
An MDP-Based Recommender System

Guy Shani
Department of Computer Science

Ben-Gurion University
Beer-Sheva 84105, Israel

shanigu@cs.bgu.ac.il

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University
Beer-Sheva 84105, Israel

brafman@cs.bgu.ac.il

David Heckerman
Microsoft Research
One Microsoft Way

Redmond, WA 98052
heckerma@microsoft.com

Abstract

Typical Recommender systems adopt a static
view of the recommendation process and treat
it as a prediction problem. We argue that it is
more appropriate to view the problem of gen-
erating recommendations as a sequential deci-
sion problem and, consequently, that Markov de-
cision processes (MDP) provide a more appro-
priate model for Recommender systems. MDPs
introduce two benefits: they take into account
the long-term effects of each recommendation,
and they take into account the expected value of
each recommendation. To succeed in practice,
an MDP-based Recommender system must em-
ploy a strong initial model; and the bulk of this
paper is concerned with the generation of such
a model. In particular, we suggest the use of ann-gram predictive model for generating the ini-
tial MDP. Ourn-gram model induces a Markov-
chain model of user behavior whose predictive
accuracy is greater than that of existing predic-
tive models. We describe our predictive model in
detail and evaluate its performance on real data.
In addition, we show how the model can be used
in an MDP-based Recommender system.

1 INTRODUCTION

In many markets, consumers are faced with a wealth of
products and information from which they can choose. To
alleviate this problem, many web sites attempt to help users
by incorporating aRecommender system(Schafer, Kon-
stan, & Riedl, 1999) that provides users with a list of items
and/or web-pages that are likely to interest them. Once the
user makes her choice, a new list of recommended items is
presented. Thus, the recommendation process is a sequen-
tial process. Moreover, in many domains, user choices are
sequential in nature, e.g., we buy a book by the author of a
recent book we liked.

The sequential nature of the recommendation process was
noticed in the past (Zimdars, Chickering, & Meek, 2001).
Taking this idea one step farther, we suggest that recom-
mending is not simply a sequential prediction problem, but
rather, a sequential decision problem. At each point the
Recommender system makes a decision: which recommen-
dation to issue. This decision should be optimized taking
into account the sequential process involved and the op-
timization criteria suitable for the Recommender system.
Thus, we suggest the use of Markov Decision Processes
(MDP) (e.g., Puterman, 1994), a well known stochastic
model of sequential decisions. With this view in mind,
a more sophisticated approach to Recommender systems
emerges. First, one can take into account the utility of a
particular recommendation – e.g., we might want to rec-
ommend a product that has a slightly lower probability of
being bought, but generates higher profits. Second, we
might suggest an item whose immediate reward is lower,
but leads to more likely or more profitable rewards in the
future. These considerations are taken into account auto-
matically by any good or optimal policy generated for an
MDP model of the recommendation process. For instance,
consider a site selling electronic appliances faced with the
option to suggest a video camera with a success probabil-
ity of 0.5, or a VCR with a probability of 0.6. The site
may choose the camera, which is less profitable, because
the camera has accessories that are likely to be purchased,
where as the VCR does not. If a video-game console is
another, less likely option, the large profit from the likely
future event of selling game cartridges may tip the balance
toward this latter choice.

Keeping these benefits in mind, we suggest an approach for
the construction of an MDP-based Recommender system.
The first, and most crucial step in the construction of our
model is the generation of a powerful predictive model. We
believe that in any real environment, it is essential to start
with a powerful initial model for the MDP—commercial
sites will not accept a model that generates poor recom-
mendations. Use of standard reinforcement learning tech-
niques for MDPs would perform poorly at first due to the
amount of needed explorations before converging into a



near-optimal policy. Thus, the bulk of this paper is con-
cerned with defining a predictive model that provides accu-
rate initial recommendations.

The predictive model we describe is motivated by our se-
quential view of the recommendation process, but con-
stitutes an independent contribution. The model can be
thought of as ann-gram model (e.g., Chen & Goodman,
1998) or, equivalently, a (first-order) Markov chain in
which states correspond to sequences of events. In this pa-
per, we emphasize the latter interpretation due to its nat-
ural relationship with an MDP. We note that Su, Yang,
and Zhang (2000) have described the use of simplen-gram
models for predicting web pages. Their methods, however,
yield poor performance on our data.

Validating our MDP approach is not simple. Most Rec-
ommender systems, such as dependency networks (Hecker-
man, Chickering, Meek, Rounthwaite, & Kadie, 2000), are
tested on historical data for their predictive accuracy. That
is, the system is trained using historical data from sites that
do not provide recommendations, and tested to see whether
the recommendations conform to actual user behavior. This
test provides some indication of the system’s abilities, but
it does not test how user behavior is influenced by the sys-
tem’s suggestions or what percentage of recommendations
are accepted by users. To obtain this data, one must em-
ploy the system in a real site with real users, and compare
the performance of this site with and without the system (or
with this and other systems). We also note that testing our
MDP model using standard techniques would yield worse
results than using the Markov- chain model since the MDP
would recommend items by their expected value to the site,
rather than by their probability of being interesting to the
user. For this reason, testing the MDP model on a test bed
that doesn’t allow interactions with users is useless. This
issue has been a problem for past work as well as for this
work – it is difficult to convince commercial sites to use
experimental systems, and nearly impossible to convince
them to compare two different systems. Thus, like most
previous work, we evaluate only the predictive component
of our model.

The paper is structured as follows. In Section 2, we de-
scribe our predictive model—a model that predicts the
user’s next selection based on her previous ones. In Sec-
tion 3, we formalize the recommendation problem as an
MDP, and show how the predictive model can be used to
initialize the MDP. In Section 4, we evaluate the perfor-
mance of our predictive algorithm on real data. In Sec-
tion 5, we conclude the paper with a summary and discus-
sion of future work.

2 PREDICTIVE MODEL

In this section, we describe our model for predicting the
user’s next selection based on her previous selections. As

we have mentioned, the model can be described as a (first-
order) Markov chain. A Markov chain (MC) consists of
a set of states, a stochastic transition function denoting
the probability distribution over states at sequence pointt,
given the state at sequence pointt� 1, and an initial prob-
ability distribution over states. Our transition functionis
based on then-gram model class, which we now describe.

2.1 N -GRAM MODELSN -gram models originate in the field of language model-
ing. They are used to predict the next word in a sentence
given the lastn � 1 words. In the simplest form of the
model, probabilities for the next word are estimated via
maximum likelihood; and many methods exist for improv-
ing this simple approach including skipping, clustering,
and smoothing. Skipping assumes that the probability of
the next wordxi depends on words other than just the previ-
ousn�1. A separate model is built using skipping and then
combined with the standardn-gram model. Clustering is an
approach that groups some states together for purposes of
predicting next states. Such grouping helps to address the
problem of data sparsity. Smoothing is a general name for
methods that adjust the estimates of probabilities to achieve
higher accuracy by adjusting zero or low probabilities up-
ward. One type of smoothing is finite mixture modeling,
which combines multiple models via a convex combina-
tion. In particular, givenk component models forxi given
a prior sequenceX — pM1(xijX); : : : ; pMk(xijX) — we
can define thek-component mixture modelp(xijX) =�1pM1(xijX) + � � �+ �kpMk (xijX), where

Pki=1 �i = 1
are its mixture weights. Details of these and other methods
are given in (e.g., Chen & Goodman, 1998).

2.2 AN N -GRAM MOTIVATED MARKOV-CHAIN
PREDICTION MODEL

States. The states in our MC model represent the relevant
information that we have about the user. This information
corresponds to previous choices made by users in the form
of a set of ordered sequences of selections. We ignore data
such as age or gender, although it could be beneficial, and
it can be easily incorporated into our model. Thus, the set
of states contains all possible sequences of user selections.
Of course, this formulation leads to an unmanageable state
space with the usual associated problems—data sparsity
and MDP solution complexity. To reduce the size of the
state space, we consider only sequences of at mostk items,
for some relatively small value ofk. We note that this ap-
proach is consistent with the intuition that the near history
(e.g. the current user session) often is more relevant than
selections made less recently (e.g. in past user sessions).
These sequences are represented as vectors of sizek. In
particular, we usehx1; : : : ; xki to denote the state in which
the user’s lastk selected items werex1, : : : , xk . Selection



sequences withl < k items are transformed into a vec-
tor in whichx1 throughxk�l have the valuemissing. The
initial state in the Markov chain is the state in which ev-
ery entry has the valuemissing. Note that this framework
also accommodates systems that collect explicit rather than
implicit ratings. We can either map such ratings into the
states “preferred” and “not preferred”, or enrich the state
space with the rating values.

Besides addressing sparsity and computational complexity,
the restriction tok items seems sensible for many commer-
cial domains where distant history has little or no impact
on user choices. In our experiments, we used values ofk
ranging from1 to 5. In our description below, we typically
fix k to 3. Note thatk in the MC formulation corresponds
to n� 1 in then-gram formulation.

The Transition Function. The transition function
for our Markov chain describes the probability that
a user whosek recent selections werex1; : : : ; xk
will select the item x0 next. This is denotedtrMC(hx1; : : : ; xki; hx2; : : : ; xk ; x0i). Initially, this tran-
sition function is unknown to us; and we would like to es-
timate it based on user data. As mentioned, a maximum-
likelihood estimate can be used. This model, however,
still suffers from the problem of data sparsity (e.g., Sarwar,
Karypis, Konstan, & Riedl, 2000b) and performs poorly in
practice. In the next section, we describe several techniques
for improving the estimate.

2.3 IMPROVEMENTS TO THE PREDICTION
MODEL

We experimented with several enhancements to the
maximum-likelihoodn-gram model using data different
from that used in our formal evaluation. The improvements
described and used here are those that were found to work
well.

One enhancement is a form ofskipping(Chen & Goodman,
1998), and is based on the observation that the occurrence
of the sequencex1; x2; x3 lends some likelihood to the se-
quencex1; x3. That is, if a person boughtx1; x2; x3, then
it is likely that someone will buyx3 afterx1. The partic-
ular skipping model that we found to work well is a sim-
ple additive model. First, each state transition is initialized
to the number of observed transitions in the data. Then,
given a user sequencex1; x2; :::; xn, we add the fractional
count1=2(j�(i+3)) to the transition fromhxi; xi+1; xi+2i
to hxi+1; xi+2; xji, for all i + 3 < j � n. This fractional
count corresponds to a diminishing probability of skipping
a large number of transactions in the sequence. Finally, the
counts are normalized to obtain the transition probabilities:trMC(s; s0) = count(s; s0)Ps0 count(s; s0)
wherecount(s; s0) is the (fractional) count associated with

the transition froms to s0.
A second enhancement is a form of clustering that we have
not found in the literature. Motivated by properties of our
domain, the approach exploits similarity of sequences. For
example, the statehx; y; zi and the statehw; y; zi are sim-
ilar because some of the items appearing in the former ap-
pear in the latter as well. The essence of our approach is
that the likelihood of transition froms to s0 is influenced
by occurrences fromt to s0, wheres andt are similar. In
particular, we define the similarity of statessi andsj to besim(si; sj) = kXm=1 Æ(smi ; smj ) � (m+ 1)
whereÆ(�; �) is the Kroneker delta function andsmi is themth item in statesi. As will become clear shortly, this sim-
ilarity is arbitrary up to a constant. In addition, we define
thesimilarity countfrom states to s0 to besimcount(s; s0) =Xsi sim(s; si) � troldMC(si; s0)
wheretroldMC(si; s0) is the original transition function (with
or without skipping). The new transition probability froms0 to s is then given bytrMC(s; s0) = 12 troldMC(s; s0) + 12 simcount(s; s0)Ps0 simcount(s; s0)

(1)

A third enhancement is the use of finite mixture modeling.1
Similar methods are used inn-gram models, where—for
example—a trigram, a bigram, and a unigram are com-
bined into a single model. Our mixture model is motivated
by the fact that larger values ofk lead to states that are
more informative whereas smaller values ofk lead to states
on which we have more statistics. To balance these con-
flicting properties we mixk models, where theith model
looks at the lasti transactions. Thus, fork = 3, we mix
three models that predict the next transaction based on the
last transaction, the last two transactions, and the last three
transactions. In general, we can learn mixture weights
from data. We can even allow the mixture weights to de-
pend on the given case (and informal experiments on our
data suggest that such context-specificity would improve
predictive accuracy). Nonetheless, for simplicity, we use�1 = � � � = �k = 1=k in our experiments. Because our
primary model is based on thek last items, the generation
of the models for smaller values entail little computational
overhead.1Note that Equation 1 is also a simple mixture model.



3 AN MDP-BASED RECOMMENDATION
STRATEGY

As we have discussed, our ultimate goal is to construct a
Recommender system—a system that chooses a link, prod-
uct, or other item to recommend to the user at all times. In
this section, we describe how such a system can be based
on an MDP.

3.1 MARKOV DECISION PROCESSES (MDPs)

An MDP is a model for sequential stochastic decision prob-
lems. It is a four-tuple:hS;A;R; tri, whereS is a set of
states,A is a set of actions,R is a reward function, andtr
is the state-transition function.

A states 2 S encapsulates all the relevant information
about the state of the world. The actions trigger state
changes, and the effect of the actions on the states is cap-
tured by the transition function. The transition function as-
signs a probability distribution to every (state, action) pair.
Thus,tr(s; a; s0) is the probability of making a transition
from states to states0 whena is performed. Finally, the
reward function assigns a real value to each (state, action)
pair which describes the immediate reward (or cost) of ex-
ecuting this action in that state. Often, the reward is only
a function of the state, and thus, is a measure of the desir-
ability of reaching each state.

In an MDP, the decision-maker’s goal is to behave so that
some function of its reward stream is maximized – typically
the average or discounted average reward. An optimal solu-
tion to the MDP is such a maximizing behavior. Formally,
a stationary policy for an MDP is a mapping from states
to actions, specifying which action we should perform at
each state. A history-dependent policy associates an action
with a history of past states and actions, rather than simply
with the current state.Various exact and approximate algo-
rithms exist for computing a policy, and the best known are
policy-iteration (Howard, 1960) and value-iteration (Bell-
man, 1962).

3.2 DEFINING THE MDP

The states of the MDP for our Recommender system cor-
respond to the states of the predictive (MC) model. This
correspondence may not be optimal, especially in light of
our experimental results showing the benefits of skipping
and clustering. And, in fact, there are methods for learning
the state representation (e.g., McCallum, 1996). Nonethe-
less, such approaches tend to be less accurate initially, and
require a large amount of training data (i.e., time online)
to gain accuracy. Consequently, we adopt our simple ap-
proach.

The actions of the MDP correspond to a recommenda-
tion of an item. One can consider multiple recommen-

dations but, to keep our model simple and computation-
ally tractable, we consider single recommendations only.
When we recommend an itemx0, the user can either
(1) accept this recommendation, thus transferring from
state hx1; x2; x3i into hx2; x3; x0i, or (2) select a non-
recommended item. Since item recommendations are gen-
erated only after the user has picked a new item, we do not
model the case where a user has requested a different set of
recommendations without moving to another state.

The rewards in our MDP encode the utilities of selling
items (or showing the web pages) as defined by the site.
For example, the reward for statehx1; x2; x3i can be the
profit generated for the site from the sale of itemx3—the
last item in the transaction sequence.

The transition function for the MDP model:trMDP (hx1; x2; x3i; x0; hx2; x3; x00i)
is the probability that the user will select itemx00 given that
itemx0 is recommended.

Unlike traditional MDP implementations that learn the
proper values for the transition function and hence the op-
timal policy online, our system needs to be fairly accurate
when it is first deployed. A for profit e-commerce site
would unlikely use a recommender system that generates
irrelevant recommendations for a long while, waiting to
converge to an optimal policy. We therefore need to ini-
tialize the transition function values carefully. We can do
so based on our predictive model, making the following as-
sumptions:� A recommendation increases the probability that a

user will buy an item. This probability is proportional
to the probability that the user will buy this item in
the absence of recommendations. This assumption is
made by most CF models dealing with e-commerce
sites. We denote the proportionality constant by�,
where� > 1.� The probability that a user will buy an item that was
not recommended is lower than the probability that
she will buy it in the absence of recommendations, but
still proportional to it. We denote the proportionality
constant by�, where� < 1.trMDP (hx1; x2; x3i; x0; hx2; x3; x0i) =� � trMC(hx1; x2; x3i; hx2; x3; x0i)trMDP (hx1; x2; x3i; x0; hx2; x3; x00i) =� � trMC(hx1; x2; x3i; hx2; x3; x00i); x00 6= x0

Note that� is constant for all initial states andx0, whereas� is adjusted for each initial state andx0 so that the transi-
tion probabilities sum to1.



We note that the MDP can be initialized using any proba-
bilistic predictive algorithm. In particular, to initialize the
transition probability fromhx1; x2; x3i to hx2; x3; x4i, we
simply need the predictive algorithm’s probability forx4,
given that a user purchasedx1; x2; andx3.

3.3 SOLVING THE MDP

Given an MDPhS;A;R; tri, we need to solve it—that is,
determine the best course of action for every possible state.
For the domains we have studied, we have found policy
iteration (Howard, 1960)—with a few approximations to
be described— to be a tractable solution method. In fact,
on tests using real data, we have found that policy iteration
terminates after a handful of iterations. Fast convergence
occurs because we are iterating from the last state to the
first and, if there is a non-zero transition probability fromsi to sj , then usuallyj > i due to the way we build our
states and initializetrMDP . Also, we have seen that the
computation of the optimal policy is not heavily sensitive
to variations ink. As k increases, so do the number of
states, but the number of positive entries in our transition
matrix remains similar. Note that, at most, a state can have
as many successors as there are items. Whenk is small, the
number of observed successors for a state is indeed close
to the number of items. Whenk is larger, however, the
number of successors decreases considerably.

Although the number of iterations required is small, each
iteration requires the computation of the expected rewards
for every state, given the current policy. Even though we
have reduced the state space by limiting each state to hold
the lastk transactions, the state space is quite large even
for k = 3. Thus, the computation of an optimal policy
without approximation is extremely time consuming. We
reduce run time using the following approximation. The
vast majority of states in our models do not correspond to
sequences that were observed in our training set. This fact
holds because most combinations of items are extremely
unlikely. For example, it is unlikely to find adjacent pur-
chases of a science-fiction and a gardening book. In our
approximation, we do not compute a policy for a state that
was not encountered in our training data. We use the im-
mediate reward of such states as an approximation of their
long-term expected value for the purpose of computing the
value of a state that appeared in our training data. Of
course, if a policy is explicitly required for an unencoun-
tered state, we compute its value in the same manner as
states that appeared in our training data. This approxima-
tion, although risky in general MDPs, is motivated by the
fact that in our initial model, the probability of making a
transition into an unencountered state is very low.

Once we have a policy, we can use it to generate the rec-
ommendation for each state. If more than one recommen-
dation per state is desired, we can (as an approximation)

return them top value recommendations. In theory, we
would take into account sets of recommendations, but this
approach would be impractical.

Note that the policy calculated is not optimal in the sense
that it is based on the transition function initialized from
the Markov chain. The policy should be updated online as
we now disucss.

3.4 UPDATING THE MODEL ONLINE

Once the Recommender system is deployed with its initial
model, we can update the model according to actual obser-
vations. The simplest approach is to perform off-line up-
dates at fixed time intervals. The main issue is the amount
of exploration performed. Without exploration, one cannot
update the probability of acceptance of sub-optimal recom-
mendations. Thus, it seems appropriate to select some con-
stant�, such that recommendations whose expected value
is �-close to optimal will be allowed—for example, by fol-
lowing a Boltzman distribution with an� cutoff. The ex-
act value of� would be determined by the site operators.
The price we pay for this conservative exploration policy
is that we are not guaranteed convergence to an optimal
policy. However, as we have discussed, it is unlikely that
significant exploration would be allowed by site operators
in practice.

If the system recommends more than one item at each state,
another possibility is to allow larger values of� for the rec-
ommendations near the bottom of the recommendation list.
For example, the system could always return the best rec-
ommendation first, but show items less likely to be pur-
chased as the second and third items on the list.

It is important to note that online learning of the transition
function will allow the system to more accurately estimate
the probability that a user will decide to purchase itemx
if item y was recommended. In addition, the online learn-
ing procedures should introduce new states and revise the
transition function, when an item never before purchased is
first purchased.

4 TESTING THE PREDICTIVE MODEL

Below, we describe an evaluation of the predictive model
described in Section 2.

4.1 DATA SETS

For our tests, we used real data from the Israeli online
bookstoreMitos (www.mitos.co.il). We used two data
sets, one containing user transactions (purchases) and the
other containing user browsing paths obtained from web
logs. We filtered out items that were bought/visited less
than 100 times and users who bought/browsed no more
than one item. We were left with 116 items and 10820 users



in the transactions data set, and 65 items and 6678 users in
the browsing data set. Items that were rarely bought can
not be reliably predicted, and our MDP model should learn
the transition function for those states online as previously
discussed. In our browsing data, no cookies were used by
the site. If the same user visited the site with new IP ad-
dress, then we would treat her as a new user. Also, activity
on the same IP address was attributed to a new user when-
ever there were no requests for two hours. These data sets
were randomly split into a training set (0.9 of the users) and
a test set (0.1 of the users).

We evaluated predictions as follows. For every user se-
quencet1; t2; ::; tn in the test set, we generated the follow-
ing test cases:ht1i; ht1; t2i; :::; htn�k; tn�k+1; :::; tn�1i.
For each case, we then used our various models
to determine the probability distribution forti giventi�k; ti�k+1; :::; ti�1 and ordered the items by this distri-
bution. Finally, we used theti actually observed in con-
junction with the recommendation list to compute a score
for the list.

4.2 EVALUATION METRICS

We used two scores: Recommendation Score (RC) (Mi-
crosoft, 2002) and Exponential Decay Score (ED) (Breese,
Heckerman, & Kadie, 1998) with slight modifications to fit
into our sequential domain.

Recommendation score. For this measure of accuracy, a
recommendation is deemed successful if the observed itemti is among the topm recommended items (m is varied in
the experiments). The scoreRC is the percentage of cases
in which the prediction is successful. A score of 100 means
that the recommendation was successful in all cases.

Exponential Decay Score. This measure of accuracy is
based on the position of the observedti on the recommen-
dation list. The underlying assumption is that users are
more likely to see a recommendation near the top of the
list. In particular, it is assumed that a user will see themth
recommendation with probabilityp(m) = 2�(m�1)=(��1)
(m � 1). (Note that� is the half-life parameter—the item
in the list having probability of 0.5 being seen.) The score
is given by 100 � Pc2C p(m = pos(tijc))jCj
whereC is the set of all cases,c = ti�k; ti�k+1; :::; ti�1 is
a case, andpos(tijc) is the position of the observed itemti
in the list of recommended items forc. We used� = 5
in our experiments in order to be consistent with the exper-
iments of Breese et al. (1998) and Zimdars et al. (2001).
The relative performance of the models was not sensitive
to�.

4.3 COMPARISON MODELS

Commerce Server 2002 Predictor The main model to
which we compared our results is the Predictor tool devel-
oped by Microsoft as a part of Microsoft Commerce Server
2002, based on the models of (Heckerman et al., 2000).
This tool builds dependency- network models in which the
local distributions are probabilistic decision trees. We used
these models in both a non-sequential and sequential form.
These two approaches are described in Heckerman et al.
(2000) and Zimdars et al. (2001), respectively. In the non-
sequential approach, for every item, a decision tree is built
that predicts whether the item will be selected based on
whether the remaing items were or were not selected. In
the sequential approach, for every item, a decision tree is
built that predicts whether the item will be selected next,
based on the previousk items that were selected. The pre-
dictions are normalized to account for the fact that only one
item can be predicted next. Zimdars et al. (2001) also uses
a “cache” variable, but preliminary experiments showed it
to decrease predictive accuracy. Consequently, we did not
use the cache variable in our formal evaluation.

These algorithms appear to be the most competitive among
published work. The combined results of Breese et al.
(1998) and Heckerman et al. (2000) show that (non-
sequential) dependency networks are no less accurate than
Bayesian-network or clustering models, and about as ac-
curate asCorrelation, the most accurate (but computation-
ally expensive) memory-based method. Sarwar, Karypis,
Konstan, and Riedl (2000a) apply dimensionality reduction
techniques to the user rating matrix, but their approach fails
to be consistently more accurate than Correlation. Only the
sequential algorithm of Zimdars et al. (2001) is more accu-
rate than the non-sequential dependency network.

We built five sequential models1 � k � 5 for each of the
data sets. We refer to the non-sequential Predictor models
as Predictor-NS, and to the Predictor models built using
the data expansion methods with a history of lengthk as
Predictor-k.

Unordered MCs. We also evaluated a non-sequential ver-
sion of our predictive model, where (e.g.) the sequenceshx; y; zi andhy; z; xi are mapped to the same state. Skip-
ping, clustering, and mixture modelling were included as
described in Section 2. We call this model UMC (Un-
ordered Markov chain).

4.4 VARIATIONS OF THE MC MODEL

In order to measure how eachn-gram enhancement influ-
enced predictive accuracy, we also evaluated models that
excluded some of the enhancements. In reporting our re-
sults, we refer to a model that uses skipping and similar-
ity clustering with the terms SK and SM, respectively. In
addition, we use numbers to denote which mixture com-



ponents are used. Thus, for example, we use MC 123 SK
to denote a Markov-chain model learned with three mix-
ture components—a bigram, trigram, and quadram—where
each component employs skipping but not clustering.

4.5 EXPERIMENTAL RESULTS

Figures 1 and 2 show the exponential decay score for
the best models of each type (Markov chain, Unordered
Markov chain, Non-Sequential Predictor model, and Se-
quential Predictor Model). It is important to note that
all the MC models using skipping, clustering, and mix-
ture modelling yielded better results thanevery one ofthe
Predictor-k models. Thus, to simplify the graphs, only
the best models of each class are presented. We see that
the sequence-sensitive models are better predictors than
those that ignore sequence information. Furthermore, the
Markov chain predicts best for both data sets.

Figure 1: Exponential decay score for different models on
transactions data set.

Figure 2: Exponential decay score for different models on
browsing data set.

Figure 3: Recommend score for different models on trans-
actions data set.

Figure 4: Recommend score for different models on brows-
ing data set.

Figure 3 and Figure 4 show the Recommend score as a
function of list length (m). Once again, sequential mod-
els are superior to non-sequential models, and the Markov-
chain models are superior to the Predictor models.

Figure 5: Exponential decay score for different markov
chain versions on transactions data set.

Figure 5 and Figure 6 show how different versions of the
Markov chain performed under the exponential decay score
in both data sets. We see that multi-component models out-
perform single-component models, and that similarity clus-
tering is beneficial. In contrast, we find that skipping is
only beneficial for the transactions data set. Perhaps users
tend to follow the the same paths in a rather conservative
manner, or site structure does not allow users to “jump
ahead”. In either case, once recommendations are avail-
able in the site (thus changing the site structure), skipping
may prove beneficial.

5 CONCLUSIONS AND FUTURE WORK

We described a new model for Recommender systems
based on an MDP. Our approach makes two main contribu-
tions: a conceptual contribution that stems from this new
view of Recommender systems, and a technical contribu-
tion in the form of a newn-gram based Markov-chain pre-



Figure 6: Exponential decay score for different markov
chain versions on browsing data set.

dictive model.

Our work also suggests a novel approach to learning MDPs.
It takes into account the fact that a deployed MDP-based
Recommender system cannot count on standard reinforce-
ment learning techniques for its initialization, as these
would lead to initial behavior that would not be tolerated
by a site owner. Rather, we use the behavior of customers
in the site prior to the deployment of the Recommender
system to train a Markov chain that can then be used to
initialize the MDP in an informed manner.

Many interesting issues remain for future work. First and
foremost, as we noted earlier, our experiments validate only
the predictive power of our Markov chain model. Although
this limitation is common in evaluations of Recommender
systems, it is not an ideal situation. Recommender systems,
including ours, need to be evaluatedin situ.

We are currently in the process of deploying our system in
the Israeli online book storeMitos, and will soon be able
to evaluate the behavior of the system in a live site. We
also expect to explore alternatives for initializing the MDP
as well as updating the MDP online.

Weaknesses of our predictive (Markov chain) model in-
clude the use ofad hoc weighting functions for skip-
ping and similarity functions and the use of fixed mix-
ture weights. Although the recommendations that result
from our current model are (empirically) useful for rank-
ing items, we have noticed that the probability distributions
they produce are not calibrated. Learning the weighting
functions and mixture weights from data should improve
calibration. In addition, in informal experiments, we have
seen evidence that learning case-sensitive mixture weights
should improve predictive accuracy.

Our predictive model should also make use of relations be-
tween items that can be explicitly specified. For example,
most sites that sell items have a large catalog with hierar-

chical structure such as categories or subjects, a carefully
constructed web structure, and item properties such as au-
thor name. Finally, our models should incorporate infor-
mation about users such as age and gender.

References

Bellman, R. E. (1962).Dynamic Programming. Princeton
University Press.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empir-
ical analysis of predictive algorithms for collabora-
tive filtering. Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence.

Chen, S. F., & Goodman, J. (1998). An empirical study of
smoothing techniques for language modeling.Tech-
nical report TR-10-98.

Heckerman, D., Chickering, D. M., Meek, C., Rounth-
waite, R., & Kadie, C. (2000). Dependency networks
for inference and collaborative filtering and data vi-
sualization.Journal of MAchine Learning Research.

Howard, R. A. (1960).Dynamic Programming and Markov
Processes. MIT Press.

McCallum, A. K. (1996). Reinforcement learning with se-
lective perception and hidden state.PhD Thesis.

Microsoft (2002). Recommendation score.Microsoft Com-
merce Server 2002 Documentation.

Puterman, M. (1994).Markov Decision Processes. Wiley,
New York.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.
(2000a). Analysis of recommendation algorithms for
e-commerce.ACM Conference on Electronic Com-
merce.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000b).
Application of dimensionality reduction in recom-
mender system - a case study.ACM WebKDD 2000
Web Mining for E-Commerce Workshop.

Schafer, J. B., Konstan, J., & Riedl, J. (1999). Rec-
ommender systems in e-commerce.Proceedings of
ACM E-Commerce 1999 conference.

Su, Z., Yang, Q., & Zhang, H. J. (2000). A prediction sys-
tem for multimedia pre-fetching in internet.ACM
Multimedia.

Zimdars, A., Chickering, D. M., & Meek, C. (2001). Using
temporal data for making recommendations.Pro-
ceedings of the 17th UAI Conference.


