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Abstract

In this paper, I give a short proof of a recent result by Sokal, showing that all zeros of
the chromatic polynomial Pg(q) of a finite graph G of maximal degree D lie in the disc
lg| < KD, where K is a constant that is strictly smaller than 8.

1 Introduction

This paper is dedicated to Béla Bollobas on the occasion of his 60th birthday. Béla is a dear
friend and wonderful collaborator. The work presented here concerns a new proof of absence
of zeros of the chromatic polynomial on a finite graph of bounded degree, which grew out of
one of ten CBMS-lectures I gave in Memphis in the early summer of 2002. Béla was the main
organizer, and, as always, a great host. I also would like to thank him for encouraging me to
write up this work.

For a finite graph G, the the chromatic polynomial Pg is the unique polynomial Pg(q) in ¢
that is equal to the number of proper colorings of G with ¢ colors when ¢ is a positive integer. It
was introduced by Birkhoff [6] in 1912, and can be used to express many properties of the graph
G. For example, one of the most well-known uses of the chromatic polynomial (and Birkhoff’s
original motivation) is associated with an unsuccessful attempt to prove the 4-color theorem
by showing that in a region of the complex plane containing the point ¢ = 4, the chromatic
polynomial of a planar graph has no zeros. Of course, the zeros of the polynomial are interesting
in their own right, and have been intensely studied in the combinatorics community. Most
of the earlier mathematical results on the chromatic polynomial concern real zeros, see, e.g.,
[6, 7, 40, 43, 44, 25, 41, 45, 18], but but recently the study of complex zeros has also become
quite popular [24, 3, 4, 1, 2, 19, 33, 42, 10, 11, 12, 13, 38, 35, 26, 39].

In this note I present a short proof of a recent result by Sokal [38], who showed that the
chromatic polynomial on any finite graph of maximal degree D is free of zeros if ¢ lies outside



the disc {¢ € C: |¢| < KD}, where K is positive constant strictly smaller than 8. Sokal’s work
was motivated by the work of Biggs, Damarell and Sands, who conjectured [4] such a result for
D-regular graphs, as well as a question of Brenti, Royle, and Wagner [10], who asked whether it

is true that a result of this form holds for arbitrary graphs.

2 Results and Proof Strategy
2.1 Sokal’s Theorem

Let G = (V, E) be a finite graph. The chromatic polynomial P of the graph G is the polynomial
Palq) = Y ¢“F)(-1)F1, (1)
E'CE

where C'(E’) the number of connected components of the graph G’ = (V, E’). Note that Pg(q)
is the unique polynomial which is equal to the number of proper colorings of G for integer ¢, an
fact which is easy to establish and was already known to Birkhoff.

In this note, I give a new short proof of Sokal’s theorem:

Theorem 1 (Sokal) Let G is be finite graph of maximal degree D, and let

a+e®

K = g T ey

(2)
Then all zeros of Pg lie inside the disk {q € C : |q| < DK}, where K = min,>¢ K(a).

Sokal proved the theorem in terms of an a priori different constant K = ming>o K (a), where

K(a) :inf{K’: i ! (7}5)71—1 < 1+ae_“}. (3)

n!

It turns out, however, that the two formulations are equivalent; in fact, I will show that K (a) =
K(a) for all @ > 0. Note that our formulation allows us to get easy upper bounds on the
constant K. Choosing, e.g., a = 2/5 we get that K < K(2/5) = 7.964... < 8. By contrast,
the representation (3) requires quite a bit of rigorous numerical mathematics to establish good

upper bounds on K = K.

Remark 2 Having shown that the chromatic polynomial is non-zero, one can define the en-
tropy per vertex as the quantity sg(q) = ﬁ log Pg(q). This raises the question under which
circumstances the entropy per vertex has a limit as the number of vertices tends to infinity, and
whether this limit is analytic in 1/q. For graphs which are induced subgraphs of an amenable

quasi-transitive graph, these questions have been analyzed in [32].



2.2 Basic Proof Strategy

The main idea of Sokal was to map the chromatic polynomial into the generating function for
independent sets on the intersection graph for the subsets of V| i.e., the graph G = (V, ) whose
vertex set consists of all finite subsets v C V, with an edge between v and 7 whenever yN~' # 0.
More precisely, he showed that it is possible to define complex weights z(vy) for the vertices of V

such that the chromatic polynomial can be rewritten as

Pala) = "> ] =), ()

ICVY ~el

where the sum runs over the independent sets I in G. Having obtain such a representation, Sokal
then referred to a powerful theorem by Dobrushin [16]. Dobrushin’s theorem states that a sum
of the above form is free of zeros, provided there is a set of constants ¢(v) € [0,00), v € V, such
that z(-) lies in the polydisc defined by the condition

F) <@ —e@) [T e wyev. (5)
~y'ev
7Y €€
The main technical task was then to show that one can choose the function ¢(-) in such a
way that for |¢| > DK, the weights z(-) obey Dobrushin’s condition (5). Sokal based his proof
on a lemma which goes back to Rota [34]; applied to the weights z(-), it implies that |z(v)| can
be bounded by |g|* 1! times the number of spanning trees of the induced graph G[4]. Using
detailed estimates on the number of subtrees T' C G which have size s and contain a fixed vertex
x € V, he then proved that z(-) obeys Dobrushin’s condition if |¢| > DK (a) for some a > 0.
The proof of Sokal’s theorem in this note also uses Dobrushin’s theorem. But it follows a
different strategy to verify the condition (5). Instead of using Rota’s lemma, it uses an inductive
approach which is based on a reduction formula that expresses the weight z() in terms of the
weights of the subsets 7/ C 7.
This approach leads to an a priori different condition, the condition that |¢| > DK (a), with
K (a) given by (2). When presenting this proof in my lecture in Memphis, I knew that the
resulting constant K agreed with Sokal’s constant to the accuracy which Sokal had calculated.
While I could not verify at the time that K and K were actually equal, I have since found a proof
of this fact. Appropriate for this volume, it uses a function that is well-known in random graph
theory, where it describes the size of the giant component above the threshold. The equality of
K and K therefore provides another example where formulas from random graph theory lead
to identities between a priori different functions which might be hard to prove without this

formula.



3 Preliminaries

3.1 Dobrushin’s Theorem

Dobrushin’s theorem states that under the condition (5), a sum of the form (4) is non-zero.
Dobrushin formulated this theorem in the language of abstract polymer systems. The term
abstract polymer system was coined in [37], but the mathematical theory of these systems goes
back much further [31, 21, 23, 28], and the main ideas are even older [29]. Later developments
[15, 30, 20, 14, 22, 27] led to weaker and weaker conditions for the applicability of the theory, and
culminated in Dobrushin’s work in 1996 [16]. The applications of this theory in mathematical
physics are probably as diverse as the applications of the the Lovédsz Local Lemma [17] are in
graph theory and computer science. Interestingly, the connection is not purely sociological: as
shown in [36], the statement of Dobrushin’s theorem and that of the Lovédsz Local Lemma are
equivalent!

In the language of graph theory, an abstract polymer system is just a weighted countable
graph with complex vertex weights. More explicitly, a pair (G, z) is called an abstract polymer
system if G = (V,€) is a countable graph, and z : 7 — 2(v) is a complex valued function on V.
The vertices of G are usually called polymers, and the complex number z(7) is called the activity

or weight of 7. For a finite subset & C V, one then defines the partition function

zu) =S "T[ =) (6)

IcU ~el

where the sum goes over independent sets in G.

Dobrushin’s theorem gives both the statement that Z(U) # 0, and a bound on the logarithm
of Z(U). In the literature, this statement is usual formulated as a statement about the principal
branch of the logarithm, i.e., the version of the logarithm with imaginary part between —7 and
w. Here we follow a slightly different route, and define the logarithm by analytic continuation
as follows: assume that Z(U) # 0 inside a polydisk D of the form

|z < R(y)  forall  yelU, (7)

where R(y) > 0 for all v € U. Since D is a compact set, we have that |Z(U/)| is bounded from
below by a strictly positive constant, implying that we can find a slightly larger open disk D
such that Z(U) # 0 in D. In D, we then define log Z(U) by analytic continuation from the
intersection of D with the set {y(:): z(7y) > 0 for all v € U}. Note that for this version of the

logarithms, we have that
log[Z(U)/Z(U)] = log ZU) — log Z(U) (8)

whenever U C U, a fact that will be used in our proof of Dobrushin’s theorem below.



Theorem 3 (Dobrushin) Let (G, z) be an abstract polymer system such that the weights z(-)
obey the condition (5) for some function ¢ : vy — c(7y) from the vertex setV of G into [0,00). Let
U be a finite set. Then Z(U) # 0, and

log(ZW)/ZW))| < > c(v) (9)

'yGZ/{\Z;{
for allUd C U.

Proof. We prove the theorem by induction on the size of U. If U] = 0, i.e., U = B, we have
Z(U) =1 and the statements of the theorem are obvious.

Let n € N and assume that the statements of the theorem hold for all & C V with |U| < n.
Consider a set U with |U| = n + 1, and let U be a strict subset of U. Choose v, € U in such a
way that vy ¢ U. Decomposing the sum representing Z(I/) into a sum over independent sets I
not containing the polymer 9 and a sum over independent sets containing v, we now rewrite
ZU) as

Z (U0)>
ZU")
where U’ = U\ {0} and Uy = {y € U': vyo ¢ £}. By the bound (5), the inductive assumption
(9) and the observation that U’ \Uy = {y e U': yyo € E} C {y € V: vy € £} we have

Z(U) = ZU) + 2(30) ZUo) = ZU') (1 + 2(30) (10)

Z(Uy) el . .

< _ ,—<(v0) c(y) < _ ,—c(v0) )

‘Z(%)Z(L{’) s(d-e ) WIer- € exp EEM/' c(v))<(l—e ) <1 (11)
Y0€EE AN

Combined with (10) and the fact that Z(U’) # 0 by the inductive assumption, this clearly
gives Z(U) # 0. To prove the estimate (9), we rewrite log(Z(U)/Z(U)) as log(ZU)/ZU")) +
log(Z(U')/Z(U)). To bound the first term, we use (11) and (10) once more. Together with the
observation that |log(1 + y)| < —log(1 — |y|) whenever |y| < 1, this gives

llog(Z(U)/Z2U"))| < —log(l -(1- 6_0(70))) = c(70)- (12)

Bounding | log(Z(U')/ Z(U))| with the help of the inductive assumption (9), this gives the desired
bound on |log(Z(U)/Z(U))|.
O

The statement of Dobrushin’s theorem clearly implies that log Z(I/) is analytic in the interior
of the disk defined by (5), allowing one to expand log Z(Uf) into an absolutely convergent Taylor
series about z(-) = 0. For applications in statistical physics, one usually needs explicit expressions
for the coefficients of this expansion; most treatments of abstract polymer systems therefore
include a calculation of these coefficients, see, e.g., [37, 14, 22]. But for the application at hand,

we only need the fact that under the condition (5), the partition function Z(U) is free of zeros.



3.2 A graph theoretic lemma

As we will see in the next section, the chromatic polynomial of a graph G = (V| E) can be
rewritten in terms of an abstract polymer system with polymers consisting of subsets v C V with
two or more elements, and weights involving a certain graph function ¢.(-). In this subsection,
we derive an inductive expression for this function, see Lemma 4 below.

Given a non-empty, finite graph G = (V, E), let

6(G) =Y (-1)1", (13)
E'CE

where the sum Y.' goes over sets E/ C E such that the graph (V, E’) is connected. If G is the
empty graph we define ¢.(G) = 0. Note that ¢.(G) = 1 if G is a graph with a single vertex, since
in this case the subgraph (V,0) is a connected spanning graph. On the other hand ¢.(G) = 0 if
G is not connected, in accordance with the usual convention that an empty sum is considered

to be zero.
To my knowledge the following lemma first appeared in [9]. It is somewhat reminiscent of
Rota’s M6bius lemmas [34] and certain lemmas of mathematical physics [14] relating “connected”
and “disconnected” diagrams, but is also quite different from these earlier lemmas in that it

expresses ¢. as a sum of terms involving ¢. alone.
Lemma 4 Let G = (V, E) be a non-empty finite graph, let v € V, and let Vo =V \ {v}. Then
¢C(G) = Z H (_¢C(G[Y]>I(U ~ Y))7 (14)
T of Vo Yéerm
where the sum goes over all partitions m of Vi into non-empty subsets and I(v ~Y) is the

indicator function of the event that there exists at least one vertex w € Y such that vw € E.

Proof. Let E' C E be a set of edges contributing to the right hand side of (13). Let Ej be the
set of those edges in £’ which do not contain the vertex v as an endpoint, and let Gy = (Vj, EY).
The connected components of Gy then induce a partition 7 of Vy. Summing over all £/ C E

that induce a given partition 7, we get a contribution that can be decomposed as the product

[T [eccrvy > (—u=]. (15)

Yen 0#EY CEy

where Fy denotes the set of edges in F that join Y to the vertex v. Observing that

DG S I S LS B I (16)

0#£EY CEy

if Ey # 0, while ZmiEchy(—l)\Eiﬁ\ =0 if Ey = (), we obtain (14). O



4 Proof of Theorem 1

In this section, we prove Theorem 1. Following Sokal, we first show that the chromatic polynomial
can be rewritten in terms of an abstract contour system. In a second step, we then verify the

condition (5). It is here that our approach is different from that of Sokal.

4.1 Mapping to a Polymer System

We start from the representation (1), which we repeat here for the convenience of the reader,

Pa(q)= Y ¢“" (1) (17)

E'CE
Consider a set of edges E’ contributing to the right hand side. The connected components of
the graph G’ = (V, E’) then induce a partition of the vertex set V into C(E’) disjoint sets
Y1,...,Yo(gy. Consider the sum over all spanning subgraphs G' = (V, E’) that lead to the same
partition 7. Observing that the factor ¢°(F") can be rewritten as ¢/™l where || is the number of

elements of the partition 7, this allows us to rewrite Pg(q) as

Pa(g) = > [] (a¢e(GIM)). (18)
7w of Vyem

where the sum goes over partitions of V' into connected subsets, and G[7] is the induced graph

on . Extracting a factor ¢!V and observing that ¢.(G =1if |v] =1, we get
0 g q g Y Y ) g

Pa(g) ="' Y T (@' "ec(Gh)). (19)

7 of V yem:
[v|>2

This is the desired representation in terms of an abstract polymer system. Indeed, let V be the
set of all connected sets v C V' with |y| > 2, with an edge between v C V and 4" C V whenever
yNv" # (. Let € be the set of such edges, and G = (V,£). The sum in (19) can then be rewritten

as a sum over independent sets. Defining the activity of a set v € V as
2(7) = ¢ Mo (G)), (20)
this gives the representation (4) for the chromatic polynomial.

4.2 Verification of Dobrushin’s Condition

Given the representation (4), Dobrushin’s theorem implies that Pg(q) is free of zeros whenever
the condition (5) is satisfied. To verify this condition, it is convenient to rewrite it in a slightly

different form.



Let a : v — a(y) be a function from the set of polymers V into [0,00). Setting c(vy) =
log(1 + |z(7)[e*™)), one easily checks that the condition (5) is equivalent to the condition that

> tog(1+120)[e") < alro) (21)
YEV:

YV EE

or Y=2o

for all v € V with z(vy) # 0. Setting a(y) = aly|, where a is a positive real number and |y

denotes the number of elements in ~, it is clearly enough to show that

> tog (14 2()le) < a (22)

YEV:
Yoz

forallz e V.

The proof of the next lemma is the main technical step in the proof of Sokal’s theorem.

Lemma 5 Let G be a finite graph of mazimal degree D, let (G, z) be the polymer system defined
in Section 4.1, and let a(y) = aly|. If |g| > K(a)D, where K(a) is defined in (2), then

> e <a (23)
B

for allx € V', implying in particular that (22) and hence the Dobrushin condition (5) are satisfied.

With the help of Dobrushin’s theorem, Theorem 1 clearly follows from Lemma 5. The proof
of this lemma, and thus the technical meat of our proof of Theorem 1, is based on Lemma 4.
By contrast, Sokal’s proof is based on an inequality that goes back to Rota, stating that for an
arbitrary graph G, the absolute value of ¢.(G) is bounded by the number of spanning subtrees
of G.
Proof of Lemma 5. Setting € = e|q|~! and recalling the definition (20) of z(7y), we rewrite the
terms on the left hand side of (23) as |z(y)|e?! = e?e"1=1¢.(G[y])|. Multiplying both sides
of (23) by e™® and adding 1 in the form 1 = |¢.(G[{z}])|e!~! to both sides, we see that the
condition (23) is equivalent to the condition

Y e (Gl < 1+ ae (24)

~YCA:
Yoz

where the sum runs over all connected subsets of V', including the set v = {2} containing only
one point.

Given an arbitrary subset A C V' and a vertex z; € V, let us define

Fa() =) oG, (25)

YCA:
Yo%



For the proof of the lemma, it is then enough to show
Fo(zq) <1+ae @ (26)
for all A C V and all z; € A.
We prove this bound by induction on the size of A. As a first step, we establish the bound

Fa)<ep(c 3 Fag (). (27)

zo€A\{z1}:
r122€E

To this end, we rewrite the sum in (25) as a sum over sequences of pairwise distinct vertices.

Since 1 is fixed, each set v of order n corresponds to (n — 1)! different sequences, leading to the

representation
x -l ,
=Sy X 6dGn ) (28)
n=1 JE2’~~,In€A1
where the sum "' goes over sequences of pairwise distinct vertices xz,. . .,z, in A; = A\{z1}, and

G(z1,%2,...,2y) is the graph G(z1,22,...,2n) = ([n], E(x1,22,...,2,)), with [n] = {1,...,n}
and E(z1,...,2,) = {ij: z;2; € E}. Note that we have replaced the induced subgraph
Gl{z1,22,...,2,}] C G by its “image” G(x1,x2,...,z,) on the vertex set {1,...,n}. This will
be convenient when summing over the vertices xs, ..., x,, since it decouples the graph structure
of the graph G[{z1,2,...,2,}] C G from the locations of the vertices z1,...,x, € V.

Using Lemma 4, the right hand side becomes

e =Yy X X (oGl ~ o)) (29)

n>1 To,....,xn €A1 T YET

where the third sum goes over all partitions 7 of {2,...,n}, zy denotes the subsequence of x,
.., &, with indices in Y, and I(z; ~ xy) is the indicator function of the event that at least
one of the vertices in {x;};cy is adjacent to x;. Relaxing the condition of pairwise distinctness

to include only pairwise distinctness within each group {;};,cy and exchanging the sum over

partitions with the sum over the vertices zo, ..., x, we then get the bound
1 /
< — vl Glay)l).
ES3DY (n—1)! 11 (E Y 16e(Glay) (30)
n>1l m Yer Ty €AY :
T1~TY ,

To continue, we note that the last sum on the right hand side only depends on the size of Y, not
the particular set Y C {2,...,n}. Indeed, relabeling the vertices in the sum over xy, and using
that a sum over sequences of |Y| distinct vertices in A is equal to a sum over subsets of size |Y|

times |Y|!, we see that the above bound can be rewritten as

<33 ey LT (1w, (31)

n>1 w Yern



where

We= Y égo(G(I))I. (32)
YCAy
Iv1=¢,
y~T
Next we rewrite the sum over partitions 7 = {Y3,...,Y;} of order k as % times the sum
over ordered partitions (Y7,...,Y%). Using the fact that the number of ordered partitions 7 =
(Y1,...,Y;) of {2,...,n} with fixed sizes |Y1| = n1, ..., |Yi| = ni is equal to
(n—1)!
- 33
nil...ngl’ (33)

it is then not hard to see that the sums in (31) can be carried out explicitly, leading to the

identity
1
ZZ |H<‘Y‘W|Y\)_1+ZZ Z Klngl. 'an
n>1 w Yen n>1k>1nyg,...,np>1:

i ni=n— 1

This gives the estimate

Faan) <exp( D2 Noo@RDI) <exp(e 3o D0 M ouGh)l),  (39)

YCAq: To€A1: yCAr:
Y~ITL T2VT1L YIT2

and hence (27).

With the bound (27) in hand, the proof of (26) is an easy induction argument. Indeed, we
clearly have Fi,(z) = 1 < 1+ ae™!. Thus consider a finite subset A C V and some vertex
71 € A. Assume by induction that Fa\(e,)(z2) < 1+ ae”! for all x5 € Ay = A\ {z1}. The
bound (27) then implies

Fpr(z) < exp(e Z (1+ ae_1)> <exp(eD(1+ae™)). (36)
zo€A\{z1}:
Ta~IT1
Inserting the value of € and using the bound (2), we have
-1 D a
eD(1+ae™") = (a+e” )m <log(l+ae™?), (37)

which proves Fa(z1) <1+ ae™?, as desired. O

10



We close this section by proving that our bound and that of Sokal are equivalent. To this

end, we consider the function
n—1

f(z) = Z " (38)

n!

The radius of convergence for f(x) is clearly 1/e, and for = € (0, 1/e], we may express « as ce” ©

for a uniquely defined ¢ € (0,1]. Using these two facts, we rewrite Sokal’s constant K (a) as

i ca+e(a)
@ = (39)

where .
¢(a) = sup {c € (0,1]: %f(ce_c) <1+ ae_a}. (40)

To complete the proof, we need a simple fact that is well known in the random graph community
(see, e.g., [8], p. 103, eq. (5.6)):

flee™®)=c¢ for all c € (0,1]. (41)
As a consequence, c¢(a) can be calculated explicitly, giving c(a) = log(1 4+ ae™%) and hence the

desired equality of K (a) and K (a).
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