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Abstract

In this paper, an empirical evaluation of three infer-
ence methods for uncertain reasoning is presented in
the context of Pathfinder, a large expert system for
the diagnosis of lymph node pathology. The inference
procedures evaluated are (1) Bayes’ theorem, assum-
ing evidence is conditionally independent given each
hypothesis, (2) odds-likelihood updating, assuming
evidence is conditionally independent given each hy-
pothesis and given the negation of each hypothesis,
and (3) a inference method related to the Dempster—
Shafer theory of belief. A decision-theoretic approach
is introduced for evaluating the performance of ex-
pert systems. This approach, when combined with
a more traditional expert-rating method for evalua-
tion, provides insights about various components of
the inference process.

I. Introduction

Several years ago, before learning much about methods
for reasoning with uncertainty, I and my colleagues began
work on a large expert system, called Pathfinder, that as-
sists community pathologists with the diagnosis of lymph
node pathology. Because the Dempster—Shafer theory of
belief was quite popular in our research group at the time,
we developed a inference method for our expert system in-
spired by this theory. The program performed fairly well
in the opinion of the expert pathologist who provided the
knowledge for the system.

In the months following the initial development of
Pathfinder, several of us in the research group began ex-
ploring other methods for reasoning under uncertainty. We
identified the Bayesian approach as a candidate for a new
inference procedure. We realized that the measures of
uncertainty we assessed from the expert could be inter-
preted as probabilities and we implemented a new infer-
ence method— a special case of Bayes’ theorem.

During this time, the expert was running cases
through the program to test the system’s diagnostic perfor-
mance. One day, without telling him, we changed the in-
ference procedure to the Bayesian approach. After running
several cases with the new approach, the expert exclaimed,
“What did you do to the program? This is fantastic!”

This experience was and still is in sharp conflict with
the beliefs of many researchers in the artificial-intelligence

community. At each of the first three AAAI uncertainty
workshops, one or more researchers argued that the par-
ticular inference method used does not significantly affect
performance, at least in the context of large real-world
systems. In this paper, a formal evaluation of the perfor-
mance of several inference methods is presented that con-
firms our early experience with Pathfinder and refutes the
claim made at the workshops. Moreover, it will be shown
that the Bayesian approach yields performance superior to
that obtained with the other approaches in the domain of
lymph-node pathology.

In addition to describing the comparison, a new ap-
proach for evaluating the performance of expert systems
will be introduced. This method, based in decision-theory,
compliments a more traditional expert-rating approach
to system evaluation. Both the new and traditional ap-
proaches will be used in the experimental comparison of
the inference procedures.

II. The Domain

Al researchers working on uncertain reasoning often com-
plain that the merits of one inference method versus those
of another are evaluated on the basis of only theoretical
considerations. Another complaint is that evaluations of
performance are limited to small or artificial domains. This
study is designed to address both of these complaints.
The Pathfinder program reasons about virtually all dis-
eases that occur in a human lymph node (24 benign dis-
eases, 9 Hodgkin’s lymphomas, and 18 non-Hodgkin’s lym-
phomas.) In addition, the program includes an exhaustive
list of clues or features that can be used to help determine
a diagnosis. Over 100 morphologic features or patterns
within a lymph node that can be easily recognized under
a microscope are represented. The program also contains
over 30 features reflecting clinical, laboratory, immunolog-
ical, and molecular biological information that is useful in
diagnosis.

Because this study focuses on only one domain, these
results should not be extrapolated to other domains. All
that will be demonstrated is that the use of different infer-
ence methods can affect performance in a real-world sys-
tem. Researchers interested in learning more about the
relative merits of different inference methods are encour-
aged to begin similar investigations in other domains.



ITI. The Inference Methods

The three inference methods evaluated are (1) a special
case of Bayes’ theorem, (2) an approach related to the
parallel combination function in the certainty-factor (CF)
model [?], and (3) a method inspired by the Dempster—
Shafer theory of belief [?]. All three approaches take a
set of observations and produce a belief distribution over
disease hypotheses based on the same expert probability
assessments. However, the second two approaches deviate
significantly from probabilistic reasoning.

All three approachs share the assumption that the hy-
potheses represented by the system are mutually exclu-
sive and exhaustive. Furthermore, all three approaches
assume that the diagnostic features are, in some sense, in-
dependent. The exact nature of independence varies from
method to method and is discussed in detail in a later
section. It should be noted that, during the development
of Pathfinder, obvious dependencies among features were
eliminated by clustering highly dependent features. For
example, a pattern called mecrosis is seen in many lymph
node diseases. The size of necrosis (percent area of lymph
node showing this pattern) and the distribution of necrosis
are two strongly interrelated features, and both are impor-
tant for diagnosis. To remove the dependency, a single fea-
ture “necrosis size and distribution” was created which had
the mutually exclusive and exhaustive values “nonexten-
sive and focal,” “nonextensive and multi focal,” “extensive
and focal,” and “extensive and multi focal.” These values
were created by taking the cross-product of the values for
individual features pertaining to necrosis size and necrosis
distribution.

Before describing the inference methods, some defini-
tions and notation are introduced. The mutually exclusive
and exhaustive disease hypotheses will be denoted by the
symbol d with a subscript—for example, d;. Similarly, the
symbol fi refers to the kth feature in the knowledge base.
Each feature is associated with a set of mutually exclusive
and exhaustive values. The ith value of the kth feature is
denoted by vg;. A given feature and a value for that fea-
ture together constitute an observation. The term frvg;
denotes an observation of the ith value for the kth feature.
For the sake of brevity, a set of observations fivy; ... fnvn;
will be denoted by the symbol £. Finally, two conditional
independence assumptions associated with the inference
procedures are introduced here for reference. The first as-
sumption is that evidence is conditionally independent on
disease hypotheses. Formally, the assumption is that, for
any combination of observations fivy; ... fnvni,

p(f1vii -« - fovnildy) = p(frvild;) ... p(favnild;) (1)

The second assumption is that evidence is conditionally in-
dependent on the negation of the hypothesis. Specifically,
for any combination of observations fivy; ... fntni,

p(f1vii - .- favnildy) = p(frvwld;) . p(favnild;) — (2)

Both Equations 7?7 and ?? apply to each disease hypoth-
esis d;.

A. Simple Bayes Method

The first inference method is Bayes’ theorem under the
assumption that features are conditionally independent on
the disease hypotheses (Equation ??). In particular, if
observations £ = fivy; ... fnvn; are made, the probability
of the jth disease is given by

1oy Pld)p(frvildy) - - p(frvnild;)
PG = S o p(Fronlds) - pUavnildy)

This inference procedure will be called the simple Bayes
method to emphasize the conditional independence as-
sumptions it embodies. Note that the only assessments
required by this approach are the probabilities p(frvgi|d;)
for each combination of f, vk;, and d;, and the prior prob-
abilities p(d;) for each disease. The other two inference
methods require the same assessments.

B. 0Odds—Likelihood Method

The second inference method begins with a form of Bayes’
theorem under the assumption that evidence is condition-
ally independent on both the hypotheses and on the nega-
tion of the hypotheses (Equations ?? and ?7?). Under these
assumptions, Bayes’ theorem for the jth disease given ob-
servations £ can be written

p(d;l€) _ p(d;) p(frvwild;) — p(fnvnildn)

4ile) _ pld; 4) .. D)y
p(d;[§)  p(dy) p(frvild;)  p(frvnildn)

The ratio on the left-hand side and the first ratio on the
right-hand side of Equation ?? are the posterior and prior
odds of d;, respectively. In general, the odds of an event is
just a simple monotonic transformation of the probability
of the event, given by

p

=15
The remaining terms of Equation 7?7 are called likelihood
ratios. As can be seen from Equation 7?7, the likelihood
ratio p(fxvki|d;)/p(frvkild;) is a measure of the degree to
which observing feature value frvy; updates or changes the
degree of belief in disease hypothesis d;.

In the version of this inference method evaluated in
this paper, the likelihood ratios are not assessed directly.
Instead, the numerator, p(fruvg:|d;) is assessed directly,
and the denominator, p(fyvgi|d;), is computed using

_ p(fxvri) — p(frvrild;)p(d;)
P(frvri)

p(frvrild;)

where

P(frvri) = Zp(fkvm‘ |d;)p(d;)

Thus, this inference method makes use of exactly the same
assessments as does the simple Bayes approach. The like-
lihood ratios were not assessed directly because the expert
found that likelihood ratios were much more difficult to
assess than were conditional probabilities p(frvr|d;). It



would be interesting to conduct a comparison similar to
the one described in this paper using an expert who is
willing to assess likelihood ratios directly.

Johnson [?] has demonstrated that the conditional-
independence assumptions embodied in Equation 77 typ-
ically are not compatible with the updating of n mutu-
ally exclusive and exhaustive hypotheses, when n is greater
than two. In particular, he has shown that consistently up-
dating more than two mutually exclusive and exhaustive
hypotheses under the conditional-independence assump-
tions used to derive Equation ?? is possible only when
each hypothesis is updated by at most one observation.

In Pathfinder, this highly restrictive condition re-
quired for consistent updating is not met. Each disease
hypothesis is updated by many observations in the knowl-
edge base. As a result, Equation ?? produces an incon-
sistent probability distribution over diseases in which the
posterior probabilities of disease do not sum to one. To cir-
cumvent this problem, the disease probabilities are renor-
malized after Equation 77 is applied to the evidence. This
completes the description of the second approach, which
will be called the odds—likelihood method.

It should be mentioned that the odds-likelihood ap-
proach is closely related to the parallel combination func-
tion used in the CF model. In fact, it was shown that
the multiplicative combination of likelihood ratios seen in
Equation 7?7 maps exactly to the parallel combination
function when a certainty factor is identified with a sim-
ple monotonic transformation of the likelihood ratio [?].
Moreover, in MYCIN—the expert system for which the
CF model was designed—certainty factors of mutually ex-
clusive and exhaustive sets of hypotheses are renormalized
to sum to unity [?]. This form of renormalization does not
correspond directly to the renormalization of probabilities
in the second inference method, but it is similar in spirit.

C. Naive Dempster—Shafer Method

The third inference method has an interesting history. It
was developed by researchers, including myself, who at
the time knew little about methods for uncertain rea-
soning. As the method was primarily motivated by the
Dempster—Shafer theory of belief, it will be called the naive
Dempster—Shafer method. It should be emphasized that
the approach is fraught with difficulties, some of which
will be addressed in the Discussion section. Perhaps the
exposition will serve as a warning to the uncertainty in
Al community as to what can happen when a group of
novice researchers attempts to cope with the conflicting
uncertainty literature.

As members of a medical information-science group,
we were familiar with the inference method used by
INTERNIST-1, an expert system for the diagnosis of dis-
ease across all diseases in internal medicine [?]. The infer-
ence procedure used by INTERNIST-1 incorporates two
measures of uncertainty, an evoking strength and a fre-
quency. An evoking strength for disease d; and observa-
tion frvki, denoted ES(d;, frvki), represents the degree to

which the observation “evokes” or “confirms” the disease
[?]. In contrast, a frequency for disease d; and observation
frvri, denoted FQ(d;, frvr:), represents the “likelihood”
of an observation given the disease [?].

Because we initially had planned to use the
INTERNIST-1 inference procedure, our expert assessed
both an evoking strength and a frequency (on a contin-
uous scale from 0 to 1) for each disease—observation pair.
Before we began programming the approach, however, sev-
eral members of our group argued that a more principled
approach should be used to combine the measures of con-
firmation we had assessed. In particular, they argued that
the Dempster—Shafer theory of belief should be used to
combine evoking strengths.

After exploring of the Dempster—Shafer theory, we
decided to construct a separate frame of discernment,
0; = {d;,d;}, for each disease hypothesis d;. In this frame-
work, the evoking strength for a disease-observation pair
is interpreted as a mass assignment to the singleton disease
hypothesis:

m o ({d5}) = ES(dj, frvni) ()

The remainder of the mass, 1—ES(d;, frvk:), is assigned to
0. Mass assignments of this form follow the approach taken
by Barnett [?]. With this interpretation, Dempster’s rule
of combination can be used to determine the mass assigned
to the singleton hypothesis {d;}, given observations £. In
particular, Barnett showed that

me({dj}) =1 [ Q= mp0.({d;}) (6)

k

In this framework of simple belief functions, the mass as-
signed to the singleton hypothesis {d;} is equal to the be-
lief in d;, denoted Bel({d,;}). Thus, combining Equations
7?7 and 77, we can compute the belief in disease d; given
observations £, using

Bele({d;}) = 1 — [[(1 — ES(d;, fuvr:)) (7)

k

This inference method produces a number between zero
and one for each disease hypothesis.

At first, we ignored the frequencies provided by our
expert. However, our expert kept insisting that his assess-
ments of frequency were much more reliable than were his
assessments of evoking strength. This led us to study the
INTERNIST-1 inference method more carefully. It became
clear to us and to our expert that the assessed evoking
strengths were closely related to the posterior probability
of disease given an observation. Also, it became apparent
that the assessed frequencies corresponded to the probabil-
ity of an observation given a disease. Thus, we discarded
the directly assessed evoking strengths and replaced them
with the calculated values

ES(dj, frvri) = p(dj] frvri)
P(dj )p(fkvki|dj)
>, p(d;)p(frvkild;)

(8)



where each probability assessment p(frvgild;) is given by
the frequency FQ(dj, fxvri). Equation ?? follows from
Bayes’ theorem and the assumption that diseases are mu-
tually exclusive.

Equations 7?7 and 7?7 together provide a method for
computing the posterior degree of belief in each disease hy-
pothesis from the prior probabilities of disease, d;, and the
probabilities of an observation given disease, p(fivkild;).
These are the same assessments that are required by the
two approaches described previously. It should be noted
that the resulting belief distribution rarely sums to unity.
This fact is not a problem conceptually, because the evalu-
ation metrics used in the experimental comparison do not
require probabilistic interpretations for the distributions.
Nonetheless, the distributions produced by this inference
method are renormalized to one, so that during the eval-
uation process, the expert is not able to recognize them
immediately as being nonprobabilistic.

Like the odds-likelihood approach, the naive
Dempster-Shafer method is related to parallel combina-
tion in the CF model. In fact, Equation 77 is exactly the
parallel combination function for positive or confirming ev-
idence if certainty factors are identified with singleton mass
assignments.

IV. The Evaluation Procedure

The procedure for evaluating the inference methods is out-
lined in Figure ??. Observations describing a lymph-node
biopsy of a patient are presented to an inference method.
The inference method, in turn, produces a belief distribu-
tion over the disease hypotheses. Finally, the belief dis-
tribution is compared with the gold standard probability
distribution using an evaluation metric. The process is re-
peated for each of the three inference methods. In this
section, the gold standard and evaluation metrics are de-
fined.

A. The Gold Standard

An important consideration underlying the definition of
the gold standard is the distinction between good deci-
sions and good outcomes. A good decision is one that is
consistent with the preferences and knowledge of a deci-
sion maker. A good outcome is one that is desirable to the
decision maker. Sometimes, a good decision will, through
a course of bad luck, lead to a bad outcome. Conversely, a
bad decision may, with good luck, lead to a good outcome.
However, the best way to achieve good outcomes in the
long run, short of being all-knowing, is to make good deci-
sions consistently. Therefore, the gold standards developed
in this study are designed to identify good decisions, not
necessarily good outcomes. This distinction between good
decisions and outcomes is recognized in several previous
evaluations including the validation experiments of Yu [?]
[?], Cooper [?], and Wise [?].

Two gold standards were used to compare the infer-
ence methods. The first was derived from the probability
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Figure 1: An schematic of the evaluation procedure.

distribution over diseases that our expert assessed using
the same list of observations that was presented to the in-
ference methods. The second was similar, except that the
expert also reviewed the belief distributions generated by
the three approaches.

The two gold standards each have advantages and dis-
advantages. Both isolate the evaluation of the inference
methods from actual outcomes. The first gold standard is
useful because it serves to measure how well each inference
method matches the unaided reasoning of the expert. The
second gold standard is useful because individuals, includ-
ing experts, often make mistakes when reasoning under
uncertainty in the sense that they violate highly desired
principles of reasoning [?]. Indeed, the terms descriptive
and normative often are used to distinguish how individu-
als actually reason and how they should reason. Of course,
our expert is unlikely to appreciate his errors in reason-
ing, and to adjust his assessments accordingly, simply by
observing the output of the three inference methods. A
decision analyst would argue, for example, that a decision
maker must make many iterations of the cycle compris-
ing formulating assumptions, assessing probabilities, and
inspecting the consequences of the assumptions and as-
sessments before she can have any assurance that she is
making a good decision. Such detailed iterations, however,
are not possible in this experimental comparison because
the principles of reasoning underlying each approach are
not identical.! Developing a gold standard corresponding
to a good decision under the principles associated with one
of the inference methods would bias the results in favor of
that inference method. By allowing the expert to see the

Mn fact, the principles underlying the odds-likelihood and naive
Dempster—Shafer approaches are unclear to the author.



distributions generated by each approach, it is only hoped
that gross errors in reasoning, such as lack of attention to
rare hypotheses, will be reduced. To emphasize the roles
played by the first and second gold standard, they will be
called the descriptive and informed gold standards, respec-
tively.

B. A Decision-Theoretic Evaluation Met-
ric

Two evaluation metrics are used to compare the inference
methods. One approach is based on direct ratings given
by the expert. The order approach, described in this sec-
tion, is grounded in decision theory. Although other au-
thors have suggested similar approaches (for example, see
Wise [?]), the comparison described in this paper is, to the
knowledge of the author, the first to apply decision theory
to the evaluation of a large real-world expert system.

The fundamental notion underlying the decision-
theoretic metric is that some errors in diagnosis are more
serious than others are. For example, if a patient has a
viral infection and is incorrectly diagnosed as having cat-
scratch disease—a disease caused by an organism that is
killed with antibiotics—the consequences are not severe. In
fact, the only nonnegligible consequence is that the patient
will take antibiotics unnecessarily for several weeks. If,
however, a patient has Hodgkin’s disease and is incorrectly
diagnosed as having an insignificant benign disease such as
a viral infection, the consequences are often lethal. If the
diagnosis had been made correctly, the patient would have
immediately undergone radio- and chemotherapy, with a
90-percent chance of a cure. If the disease is diagnosed in-
correctly, however, and thus is not treated, it will progress.
By the time major symptoms of the disease appear and the
patient once again seeks help, the cure rate with appropri-
ate treatment will have dropped to leass than 20 percent.

A decision theoretic approach to evaluation recognizes
such variation in the consequences of misdiagnosis. The
significance of each possible misdiagnosis is assessed sep-
arately. More specifically, for each combination of d; and
d;, a decision maker is asked, “How undesirable is the sit-
uation in which you have disease d; and are diagnosed as
having disease d;?” The disease d; is called the diagnosis
and the preference assessed is called the diagnostic utility,
denoted Uj;. Details of the utility assessment procedure
are discussed in the following section.

Once the diagnostic utilities are assessed, it is a
straightforward to evaluate each of the inference methods
relative to the gold standard. The procedure for evaluation
is shown in Figure ??7. First, observations for a case are
presented to a inference method to produce a belief distri-
bution over the disease hypotheses, denoted pss. In addi-
tion, the observations are shown to the expert, who then
assesses the gold-standard distributions, denoted pgoiq-

Next, a decision rule is used to determine the optimal
diagnosis given each of the belief distributions. In many
systems that employ methods for uncertain reasoning, a
commonly used decision rule is to choose the hypothesis
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for a single case

Diagnosis: Diagnosis:
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Ss 1 gold
Gold i
A standard
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Figure 2: The decision-theoretic evaluation procedure.

with the highest degree of belief [?] [?]. Formally, the
optimal diagnosis dss for a belief distribution psg is given
by

drss = arg max[ ss(dz)] (9)

where arg max; returns the d; that maximizes the quantity
pss(d;). This rule for choosing the optimal diagnosis is
applied to the belief distributions produced by each of the
inference methods. Note that the rule does not require that
the degrees of belief computed by an inference procedure
have a probabilistic interpretation.

The gold-standard diagnoses are then determined.
The gold standards are prescribed using a decision rule
different from Equation ??. In particular, a gold-standard
diagnosis is determined by finding the diagnosis that max-
imizes the expected utility of the patient. More formally,

dzgold = arg max lz Pgota(di)Uij (10)

?

where dx 4014 denotes a gold-standard diagnosis. For com-
parison, both Equations 7?7 and 77, with pgq4 replaced
by pss, are applied to the simple Bayes approach. The ap-
plication of Equation 7?7 to the simple Bayes approach is
justified because the inference method produces a legiti-
mate probability distribution over diseases.

After the gold-standard diagnoses are determined, rat-
ings for the two distributions can be computed. In this
decision-theoretic framework, the natural choice for a rat-
ing is the expected utility of each diagnosis, where expec-
tation is dictated by the distributions used to derive the



gold standards. That is,

Rss = Zpgold(di)Ui,dxss

and
Rgold = Z pgold(di ) Ui,dzgold

where R, and Rgyoq denote the ratings for the inference
method and gold-standard diagnoses, respectively. Note
that the two ratings can be different only when the diag-
noses prescribed by the two distributions p,, and pgeiq are
not the same.

C. An Expert-Rating Evaluation Metric

In addition to the decision-theoretic approach, an expert-
rating method is used to compare the inference methods.
For each probability distribution, the expert is asked, “On
a scale from zero to ten— zero being unacceptable and
ten being perfect—how accurately does the distribution
reflect your beliefs?” The ratings given by the expert are
compared using standard statistical techniques. Note that
gold standards are not explicitly elicited in this approach.

The expert-rating metric is used for two reasons.
First, expert-rating approaches have been used frequently
in expert system evaluations. (See, for example, Cooper
[?].) Therefore, it is useful to compare the approach
with the decision-theoretic method introduced in this pa-
per. Second, the expert-rating and decision-theoretic ap-
proaches evaluated different aspects of performance and
are complementary.

V. Utility Assessment

In this section, several important issues surrounding the
assessment of diagnostic utilities are addressed and details
of the procedure for assessment are described.

An important consideration in the assessment of diag-
nostic utilities is that preferences will vary from one deci-
sion maker to another. For example, the diagnostic utilities
of decision makers faced with the results of a lymph-node
biopsy are likely to be influenced by theier age, sex, and
state of health. Consequently, the ratings produced by
the decision-theoretic metric are meaningful to an individ-
ual only to the degree that their diagnostic utilities match
those used in the evaluation.

For this experimental comparison, the utilities of the
expert on the Pathfinder project were used. The expert
was chosen for two practical reasons. First, being an ex-
pert, he was reasonably familiar with many of the ramifi-
cations of correct and incorrect diagnosis. Second, a good
working relationship with him had been established during
the construction of Pathfinder. In future experiments, it
would be useful to generate a utility model using an expert
clinician who might have better insight into the preferences
of a “typical” patient making a decision based on the re-
sults of a lymph-node biopsy.

It is interesting to note that our expert, because he
is an expert, had biases that made his initial preferences
deviate significantly from those of a typical patient. For
example, many sets of diseases of the lymph node cur-
rently have identical treatments and prognoses. Nonethe-
less, experts like to distinguish diseases within each of these
sets, because doing so allows research in new treatments
to progress. That is, experts often consider the value of
their efforts to future patients. In addition, experts gen-
erally suffer professional embarrassment when their diag-
noses are incorrect. Also, experts are concerned about the
legal liability associated with misdiagnosis. In an effort to
remove these biases, our expert was specifically asked to
ignore these attributes of utility. He was asked to imagine
that he himself had a particular disease, and to assess the
diagnostic utilities accordingly.

Another important consideration in almost any med-
ical decision problem is the wide range of severities asso-
ciated with outcomes. As mentioned previously, one mis-
diagnosis might lead to inappropriate antibiotic therapy,
whereas another might lead to almost certain death. How
can preferences across such a wide range be measured in
common terms? Farly attempts to resolve this question
were fraught with paradoxes. For example, in a linear
willingness-to-pay approach, a decision maker might be
asked, “How much would you have to be paid in order
to accept a one in ten-thousand chance of death?” If the
decision maker answered, say, one thousand dollars, the ap-
proach would dictate that he would be willing to be killed
for ten million dollars. Clearly, this is absurd.

Recently, Howard has constructed an approach that
avoids many of the paradoxes of earlier models [?]. Like
many of its predecessors, the model deals with determin-
ing what an individual would have to be paid to assume
some chance of death, and what he would be willing to pay
to avoid a given risk. Also like many of its predecessors,
Howard’s model shows that, for small risks of death (typi-
cally, p < 0.001), the amount someone would be willing to
pay or would have to be paid to avoid or to assume such
a risk is linear in p. That is, for small risks of death, an
individual acts like an expected-value decision maker with
a finite value attached to his life. For significant risks of
death, however, the model deviates strongly from linear-
ity. For example, the model shows that there is a maxi-
mum probability of death, beyond which an individual will
accept no amount of money to risk that chance of death.
Most people find this to be an intuitive result. 2

In this paper, the details of the model will not be pre-
sented. For a discussion of the approach see [?]. Here, we
need only to assume that willingness to buy or sell small
risks of death is linear in the probability of death. Given
this assumption, preferences for minor to major outcomes
can be measured in a common unit, the probability of im-
mediate, painless death that a person is willing to accept to
avoid a given outcome and to be once again healthy. The

2The result ignores considerations of legacy.



undesirability of major outcomes can be assessed directly
in these terms. For example, a decision maker might be
asked, “If you have Hodgkin’s disease and are incorrectly
diagnosed as having a viral infection, what probability of
immediate, painless death would you be willing to accept
to avoid the situation and to be once again healthy?” At
the other end of the spectrum, the undesirability of minor
outcomes can be assessed by willingness-to-pay questions,
and can be translated, via the linearity result, to the com-
mon unit of measurement. For example, a decision maker
might be asked, “How much would you be willing to pay
to avoid taking antibiotics for two weeks?” If he answered
$100, and if his small-risk value of life were $100,000,000,
then the answer could be translated to a utility of a 1 in
1,000,000 chance of death.

Thus, the only major task in assessing the Uj;, aside
from making the direct assessments themselves, is the de-
termination of the decision maker’s small-risk value of life.
Howard proposes a model by which this value can be com-
puted from other assessments. A simple version of the
model requires a decision maker to trade-off the amount of
resources he consumes during his lifetime and the length
of his lifetime, to characterize his ability to turn present
cash into future income, and to establish his attitude to-
ward risk. However, our expert did not find it difficult to
assess the small-risk value of life directly.?> When asked
what dollar amount he would be willing to pay to avoid
chances of death ranging from 1 in 20 to 1 in 1000, he was
consistent with the linear model to within a factor of 2,
with a median small-risk value of life equal to $10,000,000.

Note that, with this utility model, the ratings R
assigned to the inference methods will have units “proba-
bility of death.” In many cases, we shall see that the differ-
ences between ratings are small in these units (on the order
of 0.001). Consequently, it is useful to define a micromort,
a one in one million chance of death. In these units, for
example, a decision maker with a small-risk value of life of
$10,000,000 should be willing to buy and sell risks of death
at the rate of $10 per micromort. This unit of measure-
ment is also useful because it helps to emphasize that the
linear relationship between risk of death and willingness to
pay holds for only small probabilities of death.

Another important consideration is the complexity of
the utility assessment procedure. There are 51 diseases
represented in Pathfinder. The direct measurement of the
Ui; therefore requires 512 = 2601 assessments. Clearly, the
measurment process would be tedious. Thus, several steps
were taken to reduce the complexity of the task. First, the
expert was asked to establish sets of disease hypotheses
that have identical treatments and prognoses. An example
of such a set is the collection of nine types of Hodgkin’s
diseases represented in Pathfinder. Patients with any of
the nine types receive the same treatment and have the

3Howard also has observed that the small-risk value of life can be
assessed directly [?].

same prognosis.® The expert identified 26 such “equiva-

lence classes,” reducing the number of direct utility assess-
ments required to 262 = 676.

Next, the expert was asked to order the utilities U;;—
he was asked to order the undesirability of having each
disease and being diagnosed correctly. After he had com-
pleted this ranking, he was asked to quantitate each U;; in
the manner described previously. It should be noted that
the ordering of the U;; was modified significantly during
this process. About halfway through the procedure, he ex-
claimed, “The dollar is forcing me to think very carefully!”
It would be interesting to determine whether most people
respond in this way. The results of such a study would be
interesting, particularly to reseachers in qualitative reason-
ing.

Finally, the off-diagonal utilities were assessed. For
each disease, the expert was asked to quantify the undesir-
ability of having the disease and being diagnosed as hav-
ing a different disease. First, he identified the most sim-
ilar preexisting assessment. It was then a simple matter
to identify the differences between the current assessment
and the preexisting assessment, and to modify the util-
ity appropriately. For example, given a patient with the
disease sinus hyperplasia, the only difference between her
being diagnosed correctly and her being diagnosed with
cat scratch disease is that, in the latter case, the patient
would take unnecessary antibiotics for several weeks. The
expert said that he would be willing to pay $100 to avoid
taking the antibiotics, so this value (converted to micro-
morts) was subtracted from the utility of being correctly
diagnosed with sinus hyperplasia.

VI. Details of the Experiment

Whenever possible, the conditions of the experimental
comparison were arranged to mimic the conditions under
which Pathfinder would be used in clinical practice. For
example, Pathfinder is expected to be used by community
hospital pathologists to assist them in diagnosing challeng-
ing lymph-node cases. Currently, when a community hos-
pital pathologist gets a difficult case, he refers the case to
an expert, such as the expert on the Pathfinder project.
Therefore, the cases selected for this experiment were cho-
sen from a large library of cases referred to our expert from
community pathologists. Relatively old cases (older than
four months) were selected to decrease the chance that the
memory of the expert would bias the results.

Twenty-six cases were selected at random from the
referral library such that no two diagnoses were the same.
Repeat diagnoses were not allowed so that the inference
methods would be evaluated over a larger portion of the
lymph node knowledge base. To account for the fact that
some diseases are much more likely to occur than oth-
ers, the ratings derived from the metrics for each case are

4Prognosis for these nine types of Hodgkin’s disease is determined
by the clinical stage, not by the specific type of disease.



weighted by the relative likelihood of occurrence of the
case. The relative likelihoods were computed by normal-
izing the prior probabilities of the true diagnosis of each
case so that they summed to one.”

Although the cases were selected at random, a post-
experiment analysis showed that the cases were more chal-
lenging than a set of average cases would be. The expert
reported that 50 percent of the cases contained many more
technical imperfections (such as tears and poor preserva-
tion) than is usual. He also thought that 70 percent of
the cases were more difficult to diagnose than the aver-
age case. The deviation from normal probably occurred
because the case-selection process favored the inclusion of
rare diagnoses.

A pathology resident entered the observations for each
case into a computer database after examining lymph-node
biopsies through a microscope. A pathology resident was
used for two reasons. First, our expert could not be allowed
to look at the lymph nodes slides directly, because he would
observe more information than is presented to the inference
methods. In addition, the expertise of a resident closely
matches the expertise of the users targeted for Pathfinder.

The manner in which features were selected for iden-
tification deviated from the approach typically used in
Pathfinder. Specifically, a pathologist usually enters only
a few salient features and then receives recommenda-
tions from Pathfinder about what additional features are
most useful for narrowing the diagnostic contenders. The
pathologist then provides values for one or more of these
recommended features, and the process cycles. To avoid
confounding the performance of the inference methods
with that of the feature recommendation strategies, the
resident was asked to enter all “salient features observed.”
At no time was the resident allowed to see what features
the system recommended to be evaluated.

Once features values had been identified for each case,
they were presented to the three inference methods, pro-
ducing three belief distributions. The expert was then
given two evaluation sheets for each case. The first sheet
included a list of the observations identified by the resident,
as well as list of all the disease hypotheses represented in
Pathfinder. The expert was asked to assign a probabil-
ity distribution to the diseases based on the observations
given. The descriptive gold standard was derived from this
distribution. The second sheet was identical to the first,
except that it included the distributions produced by the
three inference methods. The distributions were displayed
in columns in a random order for each case. The expert
was asked to rate each belief distribution using the 0 to 10
scale described earlier, and again to assign a probability

5In pathology, several methods are used to establish a true diag-
nosis. In some cases, a diagnosis is established through the use of
expensive tests. In other cases, a diagnosis is established through
observation of the time course of a patient’s illness. In still other
cases, a diagnosis can be established only by an expert pathologist
examining tissue sections under a microscope. In this study, all three
approaches, including combined approaches, were used.

distribution to the diseases. He was allowed to refer to his
first probability distribution during the second assignment.
The informed gold standard was derived from this second
distribution.

In two of the twenty-six cases, the expert found
the lists of observations confusing. Also, in these same
two cases, the simple Bayes and odds-likelihood inference
methods produced inconsistent distributions in which all
hypotheses were assigned a belief of zero. Consequently,
these two cases were removed from the study.

VII.

Decision-theoretic ratings for five different procedures for
determining a diagnosis are shown in Table ?77. “In-
formed gold standard” refers to the procedure of prescrib-
ing the disease that maximizes utility under the distri-
bution used to derive the informed gold standard (Equa-
tion ??). “Simple Bayes-MEU” refers to the procedure
of prescribing the disease that maximizes utility under
the simple Bayes distribution. “Simple Bayes,” “Odds—
likelihood,” and “Dempster—Shafer” refer to the proce-
dures of prescribing the most likely diseases under the
simple Bayes, odds-likelihood, and Dempster-Shafer dis-
tributions, respectively.

The values in the first column represent the absolute
decrease in utility of a patient when faced with the result
of a lymph-node biopsy and diagnosed using a particular
approach. The values represent an average over the 26
cases examined, weighted by the likelihood of occurrence
of each case. Notice that most of the decrease in each case
is attributed to the fact that the patient is sick. Errors
in diagnosis account for little of the decrease in utility. In
particular, the rating associated with the informed gold
standard represents the decrease in utility associated with
the best possible diagnosis under the conditions of the ex-
periment and therefore reflects solely the decrease in utility
of the patient due to illness. This rating shows that a pa-
tient with a lymph-node biopsy faces a decrease in utility
of 205,804 micromorts, on average. That is, the patient is
as bad off as he would be facing a 0.2 chance of immediate,
painless death. This quantity dominates the decreases in
utility due to diagnostic error.

To highlight the effects of diagnostic error, differences
between the informed gold standard rating and the rat-
ing for each diagnostic approach are shown in column 2
of Table ??7. The standard deviation of these differences
is given in column 3 of the table. Note that the standard
deviations are quite large relative to the mean differences.
The reason for such large variances is easily appreciated.
For each diagnostic approach, the diagnosis prescribed by
the approach is identical to the diagnosis prescribed by
the gold standard in many of the 24 cases. In particular,
the simple Bayes-MEU, simple Bayes, and odds-likelihood
approaches prescribe the gold-standard diagnosis in 17 of
24 cases. The naive Dempster—Shafer approach prescribes
the gold-standard diagnosis in 12 of 24 cases. In these
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cases, the ratings for the gold standard and diagnostic ap-
proaches are equal. In the remaining cases, the approaches
prescribe a diagnosis that differs from the gold standard
prescription. These nonoptimal diagnoses are often asso-
ciated with utilities that are significantly lower than is the
utility associated with the gold-standard diagnosis. Thus,
differences in utility fluctuate from zero in many cases to
large values in others, resulting in large standard devia-
tions.

Although the standard deviations are high, a Monte
Carlo permutation test indicates that the performance of
the naive Dempster—Shafer approach is significantly infe-
rior to that of the other methods (achieved significance
level = 0.004). No other significant difference exists among
the other methods.

The expert ratings for each inference method are
shown in Table ??7. As in the decision-theoretic approach,
the mean and standard deviation are weighted by the rel-
ative prior probability of the true diagnosis. Because the
ratings apply directly to the belief distributions derived
by each method, there is no distinction between the sim-
ple Bayes-MEU and simple Bayes procedures.

Using the expert-rating metric, another significant dif-
ference is detected. In particular, a Wilcoxon two-sample
rank test shows that the simple Bayes inference procedure
performs significantly better than does the odds-likelihood
approach (achieved significance level = 0.07).

Table 7?7 shows a comparison of the informed and
descriptive gold standards. The differences between the
two standards are not significant. Thus, seeing the belief
distributions generated by the inference methods did not
persuade the expert to change his opinion about the cases
to any significant degree. Of course, this finding should
not be generalized to other experts or to other domains.

VIII.

Before examining the results in detail, it is useful to make
some general comments about the two evaluation metrics.
An obvious advantage of the decision-theoretic approach
over the expert-rating approach is that its results are much
more meaningful. For example, the difference between
the simple Bayes and naive Dempster—Shafer ratings us-
ing the expert-rating metric is 8.5 on a scale from 0 to
10 and is deemed to be “significant” by a standard sta-
tistical test. The difference of approximately 10,000 mi-
cromorts between the two approaches as determined by
the decision-theoretic metric, however, carries much more
force; it implies that using the naive Dempster—Shafer ap-
proach instead of the simple Bayes approach is equivalent
to assuming an additional one in 100 risk of death!

A disadvantage of the decision-theoretic with respect
to the expert-rating approach is that its results have lim-
ited scope. Specifically, the differences among inference
methods may be highly dependent on the assessments
of diagnostic utility made by our expert. Furthermore,
decision-theoretic comparisons of inference methods are
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likely to vary from one domain to another because there is
room for wide variation in utility assessments between do-
mains. The results of the experimental comparison must
be considered in this light.

An advantage of the expert-rating metric over the
decision-theoretic metric, as demonstrated in this exper-
iment, is that the former can be much more sensitive to
differences. For example, the decision-theoretic ratings of
the simple Bayes and of the odds-likelihood methods are
identical. In contrast, the expert-rating metric shows the
two inference methods to be significantly different. High
sensitivity is likely to be a property of the expert-rating
approach across many domains. In a typical consulting
session, an expert is hypersensitive to errors in diagnosis,
whether such errors matter to a decision maker or not, be-
cause the integrity of the expert is on the line. It is likely
that this hypersensitivity will carry over into expert-rating
ratings of diagnostic performance. This advantage of us-
ing an expert-rating metric is not absolute. Considerations
of integrity or liability, for example, can always be incor-
porated into the diagnostic utilities. Indeed, the fact that
components of preference can be made explicit and are un-
der the direct control of the expert is one advantage of the
decision-theoretic approach.

Another advantage of the expert-rating metric is that
it is less time-consuming to implement. It took the expert
approximately 20 hours, working with two people trained
in decision analytic techniques, to develop the utility model
used in this evaluation. It took the expert less than 1
minute per case to rate the distributions produced by the
three inference methods.

Overall, the two approaches are complementary. The
expert-rating approach is useful for identifying differences
in performance that may be important in some domain.
The decision-theoretic metric reveals the degree of impor-
tance of such differences for a particular domain of interest.
It should be mentioned that information-theoretic metrics
exist for measuring differences between probability distri-
butions, such as relative entropy and the Brier score [7]
[?]. The advantages and disadvantages of the information-
theoretic and expert-rating methods are similar with re-
spect to the decision-theoretic approach, except that the
information-theoretic methods require probabilistic inter-
pretations for the distributions to be compared.

Given these considerations about the evaluation met-
rics, differences in performance among the inference meth-
ods can now be discussed. In this experimental compar-
ison, the method for selecting an optimal diagnosis with
the highest decision-theoretic rank is simple Bayes-MEU.
The difference between the rank of this method and the
gold standard is 811 micromorts. With the caveats de-
scribed previously, this value can be seen to represent the
maximum room for improvement in the knowledge base.
Such improvements may include more careful assessments
of probabilities in the knowledge base, and the representa-
tion of dependencies among features.

The difference in ratings between simple Bayes-MEU



10

Decision-theoretic ratings (micromorts)

Differences

Absolute mean mean sd

Informed gold standard 205,804 - -
Simple Bayes-MEU 206,615 811 4079
Simple Bayes 206,635 831 4078
Odds-likelihood 206,635 831 4078
Naive Dempster—Shafer 216,371 10,587 19,101

Table 1: Decision-theoretic ratings of the inference methods.

Expert ratings
mean sd

Simple Bayes  8.52 1.17
Odds-likelihood  7.33 1.95
Naive Dempster—Shafer  0.03 0.17

Table 2: Expert ratings of the inference methods.

and simple Bayes is only 20 micromorts and is not signifi-
cant. This result suggests that, in the lymph-node domain,
little is gained by using the more sophisticated decision
rule. Three factors of this domain appear to be respon-
sible for this observation. First, the resident pathologist
recorded all salient features observed under the microscope
for each case. Second, the lymph-node domain appears to
be structured such that, when all salient features are en-
tered, most of the probability mass will fall on one disease
hypothesis or a set of disease hypotheses within the same
utility equivalence class. In 20 of the 24 cases, 95 percent
of the probability mass fall on a set of diseases within the
same equivalence class. Third, the structure of diagnostic
utilities in the domain is such that a disease with small
probability will rarely be chosen as the optimal diagnosis
using the principle of maximum expected utility. In light
of these factors, the relative value of decision rules should
not be extrapolated to other domains without explicit jus-
tification.

Several interesting observations can be made about
the relative performances of the simple Bayes and odds—
likelihood inference methods. First, the expert-rating met-
ric shows a significant difference between these methods,
whereas the decision-theoretic metric shows no difference
between them. This result is a clear example of the de-
creased sensitivity of the decision-theoretic approach to
evaluation.

Second, the theoretical difference between the simple
Bayes and odds-likelihood inference methods is that the
former assumes evidence to be conditionally independent
on the hypotheses, as shown in Equation 77, whereas the
latter assumes evidence to be conditionally independent
on both the hypotheses and on the negation of the hy-
potheses, as reflected in Equations 7?7 and ?7?. Thus, the
decision-theoretic and expert-rating results show that, al-
though the additional assumption of conditional indepen-

dence on the negation of hypotheses is inconsequential in
the lymph-node domain, it may lead to significant degra-
dation in performance in other domains.

Third, there is a regularity in the differences between
the distributions produced by the two methods. Specifi-
cally, the simple Bayes distributions produced in this study
are, with only one exception, more peaked. That is, the
variance of these distributions are smaller than are those
produced using the odds-likelihood approach. This differ-
ence can be traced to the additional assumption of condi-
tional independence on the negation of hypotheses, Equa-
tion ??. To see this connection, consider a hypothetical
example in which there are three mutually exclusive and
exhaustive hypotheses—H1, Hs, and Hz—that have equal
prior probabilities. Suppose there are many pieces of ev-
idence relevant to these hypotheses such that each piece
of evidence E; has the same probability of occurrence for
a given hypothesis. That is, p(E;|H;) = p(E|H;) for all
Ej, and i = 1,2, 3. Also suppose that the likelihoods have
values such that:

p(E|Hy) > p(E|Hz2) > p(E|H3)

and
p(E|H,) _ 2p(E|Hy) > 1
p(E[Hy) —  p(E[Hz2)+p(E|Hs)
p(E|Ha) 2p(E|Hs) > 1
p(E|Hz) p(ETH1)+p(E[H3)
p(E|Hz) _ 2p(E|Hs) < 1
p(E|Hz) p(ETH1)+p(E[H2)

These constraints are satisfied easily (for example,
p(F|Hy) = 0.8, p(E|Hs2) = 0.6, and p(E|H3) = 0.2). Un-
der these conditions, evidence FE is confirmatory for Hi,
confirmatory to a lesser degree for Hs, and disconfirmatory
for Hs. Using the simple Bayes inference procedure (Equa-
tion ??) it can be shown that, as the number of pieces
of evidence grows, the posterior probability of H; tends
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Decision-theoretic ratings (micromorts)

Differences

Absolute mean mean sd

Informed Gold Standard 205,804 - -
Descriptive Gold Standard 205,888 84 1273

Table 3: Decision-theoretic ratings of expert distributions.

to one whereas the posterior probability of both Hs and
Hj tends to zero. However, using the odds—likelihood ap-
proach (Equation ??) where evidence is conditionally inde-
pendent given the negation of hypotheses, a different result
is obtained. In particular, as the number of pieces of evi-
dence grows, it can be shown that the posterior probabili-
ties of both H; and H, tend to one, whereas the posterior
probability of H3 tends to zero. In the odds—likelihood ap-
proach, these probabilities are renormalized, so the proba-
bilities of Hy and Hs each approach one-half. Thus, in this
example, the odds-likelihood distribution is less peaked
than is the simple Bayes distribution. In general, sim-
ple Bayes distributions will be more peaked, because this
method tends to amplify differences in likelihoods, whereas
the odds-likelihood method tends to washout differences.

Unlike previous observations, this one does not appear
to be tied to the lymph-node domain. Provided a large
body of evidence is reported such that the simple Bayes ap-
proach produces a sharp distribution, the odds-likelihood
inference method should, in general, produce distributions
that are less peaked. An important consequence of this
phenomenon is that degradation in performance due to
the incorrect assumption of conditional independence on
the negation of hypotheses is likely to occur in other do-
mains.

A final observation about the simple Bayes and odds—
likelihood inference methods is that there is a regularity
among the exceptional cases (5 of 24) in which distribu-
tions produced by odds-likelihood were preferred to the
those produced by simple Bayes. Although obvious depen-
dencies among features were captured by a clustering tech-
nique, subtle ones remained unrepresented in the lymph-
node knowledge base. It seems that the failure to represent
the more subtle dependencies led to decreased performance
of the simple Bayes method relative to the odds-likelihood
method. In particular, the incorrect assumption of con-
ditional independence in the simple Bayes approach led
to overcounting of evidential support. This overcounting,
in turn, produced distributions that were overly peaked.
In the odds-likelihood approach, the impact of evidence
was also overcounted. However, it appears that such over-
counting was partially compensated by the washout effect
described.

The performances of the odds-likelihood and naive
Dempster—Shafer approaches are also interesting to com-
pare. Both evaluation metrics revealed a significant dif-
ference between the two methods. There are two major
theoretical differences between the inference procedures,

one or both of which may be responsible for the differ-
ences in performance. First, from Equation 7?7, it is clear
that each mass assignment in the inference method con-
tains a component proportional to the prior probability of
diseases. Thus, when the masses for many different ob-
servations are combined, the prior probability components
will be overcounted. Priors are not overcounted in the
odds-likelihood approach. Second, due to the way mass is
assigned in the naive Dempster—Shafer approach, disconfir-
matory observations for disease hypotheses are not recog-
nized. For example, if some observation completely rules
out a disease hypothesis in the odds-likelihood method,
the Dempster—Shafer mass for the disease—observation pair
is zero. In the naive Dempster—Shafer inference method,
a zero mass leaves the score of a hypothesis unchanged.
Therefore, a hypothesis ruledout by an observation in the
odds-likelihood approach is left with its degree of belief
unchanged in the naive Dempster—Shafer approach. It is
suspected that this difference is more significant than is
the overcounting of priors.

IX. Future Work

The combination of the decision-theoretic and expert-
rating approaches to performance evaluation provides use-
ful insights about various components of the inference pro-
cess within the lymph node domain and about the inference
process in general. This same approach to evaluation can
be used to probe many different aspects of the construction
of an expert system. For example, the Pathfinder research
team has developed a set of procedures that recommends
additional features for observation to the pathologist-user.
The methods discussed in this paper should prove useful in
evaluating the merits of these procedures. In addition, the
Pathfinder group is currently exploring different techniques
for constructing consensus knowledge bases that combine
the beliefs of two or more experts. Again, the evalua-
tion methods can be used to quantify the value of each
approach. In yet another study, sensitivity to assessment
errors in the knowledge base could be examined.

It is hoped that the presentation of these evaluation
methods will encourage other researchers to evaluate a
wide variety of issues surrounding the building of real-
world expert systems.
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