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Abstract

Typical recommender systems adopt a static view of the revsemdation process and treat it as
a prediction problem. We argue that it is more appropriatgi¢éwv the problem of generating
recommendations as a sequential optimization problem @ntsequently, that Markov decision
processes (MDPs) provide a more appropriate model for rewmder systems. MDPs introduce
two benefits: they take into account the long-term effectsaoh recommendation and the expected
value of each recommendation. To succeed in practice, an-bH3Bd recommender system must
employ a strong initial model, must be solvable quickly, ahduld not consume too much memory.
In this paper, we describe our particular MDP model, itali#ation using a predictive model, the
solution and update algorithm, and its actual performamce commercial site. We also describe
the particular predictive model we used which outperformevipus models. Our system is one
of a small number of commercially deployed recommenderesyst As far as we know, it is the
first to report experimental analysis conducted on a reahseruial site. These results validate the
commercial value of recommender systems, and in particoflaur MDP-based approach.

Keywords: recommender systems, Markov decision processes, leandngnercial applications

1. Introduction

In many markets, consumers are faced with a wealth of products and infonnfram which they
can choose. To alleviate this problem, many web sites attempt to help usersobyoirating a
recommender systefResnick and Varian, 1997) that provides users with a list of items anaflor w
pages that are likely to interest them. Once the user makes her choice liatr@wecommended
items is presented. Thus, the recommendation process is a sequentiaspidoeeover, in many
domains, user choices are sequential in nature — for example, we buykebfpdhe author of a
recent book we liked.

x. Parts of this paper appeared in the proceedings of UAI'02 under théAiti®MDP-Based Recommender System,”
and the proceedings of ICAPS’03 under the title “Recommendation achastiic Sequential Decision Problem.”
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The sequential nature of the recommendation process was noticed in tH&ipadars et al.,
2001). Taking this idea one step farther, we suggest that recommengatioirsimply a sequential
prediction problem, but rather, a sequential decision problem. At eaich {i@ Recommender
System makes a decision: which recommendation to issue. This decision &iauldto account
the sequential process involved and the optimization criteria suitable forcbmneender system,
such as the profit generated from selling an item. Thus, we suggestdh® Markov decision
processes (MDP) (Puterman, 1994), a well known stochastic modetjaéstial decisions.

With this view in mind, a more sophisticated approach to recommender systemssnfergt,
one can take into account the utility of a particular recommendation — for examglmight want
to recommend a product that has a slightly lower probability of being boughtyemerates higher
profits. Second, we might suggest an item whose immediate reward is lawdealls to more
likely or more profitable rewards in the future.

These considerations are taken into account automatically by any gogqdimabpolicy gen-
erated for an MDP model of the recommendation process. In particulaptamal policy will take
into account the likelihood of a recommendation to be accepted by the usienntegliate value to
the site of such an acceptance, and the long-term implications of this on ttefutigre choices.
These considerations are taken with the appropriate balance to ensgeadnation of the maximal
expected reward stream.

For instance, consider a site selling electronic appliances faced with then dptsuggest a
video camera with a success probability of 0.5, or a VCR with a probability of Thé. site may
choose the camera, which is less profitable, because the camera hesoaesdahat are likely to
be purchased, whereas the VCR does not. If a video-game consoteli&aaption with a smaller
success probability, the large profit from the likely future event of selljagne cartridges may tip
the balance toward this latter choice. Similarly, when the products sold aks dmorecommending
a book for which there is a sequel, we may increase the likelihood that thisls&ilj be purchased
later.

Indeed, in our implemented system, we observed less obvious instancesho$equential
behavior: users who purchased novels by the well-known sciencenfiatithor, Roger Zelazny,
who uses many mythological themes in his writing, often later purchase boo&sezk or Hindu
mythology. On the other hand, users who buy mythology books do notappbuy Roger Zelazny
novels afterwards.

The benefits of an MDP-based recommender system discussed akoofisat by the fact
that the model parameters are unknown. Standard reinforcement tpaectmiques that learn
optimal behaviors will not do — they take considerable time to converge airdrthial behavior
is random. No commercial site will deploy a system with such behavior. Theisnust find ways
for generating good initial estimates for the MDP parameters. The appnaastiggest initializes a
predictive model of user behavior using data gathered on the site priar tmfgtementation of the
recommender system. We then use the predictive model to provide initial gararfee the MDP.

Our initialization process can be performed usamypredictive model. In this paper we suggest
a particular model that outperforms previous approaches. The pvediotdel we describe is
motivated by our sequential view of the recommendation process, but ctestta independent
contribution. The model can be thought of asragram model (Chen and Goodman, 1996) or,
equivalently, a (first-order) Markov chain in which states corresgorsgquences of events. In this
paper, we emphasize the latter interpretation due to its natural relationshipnAMiDBR. We note
that Su et al. (2000) have described the use of simgieam models for predicting web pages.
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Their methods, however, yield poor performance on our data, proba&lsluse in our case, due to
the relatively limited data set, the use of the enhancement techniques disbekse is needed.

Validating recommender system algorithms is not simple. Most recommendemsystach
as dependency networks (Heckerman et al., 2000), are tested ornchistiata for their predictive
accuracy. That is, the system is trained using historical data from sitedahmeot provide recom-
mendations, and tested to see whether the recommendations conform tauaetua¢havior. We
present the results of a similar test with our system showing it to perfornr ltlettie the previous
leading approach.

However, predictive accuracy is not an ideal measure, as it doggstidiow user behavior is
influenced by the system’s suggestions or what percentage of recomatiomisdare accepted by
users. To obtain this data, one must employ the system at a real site witseegland compare the
performance of this site with and without the system (or with this and otherrsgitelhe extent
to which such experiments are possible is limited, as commercial site ownerslikedyuto allow
experiments which can degrade the performance or the “look-anddetiéir systems. However,
we were able to perform a certain set of experiments using our commeystehs at the online
bookstore Mitos (www.mitos.co.il) by running two models simultaneously on diftewsers: one
based on a predictive model and one based on an MDP model. We weablksfor a short period,
to compare user behavior with and without recommendations. These re¢hiltk, to the best of
our knowledge are among the first reports of online performance in a coiainste, are reported
in Section 6, providing very encouraging validation to recommender systegemaral, and to our
sequential optimization approach in particular.

The main contributions of this paper are: (1) A novel approach to recomenaystems based
on an MDP model together with appropriate initialization and solution techniq(fsA novel
predictive model that outperforms previous predictive models. (3) @aesmall number of com-
mercial applications based on MDPs. (4) The first (to the best of ouvledge) experimental
analysis of a commercially deployed recommender system.

We note that the use of MDPs for recommender systems was previouskisseddpy Bohnen-
berger and Jameson (2001). They used an MDP to model the procassonSumer navigating
within an airport. The state of this MDP was the consumer’s position and rewetk obtained
when the consumer entered a store or bought an item. Recommendatiosswedson a palm-top,
suggesting routes and stores to visit. However, the MDP model was loaiedt@and experiments
were conducted with students rather than real users.

The paper is structured as follows. In Section 2 we review the necelsaekground on rec-
ommender systems, MDPs, and reinforcement learning. In Section 3 wabdethe predictive
model we constructed whose goal is to accurately predict user belmanrenvironment without
recommendations. In Section 4 we present our empirical evaluation ofétdifive model. In Sec-
tion 5 we explain how we use this predictive model as a basis for a more soatdd MDP-based
model for the recommender system. In Section 6 we provide an empiricab&ealwf the actual
recommender system based on data gathered from our deployed systezondlude the paper in
Section 7 discussing our current and future work.

2. Background

In this section we provide the necessary background on recommerstemsyN-gram models, and
MDPs.
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2.1 Recommender Systems

Early in the 1990s, when the Internet became widely used as a sourderofi&tion,information
explosionbecame an issue that needed addressing. Many web sites presentirg \zargtly of
content (such as articles, news stories, or items to purchase) distdlhataisers had difficulties
finding the items that interested them out of the total selecBR@Tommender Systeffesnick and
Varian, 1997) help users limit their search by supplying a list of items that rmigrest a specific
user. Different approaches were suggested for supplying meahimegbmmendations to users and
some were implemented in modern sites (Schafer et al., 2001). Traditionahitate techniques
such as association rules were tried at the early stages of the develagmeagmmender systems.
Initially, they proved to be insufficient for the task, but more recent atteingve yielded some
successful systems (Kitts et al., 2000).

Approaches originating from the field aiformation retrieval (IR)rely on thecontentof the
items (such as description, category, title, author) and therefore avenkagcontent-based rec-
ommendationgMooney and Roy, 2000). These methods use some similarity score to match items
based on their content. Based on this score, a list of items similar to the onesttgreviously se-
lected can be suppliednowledge-basetcecommender systems (Burke, 2000) go one step farther
by using deeper knowledge about the user and the domain. In parttbelaser is able to introduce
explicitinformation about her preferences. Thus, for instance, thieaasild specify interest in Thai
cuisine, and the system might suggest a restaurant serving some attieAs@n cuisine.

Another possibility is to avoid using information about the content, but ratkerhistorical
data gathered from other users in order to make a recommendation. Theésmlsnare widely
known ascollaborative filtering (CF)(Resnick et al., 1994), and we discuss them in more depth
below. Finally, some systems try to create hybrid models that combine collalofiteéring and
content-based recommendations (Balabanovic and Shoham, 1997; BOoRS.

2.2 Collaborative Filtering

The collaborative filtering approach originates in human behavior: pesgaleching for an inter-
esting item they know little of, such as a movie to rent at the video store, tendytorrdriends
to recommend items they tried and liked. The person asking for advice is uésnga#l) commu-
nity of friends that know her taste and can therefore make good predic®ito whether she will
like a certain item. Over the net however, a larger community that can recomiteemsito our
user is available, but the persons in this large community know little or nothingt &ach other.
Conceptually, the goal of a collaborative filtering engine is to identify thasesuwhose taste in
items is predictive of the taste of a certain person (usually calledighborhood, and use their
recommendations to construct a list of items interesting for her.

To build a user’s neighborhood, these methods rely on a databasd aspesinteractions with
the system. Early systems usexplicit ratings In such systems, users grade items (e.g., 5 stars to
a great movie, 1 star to a horrible one) and then receive recommendhtiatsr systems shifted
towardimplicit ratings A common approach assumes that people like what they buy. A binary
grading method is used when a value of 1 is given to items the user has laoaghto other items.
Many modern recommender systems successfully implement this approaghod@llat al. (2001)
have suggested the use of other implicit grading methods through a spebibrawser that keeps
track of user behavior such as the time spent looking at the web pagertiieng of the page by

1. An example of such a system can be found at http://www.movielensegiohn
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[t [ X2 | X[ %]
1| - - X1
2| - X1 X2
3 x1 X2 X3
4| % X3 X4

Table 1: An auto-regressive transformation of the sequenee, x3, x4 for k = 2.

the user, and movements of the mouse over the page. Their evaluationehdiaibed to establish
a method of rating that gave results consistently better than the binary methtidmadrabove.

As described in Breese et al. (1998), collaborative filtering systemsitimer memory based
or model based. Memory-based systems work directly with user datan @ieeselections of a
given user, a memory-based system identifies similar users and makesmendations based on
the items selected by these users. Model-based systems compress suldtauseo a predictive
model. Examples of model-based collaborative filtering systems are Bayestiaonrks (Breese
et al., 1998) and dependency networks (Heckerman et al., 2000js Ipaper, we consider model-
based systems.

2.3 The Sequential Nature of the Recommendation Process

Most recommender systems work in a sequential manner: they suggest itdrasuser who can
then accept one of the recommendations. At the next stage a new listoofimended items is
calculated and presented to the user. This sequential nature of the recdatime process, where
at each stage a new list is calculated based on the user’s past ratingsaills naturally to our
reformulation of the recommendation process as a sequential optimizati@sproc

There is yet another sequential aspect to the recommendation procaselyNoptimal rec-
ommendations may depend not only on previous items pruchased, but aise order in which
those items are purchased. Zimdars et al. (2001) recognized this padsii@adency and sug-
gested the use of an auto-regressive modé&tdeder Markov chain) to represent it. They divided
a sequence of transactioNs, ..., Xr (for example, product purchases, web-page views) into cases
(Xe—ks -, %—1,%) fort =1,...,T as shown in Table 1. They then built a model (in particular, a
dependency network) to predict the last column given the other columdsr the assumption that
the cases were exchangeable. Our model will also incorporate thisdidjueew.

2.4 N-gram Models

N-gram models originate in the field of language modeling. They are used dicptee next
word in a sentence given the last- 1 words. In the simplest form of the model, probabilities
for the next word are estimated via maximum likelihood; and many methods exighfmov-
ing this simple approach including skipping, clustering, and smoothing. Skigsagmes that
the probability of the next word; depends on words other than just the previousl. A sepa-
rate model is built using skipping and then combined with the stanalgram model. Clustering
is an approach that groups some states together for purposes oftipcediext states. For ex-
ample, we can group items such a basketball, football, and volleyball intocatéspall” class.
Such grouping helps to address the problem of data sparsity. Smoothingeiseaal name for

1269



SHANI, BRAFMAN AND HECKERMAN

methods that modify the estimates of probabilities to achieve higher accuraagjisting zero
or low probabilities upward. One type of smoothing is finite mixture modeling, wbarhbines
multiple models via a convex combination. In particular, gikecomponent models fox; given
a prior sequenc&X—pw, (X|X),..., pm (X|X)—we can define th&-component mixture model
P(XiIX) = 10 - pwy (X [X) + - - + T, - pw (%] X), whereSk ;1 = 1 are its mixture weights. Details
of these and other methods are given in Chen and Goodman (1996).

2.5 MDPs

An MDP is a model for sequential stochastic decision problems. As suchwiidely used in
applications where an autonomous agent is influencing its surroundiirgement through actions
(for example, a navigating robot). MDPs (Bellman, 1962) have been kiothe literature for quite
some time, but due to some fundamental problems discussed below, few coatmeptications
have been implemented.

An MDP is by definition a four-tuple{S A,Rwdtr), whereSis a set of states\ is a set of
actions,Rwdis a reward function that assigns a real value to each state/action pair, entthe
state-transition function, which provides the probability of a transition betweeery pair of states
given each action.

In an MDP, the decision-maker’s goal is to behave so that some functitsrefvard stream is
maximized — typically the average reward or the sum of discounted rewardp#imal solution to
the MDP is such a maximizing behavior. Formally, a stationary policy for an Mi¥a mapping
from states to actions, specifying which action to perform in each stateenGimch an optimal
policy 1, at each stage of the decision process, the agent need only estaldis$tatésit is in and
execute the actioa = 11(s).

Various exact and approximate algorithms exist for computing an optimal pdiejow we
briefly review the algorithm known gmlicy-iteration(Howard, 1960), which we use in our imple-
mentation. A basic concept in all approaches is that ofveidae function The value function of
a policy, denotedV™, assigns to each stasea value which corresponds to the expected infinite-
horizon discounted sum of rewards obtained when ugistarting froms. This function satisfies
the following recursive equation:

VT(s) = Rwds,1(s)) +y ) tr(s,1(s),sj)V'(s;) 1)
Sj€S
where 0< y < 1 is the discount factdrAn optimalvalue function, denoted*, assigns to each state

sits value according to an optimal poliey and satisfies

V'(s) = maxRwdsa)) +y ¥ trisa sV (s)). @

Sj€S

To find am* andV* using the policy-iteration algorithm, we search the space of possible poli-
cies. We start with an initial policyp(s) = argmaxRwd(s,a). At each step we compute the value
acA

2. We use discounting mostly for mathematical convenience. True digngwf reward would have to take into account
the actual time in which each book is purchased, which does not seaimtwerextra effort involved.
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function based on the former policy and update the policy given the new ahgetion:

Vi(s) = RWC‘(S’TT@(S)HVZSIF(SJE(S%SJ')Vi(Sj), 3)
Ti+1(S) = argmax[RWd(s,a)+yztr(s,a,sj)\/i(sj)]. 4)
acA SIS

These iterations will converge to an optimal policy (Howard, 1960).

Solving MDPs is known to be a polynomial problem in the number of states (\@duwection to
linear programming (Puterman, 1994)). It is usually more natural to reptéise problem in terms
of states variables, where each state is a possible assignment to thelslesanal the number of
states is hence exponential in the number of state variables. This well Koavge of dimension-
ality” makes algorithms based on an explicit representation of the state-ispa@etical. Thus, a
major research effort in the area of MDPs during the last decade kasimecomputing an optimal
policy in a tractable manner using factored representations of the stateamdother techniques
(for example Boutilier et al. (2000); Koller and Parr (2000)). Unfodtaty, these recent methods
do not seem applicable in our domain in which the structure of the state spquiteiglifferent —
that is, each state can be viewed as an assignment to a very small numbagablies (three in the
typical case) each with very large domains. Moreover, the values oftliebles (describing items
bought recently) are correlated. However, we were able to exploifpea structure of our state
and action spaces using different techniques. In addition, we intrapm®ximations that exploit
the fact that most states — that is, most item sequences — are highly unlikedgup (@ detailed
explanation will follow in Section 3).

MDPs extend the simpler Markov chain (MC) model — a well known model o&dyic systems.
A Markov chain is simply an MDP without actions. It contains a set of statelsaastochastic
transition function between states. In both models the next state does patdmpany states other
than the current state.

In the context of recommender systems, if we equate actions with recommersgdtion an
MDP can be used to model user behavior with recommendations — as we sloww-bwhereas an
MC can be used to model user behavior without recommendations. Mahlaivscare also closely
related ton-gram models. In a bi-gram model, the choice of the next word depenbsalpitistically
on the previous word only. Thus, a bi-gram is simply a first-order Marklo&in whose states
correspond to words. Anrgram is an — 1-order Markovian model in which the next state depends
on the previous — 1 states. Such variants of MDP-models are well known. A non-firstrorde
Markovian model can be converted into a first-order model by makingstatdinclude information
related to the previous— 1 states. More general transformation techniques that attempt to reduce
the size of the state space have been investigated in the literature (for exaegiacchus et al.
(1996); Thebaux et al. (2002)).

3. The Predictive Model

Ouir first step is to construct a predictive model of user purchasesstteamodel that can predict
what item the user will buy next. This model does not take into account itemdkion the user, as
it does not model the recommendation process and its effects. Nonethvedesisall use a Markov
chain, with an appropriate formulation of the state space, as our model. ctioi5d we shall
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show that our predictive model outperforms previous models, and in &écti@ shall intialize our
MDP-based recommender system using this predictive model.

3.1 The Basic Model

A Markov chain is a model of system dynamics — in our case, user “dyndmisise it, we need

to formulate an appropriate notion of a user state and to estimate the state-tnefasititon.

States. The states in our MC model represent the relevant information that weglee the user.
This information corresponds to previous choices made by users in timedoa set of ordered
sequences of selections. We ignore data such as age or genderglalthoauld be beneficial.
Thus, the set of states contains all possible sequences of user ssleCtiaourse, this formulation
leads to an unmanageable state space with the usual associated problémnspatkity and MDP
solution complexity. To reduce the size of the state space, we consideregpulgrices of at mokt
items, for some relatively small value kafWe note that this approach is consistent with the intuition
that the near history (for example, the current user session) often & melevant than selections
made less recently (for example, past user sessions). These sexjaencepresented as vectors of
sizek. In particular, we usgxy,...,x) to denote the state in which the user’s laselected items
werexy, ..., X. Selection sequences with< k items are transformed into a vector in whigh
throughxy,_ have the valuenissing The initial state in the Markov chain is the state in which every
entry has the valumissing* In our experiments, we used valueskatinging from 1 to 5.

The Transition Function. The transition function for our Markov chain describes the proba-
bility that a user whosd recent selections weng,...,xx will select the itemx' next, denoted
trme (X1, X2, ..., Xk), (X2, ..., %, X)). Initially, this transition function is unknown to us; and we
would like to estimate it based on user data. As mentioned, a maximum-likelihood estanate
used:

count((x, Xz, X, X))
trMC(<X1aX2>X3>7 <X27X37X4>> = COU”t((X]_ Xo X3>)

wherecount((x1, %y, ..., X)) is the number of times the sequengexy, ..., X was observed in the
data set. This model, however, still suffers from the problem of dats#pdfor example, see
Sarwar et al. (2000a)) and performs poorly in practice. In the netiose we describe several
techniques for improving the estimate.

(5)

3.2 Some Improvements

We experimented with several enhancements to the maximume-likelihapdm model on data
different from that used in our formal evaluation. The improvementsritestand used here are
those that were found to work well.

One enhancement is a form skipping(Chen and Goodman, 1996), and is based on the ob-
servation that the occurrence of the sequeace, X3 lends some likelihood to the sequengexs.
Thatis, if a person bought, xo, X3, then it is likely that someone will buys afterx;. The particular

3. Those user attributes could be incorporated into our model by ad@itegvariables. Attributes with large domains,
such as age, can be joined into a (small) number of groups (for exaag#egroups) to avoid an explosion of the
state space. Our similarity and clustering methods (see below) can beddaghare training data between states
with different, but related, attribute values (such as age group 258agagroup 30-40).

4. To accommodate systems that collect explicit rather than implicit rateegsh itemx; would be replaced by an
item-rating element — for examplbg, =high.
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skipping model that we found to work well is a simple additive model. First, theictor each
state transition is initialized to the number of observed transitions in the data, Jilien a user se-
qUENCEXy, X2, ..., Xn, we add the fractional count/2(-(1+3) to the transition from(x;, i1, X+2) to
(Xi+1,Xi+2,Xj), foralli+3 < j < n. This fractional count corresponds to a diminishing probability
of skipping a large number of transactions in the sequence. We then naitiedizounts to obtain
the transition probabilities:

count(s,s)

trve(S:9) = 5 counts )

(6)
wherecount(s, s') is the (fractional) count associated with the transition foims'.

A second enhancement is a form of clustering that we have not found litetature. Motivated
by properties of our domain, the approach exploits similarity of sequefrce@sexample, the state
(x,y,2) and the statéw,y, z) are similar because some of the items appearing in the former appear
in the latter as well. The essence of our approach is that the likelihood aittcenfromsto s
can be predicted by occurrences fromo s, wheres andt are similar. In particular, we define the
similarity of statess ands; to be

k
Sim(s,s) = 5 8("9]) (m+ 1) ()

whered(-,-) is the Kronecker delta function argl' is themth item in states. This similarity is
arbitrary up to a constant. In addition, we define $imailarity countfrom statesto s’ to be

simcouns,s) = § sim(s,s) -trya (s, s) (8)
5

wheretr,?,lg(s,-,s’) is the original transition function, with or without skipping (we shall compare the

models created with and without the benefit of skipping). The new transitarapility froms’ to
sis then given by

1 simcounts,s)
25 ¢ simcounfs, ")

trmc(s,s) = }trﬁ},g(s,s’)Jr

5 ©)

A third enhancement is the use of finite mixture modefingimilar methods are used m
gram models, where—for example—a trigram, a bigram, and a unigram iat@reed into a single
model. Our mixture model is motivated by the fact that larger valuédesdd to states that are more
informative whereas smaller valueslotiead to states on which we have more statistics. To balance
these conflicting properties, we mikxmodels, where théh model looks at the lasttransactions.
Thus, fork = 3, we mix three models that predict the next transaction based on the |astdtian,
the last two transactions, and the last three transactions. In generayvieacn mixture weights
from data. We can even allow the mixture weights to depend on the given(@agenformal
experiments on our data suggest that such context-specificity would impredictive accuracy).
Nonetheless, for simplicity, we usg = --- = T = 1/k in our experiments. Because our primary
model is based on thk last items, the generation of the models for smaller values entails little
computational overhead.

5. We examined several weighing techniques and the one describeeldytblelbest results. The use of more complex
techniques as well as attempts to learn the proper weights resulted in venyahanges.
6. Note that Equation 9 is also a simple mixture model.
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4. Evaluation of the Predictive Model

Before incorporating our predictive model into an MDP-based recomeresystem, we evaluated
the accuracy of the predictive model. Our evaluation used data condisgoto user behavior
on a web site (without recommendation) and employed the evaluation metrics céyrused in
the collaborative filtering literature. In Section 6 we evaluate the MDP-bapptbach using an
experimental approach in which recommendations on an e-commerce siterapeilatad by our
algorithms.

4.1 Data Sets

We base our evaluations on real user transactions from the Israek twalakstordvitos (www.mitos.co.il).
Two data sets were used: one containing user transactions (punchagesne containing user
browsing paths obtained from web logs. We filtered out items that werehleigited less than
100 times and users who bought/browsed no more than one item as is commoshyfuem eval-
uating predictive models (for example, Zimdars et al. (2001)). We wetenidi 116 items and
10820 users in the transactions data set, and 65 items and 6678 usersrowtsiadp data set.In
our browsing data, no cookies were used by the site. If the same used vimtsite with a new IP
address, then we would treat her as a new user. Also, activity on thelBaaddress was attributed
to a new user whenever there were no requests for two hours. Tatsseads were randomly split
into a training set (90% of the users) and a test set (10% of the users).

The rational for removing items that were rarely bought is that they cdrenaliably predicted.
This is a conservative approach which implies, in practice, that a raratediigem will not be
recommended by the system, at least initially.

We evaluated predictions as follows. For every user sequiree..,t, in the test set, we
generated the following test cases:

<t1>, <t1,t2>, ceey <tn7k,tn7k+1, ...,tn71> (10)

closely following tests done by Zimdars et al. (2001). For each case,emaiged our various mod-
els to determine the probability distribution fipgivent; .t _«.1,...,ti_1 and ordered the items by
this distribution. Finally, we used the actually observed in conjunction with the list of recom-
mended items to compute a score for the list.

4.2 Evaluation Metrics

We used two scores: Recommendation Score (RC) (Microsoft, 200Bgwhential Decay Score
(ED) (Breese et al., 1998) with slight modifications to fit into our sequentiaiain.

4.2.1 RECOMMENDATION SCORE

For this measure of accuracy, a recommendation is deemed successéubligérved itent is
among the topn recommended itemsr(is varied in the experiments). The sc&€is the percent-
age of cases in which the prediction is successful. A score of 100 mearthé¢hrecommendation
was successful in all cases. This score is meaningful for commercdtstegquire a short list of
recommendations and therefore care little about the ordering of the items intthe lis

7. There are more items and users in the transaction data set sincedarmunsactions over one year, whereas browsing
data was collected only during one week.

1274



AN MDP-BASED RECOMMENDERSYSTEM

4.2.2 BEXPONENTIAL DECAY SCORE

This measure of accuracy is based on the position of the obsgreadhe recommendation list,
thus evaluating not only the content of the list but also the order of items in i& uRlderlying
assumption is that users are more likely to select a recommendation near thietheplist. In
particular, it is assumed that a user will actually seenttteitem in the list with probability

p(m) =2~ (MD/@-1) (m> 1) (11)

wherea is the half-life parameter—the index of the item in the list with probability 0.5 of being
seen. The score is given by

100- 2ceC p(mE’ pog(ti|c)) (12)

whereC is the set of all cases,= ti_y,ti_ki1,...,ti_1 iS a case, angogti|c) is the position of the

observed itent; in the list of recommended items for We usedx = 5 in our experiments in order
to be consistent with the experiments of Breese et al. (1998) and Zimdarg2201). The relative

performance of the models was not sensitiva to

4.3 Comparison Models
4.3.1 ®OMMERCE SERVER 2000 RREDICTOR

A model to which we compared our results is fedictortool developed by Microsoft as a part
of Microsoft Commerce Server 2000, based on the models of Heckerna@n(2000). This tool
builds dependency-network models in which the local distributions areapiiidtic decision trees.
We used these models in both a non-sequential and sequential form. tWweapproaches are
described in Heckerman et al. (2000) and Zimdars et al. (2001),atdaglg. In the non-sequential
approach, for every item, a decision tree is built that predicts whether timewitt be selected
based on whether the remaining items were or were not selected. In thentgabjapproach, for
every item, a decision tree is built that predicts whether the item will be seleei¢dnased on the
previousk items that were selected. The predictions are normalized to account factitadt only
one item can be predicted next. Zimdars et al. (2001) also use a “caatiable, but preliminary
experiments showed it to decrease predictive accuracy. Consequeattlid not use the cache
variable in our formal evaluation.

These algorithms appear to be the most competitive among published workcoffrti@ned
results of Breese et al. (1998) and Heckerman et al. (2000) shonthrasequential) dependency
networks are no less accurate than Bayesian-network or clusteringsnadd about as accurate
asCorrelation the most accurate (but computationally expensive) memory-based m&haodar
et al. (2000b) apply dimensionality reduction techniques to the user ratingphatrtheir approach
fails to be consistently more accurate than Correlation. Only the sequentiattaigof Zimdars
et al. (2001) is more accurate than the non-sequential dependenayrkétvour knowledge.

We built five sequential models<Lk < 5 for each of the data sets. We refer to the non-sequential
Predictor models as Predictor-NS, and to the Predictor models built usingtdnexpansion meth-
ods with a history of lengtk as Predictok.
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(b) Browsing data set.

Figure 1: Exponential decay score for different models.

4.3.2 UINORDEREDMCS

We also evaluated a non-sequential version of our predictive modelewbguences such asy, z)
and(y,z x) are mapped to the same state. If our assumption about the sequential hatoeno
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mendations is incorrect, then we should expect this model to perform bedteotihr MC model,

as it learns the probabilities using more training data for each state, gathérihg ordered data
into one unordered set. Skipping, clustering, and mixture modeling weragxtlas described in
section 2. We call this model UMC (Unordered Markov chain).

55
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40 [] —I
25 B —‘
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25

20 = T I T T T T T T T T
i 2 3 4 5 6 7 g el 10
Predictions list size
|I:| MC 123 SK SM O Predictor 3 BUMC 1 SK SM B Predictor NS

Recommendation Score

(a) Transactions data set.

4.4 Variations of the MC Model

In order to measure how eackgram enhancement influenced predictive accuracy, we also evalu-
ated models that excluded some of the enhancements. In reporting dis, esurefer to a model
that uses skipping and similarity clustering with the terms SK and SM, resplgctivaddition, we

use numbers to denote which mixture components are used. Thus, forlexampise MC 123 SK

to denote a Markov chain model learned with three mixture components—arhigigram, and
guadgram—where each component employs skipping but not clustering.

4.5 Experimental Results

Figure 1(a) and figure 1(b) show the exponential decay score fobéhemodels of each type
(Markov chain, Unordered Markov chain, Non-Sequential Predintodel, and Sequential Predic-
tor Model). It is important to note thatll the MC models using skipping, clustering, and mixture
modelling yielded better results thavery one ofthe Predictor-k models and the non-sequential
Predictor model. We see that the sequence-sensitive models are batietopsethan those that
ignore sequence information. Furthermore, the Markov chain predistddreboth data sets.

Figure 2(a) and Figure 2(b) show the recommendation score as a fuottish length ().
Once again, sequential models are superior to non-sequential modktsedviarkov chain models
are superior to the Predictor models.
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Figure 2: Recommendation score for different models.
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Figure 3: Exponential decay score for different Markov chainioes

Figure 3(a) and Figure 3(b) show how different versions of the hadhain performed under
the exponential decay score in both data sets. We see that multi-comporaeis raot-perform
single-component models, and that similarity clustering is beneficial. In aiva find that skip-
ping is only beneficial for the transactions data set. Perhaps users tésltbwothe same paths
in a rather conservative manner, or site structure does not allow usgusrip ahead”. In either
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case, once recommendations are available in the site (thus changing theusitiera)r skipping
may prove beneficial.

5. An MDP-Based Recommender Model

The predictive model we described above does not attempt to captuteotthi@sd long-term effect
of recommendations on the user, nor does it try to optimize its behavior by tatngccount such
effects. We now move to an MDP model that explicitly models the recommendaticegz@and
attempts to optimize it. The predictive model plays an important role in the construitithis
model.

We assume that we are given a set of cases describing user behétioravsite that does
not provide recommendations, as well as a probabilistic predictive modelesér acting without
recommendations generated from this data. The set of cases is needgigpdot some of the
approximations we make, and in particular, the lazy initialization approach e Tdle predictive
model provides the probability the user will purchase a particular Xgigen that her sequence of
past purchases ig,...,x.. We denote this value bigryreq(X|X1, . .., X), wherek = 3 in our case.
It is important to stress that the approach presented here is indepehdeafparticular technique
by which the above predictive value is approximated. Naturally, in our impl&tien we used the
predictive model developed in Section 3, but there are other ways efraoting such a model (for
example, Zimdars et al. (2001); Kadie et al. (2002)).

5.1 Defining the MDP

Recall that to define an MDP, we need to provide a set of states, actiansitibn function, and a
reward function. We now describe each of these elements. The statesMDia for our recom-
mender system atetuples of items (for example, books, CDs), some prefix of which may contain
null values corresponding to missing items. This allows us to model shorteeisegs of purchases.

The actions of the MDP correspond to a recommendation of an item. One msideomultiple
recommendations but, to keep our presentation simple, we start by discssgjlegrecommenda-
tions.

Rewards in our MDP encode the utility of selling an item (or showing a web)mepdefined by
the site. Because the state encodes the list of items purchased, the repandsion the last item
defining the current state only. For example, the reward for $tat®, x3) is the reward generated
by the site from the sale of itemy. In this paper, we use net profit for reward.

The state following each recommendation is determined by the user’s resjootisat recom-
mendation. When we recommend an itefithe user has three options:

e Accept this recommendation, thus transferring from stagec, x3) into (xz, X3, x')
e Select some non-recommended it€mthus transferring the state, X2, X3) into (X2, x3,X").

e Select nothing (for example, when the user terminates the session), in edsielihe system
remains in the same state.

Thus, the stochastic element in our model is the user’s actual choice.afsé&ityn function for the
MDP model:

tryop( (X1, X2, X3), X, (X2, X3,X")) (13)
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is the probability that the user will select iteri given that itemx’ is recommended in state
(x1,%2,X3). We writetry,p to denote that only single item recommendations are used.

5.1.1 INITIALIZING trypp

Proper initialization of the transition function is an important implementation issuerisystem.
Unlike traditional model-based reinforcement learning algorithms that learpribper values for
the transition function and hence an optimal policy online, our system nedmsforly accurate
when it is first deployed. A for-profit e-commefcsite is unlikely to use a recommender system
that generates irrelevant recommendations for a long period, while waitingté converge to an
optimal policy. We therefore need to initialize the transition function carefully.cah do so based
on any good predictive model, making the following assumptions:

e A recommendation increases the probability that a user will buy an item. THhislpitiy
is proportional to the probability that the user will buy this item in the absenceaam-
mendations. This assumption is made by most collaborative filtering models deating
e-commerce sites.We denote the proportionality constant for recommendationstates
by asr, whereas, > 1.

e The probability that a user will buy an item that was not recommended is lowaer ttie
probability that she will buy when the system issues no recommendations atbtill
proportional to it. We denote the proportionality constant for recommendatiostates by
Bsr, wherefs, < 1.

To allow for a simpler representation of the equations, for a statéx,,...,xx) and a recommen-
dationr let us uses-r to denote the state = (Xp,..., X, ). We USEtr predict(S,S- I') to denote the
probability that the user will choosenext, given that its current statesaccording to the predictive
model in which recommendations are not considered, th&riseq(r|s). Thus, withas, and s,
constant oves andr and equal ta andp, respectively, we have

tl’pr(S, rsr)= a‘trpredict(sas'r), (14)

the probability that a user will buy next if it was recommended,;

trpp(S,r', S 1) = B-trpredict(S,S-1), I’ #T, (15)
the probability that a user will buyif something else was recommended; and
trl%/IDP(Sa r S) = 1_tr|%/|DP(Sa r,s: r) - Z trl%/lDP(& r,s r/)7 (16)
r'#r

the probability that a user will not buy any new item aftewas recommended. We do not see a
reason to stipulate a particular relationship betweemd3, although we must have

triop(S,1,ST) + Z tripp(sr’,s-r) < 1. (17)
r'=£r

8. We use the term e-commerce, although our system, and recommnsgatians in general, can be used in content sites
and other applications.

9. Actually CF models do not refer to the presence of recommendaliohgsing such systems to generate recommen-
dations to users in commercial applications has the underlying assumgtdheétrecommendation will increase the
likelihood that a user will purchase an item.
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The exact values afis, andBs, should be chosen carefully. Choosing, andfs, to be con-
stants over all states and recommendations ¢say2, 3 = 0.5) might cause the sum of transition
probabilities in the MDP to exceed 1. The approach we took was motivatedttsyekal. (2000),
who showed that thacreasein the probability of following a recommendation is large when one
recommends items having hidjft, defined to be%. Thus, it is not unreasonable to assume that
this increase in probability is proportional to lift:

p(r|s)
p(r) (18)

wherep(r) is the prior probability of buying. Fixing as, to be a little larger than 1 as follows:

Osr = y+pr) P(r) (19)

p(r)

wherey is a very small constant (we uge= ﬁo), and solving fo3s,, we obtain

pr(rs,r) —pr(ris,r') ~y

1- er Qs p(S' I‘/’S)
BT Ty 0

If Bsr is negative, we set it to a very small positive value and normalize the piitieatafterwards.

There are a few things to note abdutd,p(s,1',s- 1), the probability that a user will buy if
something else was recommended, and its representation. Firstrgjpgés,r’,s-r) = Bsr -tr(s,s-
r), the MDP’s initial transition probability does not dependrbbecause our initialization is based
on data that was collected without the benefit of recommendations. Ofe;aoluosie has access to
data that reflects the effect of recommendatiqrg£qict(S-r|S,r)), one can use it to provide a more
accurate initial model. Next, note that we can represent this transition farsaiaocisely using at
most two values for every state-item pair: the probability that an item will becteglen a state
when it is recommended (that igt(s- r|s,r)) and the probability that an item will be selected when
it is not recommended (that ipr(s-r|s,r’)). Because the number of items is much smaller than the
number of states, we obtain significant reduction in the space requirenfdnésroodel.

5.1.2 GENERATING MULTIPLE RECOMMENDATIONS

When moving to multiple recommendations, we make the assumption that recommendation
independent. Namely we assume that for every pair of sets of recommitechegR, R, we have
that

(reRATeR)V(réRAT¢R) = trupp(s,Rs 1) =trupp(s,R,s-r) (21)

This assumption might prove to be false. It seems reasonable that, as tHedisbmmendations
grows, the probability of selecting any item decreases. Another more sxatieple is the case
where the system “thinks” that the user is interested in an inexpensikéngoloook. It can then
recommend a few very expensive cooking books and one is reasqratag (but in no way cheap)
cooking book. The reasonably priced book will seem like a bargain caedpa the expensive ones,
thus making the user more likely to buy it.

Nevertheless, we make this assumption so as not to be forced to createraaleign space
where actions are ordered combinations of recommendations. Taking the sipgpoach for rep-
resenting the transition function we defined above, we still keep only twes#étu every state—item
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pair:
trmpp(S,T € R S-1) =triypp(S,1,s-1), (22)

the probability that will be bought if it appeared in the list of recommendations; and
trmpp(S,F ¢ Rs-1) =tripp(s,r',s-r) forall r' #r, (23)

the probability that will be bought if it did not appear in the list.

As beforetrppe(s,r ¢ R,s-r) does not depend an and will not depend oR in the discussion
that follows. We note again, that these values are merely reasonable iaitiak\and are adjusted
by our system based on actual user behavior, as we shall discuss.

5.2 Solving the MDP

Having defined the MDP, we now consider how to solve it in order to obtaapéimal policy. Such

a policy will, in effect, tell us what item to recommend given any sequenceeaf purchases. For
the domains we studied, we found policy iteration (Howard, 1960)—with agfggvoximations to

be described—to be a tractable solution method. In fact, on tests usingatealee found that
policy iteration terminates after a few iterations. This stems from the speciakenattwur state

space and the approximations we make, as we now explain.

Our state space enjoys a number of features that lead to fast corsefehe policy iteration
algorithm:

Directionality. Transitions in our state space seem to have inherent directionality: Fitatea s
representing a short sequence cannot follow a state representingeat BBguence. Second, the
success of the sequential prediction model indicates that typicabyisiflikely to follow vy, y is
less likely to followx — otherwise, the sequenggy andy,x would have similar probabilities, and
we could simply use sets. Thus, loops, which in principle could occur in ddiP vhodel because
we maintain only a limited amount of history, are not very likely. Indeed, amixation of the
loops in our state space graph reveals them to be small and scarce. vBfpliecthe web site
implementation, it is easy enough to filter out items that were already boughelsér from our
list of recommendations. It is well-known that directionality can be used tacethe running time
of MDP solution algorithm (for example, Bonet and Geffner (2003)).

Insensitivity to k. We have also found that the computation of an optimal policy is not heav-
ily sensitive to variations itkk—the number of past transactions we encapsulate in a stat&k As
increases, so does the number of states, but the number of positives @mwig transition matrix
remains similar. Note that, at most, a state can have as many successors asdliems. When
k is small, the number of observed successors for a state can be large k\ttosvs, however, the
number of successors decreases considerably. Table 2 demonbisatglation in our implemented
model.

Despite these properties of the state space, policy evaluation still requioksaffiort given the
large state and action space we have to deal with. To alleviate this problepsart to a number
of approximations.

Ignoring Unobserved States.The vast majority of states in our models do not correspond to
sequences that were observed in our training set because most ctiomsioditems are extremely
unlikely. For example, it is unlikely to find adjacent purchases of a sciéotien and a gardening
book. We leverage this fact to save both space and computation time. Finstaiwiin transition
probabilities only for states for which a transition occurred in our training.d&hese transitions
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[ k | Number of stateg Average number of successolrs

1| 16,859 15.56
2| 79,640 11.98
3| 89,221 3.92

Table 2: The number of initialized states and the average number of stagssorfor different
values ofk.

correspond to pairs of states of the fosmands-r. Thus, the number of transitions required per
state is bounded by the number of items rather than by an amount exponekiratlie worst case.
The non-zero transitions are stored explicitly, and as can be inferwed Table 2, their number
is much smaller than the total number of entries in the explicit transition matrix. Arile wiuch
memory is still required, in Section 6.2, we show that these requirements atemtarge for
modern computers to handle.

Moreover, we do hot compute a policy choice for a state that was not Btered in our training
data. When the value of such a state is needed for the computation of an gmimglof some
observed state, we simply use its immediate reward. That is, if the seq@ena did not appear
in the training data, we do not calculate a policy for it and assume its valueR@zpe-the reward
for the last item in the sequence. Note that given the skipping and clustasgtigpds we use, the
probability of making a transition from some (observed) sequéncey) to (w,X,y) is not zero
even thoughx,y,z) was never observed. This approximation, although risky in generalsyIBP
motivated by the fact that in our initial model, for each state there is a relasvegll number of
items that are likely to be selected; and the probability of making a transition inte-aneountered
state is very low. Moreover, the reward (that is, profit) does not abaigificantly across different
states, so, there are no “hidden treasures” in the future that we could miss

When a recommendation must be generated for a state that was not eredumtthe past,
we compute the value of the policy for this state online. This requires us to estineatt@nsition
probabilities for a state that did not appear in our training data. We handtermw states in the
same manner that we handled states for which we had sparse data in the liadiatipe model
— that is, using the techniques of skipping, clustering, and finite mixture igfam, bigram, and
trigrams described in Section 3.2.

Using the Independence of RecommendationOne of the basic steps in policy iteration is
policy determination. At each iteration, we compute the best action for eaesstahat is, the
action satisfying:

argmax(Rwd(s) +y¥ ¢estr (s,R,)Vi(s)] =
R
argmaxRwd(s) +Y(3crtrmpp(S,r € R;s-r)Vi(s-r)+ (24)
R
SrertrMDP(S, I € RS- 1)Vi(s-1))]

wheretr(s,r € R;s-r) andtr(s,r ¢ R s-r) follow the definitions above.

The above equation requires maximization over the set of possible recoratioeisdfor each
state. The number of possible recommendatiom& isvheren is the number of items arxlis the
number of items we recommend each time. To handle this large action space, weiseaif our
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independence assumption. Recall that we assumed that the probabilityuseatlauys a particular
item depends on her current state, the item, and whether or not this itenoismsnded. It does
not depend on the identity of the other recommended items. The following meslesdhis fact to
quickly generate an optimal set of recommendations for each state.

Let us definé)(s,r) — the additional value of recommendingn states:

A(s,r) = (tr(s,r e Ris-r)—tr(s,;r ¢ Rs-r))V(s-r). (25)
Now define «
Roion = 111, -, k|A(S,r1) > ... > A(s, 1) and (26)
Vr#ri(i=1,...,K),A(s,r¢) > A(S,r)}.
" IS the set ok items that have the maximAls,r) values.
Theorem 1 R> , is the set that maximizeg;Y(s) — that is,
Viji(s) =
RWA(S) + V(3 cree tr(sT € R s 1)Vi(s-1)+ (27)

Yrgre (ST ER S TVi(s:T)).

Proof Let us assume that there exists some other setretommendationB # R>¢ ., that maxi-
mizesVi,1(s). For simplicity, we shall assume that Allvalues are different. If that is not the case,

thenR should be a set of recommendations not equivaleREfg, . Letr be an item irR but not in

o andr’ be an item irR> | but not inR. Let R be the set we get when we replaceith r’ in

R. We need only show that, 1(s,R) < Vi 1(s,R):
Vit1(s,R) —Vis1(s,R) =
Rwd(s) + S¢tr(s,R S)Vi(s) — (Rwd(s) + S« tr(s,R,s)Vi(s)) =
Yrertr (1" € RS- I")Vi(s-1) + Fgrtr(s,r” ¢ Rs-r")Vi(s-r")—
Srer (1" € R s I"Vi(s:1) = Fgrtr(sr” ¢ R,s-r")Vi(s-1") = (28)
tr(s,r e Rs-r)Vi(s-r) —tr(s;r’ ¢ Ris-r')Vi(s-r')—
(tr(s,;r’ e R,s-r)Vi(s-r)—tr(s;r ¢ R,s-r')Vi(s-r)) =
A(s,r)—A(sr') >0

To compute/;1(s) we therefore need to compute Alls,r) and finde;lg)ﬂ, making the compu-
tation ofVi, 1(s) independent of the number of subsets (or even worse—ordereets)ibf items.
The complexity of finding an optimal policy when recommending multiple items at eagh sta
der our assumptions remains the same as the complexity of computing an optimaf@uodingle
item recommendations.
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By construction, our MDP optimizes site profits. In particular, the systers doerecommend
items that are likely to be bought whether recommended or not, but ratloenneends items whose
likelihood of being purchased iacreasedwhen they are recommended. Nonetheless, when rec-
ommendations are based solely on lift, it is possible that many recommendations widdbe for
which the absolute probability of a purchase (or click) is small. In this casecdmmendations
are seldom followed, users might start ignoring them altogether, makingvidralbbenefit zero.
Our model does not capture such effects. One way to remedy this possiblem is to alter the
reward function so as to provide a certain immediate reward for the accepddia recommenda-
tion. Another way to handle this problem is to recommend a book with a large Mbfe snly if
the probability of buying it passes some threshold. We did not find it nagess introduce these
modifications in our current system.

5.3 Updating the Model Online

Once the recommender system is deployed with its initial model, we need to updateotiel
according to actual observations. One approach is to use some foeinfafrcement learning—
methods that improve the model after each recommendation is made. Althodgimedels need
little administration to improve, the implementation requires many calls and computatiaghs by
recommender system online, which will lead to slower responses—anitatdesesult. A simpler
approach is to perform off-line updates at fixed time intervals. The site oy keep track of the
recommendations and the user selections and, say, once a week usgadtistes to build a new
model and replace it with the old one. This is the approach we used.

In order to re-estimate the transition function the following counts are obté&ioexthe recently
collected statistics:

e Cin(s,r,s-r)—the number of times therecommendation was accepted in state

e Cout(S,1,8-r)—the number of times the user took itemin states even though it was not
recommended,

e Ciotal(S, S r)—the number of times a user took itemwhile being in states, regardless of
whether it was recommended or not.

We compute the new counts and the new approximation for the transition fuattiiomet + 1
based on the counts and probabilities at ttnas follows:

d(srsr) = d,(srs-r)+countsr,s-r), (29)
CE;;;(S,S'I') = C:ota|(s,r,5'r)—l—COUﬂt(S,S'I'), (30)
dtlsrsr) = d(sr,sr)+countss-r)—countsr,s-r), (31)
t+1
ctl(sr,s-r
tr(sreRsr) = %, (32)
Ctotal(s’ S I’)
t+1
(s r, s r
tr(sr¢Rs-r) = % (33)
Ctotal(s7 S I')

Note that at this stage the constaats andfs, no longer play a role—they were used only to
generate the initial model. We still need to define how the counts atttim@ are initialized. We
showed in section 5.1.1 how the transition functiors initialized, and now we define:
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Ci(l)’l(sarvs'r> = ES'tr(SaraS'r)a (34)
Cgut(57 r,S'r) = ES'tr(SvraS'r)a (35)
Ctootal(sas' N = &, (36)

whereés is proportional to the number of times the stateas observed in the training data (in
our implementation we used 10ount(s)). This initialization causes states that were observed
infrequently to be updated faster than states that were observedritoaed in whose estimated
transition probabilities we have more confideAge.

To ensure convergence to an optimal solution, the system must obtaimtecestimates of the
transition probabilities. This, in turn, requires that for each stated for every recommendation
r, we observe the response of users to a recommendatioinadtates sufficiently many times.

If at each state the system always returns the best recommendationshenlynost values for
count(s,r,s-r) would be 0, because most items will not appear among the best recommesdation
Thus, the system needs to recommend non-optimal items occasionally in omgir dounts for
those items. This problem is widely known in computational learning agxpéoration versus
exploitation tradeofffor some discussion of learning rate decay and exploration vs. exploitation
reinforcement learning, see, for example Kaelbling et al. (1996) attdrsand Barto (1998)). The
system balances the need to explore unobserved options in order to énisrmodel and the desire

to exploit the data it has gathered so far in order to get rewards.

One possible solution is to select some constaatich that recommendations whose expected
value ise-close to optimal will be allowed—for example, by following a Boltzmann distribution

. V) (37)
Y j—1exp—>
with an € cutoff—meaning that only items whose value is witlgiof the optimal value will be
allowed. The exact value @fcan be determined by the site operators. The price of such a conser-
vative exploration policy is that we are not guaranteed convergenae aptanal policy. Another
possible solution is to show the best recommendation on the top of the list, butiteas less
likely to be purchased as the second and third items on the list. In our implementatioseva list
of three recommendations where the first one is always the optimal onthebsécond and third
items are selected using the Boltzman distribution without a cutoff.

We also had to equip our system to change with frequent changes éopéx, addition and
removal of items). When new items are added, users will start buying thémasitive counts for
them will appear. At this stage, our system adds new states for these nesy &ed the transition
function is expanded to express the transitions for these new states.u@écerior to updating
the model, the system is not able to recommend those new items (the well-kndaistad” prob-
lem (Good et al., 1999) in recommender systems). In our implementation, wiérsthransition to
a states-r is observed, its probability is initialized to®the probability of the most likely next item
in states with & = 10. This approach causes the new items to be recommended quite frequently.

One possible approach to handling removed items is to do nothing to our systerhjcim
case the transition probabilities slowly decay to zero. Using this approaualever, we may still

Pr(chooséri)) =

10. This approach is similar to assigning an independent learning ra¢adbrstate and decaying it based on the amount
of observed data.
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insert deleted items into the list of recommended items — an undesirable featmsedDently,
in our Mitos implementation, items are programmatically removed from the model doiffiige
updates. Another solution that we have implemented but not evaluated isweigdded data and
to exponentially decay the weights in time, thus placing more weight on moretiseobserved
transitions.

6. Evaluation of the MDP Recommender Model

The main thesis of this work is that (1) recommendation should be viewed gsierg&l optimiza-
tion problem, and (2) MDPs provide an adequate model for this view. This is tmbtrasted with
previous systems which used predictive models for generating recomtiersdaln this section,
we present an empirical validation of our thesis. We compare the perfogmadrour MDP-based
recommender system (denoted MDP) with the performance of a recomnsstie based on our
predictive model (denoted MC) as well as other variants.

Our studies were performed on the online book store Mitos (www.mitos.co.if) fsagust,
2002 till April, 2004. During our evaluations, approximately 5008000 different users visited
the Mitos site daily. Of those, around 900 users inserted items into their basket, tteumgrour
data-set! On average, each customer inserte@7litems into the shopping basket. Over QG0
items were available for purchase on the site.

Users received recommendations when adding items to the shoppirlg dare recommen-
dations were based on the l&stems added to the cart ordered by the time they were added. An
example is shown in Figure 4 where the three book covers at the bottoneasztimmended items.
Every time a user was presented with a list of recommendations on eithertbagystem stored
the recommendations that were presented and recorded whether thanebased a recommended
item. Cart deletions were rare and ignored. Once every two or threeswagkocess was run to
update the model given the data that was collected over the latest time period.

We compared the MDP and MC models both in terms of their value or utility to the sitelas w
as their computational costs.

6.1 Utility Performance

Our first set of results is based on the assumption that the transition fumetidearn for our
MDP using data collectedith recommendations, provides the the best available model of user
behavior under recommendation. Under this assumption, we can measufetherdifferent
recommendation policies. An important caveat is that the states in our MD&sporrd to truncated
(that is, lastk) user sequences. Thus, the model does not exclude repeatedgmgati the same
item. Despite this shortcoming, we proceeded with the evaluation.

As discussed above, a predictive model can answer queries in th&féxth)—the probability
that itemx will be purchased given user histoty Recommender systems may employ differ-
ent strategies when generating recommendations using such a predictige Wgsuming that an
MDP formalizes the recommendation problem well, we may use the learned MD& to@valuate
these strategies. The evaluation of the quality of different possible pdiarigse MDP, each corre-

11. We do not supply accurate numbers for number of users anal aetdits due to the request of the site owners.

12. Users also received recommendations when looking at the déestigp a book, but these recommendations where
based only on the user’s visit to the current page and not on her cart.

13. The update process was executed by the site administrator manubiheaefore the update interval varies.
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Figure 4: Recommendations in the shopping cart web page.

sponding to a popular approach to recommending, may shed light on tleerpoefecommendation
strategy.

The MDP model was built using data gathered while the model was running sitéhavith
incremental updates (as described above) for almost a year. We aahipar policies, where the
first policy uses information about the effect of recommendations, anckthaining policies are
based on the predictive model solely:

e Optimal — recommends items based on optimal policy for the MDP.

e Greedy — recommends items that maximizéx|h) - R(x) (wherePr(x/h) is the probability
of buying itemx given user historyn, andR(x) is the value ok to the site — for example, net
profit).

e Most likely — recommends items that maximi2e(x/h).
e Lift—recommends items that maximi S’(()‘(')‘) , WwherePr(x) is the prior probability of buying
itemx.

To evaluate the different policies we ran a simulation of the interaction ofranigethe system.
During the simulation the system generated a list of recommended Refr@m which the simu-
lated user selected the next item, using the distributi¢s) R s- x)—the probability that the next
selected item ix given the current stateand the recommendation liBt simulating the purchase
of x by the user. The length of user session was taken from the learnedutistribf user session
length in the actual site. We ran the simulation ford@ iterations for each policy, and calculated
the average accumulated reward for user session.
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| Policy | Value |
Optimal 1185
Greedy 116.1
Most Likely | 117.0
Lift 112.8

Table 3: Performance of different policies.

The results are presented in Table 3. The calculated value for each {®tley sum of dis-
counted profit in (New Israeli Shekels) averaged over all states.sat aweighted average, where
the weight of each state was the probability of observing it. Obviously, imappolicy results in
the highest value. However, the differences are small, and it app@ai@td can use the predictive
model alone with very good results.

Next, we performed an experiment to compare the performance of the b4B&d system with
that of the MC-based system. In this experiment, each user entering thasiéssigned a randomly
generated cart-id. Based on the last bit of this cart-id, the user waslpdowith recommendations
by the MDP or MC. Reported mean profits were calculated for each usgibaga single visit to
the site). Data gathered in both cases was used to update both ffodels.

The deployed system was built using three mixture components, with histagthleanging
from one to three for both the MDP model and the MC model. Recommendatanstie different
mixture components were combined using an equa3)0weight. We used the policy-iteration
procedure and approximations described in Section 5 to compute an optilicglfpo the MDP.
Our model encoded approximately,2B0 states in the two top mixture componemis=(2, k = 3).

The reported results were gathered after the model was running in thetkiieevemental updates
(as described above) for almost a year.

During the testing period, 5% of the users who made at least one purchase were shown
MDP-based recommendations and the otheB%Pof these users were shown MC-based recom-
mendations. For each user, we computed the average site profit pendesghat user, leaving
out of consideration the first purchase made in each session. Thédimstvas excluded as it
was bought without the benefit of recommendations, and is therefolevarg to the comparison
between the recommender systeiis.

The average site profit generated by the users was 28% higher forRifegvbup® We used
a permutation test (see, for example, Yeh (2000)) to see how likely it waailfibba difference
this large to emerge if there were in fact no systematic difference in thetieéfieess of the two
recommendation method$. We randomly generated 10000 permutations of the assignments of

14. We update the MC model by recording the transition without considéragecommendation used.

15. This is not entirely accurate as the site also provides recommendfatidgtesns in the book description page. We
do not present here any experimental results for those recomtimrgland do not model their effect on the user,
but we note that a user that received MDP recommendations in theacget got MDP recommendations in the book
description page; users who got MC recommendations in the bask&é@aecommendations in the description
page as well.

16. We are not at liberty to provide accurate numbers.

17. We used a permutation test to establish the validity of our results, as thsrnes-parametric, and does not require
any prior assumptions about the distribution of the data, and is quite robusise in the data. We used the one-tailed
version of the test as the directional hypothesis that the MDP recommisrgtter than the MC recommender has
been theoretically motivated above.
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session profits to users, for each permutation computing the ratio of awsasgjen profits between
the MDP and the MC groups. With only 8% of these random assignments weettithas large as
(or larger than) 282. Therefore, the better performance of the MDP recommender is stalystic
significant withp = 0.08 by a one-tailed permutation test.

There are two possible sources for the observed improvement—the MDPenggnerating
more sales or sales of more expensive items. In our experiment, the everagper of items
bought per user session wa8® in favor of the MDP-based recommendpe£f 0.15), whereas the
average price of items was 4% higher in favor of the MDP-based reconanéme: 0.04). Thus,
both effects may have played a role.

In our second and last experiment, we compared site performance withitoit a recom-
mender system. Ideally, we would have liked to assign users randomly tganaence with and
without recommendations. This option was ruled-out by the site owner sedauould have led to
a non-uniform user experience. Fortunately, the site owner was willirenove the recommender
system from the site for one week. Thus, we were able to compare ay@Eads per user session
during two consecutive weeks — one with recommendations and one witttnrhmendation
We found that, when the recommender system was not in use, averageo§itelfopped 17%
(p=0.0). Although, we cannot rule out the possibility that this difference is dusther factors
(for example, seasonal effects or special events), these resgliitgeencouraging.

Overall, our experiments support the claims concerning the added valisingfrecommenda-
tions in commercial web sites and the validity of the MDP-based model for recadensystems.

6.2 Computational Analysis

In this section, we compare computational costs of the MDP-based andetttietBr recommender
system.

Our comparison uses the transaction data set and corresponding mestelbed in Section 4.
In addition to using the full data set, we measured costs associated with sreadliens of the data
in which transactions among only the the tdpgtems were considered, in order to demonstrate the
effect of the size of the data-set on performance.

| [[N=15231] N=2661] N=1142] N=354 N=86 |
MDP 112 63 58 41 16
Predictor-NS|| 3504 631 177 80 25|

Table 4: Required time (seconds) for model building.

First, let us consider the time it takes to make a recommendation. Recommendation time is
typically the most critical of computational costs. If recommendation latency tisaable, no
reasonable site administrator will use the recommender system. Table 5 skeawsnber of rec-
ommendations generated per second by the recommender system. Thesresultsat the MDP
model is faster. This result is due to the fact that, with the MDP model, we do aimosom-
putations online. While predicting, the model simply finds the proper state &umthsethe state’s
pre-calculated list of recommendations.

18. We display recommendations betweg¢2®/2003 and 43/2003, and without recommendations frorfi8/2003 to
3/26/2003.
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[[N=15231] N=2661] N=1142] N=354 N=86 |

MDP

250

277

322

384

1030

Predictor-NS

23

74

175

322

1000 |

Table 5: Recommendations per second.

The price paid for faster recommendation is a larger memory footprint. Tableo@s the
amount of memory needed to build and store a model in megabytes. The MDPregpdees more
memory to store than the Predictor model, due to the structured representatitn Rredictor
model using a collection of decision trees.

Finally, we consider the time needed to build a new model. This computationasqustaps
the least important parameter when selecting a recommender system, as uiloifeg s an off-
line task executed at long time intervals (say once a week at most) on a mactidedk not affect
the performance of the site. That being said, as we see in Table 4, the MB¢t has the smallest
build times.

| [[N=15231] N=2661] N=1142] N=354 N=86 |
MDP 138 74 55.7 333 114
Predictor-NS| 50.1 26 25 223 18

Table 6: Required memory (megabytes) for building a model and generatingimendations.

Overall the MDP-based model is quite competitive with the Predictor model.oltiges the
fastest recommendations at the price of more memory use, and builds modelguicidy.

7. Discussion

This paper describes a new model for recommender systems based dPa®OM work presents
one of a few examples of commercial systems that use MDPs, and one afstheffiorts of the
performance of commercially deployed recommender system. Our experimesu#is validate
both the utility of recommender systems and the utility of the MDP-based appimestommender
systems.

To provide the kind of performance required by an online commercial skeused various
approximations and, in particular, made heavy use of the special prapeftier state space and
its sequential origin. Whereas the applicability of these techniques begoathmender systems is
not clear, it represents an interesting case study of a successtystam. Moreover, the sequential
nature of our system stems from the fact that we need to maintain historgtgfyrehases in order
to obtain a Markovian state space. The need to record facts about thin phs current state
arises in various domains, and has been discussed in a number of gapersdling non-first-order
Markov reward functions (see, for example, Bacchus et al. (1996hi&baux et al. (2002)).

Another interesting technique is our use of off-line data to initialize a modelcdraprovide
adequate initial performance.

In the future, we hope to improve our transition function on those statesrtha¢llom encoun-
tered using generalization techniques, such as skipping and clusteahgrelsimilar to the ones
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we employed in the predictive Markov chain model. Other potential improvenaeatie use of a
partially observable MDP to model the user. As a model, this is more approfitéatean MDP, as
it allows us to explicitly model our uncertainty about the true state of the usrrti{ier, 2002).

In fact, our current model can be viewed as approximating a particuliMby using a finite
—rather than an unbounded — window of past history to define the ¢stega. Of course, the com-
putational and representational overhead of POMDPs are significelagropriate techniques for
overcoming these problems must be developed.

Weaknesses of our predictive (Markov chain) model include the uad bbcweighting func-
tions for skipping and similarity functions and the use of fixed mixture weightkhofigh the
recommendations that result from our current model are (empiricallydilufee ranking items, we
have noticed that the model probability distributions are not calibrated. nlcgathe weighting
functions and mixture weights from data should improve calibration. In additioimformal ex-
periments, we have seen evidence that learning case-dependent migtghts should improve
predictive accuracy.

Our predictive model should also make use of relations between items thaeoexplicitly
specified. For example, most sites that sell items have a large catalogue wittchieal struc-
ture such as categories or subjects, a carefully constructed web sttwantd item properties such
as author name. Finally, our models should incorporate information aberg ssch as age and
gender.
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