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In the 1940's, a physicist named Cox provided the first formal justification for the
axioms of probability based on the subjective or Bayesian interpretation. He showed
that if a measure of belief satisfies several fundamental properties, then the measure
must be some monotonic transformation of a probability. In this paper, measures of
change in belief or belief updates are examined. In the spirit of Cox, properties for
a measure of change in belief are enumerated. It is shown that if a measure satisfies
these properties, it must satisfy other restrictive conditions. For example, it is
shown that belief updates in a probabilistic context must be equal to some
monotonic transformation of a likelihood ratio. It is hoped that this formal
explication of the belief update paradigm will facilitate critical discussion and useful
extensions of the approach.

1. INTRODUCTION

As researchers in artificial intelligence have begun to tackle real-world domains such as
medical diagnosis, mineral exploration, and financial planning, there has been increasing
interest in the development and refinement of methods for reasoning with uncertainty. Much
of the work in this area has been focused on methods for the representation and manipulation
of measures of absolute belief, quantities which reflect the absolute degree to which
propositions are believed. There has also been much interest in methodologies which focus on
measures of change in belief or belief updates!, quantities which reflect the degree to which
beliefs in propositions change when evidence about them becomes known. Such methodologies
include the MYCIN certainty factor model [1], the PROSPECTOR scoring scheme [2], and the
application of Dempster's Rule to the combination of "weights of evidence” [3].

In this paper, a formal explication of the belief update paradigm is given. The presentation is
modeled after the work of a physicist named R.T. Cox. In 1946, Cox [4] enumerated a small
set of intuitive properties for a measure of absolute belief and proved that any measure that
satisfies these properties must be some monotonic transformation of a probability. In the
same spirit, a set of properties or axioms that are intended to capture the notion of a belief
update are enumerated. It is then shown that these properties place strong restrictions on
measures of change in belief. For example, it is shown that the only measures which satisfy
the properties in a probabilistic context are monotonic transformations of the likelihood ratio
MH,Ee) = p(EIH,e)/p(E|-H,e), where H is a hypothesis, E is a piece of evidence relevant to the
hypothesis, and e is background information. '

It should be emphasized that the goal of this axiomization is not to prove that belief updates
can only take the form described above. Rather, it is hoped that a formal explication of the
update paradigm will stimulate constructive research in this area. For example, the axioms
presented here can serve as a tool for the identification and communication of dissatisfaction
with the update approach. Given the properties for a belief update, a researcher may be able



to pinpoint the source of his dissatisfaction and criticize one or more of the properties
directly. In addition, a precise characterization of the update paradigm can be useful in
promoting consistent use of the approach. This is important as methodologies which
manipulate measures of change in belief have been used inconsistently in the past [5].
Finally, it is hoped that the identification of assumptions underlying the paradigm will allow
implementors to better judge the appropriateness of the method for application in a given
domain.

Although there has been much discussion concerning the foundations of methodologies which
focus on measures of absolute belief [4, 6, 7], there have been few efforts directed at measures
of change in belief. Notable exceptions are the works of Popper [8] and Good [9]. Popper
proposed a set of properties or axioms that reflect his notion of belief update which he called
corroboration and Good showed that the likelihood ratio \(H,E.e) satisfies these properties [9].
Unfortunately, Popper's desiderata are somewhat non-intuitive and restricted to a probabilistic
context. The axiomization here is offered as an alternative.

2. SCOPE OF THE AXIOMIZATION

The process of reasoning under uncertainty can be decomposed into three components: problem
formulation, belief assignment, and belief entailment. Problem formulation rtefers to the
process of enumerating the propositions or events of interest as well as the possible outcomes
of each proposition. Belief assignment refers to the process of constructing and measuring
beliefs about propositions of interest. Finally, belief entailment tefers to the process of
deriving beliefs from beliefs assessed in the second phase.

It must be emphasized that most methods for reasoning with uncertainty, including those in
which belief updates are central, focus primarily on the third component described above.2
[ndeed, it could be argued that a significant portion of the controversy over the adequacy of
various methods for reasoning with uncertainty has stemmed from a lack of appreciation of
this fact.? The axiomization of the belief update paradigm presented here similarly restricts its
focus to the process of belief entailment.

3. FUNDAMENTAL PROPERTIES FOR A MEASURE OF ABSOLUTE BELIEF

Before presenting the axiomization for belief updates, it is useful to consider the properties
Cox enumerated for a measure of absolute belief. This discussion will help motivate the
characterization of measures of change in belief as it is similar in spirit. In addition, several
of the properties for a measure of absolute belief will be needed for the explication of the
belief update paradigm.

The first property proposed by Cox concerns the nature of propositions to which beliefs can
be assigned. He asserted that propositions must be defined precisely enough so that it would
be possible to determine whether a proposition is indeed true or false. That is, a proposition
should be defined clearly enough that an all-knowing clairvoyant could determine its truth or
falsehood. This requirement will be called the cl/arity property.*

A second property asserted by Cox is that it is possible to assign a degree of belief to any
proposition which is precisely defined. This property will be termed the completeness
property.

Cox also asserted that a measure of belief can vary continuously between values of absolute
truth and falsehood and that the continuum of belief can be represented by a single real
number. For definiteness, it will be assumed that larger numbers correspond to larger degrees
of belief. The use of a single real number to represent continuous measures of belief will be
called the scalar continuity property.



Another fundamental assumption made by Cox is that the degree of belief for a proposition
will depend on the current state of information of the individual assessing the belief. To
emphasize this, the term Ple, read "P given e,” will be used to denote the degree of belief in
proposition P for some individual with information e. This assumption will be termed the
context dependency property. :

Now consider two propositions P, and P, and two contexts e, and e,. Cox asserted that if Py
and P, are logically equivalent and if e; and e, are logically equivalent, then Pyle; = P,le,. In
particular, if P, is true only when P, is true and vice-versa, an individual should believe each
proposition with equal conviction. Thus, for example, it must be that XYle = YXle where XY
denotes the proposition "X AND Y." This axiom will be called the consistency property.

Another property asserted by Cox is that the belief in the conjunction PQ should be related to
the belief in P alone and to the belief in Q given that P is true. Formally, Cox proposed that
there exists some function F such that

PQle = F(Ple, Q|Pe). (1)

The function is asserted to be continuous in both arguments and monotonically increasing® in
each argument when the other is held constant. This property captures the notion that
individuals commonly assign belief to events conditioned on the truth of another. This
property will be termed the hypothetical conditioning property.

Finally, Cox asserted that the belief in -P (not P) should be related to the belief in
P. Formally, he asserted that there should be some function G such that

~P|E = G(P|e). (2)

The only restrictions placed on G are that it be continuous and monotonically decreasing.
This assumption will be called the complementarity property. '

After enumerating these properties, Cox proved that any measure which satisfies them must
also satisfy the relations:

0 < H(Ple) < 1 (3)
H(TRUE|e) = 1 ‘ (4)
H(PQle) = H(Ple) - H(Q|Pe) (product rule) (5)
H(Ple) + H(=Ple) = 1. (sum rule) (6)

where H is a monotonically increasing function. However, (3) - (6) implies that H(Ple) is a
probability. That is, (3) - (6) correspond to the axioms of probability theory. Therefore, Cox
demonstrated that if one accepts the above properties, one must accept that probability is the
only admissible measure of absolute belief.

Cox's proof is simple and elegant. The reader is urged to consult the original work to gain a
better appreciation of the argument. The work also contains an interesting discussion by Cox
arguing for each of the properties he describes.

In the sections to follow, an argument analogous to Cox's for belief updates is presented. As
mentioned above, there will be little effort made to justify the properties enumerated. Instead,
it is hoped that this exposition will foster constructive discussion about the usefulness of the
update paradigm.



4. FUNDAMENTAL PROPERTIES FOR A MEASURE OF CHANGE IN BELIEF

Suppose an individual with background information e has a belief in some hypothesis H for
which a piece of evidence E becomes known. The basic assumption of the update paradigm is
that a belief update, denoted U(H,E.e), in conjunction with the prior belief, Hle, is sufficient
for determining the posterior belief H|Ee. More formally, it is assumed that there exists some
function f such that

H|Ee = f(U(H.E,e), Hle). - (7)

In the paradigm, the quantities U(H,E,e), Hle, and H|Ee are all single real numbers.® In
addition, it is required that the function f be continuous in both arguments and that f be
monotonically increasing in each argument when the other is held constant.

Equation (7) is the definition of a belief update. Note that only the context dependency
property and the scalar continuity property for a measure of absolute belief have been assumed
in this definition.

It is useful to view the function f in (7) as an updating procedure which operates on a prior
belief and returns a posterior belief. The procedure, in turn, is parameterized by the single
quantity U(H,E,e), a function of the hypothesis being updated, the evidence producing the
update, and the background information in which the update takes place. This is depicted in
the upper diagram of Figure 1.

For comparison, the Bayesian conditioning scheme is represented schematically in the lower
diagram of the same figure. Corresponding to the updating procedure in the belief update
paradigm is the axiomatic engine of probability theory. The axiomatic engine, in turn, is
"parameterized” by the full joint distribution. Inputs to the Bayesian updating procedure
include the propositions of interest and outputs consist of beliefs relating to these propositions.

An important difference between the two approaches is illustrated in the figure. In the
Bayesian theory, the process of updating is implicit; it is a matter of course that the belief in a
given proposition changes when the conditioning propositions are modified (recall Cox's
context dependency property). In contrast, the process of updating is made explicit in the
update paradigm. As a consequence, the Bayesian scheme can treat hypothesis and evidence
symmetrically while the update approach cannot. For example, the calculation of p(E|He) in
the Bayesian approach is no different in principle then the calculation of p(H|Ee). In the
update approach, however, the roles of evidence and hypothesis would have to be exchanged in
order to implement the calculation of p(E|He).

In addition to the definition above, there are two fundamental properties that are ascribed to
belief updates. The first property is analogous to the consistency property for absolute beliefs.
[t 1s assumed that if the arguments of a belief update are logically equivalent, then the belief
updates must have the same value. That is, if H; = H,, E, = E,, and e; = e,, then
U(HE.e;) = U(HyEyey). This will be called the consistency property for belief updates.
Note that this property follows from the consistency property for absolute beliefs and the fact
that the function f in (7) is invertable.

The second property concerns the combination of belief updates. Consider the situation
corresponding to the upper path in Figure 2. The prior belief in hypothesis H, Hle, is updated
by evidence E| in the context e. Then, the posterior belief, H|E e, is updated with a second
piece of evidence E,. Note the third argument of the second belief update, U(H,E,,Ee),
contains E; as part of the context. The result is the belief in H given both E, and E,,
HIE Eje.  Alternatively, the belief in H could be updated with both pieces of evidence
simultaneously as depicted in the bottom path in Figure 2. In the belief update paradigm, it is
asserted that the two separate updates, U(H,E,,e) and U(H,E,,E e), can be combined directly to
give U(H,E|E,e). Formally, it is assumed that there exists some function g such that
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U(H,E E;.e) = g(U(H,E;.e), U(H,E,,Eje)). (8)

The only constraints on g is that it be continuous in both arguments and monotonically
increasing in each argument when the other is held constant. This will be called the
combination property for belief updates. Note that this property is independent of the
properties for a belief update discussed previously. ’
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Figure 2: The combination of belief updates

5. A CONSEQUENCE OF THE AXIOMS

Although the properties above seem fairly general, they greatly restrict the quantities that may
serve as belief updates. In particular, it is shown in this section that any measure which

satisfies the definition of belief updates and the two properties above must also satisfy the
relation:



h(U(H.E,e)) = i(H|Ee) - i(H|e) (9)

where h and i are monotonic functions. In words, a belief update U(H,E,e) is simply the
arithmetic difference of a posterior and prior belief, up to an arbitrary monotonic
transformation.  Of course, any quantity which satisfies (9) must also satisfy (7) and (8).
[ndeed, (9) is directly suggested by the term "update.” However, in this section it is shown that
(9) is a necessary condition for an update, a stronger result. Equation (9) will be called the
difference property for belief updates.

Consider three items of evidence E,, E,, and E; for hypothesis H. Applying the combination
property, (8), to (E;E,) and E; and then to E; and E, gives:

U(H, (E4E;)E;,e)
= g(U(H,EqE;,e). U(H,E5,E Eze))
= 9(g(U(H,E;,e), U(H,E,,Ee)), U(H,E5,E;Ese)).
Equation (8) can also be used to first expand E, and (E,E;) and then E, and E; giving:
U(H.E,(E,E;).e)
= g(U(H.E;.e), U(H,E,E5 E e))
= g(U(H.Ej.e). g(U(H.E, Eje), U(H,E;,EEne))).

However, (E,E,)E; and E\(E,E;) are logically equivalent and therefore, by the consistency
property, these two expressions must be equal. That is,

g(g(x.y). z) = g(x. g(y.z)) . (10)

where x = U(HE¢), y = U(H,E,Ee), and z = U(H,E;,E|E,e). Equation (10) is called a
Sfunctional equation. Using group theory, Aczel has shown that the most general solution to
this equation is

h(g(x,y)) = h(x) + h(y)

where h is some continuous, monotonic function [10]. Therefore, it follows from the
combination property, (8), that

h{U(H.E.Es.e)) (11)
= h(U(H,Ey,e)) + h(U(H,E,,Ee)).
Note the power of Aczel's result. It says that any continuous, monotonic function of two

arguments that satisfies an associativity relation must necessarily be additive in some
transformed space.

Now consider the definition of belief updates, (7). Given that the composition of two
monotonic functions is another monotonic function, (7) can be rewritten as

H|Ee = F(h(U(H,E.e)), Hle). o (12)

Note that the function f in (12) is not equal to the function f in (7). The same symbol is
used to avoid the proliferation of unnecessary terms.

Given this new version of the definition, consider again the situation in Figure 2. The upper
path in the figure corresponds to the expansion:



H|E,(E,e)

f(h(U(H,E,.E e)), H|E,e)

I

f(h(U(H.E,,Eje)), f(h(U(H.E;,e)), Hle))
while the lower path corresponds to the expansion:
HI(E.Ey)e

= f(h(U(H,E,E,.e), H|e))

f(h(U(H,E;.e)) + h(U(H.E,,Ese)), Hle)

[n the first expansion, (12) is applied to each item of evidence separately. In the second, (12)
is applied to the combined evidence E, and E, and then (11) is used to expand the update. By
the consistency property, these two expansions must be equal. Therefore,

f(x +y, z) = f(x, Ty, z))

where x = h(U(H,E,E¢)), y = h(U(H,E,¢)), and z = Hle. This is another functional equation.
The most general solution is

i(f(x.y)) = x + i(y)

where 1 is another continuous, monotonic function [10]. Therefore, it can concluded from (7)
that

i(H|Ee) = h(U(H,E,e)) + i(H|e)

which establishes the desired result.

6. PROBABILISTIC BELIEF UPDATES

In the remainder of the paper, measures of change in belief will be considered in a
probabilistic context. ~That is, the implications of the axioms of belief updates will be
explored under the assumption that each of Cox's properties are valid.

Before discussing the general case, however, it is useful to examine a particular probabilistic
update. Consider the following version of Bayes' theorem for updating the probability of a
hypothesis H given evidence E and the current state of information e:

p(E[He)p(H|e)
P EB) & mommeeeeeone . (13)
P(Ele)

Note that this relationship follows directly from (5). The corresponding formula for the
negation of the hypothesis, —=H, is

p(E|-He)p(-H]e)
p(—H|Ee) = =—==----memmal ) - (14)
p(Ele)

Dividing (13) by (14) gives:

p(H|Ee) p(E[He) p(H]e)
. NS o T S 5. A e . (15)

p(-H|Ee) p(E|-He) p(-H|e)



Now the odds of some event X, denoted O(X), is just

0(X) = p(X)/p(=X) = p(X)/(1 - p(X))
so that (15) can be written as

p(E[He)
O(H|Ee) = ==-=-->- O(H|E). (16)

The ratio in (16) is called a likelihood ratio and is written A(H,E,e). With this notation, (16)
becomes

O(H|Ee) = \(H,E.,e) O(H|e). (17)

Equation (17) is called the odds-likelihood form of Bayes' theorem. Notice that A(H,E,e) and
the prior odds are sufficient to determine the posterior odds. Moreover, since the odds of any
event is a monotonic function of the probability of the event, it follows from (17) that the
likelihood ratio N(H,E,e) satisfies the definition of a belief update (7).

[t is also straightforward to show that \(H,E,e) satisfies the combination property for updates,
(8). Consider two items of evidence E, and E,. The likelihood ratio for the combined
evidence E; and E, is

p(ELE,[He)
'\(H‘ElEz,e) TR s T R T .
p(ElEzlﬂHe)

Using the product rule (5), both the numerator and denominator in the above expression can
be expanded giving:

p(E,E;|He) p(E;[He) p(E,|HEe)

p(E,E,|-He) p(E,|-He) p(EzlﬁHEle)
From the definition of \ it follows that
N(H.EjE;.e) = X(H,Ej.e) \(H,E,,Eqe). (18)

Thus, the likelihood ratio N(H,E,e) satisfies the combination property, (8), where the function g
is simple multiplication. Moreover, since the consistency property for updates is trivialiy
satisfied in a probabilistic context, it follows that the likelihood ratio \ is a legitimate belief
update.

The quantity N has several interesting properties. For example, )\ satisfies the difference
property, as it must given the previous discussion. In particular, taking the logarithm of (17)
and subtracting gives

Tog[N(H,E,e)] = Tog[O(H|Ee)] - log[O(H]e)].

Another interesting property arises from assumptions of probabilistic independence. Suppose
knowing E, does not influence one's belief in E, if it is known that either H or —=H is true.
That is,

p(E,|HEe) = p(E,|He)  and (19)

p(E,|-HE;e) = p(E,|-He).



Of course, this relationship is conditioned on the current state of information e. When (19
holds, it is said that E, is conditionally independent of E, given H and -H. With this
assumption, it immediately follows from the definition of \(H,E,e) that

N(H,E; Eqe) = N(H,E,,e). (20)
That is, the belief update for E, given E, does not depend on E,. More generally,
U(H,E, Eqe) = U(H,Ezva). (21)

Equation (21) will be called the modularity property for belief updates. This term is used
because the above property closely resembles the informal notion of modularity associated with
rule based systems [11].

Notice that the conditional independence assumption, (19), and the modularity property, (21),
are both assumptions of independence but relate to different ways of thinking about the
association between evidence and hypothesis. In asserting (19), one imagines that a hypothesis
is either true or false with certainty and then contemplates the relationship between two pieces
of evidence for the hypothesis. In asserting (21), one imagines that a piece of evidence is
certain and then considers how this affects the updating of the hypothesis by a second piece of
evidence. From above, it is clear that these two independence conditions are closely related in
a probabilistic context. In particular, when the identification U(H,E,e) = \(H,E,e) is made, it
follows that

P(E,|HEe) = p(E,|He) and
p(E;|-HE;e) = p(E,|-He)
= U(H.E,.Eje) = U(H,E,.e). ; (22)
This will be referred to as the independence correspondence for probabilistic belief updates.

In the remainder of this section, a general result concerning the independence correspondence
will be derived. In particular, it will be shown that any probabilistic belief update satisfying
the independence correspondence must be some monotonic transformation of \.

To begin, consider the difference property in a probabilistic context’:
h(U(H.E,e)) = i(p(H|Ee)) - i(p(H|e)). (23)
Because i is monotonic, (23) can be rewritten as
h(U(H,E,e))
= log[j(p(H[Ee)/1-p(H|Ee))]
- Tog[j(p(H|e)/1-p(H|e))]
= Tog[J(O(H|Ee))/j(0(H[e))] (24)

where j is another continuous, monotonic function. Now when the conditional independence
assumption, (19), is valid, it follows from Bayes' theorem that

O(H|E,Ee) O(H|E,e)

O(H|E,e) O(H|e)

In addition, it follows from (24) and the modularity property that




J(O(H[E2E18))/3(O(H|Ee))
= J(O(H|E,e))/j(O(H]e)).

Therefore, the independence correspondence implies

wix = y/z = §(w)/i(x) = §(y)/i(z)
where w = O(HIE Eze), x = O(H|Ee),.y = O(H|E,e), and z = O(Hle). The most general solution
is [10]:

j(x) =.a xA
where A and « are constants. This means that

i(x) = A-log[x/1-x]
and so

O(H|Ee)
h(U(H,E.e)) = A-log ------- = A-log[\(H.E.e)]
O(H|e)

or
U(H,E,e) = h"1{A-Tog[\(H,E,e)]}

which establishes the desired result.

Thus, the likelihood ratio N is a general belief update in the probabilistic context. The
quantity \ and monotonic transformations of it are the only measures which satisfy the axioms
of belief updates in addition to the correspondence between probabilistic conditional
independence and modularity.

7. CONCLUSIONS

In this paper, a formal characterization of the belief update paradigm has been presented and
several consequences of the characterization have been demonstrated. It is hoped that this
explication will foster critical discussion and useful extensions of the approach.
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NOTES

IThe terms "weight of evidence” [12] "measure of confirmation” [13, 1, 3] and "measure of
corroboration” [8] have also been ascribed to this quantity.

ZAn exception is the formalization of belief measurement in the Bavesian theory [14, 6].
However, the theory does not attempt to formalize the process of belief construction.



3The components of reasoning under uncertainty and the limited scope of most methods for
reasoning under uncertainty are discussed in more detail in [15].

4The terminology for fundamental properties of belief is introduced in [15].

SActually, the function need only be strictly monotonic in the interior of its domain. For
example, when P is false, PQ will also be false no matter what the value of Q|Pe. Therefore, F
is not increasing in its second argument when Ple takes on the extreme value corresponding to
"FALSE." This caveat applies to all functions of two arguments mentioned in this paper that
are required to be monotonic.

®Many researchers argue that a precise value cannot be assigned to a degree of belief
[16, 17, 3] and such arguments can be extended to measures of change in belief. Indeed, it
seems unreasonable to assess a belief update with precision exceeding a few significant figures.
This paper, however, focuses strictly on methodologies for the entailment of single-valued
belief updates. It is believed that the study of idealized point updates provides a strong
foundation for methodologies which address the representation of imprecise belief updates.
Evidence for this comes from the observation that analyses of idealized (point) absolute beliefs
lie at the heart of techniques for the representation of imprecise beliefs including sensitivity
analysis [18], probability bounds [16], and second-order theory [19]. In fact, it is likely that
these techniques can be extended to measures of change in belief.

"The function i should be renamed since, by Cox's result, Hle and p(Hle) are related by a
monotonic transformation. As before, the same name will be retained to avoid the
proliferation of notation.
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