both methods as the number of fault-prone machines
increases, but again our method has a much smaller number of
falsely identified causes.

Figure 4. Detection rate for the true causes of datacenter
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of fault-prone machines.

6.1.3 Varying the Number of Machines in the Data-
center
In this experiment, we increased the number of machines in the
datacenter while keeping the number of (balanced) labeled sam-
ples constant. This made things increasingly difficult as there
were more opportunities to overfit to the data. As the number of
machines increases, the number of parameters for our method
increases as J+K and as JK for LR-D. As a result, with 95 ma-
chines in the datacenter, our method had 125 possible causes to
contend with, while LR-D had all 2850 to sort out. This resulted
in a linear increase in false alarms for LR-D with the number of
machines (see Figure 5).

�

���

���

���

���

�

� � � � � �� �� �� �� �� ��

������	�
	�����������	 ��!"���

������"��	#���	$��	������	�
	����������� 	
 ��!"���

35

Figure 5. Detection rate for the true causes of datacenter
faults (left) and number of falsely reported machines and fea-
tures (right) for BLR-D (blue +) and LR-D (red o) vs. a vary-

ing number of machines in the datacenter.

For this experiment, we chose a higher point in the ROC curve for
BLR-D (8 P QR�) to show that we can achieve a higher accuracy
than LR-D while still producing many fewer false alarms. At our
standard setting of 8 P QRQ� for BLR-D on this experiment, the
detection rate falls by about 10% (absolute) on average, but the
average number of false alarms drops by 66%, from 15 to 5.

6.2 Processes on a Machine
The second scenario we considered was diagnosing user-reported
machine hangs. Based on well-known causes of unresponsiveness
problems (such as swapping), we created a process called WhyS-
lowFrustrator that occasionally and intentionally caused such
unresponsiveness by increasing CPU, memory, and IO loads. The
user generated a label by pressing a hotkey whenever the machine
became unresponsive, which brought up a labeling UI (the WhyS-
low process). Our dataset (from one user) is particularly difficult
in that labels are few and far between: over two months and
86,400 samples, there were only 63 positive labels, yet there were
104 active processes, each with 28 features, for a total of 2,912
features per timestep. To add to the difficulty, the user did not
press the key for all instances (the user wasn’t there, didn’t notice,

etc.); there were also cases when he did press the key but WhyS-
lowFrustrator was not active (i.e., he was frustrated by some other
process).

Figure 6. Learned entity weights (left) and feature weights
(right) for processes on a machine under true labels (black x)

and false labels (red o) of system hangs.

We sampled 100 negative examples per positive example, result-
ing in 6,363 samples. We then performed BLR-D over 20 rounds
(with a bootstrap fraction of 0.99 given the sparsity of positive
labels) for the true labels as well as the false labels. Computing
the FDR then meant doing the same procedure, now for multiple
rounds of :I, i.e., data with false labels. We then adjusted the
threshold on the p value from the Mann-Whitney test until we
achieved the smallest possible FDR while maintaining a non-
empty set of identified causes for the true labels. In our data, we
were able to reduce the FDR to zero with a 8 value of 0.02 while
still identifying three entities as causes under the true labels.

The mean estimated entity weights and feature weights are shown
in Figure 6. Only WhySlowFrustrator, Presentation-FontCache,
and WhySlow were identified as causes at the required signifi-

36

cance level (8 P QRQ7), as well as nine features, all related to
memory, CPU, and IO utilization. We know that WhySlowFrus-
trator is a true cause, and the selected features correspond well to
its modes of behavior. WhySlow is a classic case of correlation vs.
causation (GUI appearing when the hotkey was pressed). Presen-
tationFontCache was unexpected: this is a Windows process
which often takes up a significant amount of memory. It is possi-
ble that the large amount of swapping caused by WhySlowFrus-
trator may have resulted in this process being consistently
swapped out; it is also possible that it was an independent source
of frustration. Even if we consider it to be an error, though, this
experiment shows that our method can identify true causes of
problems in real-world scenarios with low numbers of false
alarms.

7. EXTENDING BLR-D TO MULTIPLE
MODES
As we discussed earlier, BLR-D works best for situations where
there are multiple entities at fault that are failing in the same way.
But what happens if there are multiple modes of failures for dif-
ferent subsets of entities? Consider a case where one set of ma-
chines has a problem when the network I/O is too high and disk
I/O too low, and another has a problem when the disk I/O and
CPU usage are too high. In our representation above, both condi-
tions would have to be represented in the same set of �’s and �’s;
since no assignment of values could cover both, the best “com-
promise” fit might be achieved by snapping to one of these
modes, treating the other as unexplained noise, or worse yet by
settling on other (erroneous) parameter values. Fortunately, a
small extension to our method can cover such situations, at the
expense of additional free parameters and identifiability issues.

Remember that the core of our formulation is simple logistic re-
gression but with a parametric form for the JK weights: if we were
to index the parameters as a single list, the weight for feature �
ST� would be �
��. Imagine now that we put all of the weights
into a J by K matrix U, where V
� � �
��. Representing the
vectors of parameters now as � and .�, we can express this as

U � ��W

We are thus forming a rank-1 model of the underlying U. This
gives us the greatest parsimony of description, but we can easily
extend this to higher rank models:

U � �X�XW � �
�
W �Y

Or, more generally,

U ���N�NW � Z[\
N

Where the +th column of the rank-] matrices Z and [are the vec-
tors of parameters �N and �N respectively. This expands our over-
all model to be

8��	� � ���	�

�	 �����N
�N��	
�
�
N

� �

With each new mode l, we increase the number of parameters by
J+K, but we also allow for an additional mode of fault behavior.
In this way, we can increase the number of parameters from J+K
to JK by steps of J+K, depending on our modeling needs. The
partials remain mostly the same, though there are now + times as
many:

6�	6�N
 ���N��	
�
�

....................../�N
/2N
 � 7�N
....
6�	6�N� ���N
�	
�

......................6�	6� � �

We can apply the same optimization approach as in Section 4 to
estimate the parameters and then normalize each column of Z by
its sum (and multiply the corresponding column of [by that sum).
However, there is a substantially increased challenge for identifi-
ability due to the multiple modes: if we perform the multiple
bootstrap runs required by the BLR-D procedure, we cannot as-
sume the same modes will be assigned to the same index + each
time.

There are a variety of approaches by which we could attempt to
find the correspondence between the modes �N�NW; the simplest
would be to choose assignments by minimizing distance measures
between them. Another approach, in analogy to the singular value
decomposition, would be to order the modes in terms of their
explanatory power (their ability to reduce the NLL). We could
thus greedily select modes in decreasing order of additional ex-
planatory power. Missing a single mode in a scheme like this,
however, could wreak havoc on the remaining correspondences.

Alternatively, since Z is constrained to be positive, if a given enti-
ty ^ is responsible for some faults, on each run there should be
some columns in row ^ of Z that would have a value significantly
greater than 0 (though these could be different columns on differ-
ent runs). One approach would then be to take a sum over the
columns of Z (�_ � Z ` �), and then perform the statistical tests
described in Section 4 on the elements of the resulting vector.
This approach would only allow us to identify fault-causing enti-
ties and not features, but the underlying model would be able to
account for the multiple modes and not be forced into compromise
solutions as described above.

8. DISCUSSION
For certain applications, such as the systems scenarios presented
in the Experiments section, a factored diagnosis model can be
quite natural. For those cases, our method of using a bilinear form
of logistic regression paired with (1) constraining the entity
weights to be positive, (2) testing for the significance of individu-
al parameters, and (3) using the FDR to find appropriate thresh-
olds of significance proved to be an effective means of providing
interpretable results and diagnosing causes with very low rates of
false positives.

In our future work, we plan to gather machine data from datacen-
ters to see how well our method works under real-world condi-
tions. We also wish to explore the behavior of the multimodal
extension of BLR-D, particularly in terms of resolving its identifi-
ability issues, and considering the tradeoff of its greater explana-
tory power with its greater complexity.

9. REFERENCES
[1] Aguilera, M., Mogul, J., Wiener, J., Reynolds, P., and Muthi-

tacharoen, A. “Performance Debugging for Distributed Sys-
tems of Black Boxes.” In Symp. on Operating Sys. Principles
(SOSP), 2003.

[2] Bishop, C.M. Pattern Recognition and Machine Learning.
New York: Springer, 2006.

[3] Caruana, R. “Multitask Learning.” Machine Learning 28:
41-76. 1997.

37

[4] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D.,
Burrows, M., Chandra, T., Fikes, A., and Gruber, R.
“Bigtable: A Distributed Storage System for Structured Da-
ta.” In Operating Sys. Design and Implementation (OSDI),
2006.

[5] Chen, M., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E.
“Pinpoint: Problem Determination in Large, Dynamic Inter-
net Services.” In Dependable Sys. and Networks (DSN),
2002.

[6] Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T.,
and Fox, A. “Capturing, Indexing, Clustering, and Retrieving
System History.” In Symp. on Operating Sys. Principles
(SOSP), 2005.

[7] Conover, W. J. Practical Nonparametric Statistics (3rd Ed.).
New York: Wiley, 1980.

[8] DeCandia, G., Hastorun, D., Jampani, H., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., and Vogels, W. “Dynamo: Amazon's Highly Available
Key-value Store.” In Symposium on Operating Systems Prin-
ciples (SOSP), 2007.

[9] Dyrholm, M., Christoforou, C., and Parra, L. C. “Bilinear
Discriminant Component Analysis.” JMLR 8: 1097-1111.
2007.

[10] Efron, B. and Tibshirani, R. An Introduction to the Boot-
strap. New York: Chapman & Hall, 1993.

[11] Engler, D. and Ashcraft, K. “RacerX: Effective, Static Detec-
tion of Race Conditions and Deadlocks.” In Symposium on
Operating Systems Principles (SOSP), 2003.

[12] Friedman, N., Goldszmidt, M., and Wyner, A. “On the Ap-
plication of the Bootstrap for Computing Confidence Fea-
tures of Induced Bayesian Networks.” In Proceedings of Ar-
tificial Intelligence and Statistics, 1999.

[13] Jaakkola, T. and Jordan, M. I. “Variational Probabilistic
Inference and the QMR-DT Network.” Journal of AI Re-
search 10, pp. 291-322. 1999.

[14] Konno, S., Hayashino, Y., Fukuhara, S., Kikuchi, S.,
Kaneda, K., Seichi, A., Chiba, K., Satomi, K., Nagata, K.,
and Kawai, S. “Development of a Clinical Diagnosis Support
Tool to Identify Patients with Lumbar Spinal Stenosis.” Eur.
Spine Journal 16 (11): 1951-1957. Nov. 2007.

[15] Kremenek, T., Twohey, P., Back, G., Ng, A., and Engler, D.
“From Uncertainty to Belief: Inferring the Specification
Within.” In Operating Sys. Design and Implementation
(OSDI), 2006.

[16] Listgarten, J. and Heckerman, D. “Determining the Number
of Non-Spurious Arcs in a Learned DAG Model.” In Proeed-
ings of UAI, 2007.

[17] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.,
and Zhou, Y. “MUVI: Automatically Inferring Multi-
variable Access Correlations and Detecting Related Semantic
and Concurrency Bugs.” In Symposium on Operating Sys-
tems Principles (SOSP), 2007.

[18] Nocedal, J. “Updating Quasi-Newton Matrices with Limited
Storage.” Mathematics of Computation 35: 773-782. 1980.

[19] Shwe, M., Middleton, B., Heckerman, D., Henrion, M.,
Horvitz, E., Lehmann, H., and Cooper, G. “Probabilistic Di-
agnosis Using a Reformulation of the INTERNIST-1/QMR
Knowledge Base.” Methods of Information in Medicine (30):
241-255. 1991.

[20] Srinivasan, S., Kandula, S., Andrews, C., and Zhou, Y.
“Flashback: A Lightweight Extension for Rollback and De-
terministic Replay for Software Debugging.” In USENIX An-
nual Technical Conference, 2004.

[21] Storey, J. D. and Tibshirani, R. “Statistical Significance for
Genomewide Studies.” In Proc Natl Acad Sci USA,
100(16):9440–9445, August 2003.

[22] Tan, L., Yuan, D., Krishna, G., and Zhou, Y. /*iComment:
Bugs or Bad Comments?*/. In Symposium on Operating Sys-
tems Principles (SOSP), 2007.

[23] Verbowski, C., Kiciman, E., Kumar, A., Daniels, B., Lu, S.,
Lee, J., Wang, Y., and Roussev, R. “Flight Data Recorder:
Monitoring Persistent-state Interactions to Improve Systems
Management.” In Operating Systems Design and Implemen-
tation (OSDI), 2006.

[24] Wang, H., Platt, J., Chen, Y., Zhang, R., and Wang, Y. “Au-
tomatic Misconfiguration Troubleshooting with PeerPres-
sure.” In Operating Sys. Design and Implementation (OSDI),
2004.

38

