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Abstract. We extend the Lp theory of sparse graph limits, which was intro-
duced in a companion paper, by analyzing different notions of convergence.

Under suitable restrictions on node weights, we prove the equivalence of metric

convergence, quotient convergence, microcanonical ground state energy conver-
gence, microcanonical free energy convergence, and large deviation convergence.
Our theorems extend the broad applicability of dense graph convergence to all

sparse graphs with unbounded average degree, while the proofs require new
techniques based on uniform upper regularity. Examples to which our theory
applies include stochastic block models, power law graphs, and sparse versions

of W -random graphs.
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1. Introduction

In the companion paper [3], we developed a theory of graph convergence for
sequences of sparse graphs whose average degrees tend to infinity. These results fill
a major gap in the theory of convergent graph sequences, which dealt primarily with
either bounded degree graphs or dense graphs. While progress in this direction was
made by Bollobás and Riordan in [2], their approach required a “bounded density”
condition that excludes many graphs of interest. For example, it cannot handle
graphs with heavy-tailed degree distributions such as power laws. To accommodate
these and other graphs excluded by the bounded density condition, we generalized
the Bollobás-Riordan approach in [3] to graphs obeying a condition we called Lp

upper regularity. We then showed that when p > 1, every sequence of Lp upper
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regular graphs contains a subsequence converging to a symmetric, measurable
function W : [0, 1]2 → R that is in Lp([0, 1]2). Such a function is an Lp graphon.
Conversely, only Lp upper regular sequences can converge to Lp graphons, and so
our results characterize these limits. The work of Bollobás and Riordan in [2] and
the prior work on dense graph sequences amount to the special case p =∞, while
Lp graphons with p <∞ describe limiting behaviors that occur only in the sparse
setting. Thus, the Lp theory of graphons completes the previous L∞ theory to
provide a rich setting for limits of sparse graph sequences with unbounded average
degree.

One attractive feature of dense graph limits is that many definitions of convergence
coincide, and it is natural to ask whether the same is true for sparse graphs. After
all, there are many ways to formulate the idea that two graphs are similar. For
example, one could base convergence on subgraph counts or quotients. Furthermore,
statistical physics provides many numerical measures for similarity, such as ground
state energies or free energies.

Let us first address the question of subgraph counts. For dense graphs, the
sequence (Gn)n≥0 converges under the cut metric if and only if the F -density
in Gn converges for all graphs F , where the F -density is the probability that a
random map from F to Gn is a homomorphism [7]. One might guess that suitably
normalized F -densities would characterize sparse graph convergence as well, but
this fails dramatically: for sparse graphs, cut metric convergence does not determine
subgraph densities (see Section 2.9 of [3]). This is not merely a technicality, but
rather a fundamental fact about sparse graphs. We must therefore give up on
convergence of subgraph counts as a criterion for sparse graph convergence.

By contrast, we show in this paper that several other widely studied forms of
convergence are indeed equivalent to cut metric convergence in the sparse setting.
Thus, with the exception of subgraph counts, the scope and consequences of sparse
graph convergence are comparable with those of dense graph convergence.

We will consider several notions of convergence motivated by statistical physics
and the theory of graphical models from machine learning, such as convergence
of ground state energies and free energies, as well as convergence of quotients,1

which encode “global” graph properties of interest to computer scientists, such
as max-cut and min-bisection. We will also analyze the notion of large deviation
(LD) convergence, which was recently introduced for graph sequences with bounded
degrees [4] and can easily be adapted to our more general context. For bounded
degree graphs, LD convergence was strictly stronger than convergence of quotients
or other notions introduced before, but we will see that in our setting it is equivalent
to these other forms of convergence.

All these question can be studied for Lp upper regular sequences of sparse graphs,
but they can also be studied directly for Lp graphons. While the former might be
more interesting from the point of view of applications, the latter turns out to be
more elegant from an abstract point of view. We therefore first develop the theory
for sequences of graphons, and then prove our results for sparse graph sequences.

We begin in Section 2 with motivation, definitions, and precise statements of
our results, with some ancillary results stated in Section 3. We begin the proofs in
Section 4 by completing the cases that do not require the notion of upper regularity.
We then make use of upper regularity to deal with graphons in Section 5 and graphs

1Quotient convergence is also called partition convergence in some of the literature.
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in Section 6. Finally, in Section 7, we show that any sequence whose quotients,
microcanonical free energies, or ground state energies converge to those of a graphon
must be upper regular, which completes the proofs.

Before turning to these details, though, we will explain the motivations behind
the different types of convergence analyzed in this paper.

1.1. Motivation. When formulating a notion of convergence for growing sequences
of graphs, one is immediately faced with the problem of deciding when to consider
two large graphs on different numbers of vertices to be similar.

One natural approach is to compare summary statistics, such as weighted counts
of homomorphisms to or from small graphs. Convergence based on these statistics
is called left convergence if it uses homomorphisms from small graphs and right
convergence if it uses homomorphisms to small graphs. Left convergence amounts to
using subgraph counts, and as discussed in the previous section it is not a useful tool
for characterizing sparse graph convergence. By contrast, right convergence is far
more useful in the sparse setting. It amounts to using statistical physics models, and
it encompasses quantities such as max-cut, min-bisection, etc. that are important in
combinatorial optimization.

The advantage of using summary statistics is that they can easily be normalized
to compare graphs on different numbers of nodes. For a more direct approach, one
must find other ways to compare such graphs.

One way to deal with this is to blow up both graphs to obtain two new graphs
on a common, much larger set of vertices. Conceptually, the most elegant way to
do this is probably an infinite blow-up, replacing the vertex sets of both graphs
by the interval [0, 1] and the adjacency matrices by appropriate step functions on
[0, 1]2. Comparing the two graphs then reduces to comparing two functions on
[0, 1]2, leading to the notion of convergence in the cut norm. A priori, this has the
problem that relabeling the nodes of a graph would change its representation as a
function on [0, 1]2, but this can be cured by defining the distance as the cut distance
of “aligned” step functions, where alignments are formalized as measure preserving
transformations from [0, 1] → [0, 1], chosen in such a way that the resulting two
functions are as close to each other as possible. The resulting definition is known as
cut metric convergence, and it was analyzed for sparse graphs in [3].

Another way to deal with the different vertex sets is to “squint your eyes” and
look at whether the results are similar. More formally, one divides the vertex sets
of both graphs into q blocks, and then averages the adjacency matrices over the
respective blocks, leading to two q × q matrices representing the edge densities
between various blocks (we call these matrices q-quotients). One might want to
call two graphs similar if their q-quotients are close, but we are again faced with
an alignment problem, now of a slightly different kind: different ways of dividing
the vertex set of a graph into blocks produce different quotients. While some of the
quotients of a graph contain useful information about the graph (for example those
corresponding to Szemerédi partitions), others might not. Unfortunately, it is not
a priori clear which of the q-quotients of a graph represent its properties well and
which do not. We solve this problem by defining two graphs to be similar if the sets
of their q-quotients are close, measured in the Hausdorff distance between subsets
of the metric space of weighted graphs on q nodes.

The four notions of convergence describe informally above, namely left conver-
gence, right convergence, convergence in metric, and convergence of quotients, were
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Figure 1. Implications between different notions of sparse graph convergence.

already introduced in [7, 8] in the context of sequences of dense graphs. But we felt
it to be useful to review the motivation behind these notions, before addressing the
extra complications stemming from the fact that we want to analyze sparse graphs.

In this paper we also discuss a fifth notion of convergence: large deviation conver-
gence (LD convergence), which was recently introduced [4] to discuss convergence
of bounded degree graphs. Roughly speaking, LD convergence keeps track of not
just the possible quotients of a graph but also how often they occur.

Figure 1 illustrates the implications among these concepts. In the upper half of
the figure, we see that LD convergence is the strongest notion and ground state
energy convergence is the weakest. To complete the cycle and prove that they are
all equivalent to metric convergence, we require one hypothesis, namely uniform
upper regularity. This notion first arose in [3], and we review its definition below;
intuitively, it ensures that subsequential limits are graphons rather than more subtle
objects. Indeed, it is possible to state our results using just the fact that limits can
be expressed in terms of graphons, without explicitly referring to upper regularity.
We will chose this approach when stating our results in Theorem 2.10.

2. Definitions and main results

2.1. Notation. We begin with some notation. As usual, a weighted graph G =
(V, α, β) consists of a set V = V (G) of vertices, vertex weights αx ≥ 0 for x ∈ V ,
and edge weights βxy = βyx ∈ R for x, y ∈ V . We use E(G) to denote the set of
edges of G, i.e., the set of pairs {x, y} such that βxy 6= 0. If we consider several
graphs at the same time, then we make the dependence on G explicit, denoting
the edge weights by βxy(G) and the vertex weights by αx(G). The maximal node
weight of G will be denoted by

αmax(G) = max
x∈V (G)

αx(G),

and the total node weight of G will be denoted by

αG =
∑

x∈V (G)

αx(G).
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We will always assume that αG is strictly positive. If U is a subset of V (G), we
will use αU (G) to denote the total weight of U , i.e., αU (G) =

∑
x∈U αx(G). We

say a sequence (Gn)n≥0 of graphs has no dominant nodes if αmax(Gn)/αGn → 0
as n → ∞. Finally, if c ∈ R, we often use cG to denote the weighted graph with
vertex weights identical to those of G and edge weights βxy(cG) = cβxy(G). If G is
a simple graph with edge set E(G), we often identify it with the weighted graph
with vertex weights 1 and edge weights βxy = 1xy∈E(G). In this case, αG is just the
number of vertices in G, and (βxy(G))x,y∈V (G) is the adjacency matrix. As usual,
we use [n] to denote the set [n] = {1, . . . , n} and N to denote the set of positive
integers. Finally, we define the density of a weighted graph G to be

‖G‖1 =
∑

x,y∈V (G)

αx(G)αy(G)

α2
G

|βxy(G)|.

Note that for an unweighted graph without self-loops, ‖G‖1 is just the edge density
2|E(G)|/|V (G)|2.

2.2. Convergence in metric. One of the main topics studied in [3] is the conditions
under which a sequence of sparse graphs contains a subsequence that converges in
metric. This question led us to the notion of Lp upper regularity, and more generally
uniform upper regularity. Upper regularity plays an important role in the proofs in
the present paper, but it is not essential for stating our main results. We therefore
defer the discussion of uniform upper regularity to Section 2.7 and restrict ourselves
here to just defining convergence in metric. For examples, see Section 3.3.

As already discussed, it is convenient to define this distance by embedding the
space of graphs into the set of functions from [0, 1]2 into the reals.

Definition 2.1. An Lp graphon is a measurable, symmetric function W : [0, 1]2 → R
such that

‖W‖p :=

(∫
|W (x, y)|p dx dy

)1/p

<∞.

Here symmetry means W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2. If we do not specify
p, we assume that W is in L1 and call it simply a graphon, rather than an L1

graphon.

On the set of graphons, one defines the cut norm ‖ · ‖� by

(2.1) ‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ ,
where the supremum is over measurable sets S, T ⊆ [0, 1]; this notion goes back to
the classic paper of Frieze and Kannan [10] on the “weak regularity” lemma. One
then defines the cut distance between two graphons U and W by

δ�(U,W ) = inf
φ
‖U −Wφ‖�,

where the infimum is over all invertible maps φ : [0, 1]→ [0, 1] such that both φ and
its inverse are measure preserving, and Wφ is defined by Wφ(x, y) = W (φ(x), φ(y))
(see [6, 12, 7]); such a map φ is called a measure-preserving bijection. After identifying
graphons with cut distance zero, the space of graphons equipped with the metric
δ� becomes a metric space.

To define the cut distance between two weighted graphs, we assign a graphon
WG to a weighted graph G as follows: let n = |V (G)|, identify V (G) with [n], and
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let I1, . . . , In be consecutive intervals in [0, 1] of lengths α1(G)/αG, . . . , αn(G)/αG,
respectively. We then define WG to be the step function that is constant on sets of
the form Iu × Iv with

(2.2) WG(x, y) = βuv(G) if (x, y) ∈ Iu × Iv.
Informally, we consider the adjacency matrix of G and replace each entry (u, v) by
a square of size αu(G)αv(G)/α2

G with the constant function βuv on this square.
With this definition, one easily checks that the density of a weighted graph G

can be expressed as ‖G‖1 = ‖WG‖1. For dense graphs, one can define a distance
δ�(G,G′) between two graphs by just considering the cut distance between WG

and WG′ . But for sparse graphs, the inequality

δ�(WG,WG′) ≤ ‖WG −WG′‖� ≤ ‖WG‖1 + ‖WG′‖1
means the cut distance is not very informative, since under this metric all sparse
graph sequences are Cauchy sequences.

To overcome this problem, we identify weighted graphs whose edge weights only
differ by a multiplicative factor.2 Explicitly, we introduce the distance

(2.3) δ�,norm(G,G′) = δ�

(
1

‖G‖1
WG,

1

‖G′‖1
WG′

)
,

where in the degenerate case of a graph G with ‖G‖1 = 0 we define 1
‖G‖1W

G to

be zero. As an example, with this definition, two random graphs Gn,p for different
p can be shown to be close in the metric δ�,norm, as are two random graphs with
different numbers of nodes, at least as long as pn→∞ as n→∞ (see Section 3.3).

Definition 2.2 ([3]). Let (Gn)n≥0 be a sequence of weighted graphs, and let W be
a graphon. We say that (Gn)n≥0 is convergent in metric if (Gn)n≥0 is a Cauchy
sequence in the metric δ�,norm(G,G′) defined in (2.3), and we say that Gn converges

to W in metric if δ�

(
1

‖Gn‖1W
Gn ,W

)
→ 0. (Again, we set 1

‖Gn‖1W
Gn = 0 if

‖Gn‖1 = 0.)

2.3. Convergence of quotients. The next object we define is convergence of
quotients. To formalize this, consider a weighted graph G and a partition P =
(V1, . . . , Vq) of V (G) into q parts, some of which could be empty. Equivalently,
consider a map φ : V (G)→ [q] (related to P by setting φ(x) = i iff x ∈ Vi). We will
define a quotient G/φ = G/P as a pair (α, β) = (α(G/φ), β(G/φ)), where α ∈ Rq
is a vector encoding the total vertex weights of the classes in P and β ∈ Rq×q is
a matrix encoding the number of edges (weighted by their edge weights) between
different classes. Explicitly,

(2.4) αi(G/φ) =
αVi(G)

αG

and

(2.5) βij(G/φ) =
1

‖G‖1

∑
(u,v)∈Vi×Vj

αu(G)

αG

αv(G)

αG
βuv(G).

(In the degenerate case where G has no edges and ‖G‖1 = 0, we set β(G/φ) = 0.)
We call G/φ a q-quotient of G, and we denote the set of all q-quotients of G

2Of course, this slightly decreases our ability to distinguish between dense graphs.



AN Lp THEORY OF SPARSE GRAPH CONVERGENCE II 7

by Sq(G). Note that without the normalization factor 1
‖G‖1 in (2.5), the weights

βij(G/φ) would scale with the density of G, which means that all quotients of a
sparse sequence would tend to zero. We have chosen this factor in such a way that

‖β(G/φ)‖1 =
∑
i,j

|βij(G/φ)| ≤ 1,

with equality if and only if G has non-negative weights and density ‖G‖1 > 0.
We will consider Sq(G) as a subset of

(2.6) Sq =
{

(α, β) ∈ [0, 1]q × [−1, 1]q×q :
∑
i∈[q]

αi = 1 and
∑
i,j∈[q]

|βij | ≤ 1
}
,

equipped with the usual `1 distance on Rq+q2 ,

(2.7) d1((α, β), (α′, β′)) =
∑
i∈[q]

|αi − α′i|+
∑
i,j∈[q]

|βij − β′ij |,

which turns Sq into a compact metric space (Sq, d1), a fact we will use repeatedly
in this paper. For a ∈ 4q, we define the subspace

(2.8) Sa = {(α, β) ∈ Sq : α = a},

which is closed and hence also compact. Note that our normalizations are a little
different from those in [8], in order to ensure compactness.3

The quotients of a graph G allow one to express many properties of interest to
combinatorialists and computer scientists in a compact form. For example, the size
of a maximal cut in a simple graph G,

MaxCut(G) = max
W⊆V (G)

∑
(x,y)∈W×(V (G)\W )

βxy(G),

can be expressed as

MaxCut(G) = |E(G)| max
(α,β)∈S2(G)

(
β12 + β21

)
.

Restricting oneself to the subset of quotients (α, β) ∈ S2(G) such that α1 = α2 = 1/2,
one can express quantities like min- or max-bisection, and considering Sq(G) for
q > 2, one obtains weighted versions of max-cut for partitions into more than two
sets.

To define convergence of quotients, we need the Hausdorff metric on subsets of a
metric space (X, d). As usual, it is a metric dHf on the set of nonempty compact
subsets of X, defined by

dHf(S, S′) = max

{
sup
x∈S

d(x, S′), sup
y∈S′

d(y, S)

}
,

where

d(x, S) = inf
y∈S

d(x, y).

If d is a complete metric, then so is dHf (see [13]), and the same holds for total
boundedness. Thus, starting from the metric space (Sq, d1), this gives a metric dHf

1

3Specifically, the analogue of (2.4) and (2.5) in [8] would be to use βij(G/φ)/
(
αi(G/φ)αj(G/φ)

)
instead of βij(G/φ), while modifying the definition of d1 accordingly. This would encode essentially

the same information, but the analogue of Sq would not be compact.



8 CHRISTIAN BORGS, JENNIFER T. CHAYES, HENRY COHN, AND YUFEI ZHAO

on the space of nonempty compact subsets of Sq, and this space inherits compactness
from the compactness of (Sq, d1).

Definition 2.3. Let (Gn)n≥0 be a sequence of weighted graphs. We say that the
sequence (Gn)n≥0 has convergent quotients if for each q, there exists a closed set
S∞q ⊆ Sq such that Sq(Gn) converges to S∞q in the Hausdorff metric.

Remark 2.4. Note that the closedness of the set S∞q ⊆ Sq can be assumed without
loss of generality (every set has Hausdorff distance zero from its closure, which is
why the Hausdorff metric is restricted to closed sets). Furthermore, because of the
compactness of the Hausdorff metric, convergence of quotients is equivalent to the
statement that the quotients Sq(Gn) form a Cauchy sequence. It is then easy to
verify that the limiting set S∞q can be expressed as4

S∞q =
{

(α, β) ∈ Sq : d1

(
(α, β),Sq(Gn)

)
→ 0

}
.

2.4. Statistical physics and multiway cuts. Next we define some notions mo-
tivated by concepts from statistical physics (or, for a different audience, by the
concept of graphical models in machine learning).

Consider a weighted graph G. We will randomly color the vertices of G with q
colors; i.e., we will consider random maps φ : V (G)→ [q]. We allow for all possible
maps, not just proper colorings, and call such a map a spin configuration. To make
the model nontrivial, different spin configurations get different weights, based on a
symmetric q × q matrix J with entries Jij ∈ R called the coupling matrix. Given G
and J , a map φ : V (G)→ [q] then gets an energy

(2.9) Eφ(G, J) = − 1

‖G‖1

∑
u,v∈V (G)

αu(G)αv(G)

α2
G

βuv(G)Jφ(v)φ(u).

(If G has no edges, we set this term equal to zero.) Given a vector a = (a1, . . . , aq)
of nonnegative real numbers adding up to 1 (we denote the set of these vectors
by 4q), we consider configurations φ such that the (weighted) fraction of vertices
mapped onto a particular color i ∈ [q] is near to ai. More precisely, we consider
configurations φ in

Ωa,ε(G) =

{
φ : [q]→ V (G) :

∣∣∣∣αφ−1({i})(G)

αG
− ai

∣∣∣∣ ≤ ε for all i ∈ [q]

}
.

On Ωa,ε(G) we then define a probability distribution

µ
(a,ε)
G,J (φ) =

1

Z
(a,ε)
G,J

e−|V (G)|Eφ(G,J),

where Z
(a,ε)
G,J is the normalization factor

(2.10) Z
(a,ε)
G,J =

∑
φ∈Ωa,ε(G)

e−|V (G)|Eφ(G,J).

4To see why, note that if (α, β) ∈ S∞q , then

d1((α, β),Sq(Gn)) ≤ dHf
1 (S∞q , Sq(Gn))→ 0,

while if d1((α, β),Sq(Gn))→ 0, then combining this limit with dHf
1 (S∞q , Sq(Gn))→ 0 and the fact

that S∞q is closed shows that (α, β) ∈ S∞q .
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The distribution µ
(a,ε)
G,J is usually called the microcanonical Gibbs distribution of the

model J on G, and Z
(a,ε)
G,J is called the microcanonical partition function.

In this paper, we will not analyze the particular properties of the distribution

µ
(a,ε)
G,J , but we will be interested in the normalization factor, or more precisely its

normalized logarithm

(2.11) Fa,ε(G, J) = − 1

|V (G)|
logZ

(a,ε)
G,J ,

which is called the microcanonical free energy. We will also be interested in the

dominant term contributing to Z
(a,ε)
G,J , or more precisely its normalized logarithm,

the microcanonical ground state energy

(2.12) Ea,ε(G, J) = min
φ∈Ωa,ε(G)

Eφ(G, J).

Note that the energy Eφ(G, J) has been normalized in such a way that |Eφ(G, J)| ≤
‖J‖∞ (where ‖J‖∞ = maxi,j∈[q] |Jij |), and Ωa,ε(G) 6= ∅ as long as ε ≥ αmax(G)/αG,

implying that under this condition, Z
(a,ε)
G,J ≥ e−|V (G)|Ea,ε(G,J) ≥ e−|V (G)|‖J‖∞ . Thus,

for fixed J the microcanonical energies and free energies are of order one.

Definition 2.5. Let (Gn)n≥0 be a sequence of weighted graphs. We say that

(i) (Gn)n≥0 has convergent microcanonical ground state energies if the limit

(2.13) Ea(J) = lim
ε→0

lim sup
n→∞

Ea,ε(G, J) = lim
ε→0

lim inf
n→∞

Ea,ε(G, J)

exists for all q ∈ N, a ∈ 4q, and symmetric J ∈ Rq×q, and
(ii) (Gn)n≥0 has convergent microcanonical free energies if the limit

(2.14) Fa(J) = lim
ε→0

lim sup
n→∞

Fa,ε(G, J) = lim
ε→0

lim inf
n→∞

Fa,ε(G, J)

exists for all q ∈ N, a ∈ 4q, and symmetric J ∈ Rq×q.

Recall that the microcanonical ground state energy describes the largest term

contributing to the microcanonical partition function Z
(a,ε)
G,J . Using the fact that

this partition function contains at least one and at most q|V (G)| terms, we will see
that a scaling argument shows that convergence of the microcanonical free energies
implies convergence of the microcanonical ground state energies. On the other hand,
the energy of a configuration φ can be expressed in terms of the quotient G/φ as

(2.15) Eφ(G, J) = −〈β(G/φ), J〉,

where

〈β, J〉 =
∑
i,j

βijJij .

Using this identity, we will express the microcanonical ground state energy as a
minimum over quotients, which in turn can be used to show that convergence of
quotients implies convergence of the microcanonical ground state energies.

The following theorem gives a precise statement of these facts. We will restate
the theorem as part of Lemma 3.2 and Theorem 3.3 and prove it in Section 4.

Theorem 2.6. Let q ∈ N and let (Gn)n≥0 be a sequence of weighted graphs.



10 CHRISTIAN BORGS, JENNIFER T. CHAYES, HENRY COHN, AND YUFEI ZHAO

(i) If Sq(Gn) converges to a closed set S∞q in the Hausdorff metric, then the

limit (2.13) exists for all a ∈ 4q and all symmetric J ∈ Rq×q and can be
expressed as

Ea(J) = − max
(α,β)∈S∞q ∩Sa

〈β, J〉.

(ii) Let a ∈ 4q. If |V (Gn)| → ∞ and the limit (2.14) exists for all symmetric
J ∈ Rq×q, then the limit (2.13) exists for all such J and

Ea(J) = lim
λ→∞

1

λ
Fa(λJ).

Remark 2.7. Definition 2.5 differs from that given in [8] for dense graphs in that
we are taking the double limit of first sending n → ∞ and then sending ε → 0,
rather than a single limit with an n-dependent ε = εn. (In [8], εn was chosen to be
αmax(Gn)/αGn , even though all theorems involving the microcanonical free energies
required the additional assumption that Gn has vertex weights one, corresponding
to εn = 1/|V (Gn)|). While there is some merit to the simplicity of a single limit,
here we decided to follow the spirit of the definitions from mathematical statistical
physics, where the formulation of a double limit is standard; it is also more consistent
with the double limits usually taken in the theory of large deviations, where an
n-dependent ε usually makes no sense.

However, the two definitions are equivalent if Gn is dense with bounded edge
weights and vertex weights one (this follows from Theorem 2.15 below, because such
graphs are L∞ upper regular). Thus, as far as the results of [8] are concerned, there
is no difference between the two definitions.

2.5. Large deviation convergence. As we have seen in the last section, the
quotients of a graph G provide enough information to calculate the microcanonical
ground state energies (2.12), since the quotients tell us which energies Eφ(G, J) can
be realized. However, to calculate the microcanonical free energies (2.11) we need
to know a little more, namely how often a term with given energy appears in the
sum (2.10).

This leads to the notion of large deviation convergence (LD convergence), which
was first introduced in the context of bounded degree graphs [4], where it turned out
to be strictly stronger than convergence of quotients. Roughly speaking, this notion
codifies how often a given quotient (α, β) ∈ Sq(G) appears in a sum of the form
(2.10). Or, put differently, it specifies the probability that for a uniformly random
map φ : V (G)→ [q], the quotient G/φ is approximately equal to (α, β). The precise
definition is as follows:

Definition 2.8. Let q ∈ N, let (Gn)n≥0 be a sequence of weighted graphs, and
let Pq,Gn be the probability distribution of Gn/φ when φ : V (Gn)→ [q] is chosen
uniformly at random. We say that (Gn)n≥0 is q-LD convergent if |V (Gn)| → ∞
and

lim
ε→0

lim inf
n→∞

logPq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
|V (Gn)|

= lim
ε→0

lim sup
n→∞

logPq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
|V (Gn)|

(2.16)



AN Lp THEORY OF SPARSE GRAPH CONVERGENCE II 11

and say it is q-LD convergent with rate function Iq : Sq → [0,∞] if the above limit is
equal to −Iq((α, β)). We say that (Gn)n≥0 is LD convergent if it is q-LD convergent
for all q ∈ N.

The following theorem states that LD convergence is at least as strong as conver-
gence of quotients and convergence of the microcanonical free energies. We prove it
in Sections 4.3 and 4.4.

Theorem 2.9. Let q ∈ N and let (Gn)n≥0 be a sequence of weighted graphs. If
(Gn)n≥0 is q-LD convergent with rate function Iq, then the following hold:

(i) The sets of quotients Sq(Gn) converge to the closed set

Sq(Iq) = {(α, β) ∈ Sq : Iq((α, β)) <∞}
in the Hausdorff metric.

(ii) For all a ∈ 4q and all symmetric J ∈ Rq×q, the microcanonical free
energies converge to

Fa(Iq, J) = inf
(α,β)∈Sa

(
−〈β, J〉+ Iq((α, β))

)
− log q.

2.6. Limiting expressions for convergent sequences of graphs. The results
stated so far, namely Theorems 2.6 and 2.9, raise the question of whether the four
notions of convergence considered in these theorems are equivalent. They also raise
the question of whether the limits of the quotients, microcanonical ground state
energies, and free energies as well as the rate functions Iq can be expressed in terms
of a limiting graphon. It turns out that the answers to these two questions are
related, and that we have equivalence if we postulate convergence to a graphon
W ∈ L1.

We need some definitions. All of them rely on the notion of a fractional partition
of [0, 1] into q classes (briefly, a fractional q-partition), which we define as a q-tuple
of measurable functions ρ1, . . . , ρq : [0, 1]→ [0, 1] such that ρ1(x)+ · · ·+ρq(x) = 1 for
all x ∈ [0, 1]. We denote the set of fractional q-partitions by FPq. To each fractional
partition ρ ∈ FPq, we assign a weight vector α(ρ) = (α1(ρ), . . . , αq(ρ)) ∈ 4q and an
entropy Ent(ρ) ∈ [0, log q] by setting

αi(ρ) =

∫ 1

0

ρi(x) dx

and

Ent(ρ) =

∫ 1

0

Entx(ρ) dx with Entx(ρ) = −
q∑
i=1

ρi(x) log ρi(x)

(with 0 log 0 = 0). Let

Ŝq =
{

(α, β) ∈ [0, 1]q × Rq×q :
∑
i∈[q]

αi = 1
}

(in comparison with the definition (2.6) of Sq, we do not restrict β). Given a graphon
W and a fractional q-partition ρ ∈ FPq, we then define the quotient W/ρ to be the

pair (α, β) ∈ Ŝq where
αi(W/ρ) = αi(ρ)

and

βij(W/ρ) =

∫
[0,1]2

ρi(x)ρj(y)W (x, y) dx dy
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for i, j ∈ [q]. We call W/ρ a fractional q-quotient of W . Let Ŝq(W ) denote the set

of all fractional q-quotients of W , and for a ∈ 4q, let Ŝa(W ) denote the set of pairs

in Ŝq(W ) whose first coordinate equals a. It will be shown in Proposition 5.5 that

Ŝq(W ) is compact.
Next we define the microcanonical ground state energies and free energies of a

graphon W . Given an integer q ≥ 1 and a symmetric matrix J ∈ Rq×q, we define
the energy of a fractional partition ρ ∈ FPq to be

Eρ(W,J) = −
∑
i,j

Jij

∫
[0,1]2

ρi(x)ρj(y)W (x, y) dx dy.

For a ∈ 4q, the microcanonical ground state energy is defined as

(2.17) Ea(W,J) = inf
ρ:α(ρ)=a

Eρ(W,J),

while the microcanonical free energy is defined as

(2.18) Fa(W,J) = inf
ρ:α(ρ)=a

(
Eρ(W,J)− Ent(ρ)

)
.

The infima in these equations are over all fractional q-partitions of [0, 1] such that
α(ρ) = a. Note that all these quantities are well defined because 0 ≤ Entx(ρ) ≤ log q
and

|Eρ(W,J)| ≤ ‖J‖∞‖W‖1.

Finally, the LD rate function Iq(F,W ) is defined as

(2.19) Iq((α, β),W ) = inf
ρ∈FPq :W/ρ=(α,β)

(log q − Ent(ρ)),

Note that Iq((α, β),W ) ∈ [0, log q] if (α, β) ∈ Ŝq(W ) and Iq((α, β),W ) = ∞ if

(α, β) /∈ Ŝq(W ).
We are now ready to state the main theorem of this paper. Recall that graphons

are assumed to be L1 (and not necessarily L∞, as in some papers in the literature).

Theorem 2.10. Let W be a graphon, and let (Gn)n≥0 be a sequence of weighted
graphs with no dominant nodes, in the sense that αmax(Gn)/αGn → 0. Then the
following statements are equivalent:

(i) (Gn)n≥0 converges to W in metric.

(ii) For all q ∈ N, Sq(Gn)→ Ŝq(W ) in the Hausdorff metric dHf
1 .

(iii) The microcanonical ground state energies of (Gn)n≥0 converge to those of
W .

If all the vertices of Gn have weight one, then the following two statements are also
equivalent to (i):

(iv) (Gn)n≥0 is LD convergent with rate function Iq = Iq(·,W ).
(v) The microcanonical free energies of (Gn)n≥0 converge to those of W .

We prove this theorem in Section 6.
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2.7. Uniform upper regularity. It is natural to ask whether one can state Theo-
rem 2.10 without reference to the limiting graphon W . It turns out that the answer
is yes, and in fact this reformulation (Theorem 2.15) will play a key role in the proof.
To state this theorem, we need the notion of upper regularity, which first arose in
our study of subsequential metric convergence in [3] and plays a key role both in
that paper and in this one.

To define this concept, we define the Lp norm of a weighted graph G to be

‖G‖p =

 ∑
x,y∈V (G)

αx(G)αy(G)

α2
G

|βxy(G)|p
1/p

,

and for p =∞ we set

‖G‖∞ = max
x,y∈V (G)

αx(G),αy(G)>0

|βxy(G)|.

As we already have seen in Section 2.2, when studying graph convergence for sparse
graphs, it is natural to reweight the edge weights by 1

‖G‖1 to obtain a weighted

graph which does not go to zero for trivial reasons. In order to control the now
possibly large entries of the adjacency matrix of the weighted graph 1

‖G‖1G, one

might want to require the Lp norm of 1
‖G‖1G to be bounded, but this turns out

to be too restrictive. Instead, we will use a weaker condition, which requires the
Lp norm of 1

‖G‖1G to be bounded “on average,” at least when the averages are

taken over sufficiently large blocks. To make this precise, we need some additional
notation.

Given a weighted graph G and a partition P = {V1, . . . , Vq} of V (G) into disjoint
sets V1, . . . , Vq, we define GP to be the weighted graph with the same vertex weights
as G and edge weights which are defined by averaging over the blocks Vi × Vj ,
suitably weighted by the vertex weights:

(2.20) βxy(GP) =
1

αVi(G)αVj (G)

∑
(u,v)∈Vi×Vj

αu(G)αv(G)βuv(G)

if (x, y) ∈ Vi × Vj and αVi(G)αVj (G) > 0, while we set βxy(GP) = 0 if either x or y
lie in a block Vk(G) with total node weight αVk(G) = 0.

Definition 2.11. Let G be a weighted graph, let C, η > 0, and let p > 1. We say
that G is (C, η)-upper Lp regular if αmax(G) ≤ ηαG and

‖GP‖p ≤ C‖G‖1

for all partitions P = {V1, . . . , Vq} for which mini αVi ≥ ηαG. We say that a
sequence of graphs (Gn)n≥0 is C-upper Lp regular if there exists a sequence ηn → 0
such that Gn is (C, ηn)-upper regular, and we say that (Gn)n≥0 is Lp upper regular
if there exists a C <∞ such that (Gn)n≥0 is C-upper Lp regular.

The definition of L1 upper regularity always holds vacuously, but the following
definition of uniform upper regularity turns out to be the correct L1 analogue,
as described in Appendix C of [3]. It is closely related to the notion of uniform
integrability of a set of graphons (see Section 5.2), and it is the notion we will need
in this paper.
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Definition 2.12. Let η > 0 and let K : (0,∞)→ (0,∞) be any function. We say
that a weighted graph G is (K, η)-upper regular if αmax(G) ≤ ηαG and

(2.21)
∑

x,y∈V (G)

αx(G)αy(G)

α2
G

|βxy(GP)|
‖G‖1

1|βxy(GP)|≥K(ε)‖G‖1 ≤ ε

for all ε > 0 and all partitions P = {V1, . . . , Vq} for which mini αVi ≥ ηαG. We say
that a sequence of graphs (Gn)n≥0 is K-upper regular if there exists a sequence
ηn → 0 such that Gn is (K, ηn)-upper regular, and we say that (Gn)n≥0 is uniformly
upper regular if there exists a function K : (0,∞) → (0,∞) such that (Gn)n≥0 is
K-upper regular.

Note that the properties of Lp upper regularity and uniform upper regularity
require (Gn)n≥0 to have no dominant nodes, a property we already encountered in
Theorem 2.10. One of the main results of [3] is the following theorem.

Theorem 2.13 (Theorem C.7 in [3]). Let (Gn)n≥0 be a uniformly upper regular
sequence of weighted graphs. Then (Gn)n≥0 contains a subsequence that is convergent
in metric. Furthermore, if (Gn)n≥0 is convergent in metric, then there exists a
graphon W such that Gn converges to W in metric.

Conversely, it was shown in [3] that every sequence of weighted graphs which
converges in metric to a graphon and has no dominant nodes must be upper regular.
The precise statement is given by the following theorem, which follows immediately
from Corollary 2.11 and Proposition C.5 in [3].

Theorem 2.14 ([3]). Let (Gn)n≥0 be a sequence of weighted graphs without domi-
nant nodes, and assume that Gn converges to some graphon W in metric. Then
(Gn)n≥0 is uniformly upper regular. If W is in Lp, then (Gn)n≥0 is Lp-upper regular.

A uniformly upper regular sequence of simple graphs must have unbounded
average degree, by Proposition C.15 in [3]. This corresponds to the fact that
graphons are not the appropriate limiting objects for graphs with bounded average
degree (although they apply to all other sparse graphs).

Returning to the subject of this paper, the question of whether the five versions
of convergence defined in Sections 2.2 through 2.5 are equivalent, we are now ready
to state our results without reference to a limiting graphon.

Theorem 2.15. Let (Gn)n≥0 be a uniformly upper regular sequence of weighted
graphs. Then the following three statements are equivalent:

(i) (Gn)n≥0 is convergent in metric.
(ii) (Gn)n≥0 has convergent quotients.
(iii) (Gn)n≥0 has convergent microcanonical ground state energies.

If all the vertices of Gn have weight one, then the following two statements are also
equivalent to (i):

(iv) (Gn)n≥0 is LD convergent.
(v) (Gn)n≥0 has convergent microcanonical free energies.

Note that by Theorems 2.6 and 2.9, we already know that (iv) implies both
(v) and (ii), and that both (v) and (ii) imply (iii); in fact, we need neither node
weights one, nor the assumption of upper regularity. So the important part of this
theorem is that under the assumption of uniform upper regularity, convergence in
metric implies convergence of quotients (and LD convergence, if we assume node
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weights one), and convergence of the microcanonical ground state energies implies
convergence in metric. We prove Theorem 2.15 in Section 6.

One may want to know whether the assumption of upper regularity is actually
necessary for these conclusions to hold. The answer is yes, by the following example.

Example 2.16. Let cn ∈ N be such that cn →∞ and cn/n→ 0 as n→∞, and let
Gn be the disjoint union of a complete graph on cn nodes with n− cn isolated nodes.
Then (Gn)n≥0 is LD convergent (and hence has convergent quotients, microcanonical
free energies and microcanonical ground state energies); see Section 3.3.6 below.
However, (Gn)n≥0 is not a Cauchy sequence in the normalized cut metric δ�,norm

from (2.3) and hence does not converge to any graphon in metric (see the proof of
Proposition 2.12(a) in [3]).

The following theorem states that convergence of the quotients, microcanonical
ground state energies, or microcanonical free energies to those of a graphon W all
imply upper regularity, as does LD convergence with a rate function Iq(·,W ) given
in terms of a graphon W . It is the analogue of Theorem 2.14 for these notions of
convergence.

Theorem 2.17. Let (Gn)n≥0 be a sequence of weighted graphs with no dominant
nodes, and let W be a graphon. Then any of the following conditions implies that
(Gn)n≥0 is uniformly upper regular.

(i) The microcanonical ground state energies of (Gn)n≥0 converge to those of
W .

(ii) For all q ∈ N, Sq(Gn)→ Ŝq(W ) in the Hausdorff metric dHf
1 .

(iii) The microcanonical free energies of (Gn)n≥0 converge to those of W .
(iv) (Gn)n≥0 is LD convergent with rate function Iq = Iq(·,W ).

Note that the first two assertions in this theorem already follow by combining
Theorem 2.14 with Theorem 2.10(i)–(iii). However, this is not how our proofs of
Theorems 2.10 and 2.17 proceed. Instead of proving Theorem 2.10 directly, we use
uniform upper regularity to prove Theorem 2.15 in Section 6. Then Theorem 2.17
is exactly what we need to deduce Theorem 2.10 from Theorem 2.15, and we prove
Theorem 2.17 in Section 7.

3. Further definitions, remarks, and examples

3.1. Convergence of free energies and ground state energies. In addition
to the microcanonical quantities introduced in Section 2.4, statistical physicists
often analyze the unrestricted probability measure

µG,J,h(φ) =
1

ZG,J,h
e−|V (G)|Eφ(G,J)+|V (G)|〈h,α(G/φ)〉,

where h is a vector in Rq called the magnetic field,

〈h, α〉 =
∑
i∈[q]

hiαi,

and ZG,J,h is the normalization factor

(3.1) ZG,J,h =
∑

φ : V (G)→[q]

e−|V (G)|Eφ(G,J)+|V (G)|〈h,α(G/φ)〉,



16 CHRISTIAN BORGS, JENNIFER T. CHAYES, HENRY COHN, AND YUFEI ZHAO

usually called the partition function. The normalized logarithm of the partition
function is the free energy

F (G, J, h) = − 1

|V (G)|
logZG,J,h

of the model (J, h) on G, and the maximizer in the sum (3.1), or more precisely its
normalized logarithm, is the ground state energy

E(G, J, h) = min
φ : [q]→V (G)

(
Eφ(G, J, h)− 〈h, α(G/φ)〉

)
.

Definition 3.1.

(i) (Gn)n≥0 has convergent ground state energies if the limit

(3.2) E(J, h) = lim
n→∞

E(Gn, J, h)

exists for all q ∈ N, symmetric J ∈ Rq×q, and h ∈ Rq.
(ii) (Gn)n≥0 has convergent free energies if the limit

(3.3) F (J, h) = lim
n→∞

F (Gn, J, h)

exists for all q ∈ N, symmetric J ∈ Rq×q, and h ∈ Rq.

These notions are implied by the microcanonical versions, and convergence of
free energies implies convergence of ground state energies. This is the content of
the following lemma, which we will prove in Section 4.1. Note that part (iii) is a
restatement of Theorem 2.6(ii).

Lemma 3.2. Let (Gn)n≥0 be a sequence of weighted graphs with |V (Gn)| → ∞,
and let q ∈ N. Then the following hold:

(i) Let J be a symmetric matrix in Rq×q, and assume that the limit (2.14)
exists for all a ∈ 4q. Then the limit (3.3) exists for all h ∈ Rq, and

F (J, h) = inf
a∈4q

(
Fa(J)− 〈a, h〉

)
.

(ii) Let J be a symmetric matrix in Rq×q, and assume that the limit (2.13)
exists for all a ∈ 4q. Then the limit (3.2) exists for all h ∈ Rq, and

E(J, h) = inf
a∈4q

(
Ea(J)− 〈a, h〉

)
.

(iii) Let a ∈ 4q, and assume that the limit (2.14) exists for all symmetric
J ∈ Rq×q. Then the limit (2.13) exists for all such J , and

Ea(J) = lim
λ→∞

1

λ
Fa(λJ).

(iv) Assume that the limit (3.3) exists for all h ∈ Rd and all symmetric J ∈
Rq×q. Then the limit (3.2) exists for all h ∈ Rd and all symmetric J ∈ Rq×q,
and

E(J, h) = lim
λ→∞

1

λ
F (λJ, λh).

Convergence of the ground state and free energies is strictly weaker than that of
the microcanonical versions. See Section 3.3.5 for an example.

On the other hand, we can use (2.15) to express both the microcanonical ground
state energies Ea,ε(G, J) and the unrestricted ground state energies E(G, J, h) as
minima over quotients. Using this fact, it is not hard to show that convergence
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of quotients implies convergence of the ground state energies as well as the micro-
canonical ground state energies. This is the content of the following theorem, which
again holds for an arbitrary sequence, with no assumption about upper regularity.
We prove the theorem (which encompasses Theorem 2.6(i)) in Section 4.2.

Theorem 3.3. Let q ∈ N and let (Gn)n≥0 be a sequence of weighted graphs such
that Sq(Gn) converges to a closed set S∞q in the Hausdorff metric. Then the limit

(2.13) exists for all a ∈ 4q and all symmetric J ∈ Rq×q and can be expressed as

Ea(J) = − max
(α,β)∈S∞q ∩Sa

〈β, J〉.

and the limit (3.2) exists for all symmetric J ∈ Rq×q and all h ∈ Rq and can be
expressed as

E(J, h) = min
(α,β)∈S∞q

(
−〈β, J〉 − 〈α, h〉

)
,

Much as in Section 2.6, we can write down limiting expressions for a graphon W .
The ground state energy of the model (J, h) on W is

E(W,J, h) = inf
ρ∈FPq

(
Eρ(W,J)−

∑
i

hi

∫
[0,1]

ρi(x) dx

)
and its free energy is defined as

F(W,J, h) = inf
ρ∈FPq

(
Eρ(W,J)−

∑
i

hi

∫
[0,1]

ρi(x) dx− Ent(ρ)

)
.

It follows from Lemma 3.2 and Theorem 2.10 that if (Gn)n≥0 has no dominant
nodes and converges to W in metric, then its ground state energies converge to
those of W , and if all the vertices of Gn have weight one, then the free energies also
converge to those of W .

3.2. LD convergence.

Remark 3.4. It is not hard to see that (Gn)n≥0 is q-LD convergent if and only if
Pq,Gn obeys a large deviation principle with speed |V (Gn)|, i.e., if there exists a
lower semicontinuous function Iq : Sq → [0,∞] such that

− inf
(α,β)∈S̊

Iq((α, β)) ≤ lim inf
n→∞

logPq,Gn
[
Gn/φ ∈ S̊

]
|V (Gn)|

≤ lim sup
n→∞

logPq,Gn
[
Gn/φ ∈ S̄

]
|V (Gn)|

≤ − inf
(α,β)∈S̄

Iq((α, β))

(3.4)

for all sets S ⊆ Sq. Here S̄ denotes the closure of S and S̊ its interior.
Indeed, assume that (3.4) holds for some lower semicontinuous function Iq : Sq →

[0,∞]. By the lower semicontinuity of Iq,

Iq((α, β)) = lim
ε→0

inf{Iq((α′, β′)) : d1((α, β), (α′, β′)) < ε},

which implies (2.16) when inserted into (3.4). It turns out that (2.16) is also sufficient
for (3.4) to hold. Indeed, under the assumption that the underlying metric space is
compact (which is the case here), the equality of the two limits in (2.16) implies
that Pq,Gn obeys a large deviation principle with rate function given by Iq; see, for
example, Theorem 4.1.11 in [9] for the proof.
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3.3. Examples. In this section we give some examples of convergent graph se-
quences, as well as a few counterexamples in which the equivalences in Theorem 2.15
fail (of course because uniform upper regularity does not hold).

3.3.1. Erdős-Rényi random graphs. The simplest example of a uniformly upper
regular sequence—in fact an L∞-upper regular sequence—is the standard Erdős-
Rényi random graphs Gn,p obtained by connecting each pair of distinct vertices in
[n] independently with probability p. Here p can depend on n, as long as pn→∞ as
n→∞. Under this condition, Gn,p converges with probability one to the constant
graphon W = 1. This can proved in several ways, for example by showing that in
expectation all the quotients in Sq(Gn,p) converge to the corresponding quotients in

Ŝq(W ) and proving concentration with the help of Azuma’s inequality.

3.3.2. Stochastic block models. Next we consider the block models obtained as
follows. Fix k ∈ N, a symmetric matrix B = (bij)i,j∈[k] with entries bij ≥ 0

satisfying k−2
∑
i,j bij = 1, and a target density ρn ≤ 1/max bij . Divide [n] into k

blocks V1, . . . , Vk of equal size (or, in the case where n is not divisible by k of sizes
differing by at most 1) and define puv = ρnbij if (u, v) ∈ Vi × Vj . Then we connect
vertices u and v with probability puv. If nρn → ∞ as n → ∞, then the resulting
graph converges with probability one to the step function W that is equal to bij on

the block ( i−1
n , in ]× ( j−1

n , jn ]. The proof can again be obtained by proving that the
quotients converge in expectation, followed by a concentration argument.

3.3.3. Power law graphs. Starting again with the vertex set [n], connect i 6= j with
probability min(1, nβ(ij)−α), where 0 < α < 1 and 0 ≤ β < 2α. In other words,
the expected degree distribution follows an inverse power law with exponent α,
while the nβ scaling factor ensures that the probabilities do not become too small.
If β > 2α − 1, then the expected number of edges is superlinear, and a similar
argument to the one used in the above two examples shows convergence, this time
to a graphon that is not in L∞, namely W (x, y) = (1− α)2(xy)−α.

3.3.4. W -random graphs. Our fourth example provides a construction of a sequence
(Gn)n≥0 of simple graphs that converge to a given graphon W with non-negative
entries W (x, y) ≥ 0. Normalizing W so that

∫
[0,1]2

W = 1 and fixing a target density

ρn, we proceed by first choosing n i.i.d. variables x1, . . . xn uniformly in [0, 1], and
then defining a random graph Gn(W,ρn) on {1, . . . , n} by connecting each pair

{i, j} ∈
(

[n]
2

)
independently with probability min{1, ρnW (xi, yi)}. Assuming that

ρn → 0 and nρn → ∞, the graphs Gn converge to W under the normalized cut
metric with probability one, by Theorem 2.14 in [3]. If W is a step function, this
is more or less equivalent to the convergence of stochastic block models, while for
general graphons W , one can proceed by first approximating W by a step function.

3.3.5. Convergence of free energies without convergence of microcanonical free ener-
gies. Our next example is a generalization of Example 6.3 from [8] to the sparse
setting, and is based on the observation that for an arbitrary sequence of graphs
Gn, the free energies of Gn and a disjoint union of Gn with itself are identical (this
follows from the fact that for two disjoint graphs G and G′, the partition function
on G ∪ G′ factors into that of G times that of G′). If we take Gn to be equal to
Gn,p if n is odd, and equal to a disjoint union of two copies of Gn,p if n is even, then
we get convergence of the free energies. By contrast, in the notions of convergence
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from Theorem 2.10, the odd subsequence converges to W = 1, while the even one
converges to the block graphon W ′ that is equal to 2 on [0, 1/2]2 ∪ [1/2, 1]2 and 0
elsewhere. In particular, the min-bisection of the even subsequence converges to
zero, while the min-bisection of the odd sequence converges to 1/2. This shows that
the microcanonical ground state energies are not convergent, which implies that the
microcanonical free energies don’t converge either.

3.3.6. LD convergence without metric convergence. This is Example 2.16 from
Section 2.7, consisting of a graph Gn that is the disjoint union of a complete graph
on cn nodes with n− cn isolated nodes. A random q-quotient is then determined by
how many elements of the clique there are in each part and how many elements of the
non-clique. Calling these numbers b1, . . . , bq and a1, . . . , aq, we have b1+· · ·+bq = cn
and a1 + · · ·+ aq = n− cn, and this occurs with probability

q−n
(

cn
b1, . . . , bq

)(
n− cn

a1, . . . , aq

)
.

Everything else is determined from this data: αi = (ai+bi)/n, βij = bibj/(cn(cn−1))
if i 6= j, and βii = bi(bi − 1)/(cn(cn − 1)). If cn ∈ N is such that cn → ∞ and
cn/n→ 0 as n→∞, then in the rate function, the choice of b1, . . . , bq gets wiped
out by the choice of a1, . . . , aq, leading to LD convergence with rate function

Iq((α, β)) = log q +

q∑
i=1

αi logαi

as long as β ∈ Rq×q satisfies βii ≥ 0, βij =
√
βiiβjj , and

∑
i

√
βii = 1 (while

Iq((α, β)) =∞ otherwise). On the other hand, (Gn)n≥0 is not a Cauchy sequence
in the normalized cut metric δ�,norm from (2.3) and hence does not converge to any
graphon in metric (see the proof of Proposition 2.12(a) in [3]).

3.3.7. Convergence of quotients without convergence of the microcanonical free
energies. We close our example section with an example from [4] (Example 5
from that paper) which shows that without the assumption of upper regularity,
convergence of quotients does not imply convergence of the microcanonical free
energies, and hence does not imply LD-convergence either. Before stating this
example, we note that whenever Hn is a sequence of regular bipartite graphs,
cn →∞, and Gn is the union of cn disjoint copies of Hn, then the quotients of Gn
converge to the convex hull of the quotients of a graph consisting of a single edge.
To see why, consider a map from the vertex set of Gn into [q]. Since Gn is regular,
the corresponding quotient does not change if we replace Gn by a disjoint union of
|E(Gn)| edges (and map each of the split vertices to the same element of [q] as its
original vertex in Gn). Thus, the quotient is in the convex hull of the quotients of a
single edge. On the other hand, each quotient of a single edge can be realized in the
bipartite graph Hn, showing that each quotient in the convex hull can be arbitrarily
well approximated in Gn if cn →∞.

To get a sequenceGn without convergent microcanonical free energies we specialize
to the case where Hn consists of a 4-cycle when n is even and a 6-cycle when n
is odd. The free energies of Gn are then equal to the free energies of the 4-cycle
when n is even and those of the 6-cycle when n is odd. But it is easy to check that
the 4-cycle has different free energies from a 6-cycle, implying that Gn does not
have convergent free energies, and hence does not have convergent microcanonical
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free energies either (an alternative proof was given in [4], where it was used that
Gn does not converge in the sense of Benjamini and Schramm [1], which in turn is
necessary for convergence of the free energies, as proved in [5]).

4. Convergence without the assumption of upper regularity

In this section, we consider general sequences of weighted graphs Gn without any
additional assumptions (except that Gn has at least one edge with nonzero edge
weight). We will prove Lemma 3.2, Theorem 3.3, and Theorem 2.9.

4.1. Free energies and ground state energies. In this section, we prove Lemma 3.2.
We start with the proof of (i). To this end, we note that for all a ∈ 4q we have the
lower bound

Z(Gn, J, h)1/|V (Gn)| ≥ e〈a,h〉−ε‖h‖1
(
Z

(a,ε)
G,J

)1/|V (Gn)|
,

from which we conclude that

lim sup
n→∞

F (Gn, J, h) ≤ Fa(J)− 〈a, h〉.

Since a ∈ 4q was arbitrary, this gives

lim sup
n→∞

F (Gn, J, h) ≤ inf
a∈4q

(
Fa(J)− 〈a, h〉

)
.

To get a matching lower bound, we use the fact that 4q can be covered by

d1/(2ε)eq ≤ ε−q cubes of the form
∏q
i=1[ai − ε, ai + ε]. Explicitly, let 4(ε)

q be the
set of points a where each coordinate is an odd multiple of ε. Then

Z(Gn, J, h)1/|V (Gn)| ≤ ε−q/|V (Gn)| max
a∈4(ε)

q

e〈a,h〉+ε‖h‖1Za,ε(Gn, J)1/|V (Gn)|,

implying that

lim inf
n→∞

F (Gn, J, h) ≥ −ε‖h‖1 + lim inf
n→∞

min
a∈4(ε)

q

(
Fa,ε(Gn, J)− 〈a, h〉

)
= −ε‖h‖1 + min

a∈4(ε)
q

lim inf
n→∞

(
Fa,ε(Gn, J)− 〈a, h〉

)
where in the second step, we used that the minimum is over a finite set. Let εk
be a sequence going to zero, let ak be the minimizer on the right hand side, and
assume (by taking a subsequence, if necessary) that ak converges to some a. Let
ε̃k = εk + ‖a− ak‖∞. Since Fak,εk(Gn, J) ≥ Fa,ε̃k(Gn, J),

lim inf
n→∞

F (Gn, J, h) ≥ −ε̃k‖h‖1 + lim inf
n→∞

(
Fa,ε̃k(Gn, J)− 〈a, h〉

)
.

Sending k →∞, we conclude that

lim inf
n→∞

F (Gn, J, h) ≥ lim
ε→0

lim inf
n→∞

(
Fa,ε̃(Gn, J)− 〈a, h〉

)
=
(
Fa(J)− 〈a, h〉

)
≥ min

a∈4q

(
Fa(J)− 〈a, h〉

)
as desired.

The proof of (ii) starts from the observations that

Ea′,ε(Gn, h)− 〈a′, h〉+ ε ‖h‖1 ≥ E(Gn, J, h)

≥ min
a∈4(ε)

q

(
Ea,ε(Gn, J)− 〈a, h〉

)
− ε ‖h‖1
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for all a′ ∈ 4 and all ε > 0. Using these two bounds, the proof of (ii) is now
identical to the proof of (i).

To prove (iii) and (iv), we note that the number of terms in (3.1) and (2.10) is
at most q|V (G)|, implying that

F (G, J, h) ≤ E(G, J, h) ≤ F (G, J, h) + log q

and

Fa,ε(G, J) ≤ Ea,ε(G, J) ≤ Fa,ε(G, J) + log q.

Rescaling J and h by a factor λ → ∞, and using that both the energies and
microcanonical energies are linear in λ, we obtain the claimed implications. �

4.2. Convergence of quotients implies convergence of microcanonical ground
state energies. In this section, we prove Theorem 3.3.

To this end, we use (2.15) to express the microcanonical ground state energies as

Ea,ε(G, J) = − max
(α,β)∈Sa,ε(G)

〈β, J〉.

where

Sa,ε(G) = Sq(G) ∩ Sa,ε with Sa,ε = {(α, β) ∈ Sq : ‖α− a‖∞ ≤ ε} .

Proof of Theorem 3.3. In view of Lemma 3.2 it is enough to prove convergence of
the microcanonical ground state energies.

Let ε > 0. Since Sq(Gn) is assumed to converge to S∞q , we can find an n0 ∈ N
such that

dHf
1 (Sq(Gn),S∞q ) ≤ ε for all n ≥ n0.

For n ≥ n0, choose (α(n), β(n)) ∈ Sa,ε(Gn) ⊆ Sq(Gn) such that

Ea,ε(Gn, J) = −〈β(n), J〉,

and choose (α̃(n), β̃(n)) ∈ S∞q such that d1((α̃(n), β̃(n)), (α(n), β(n))) ≤ ε. Then

Ea,ε(Gn, J) ≥ −〈β̃(n), J〉 − ε‖J‖∞.

Since |α̃(n)
i − ai| ≤ |α(n)

i − ai| + d1((α̃(n), β̃(n)), (α(n), β(n))) ≤ 2ε, we have that

(α̃(n), β̃(n)) ∈ Sa,2ε, proving in particular that

Ea,ε(Gn, J) ≥ −〈β̃(n), J〉 − ε‖J‖1 ≥ − sup
(α,β)∈S∞q ∩Sa,2ε

〈β, J〉 − ε‖J‖∞.

Taking first the lim inf as n→∞ and then the limit ε→ 0, this shows that

lim
ε→0

lim inf
n→∞

Ea,ε(Gn, J) ≥ − lim
ε→0

sup
(α,β)∈S∞q ∩Sa,ε

〈β, J〉 = − max
(α,β)∈S∞q ∩Sa

〈β, J〉,

where the final step is due to compactness. The proof of the matching upper bound

lim
ε→0

lim sup
n→∞

Ea,ε(Gn, J) ≤ − lim
ε→0

sup
(α,β)∈S∞q ∩Sa,ε

〈β, J〉 = − max
(α,β)∈S∞q ∩Sa

〈β, J〉,

proceeds along the same lines, now using that for any (α, β) ∈ S∞q with ‖α−a‖∞ ≤ ε
we can find (α(n), β(n)) ∈ Sa,2ε(Gn) with d1((α, β), (α(n), β(n))) ≤ ε. �
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4.3. LD convergence implies convergence of quotients. In this section, we
prove part (i) of Theorem 2.9, which is statement (iii) of the following lemma.

Lemma 4.1. Let q ∈ N, assume that (Gn)n≥0 is a q-LD convergent sequence of
weighted graphs with rate function Iq, and let Sq(Iq) = {(α, β) ∈ Sq : Iq((α, β)) <
∞}. Then the following are true:

(i) The set Sq(Iq) is closed with respect to the metric d1.

(ii) The set Sq(Iq) is equal to the set S∞q =
{

(α, β) : d1

(
(α, β),Sq(Gn)

)
→ 0

}
.

(iii) Sq(Gn) converges to Sq(Iq) in the Hausdorff distance.

Proof. (i) For each a ∈ R, the set {(α, β) ∈ Sq : Iq((α, β)) ≤ a} is closed by the
lower semicontinuity of Iq. To prove closedness of the set Sq(Iq), we observe that

Iq,ε,n((α, β)) = −
logPq,Gn

[
d1((α, β), Gn/φ) ≤ ε

]
|V (Gn)|

takes values in [0, log q]∪{∞}, which in turn implies that Iq takes values in [0, log q]∪
{∞} and shows that Sq(Iq) = {(α, β) : Iq((α, β)) ≤ log q}.

(ii) Let us first assume that (α, β) ∈ Sq(Iq). Then

lim sup
n→∞

Iq,ε,n((α, β)) ≤ Iq((α, β)) ≤ log q for all ε > 0,

because Iq,ε,n((α, β)) is non-increasing in ε. Since Iq,ε,n takes values in [0, log q] ∪
{∞}, this implies that for all ε > 0 we can find an n0 such that

Iq,ε,n((α, β)) ≤ log q if n ≥ n0,

which in turn implies that

d1

(
(α, β),Sq(Gn)

)
≤ ε if n ≥ n0.

This proves that (α, β) ∈ Sq(Iq) implies d1

(
(α, β),Sq(Gn)

)
→ 0.

Assume on the other hand that d1

(
(α, β),Sq(Gn)

)
→ 0, and by contradiction,

assume further that (α, β) /∈ Sq(Iq), i.e., assume that Iq((α, β)) = ∞. Since
Iq,ε,n((α, β)) takes values in [0, log q] ∪ {∞}, this implies that there exists an ε > 0
such that

lim inf
n→∞

Iq,ε,n((α, β)) =∞.

which in turn implies that there exists an n0 <∞ such that Iq,ε,n((α, β)) =∞ for
all n ≥ n0. As a consequence,

d1

(
(α, β),Sq(Gn)

)
> ε if n ≥ n0,

contradicting the assumption that d1

(
(α, β),Sq(Gn)

)
→ 0.

(iii) Using the fact that Sq(Iq) is compact, one easily transforms the statement

that d1

(
(α, β),Sq(Gn)

)
→ 0 for all (α, β) ∈ Sq(Iq) into the uniform statement that

sup
(α,β)∈Sq(Iq)

d1

(
(α, β),Sq(Gn)

)
→ 0.

To prove convergence in the Hausdorff distance we have to prove the matching
bound

sup
(α,β)∈Sq(Gn)

d1

(
(α, β),Sq(Iq)

)
→ 0.
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Fix ε > 0, and let S be the set S = {(α, β) ∈ Sq : d1((α, β),Sq(Iq)) ≥ ε}. Since S
is closed, we may use (3.4) to conclude that

lim sup
n→∞

logPq,Gn [Gn/φ ∈ S]

|V (Gn)|
≤ − inf

(α,β)∈S
Iq((α, β)) = −∞.

Since the probability on the left hand side takes values in {0} ∪ [q−|V (Gn)|, 1] this
shows there must exists an n0 = n0(ε, q) such that Pq,Gn [Gn/φ ∈ S] = 0 if n ≥ n0,
showing that Sq(Gn) ∩ S = ∅ when n ≥ n0. Expressed differently, for all ε > 0 we
can find an n0 such that for n ≥ n0,

Sq(Gn) ⊆ {(α, β) ∈ Sq : d1((α, β),Sq(Iq)) < ε}.
Or still expressed differently, we can find a sequence εn → 0 as n→∞ such that

d1((α, β),Sq(Iq)) ≤ εn for all (α, β) ∈ Sq(Gn). �

4.4. LD convergence implies convergence of free energies. In this section,
we prove part (ii) of Theorem 2.9.

(ii) Given δ, ε > 0, chose an arbitrary (α, β) ∈ Sa,δ, and let Ω(α,β),ε be the set of
configurations φ : V (Gn)→ [q] such that d1((α, β), Gn/φ) ≤ ε. If φ ∈ Ω(α,β),ε, then
|ai − αi(Gn/φ)| ≤ ε+ δ, implying that Ω(α,β),ε ⊆ Ωa,ε+δ(Gn). Using further that
d1((α, β), Gn/φ) ≤ ε implies that |〈β, J〉 − 〈β(Gn/φ), J〉| ≤ ε‖J‖∞, and we then
bound

q|V (Gn)|e〈β,J〉|V (Gn)|Pq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
≤

∑
φ∈Ωa,ε+δ(Gn)

e

(
〈β(Gn/φ),J〉+ε‖J‖∞

)
|V (Gn)|

= Z
(a,ε+δ)
Gn,J

eε‖J‖∞|V (Gn)|,

where the last step follows from the definition (2.10) and the fact that −Eφ(Gn, J)
can be expressed as 〈β(Gn/φ), J〉. Using (2.16) plus monotonicity in ε to guarantee
the existence of the limit ε→ 0, this implies that

lim
ε→0

lim inf
n→∞

logZ
(a,ε+δ)
Gn,J

|V (Gn)|
≥ log q + 〈β, J〉 − Iq((α, β)).

Since δ > 0 and (α, β) ∈ Sa,δ were arbitrary, this shows that

lim
ε→0

lim inf
n→∞

logZ
(a,ε)
Gn,J

|V (Gn)|
≥ lim
δ→0

sup
(α,β)∈Sa,δ

(
log q + 〈β, J〉 − Iq((α, β))

)
≥ sup

(α,β)∈Sa

(
log q + 〈β, J〉 − Iq((α, β))

)
= −Fa(Iq, J).

To get a matching upper bound we again fix a and ε, δ > 0. Since Sa,ε is closed
and hence compact, we can find a finite set Sδ ⊂ Sa,ε such that dHf

1 (Sδ,Sa,ε) ≤ δ.
For s ∈ Sδ, let Bδ(s) be the set of pairs (α, β) ∈ Sa,ε such that d1(s, (α, β)) ≤ δ.
Then Sa,ε =

⋃
s∈Sδ Bδ(s). As a consequence,

Z
(a,ε)
Gn,J

=
∑

φ:V (Gn)→[q]

e〈Gn/φ,J〉|V (Gn)|1Gn/φ∈Sa,ε

≤ q|V (Gn)|
∑
s∈Sδ

(
sup

(α,β)∈Bδ(s)
e〈β/φ,J〉|V (Gn)|Pq,Gn

[
Gn/φ ∈ Bδ(s)

])
.
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Since Sδ is finite and does not depend on n, we find that

lim sup
n→∞

logZ
(a,ε)
Gn,J

|V (Gn)|

≤ log q + lim sup
n→∞

max
s∈Sδ

(
sup

(α,β)∈Bδ(s)
〈β, J〉+

logPq,Gn
[
Gn/φ ∈ Bδ(s)]
|V (Gn)|

)

= log q + max
s∈Sδ

(
sup

(α,β)∈Bδ(s)
〈β, J〉+ lim sup

n→∞

logPq,Gn
[
Gn/φ ∈ Bδ(s)]
|V (Gn)|

)

≤ log q + max
s∈Sδ

(
sup

(α,β)∈Bδ(s)
〈β, J〉 − inf

(α,β)∈Bδ(s)
Iq((α, β))

)
,

where we used (3.4) in the last step.
Since sup(α,β)∈Bδ(s)〈β, J〉 ≤ 〈β

′, J〉+2‖J‖∞δ for all (α′, β′) ∈ Bδ(s), we conclude
that

lim sup
n→∞

logZ
(a,ε)
Gn,J

|V (Gn)|
≤ log q + max

s∈Sδ
sup

(α,β)∈Bδ(s)

(
〈β, J〉 − Iq((α, β))

)
+ 2δ‖J‖∞

= log q + sup
(α,β)∈Sa,ε

(
〈β, J〉 − Iq((α, β))

)
+ 2δ‖J‖∞.

Sending δ → 0 and using the fact that Z
(a,ε)
Gn,J

is monotone in ε, this gives

lim
ε→0

lim sup
n→∞

logZ
(a,ε)
Gn,J

|V (Gn)|
≤ sup

(α,β)∈Sa,ε

(
log q + 〈β, J〉 − Iq((α, β))

)
.

Choose an arbitrary sequence εk going to zero, and choose (αk, βk) ∈ Sa,ε such that
the supremum on the right hand side is bounded by log q+〈βk, J〉−Iq((αk, βk))+εk.
Going to a subsequence if needed, assume that (αk, βk) converges to some (α, β) ∈ Sa
in the d1 distance. Then

lim
ε→0

lim sup
n→∞

logZ
(a,ε)
Gn,J

|V (Gn)|
≤ log q + 〈β, J〉 − lim inf

k→∞
Iq((αk, βk))

≤ log q + 〈β, J〉 − Iq((α, β))

where in the last step we used that Iq is lower semi-continuous. Since (α, β) ∈ Sa,
the right hand side is bounded by

sup
(α,β)∈Sa

(
log q + 〈β, J〉 − Iq((α, β))

)
= −Fa(Iq, J),

as desired. �

5. Convergent sequences of graphons

In this section, we formulate and prove our main results in the language of
graphons. Several of these results are generalizations of the corresponding results
for L∞ graphons proved in [8]; the exceptions are those involving LD convergence,
which was not considered in [8]. It turns out, however, that most of our proofs are
quite different from those of [8], most notably the proof that convergence of ground
state energies implies convergence in metric (Section 5.5), which involves some new
ideas not present in [8] such as the use of rearrangement inequalities.
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5.1. Upper regularity for graphons. First we review the notion of upper regu-
larity for graphons from [3].

Given a graphon W and a partition P = (Y1, . . . , Ym) of the interval [0, 1] into
finitely many measurable sets, we define WP to be the step function whose value on
Yi × Yj equals to the average of W over Yi × Yj , i.e.,

WP =
1

λ(Yi)λ(Yj)

∫
Yi×Yj

W (x, y) dx dy on Yi × Yj ,

where λ denotes the Lebesgue measure. An easy fact is that W 7→WP is contractive
with respect to the Lp norms ‖ · ‖p and the cut norm ‖ · ‖�, i.e.,

(5.1) ‖WP‖� ≤ ‖W‖� and ‖WP‖p ≤ ‖W‖p for all p ≥ 1.

Another standard fact is that up to a factor of 2, WP is the best step function
approximation to W with steps in P, in the sense that

‖W −WP‖� ≤ 2‖W − UP‖�
for all graphons U . To see why, note that

‖W −WP‖� ≤ ‖W − UP‖� + ‖UP −WP‖�
= ‖W − UP‖� + ‖(W − UP)P‖�
≤ 2‖W − UP‖�.

Definition 5.1. Let K : (0,∞)→ (0,∞) be any function. We say that a graphon
W has K-bounded tails if for each ε > 0,

(5.2)

∫
[0,1]2

|W (x, y)|1|W (x,y)|≥K(ε) dx dy ≤ ε.

A graphon W is (K, η)-upper regular if WP has K-bounded tails whenever P is a
partition of the interval [0, 1] into sets of measure at least η. A sequence (Wn)n≥0

of graphons is uniformly upper regular if there exist K : (0,∞) → (0,∞) and a
sequence ηn → 0 such that Wn is (K, ηn)-upper regular for all n.

A key result from [3] is that every uniformly upper regular sequence of graphons
contains a subsequent that converges in cut distance to some graphon. This is stated
below.

Theorem 5.2 (Theorem C.7 in [3]). If (Wn)n≥0 is a sequence of uniformly upper
regular graphons, then there exists a graphon W and a subsequence (W ′n)n≥0 of
(Wn)n≥0 such that δ�(W ′n,W )→ 0.

5.2. Equivalent notions of convergence for graphons. The main theorem of
this section, Theorem 5.3 below, is the analogue of the first four statements of
Theorem 2.15. To state it, we need the analogue of the microcanonical ground state
energies and microcanonical free energies define in (2.12) and (2.11), namely the
quantities

Ea,ε(W,J) = inf
ρ∈FPq

‖α(ρ)−a‖∞≤ε

Eρ(W,J),

and

(5.3) Fa,ε(W,J) = inf
ρ∈FPq

‖α(ρ)−a‖∞≤ε

(
Eρ(W,J)− Ent(ρ)

)
.
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The following theorem is the main theorem of this section, and will be proved in
Sections 5.4, 5.5, and 5.6 below.

Theorem 5.3. Let (Wn)n≥0 be a sequence of uniformly upper regular graphons.
Then the following statements are equivalent:

(i) (Wn)n≥0 is a Cauchy sequence in the cut metric δ�.

(ii) For every q ∈ N, the sequence (Ŝq(Wn))n≥0 is a Cauchy sequence under
the Hausdorff distance dHf

1 .
(iii) For every q ∈ N, a ∈ 4q, and symmetric matrix J ∈ Rq×q,

lim
ε→0

lim inf
n→∞

Ea,ε(Wn, J) = lim
ε→0

lim sup
n→∞

Ea,ε(Wn, J).

(iv) For every q ∈ N, a ∈ 4q, and symmetric matrix J ∈ Rq×q,

lim
ε→0

lim inf
n→∞

Fa,ε(Wn, J) = lim
ε→0

lim sup
n→∞

Fa,ε(Wn, J).

Remark 5.4.

(i) We will prove the theorem by showing that (i) ⇒ (ii) ⇒ (iii) ⇒ (i) and
that (i) ⇒ (iv) ⇒ (iii). It turns out that the assumption of uniform upper
regularity is only needed for the proof that (iii)⇒ (i). All other implications
hold for arbitrary sequences of graphons.

(ii) Under the assumption (ii) of the above theorem, Ŝq(Wn) converges to the

compact set5 S∞q = {(α, β) : d1((α, β), Ŝq(Wn)) → 0}. Proceeding as in
the proof of Theorem 3.3, this in turn implies that (iii) holds with the limit
given as

Ea(J) = − max
(α,β)∈S∞q
α=a

〈β, J〉,

again without the assumption of uniform upper regularity.
(iii) Under the assumption (i) of the above theorem, the sequences (Ea(Wn, J))n≥0

and (Fa(Wn, J))n≥0 are convergent for all q,a, J . (In particular, the use of
ε in the theorem statement is just for comparison with the case of graphs,
and not because it is truly needed.) Finally, under the assumption of
uniform upper regularity, each of these two statements is not only necessary
but also sufficient for convergence in metric to hold, as we will show in
Sections 5.5 and 5.6.

5.3. Compactness of quotient space. Before jumping into the proof of Theo-
rem 5.3, we prove some compactness results about quotients of W , thereby shedding
light on the quantities Ea(W,J), Fa(W,J), and Iq((α, β),W ).

Recall the `1 distance d1 from (2.7) as well as the definitions of fractional graphon
quotients from Section 2.6.

Proposition 5.5. Let W be a graphon, let q ∈ N, and let a ∈ 4q. Then Ŝq(W )

and Ŝa(W ) are compact under the metric d1.

We will prove this proposition after we develop a few preliminaries.
In (2.17)–(2.19), Ea(W,J), Fa(W,J), and Iq((α, β),W ) were originally defined

as infima over some subset of fractional partitions. We will see that the infima are
attained by some fractional partitions, so that the “inf” can be replaced by “min”.

5The nonempty compact subsets of Ŝq form a complete metric space under dHf
1 (see [13]).
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Furthermore, we will see that

Ea(W,J) = lim
ε→0
Ea,ε(W,J),(5.4)

Fa(W,J) = lim
ε→0
Fa,ε(W,J), and(5.5)

Iq((α, β),W ) = lim
ε→0

inf
ρ∈FPq

d1(W/ρ,(α,β))≤ε

(log q − Ent(ρ)).(5.6)

The quantities Ea(W,J) and Fa(W,J) are both continuous with respect to a,W, J .
On the other hand, Iq((α, β),W ) is lower semicontinuous in its arguments (Proposi-

tion 5.10), and it is not continuous (it takes values in [0, log q] when (α, β) ∈ Ŝq(W )
and is infinite otherwise).

It follows as an immediate corollary of Proposition 5.5 that

E(W,J, h) = − max
(α,β)∈Ŝq(W )

(
〈β, J〉+ 〈α, h〉

)
and

(5.7) Ea(W,J) = − max
(α,β)∈Ŝa(W )

〈β, J〉,

since (α, β) 7→ 〈β, J〉 and (α, β) 7→ 〈α, h〉 are continuous in the d1 metric. This gives
an alternate representation of ground state energies of W in terms of its quotients.

5.3.1. Approximations by step functions. One way to approximate a graphon W by
step functions is given by the following lemma, which is an immediate consequence
of the almost everywhere differentiability of the integral function.

Lemma 5.6. Let p ≥ 1. For a positive integer n, let Pn be the partition of [0, 1]
into consecutive intervals of length 1/n. If W is a graphon, then WPn →W almost
everywhere. In addition, WPn →W in Lp whenever W is an Lp graphon.

Proof. Almost everywhere convergence follows the Lebesgue differentiation theorem.
To get convergence in Lp we approximate W by the bounded graphon WM =
W1|W |≤M , where M > 0. By triangle inequality and (5.1),

‖W −WPn‖p ≤ ‖WM − (WM )Pn‖p + ‖W −WM‖p + ‖(W −WM )Pn‖p
≤ ‖WM − (WM )Pn‖p + 2‖W −WM‖p.

The second term on the right can be made arbitrarily small by setting M to be
sufficiently large, and for any fixed M , the first term on the right goes to zero as
n→∞. This shows that ‖W −WPn‖p → 0. �

The lemma does not, however, give any information on the speed of convergence.
If instead of almost everywhere convergence we content ourselves with convergence in
the cut metric, the situation is different, as is well known in the case of L2 graphons,
where one can apply the weak version of the regularity lemma first established in
[10]. This lemma can be generalized to Lp graphons for p > 1 and more generally to
any graphon with K-bounded tails (see [3]), but we will not need this here, where
we use only the corresponding version for uniformly upper regular sequences of
graphs (see Theorem 6.1 in Section 6).
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5.3.2. Limits of fractional partitions. We say that a sequence ρ(n) ∈ FPq of fractional

partitions converges to ρ ∈ FPq over rational intervals if
∫
D
ρ

(n)
i (x) dx→

∫
D
ρi(x) dx

for every interval D ⊆ [0, 1] with rational endpoints.

Lemma 5.7. Fix q ∈ N. Every sequence ρ(n) ∈ FPq of fractional partitions contains
a subsequence that converges to some ρ ∈ FPq over rational intervals.

Proof. By restricting to a subsequence, we may assume that
∫
D
ρ

(n)
i (x) dx converges

for every interval D ⊆ [0, 1] with rational endpoints, and let us denote this limiting
value by µi(D). Then, by the extension theorem for measures (Proposition 5.5 in
[11]), µi can be extended to a measure on [0, 1] such that

∑
i∈[q] µi(D) = λ(D) for

every measurable D ⊆ [0, 1], where λ is the Lebesgue measure. It is easy to see that
µi is absolutely continuous with respect to λ. Defining ρi to be the density of µi
with respect to λ and changing ρi on a set of measure zero, we obtain the desired
fractional partition ρ = (ρi)i∈[q]. �

Lemma 5.8. If ρ(n) ∈ FPq converges to ρ ∈ FPq over rational intervals and

‖Wn −W‖� → 0, then d1(Wn/ρ
(n),W/ρ)→ 0.

Proof. We have αi(ρ
(n)) =

∫
[0,1]

ρ
(n)
i →

∫
[0,1]

ρi = αi(ρ). Next we have∣∣∣βij(Wn/ρ
(n))− βij(W/ρ(n))

∣∣∣ =

∣∣∣∣∫ ρ
(n)
i (x)ρ

(n)
j (y)(Wn(x, y)−W (x, y)) dx dy

∣∣∣∣
≤ ‖Wn −W‖� .

It remains to show that βij(W/ρ
(n))→ βij(W/ρ), i.e.,∫

ρ
(n)
i (x)ρ

(n)
j (y)W (x, y) dx dy →

∫
ρi(x)ρj(y)W (x, y) dx dy,

which follows from Lemma 5.6 as we can approximate W arbitrarily well in L1 using
step functions with rational steps, and ρ(n) converges to ρ over rational intervals. �

Now we can prove the compactness of the set of quotients.

Proof of Proposition 5.5. Let (W/ρ(n))n≥1 be a sequence of quotients in Ŝq(W ) (or

Ŝa(W )). By Lemma 5.7 we can restrict to a subsequence so that ρ(n) converges to
some ρ ∈ FPq over rational intervals. By Lemma 5.8, we have d1(W/ρ(n),W/ρ)→ 0,
thereby proving that the space of quotients is closed and hence compact. �

The claim (5.4) has a similar proof: we have Eρ(W,J) = −〈β(W/ρ), J〉, so that

d1(W/ρ(n),W/ρ)→ 0 implies Eρ(n)(W,J)→ Eρ(W,J).

5.3.3. Entropy and lower semicontinuity. Now we prove (5.5) and (5.6), and fur-
thermore the claim that in the definitions (2.18) and (2.19) for Fa(W,J) and
Iq((α, β),W ) the infimum is attained by some fractional partition. In fact, they are
all immediate consequences of Lemma 5.7 along with the following lemma.

Lemma 5.9. If ρ(n) ∈ FPq converges to ρ ∈ FPq over rational intervals, then

lim sup
n→∞

Ent(ρ(n)) ≤ Ent(ρ).
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Proof. For any positive integer k, let ρ[k] ∈ FPq (and similarly ρ
(n)
[k] ) denote the

fractional partition obtained from ρ[k] by averaging over the interval [(j − 1)/k, j/k)
for each integer j ∈ [k]. Specifically, we set the value of ρ[k],i on [(j − 1)/k, j/k) to

be k
∫ j/k

(j−1)/k
ρi(x) dx.

Since −x log x is concave, Ent(ρ(n)) ≤ Ent(ρ
(n)
[k] ) by Jensen’s inequality. For a

fixed k we have

lim sup
n→∞

Ent(ρ(n)) ≤ lim sup
n→∞

Ent(ρ
(n)
[k] ) = Ent(ρ[k])

where the last equality follows from ρ(n) converging to ρ on rational intervals. Finally,
we have ρ[k],i → ρi almost everywhere as k → ∞ by the Lebesgue differentiation
theorem, and thus Ent(ρ[k]) → Ent(ρ) as k → ∞ by the bounded convergence
theorem. This proves the lemma. �

Proposition 5.10. Let q ∈ N. The function Iq((α, β),W ) is lower semicontinuous
(with the metric d1 on the first argument and δ� on the second).

Proof. We need to show that if (α(n), β(n))→ (α, β) in d1 and Wn → W in δ� as
n→∞, then

lim inf
n→∞

Iq((α
(n), β(n)),Wn) ≥ Iq((α, β),W ).

We may restrict to a subsequence so that Iq((α
(n), β(n)),Wn) converges to the

original lim inf. Since Iq is invariant under measure preserving bijections for the
graphon, we may assume that ‖Wn −W‖� → 0. The result is automatic if the limit

is infinity, so we might as well assume that Iq((α
(n), β(n)),Wn) <∞ (and hence at

most log q) for all n, so that there is some ρ(n) ∈ FPq with W/ρ(n) = (α(n), β(n))

and Iq((α
(n), β(n)),Wn) = log q − Ent(ρ(n)). By Lemma 5.7 we can further restrict

to a subsequence so that ρ(n) converges to some ρ ∈ FPq over rational intervals.

By Lemma 5.8 we have W/ρ = limn→∞Wn/ρ
(n) = limn→∞(α(n), β(n)) = (α, β), so

Iq((α, β),W ) ≤ log q − Ent(ρ). By Lemma 5.9,

lim inf
n→∞

Iq((α
(n), β(n)),Wn) = lim inf

n→∞
(log q − Ent(ρn))

≥ log q − Ent(ρ) ≥ Iq((α, β),W ),

as desired. �

5.4. Proof of (i)⇒(ii)⇒(iii) in Theorem 5.3. The claim that (i) implies (ii)
follows from Lemma 5.11 below. The claim that (ii) implies (iii)—with the limit
expressed as described in Remark 5.4(ii)—is essentially identical to the proof of
Theorem 3.3 from Section 4.2 and is left to the reader.

Lemma 5.11. Let q ∈ N, U and W be graphons, and ρ ∈ FPq. Then d1(U/ρ,W/ρ) ≤
q2‖U −W‖� and hence

(5.8) dHf
1 (Ŝq(U), Ŝq(W )) ≤ q2δ�(U,W ).

Proof. We have α(U/ρ) = α(ρ) = α(W/ρ). Also for i, j ∈ [q] we have

(5.9)
|βij(U/ρ)− βij(W/ρ)| =

∣∣∣∣∣
∫

[0,1]2
(U −W )(x, y)ρi(x)ρj(y) dx dy

∣∣∣∣∣
≤ ‖U −W‖� .
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Summing over all i, j ∈ [q] gives d1(U/ρ,W/ρ) ≤ q2 ‖U −W‖�. The claim (5.8)
follows immediately. �

We next observe that microcanonical ground state energies are continuous in the
cut metric. To state this result, we define the norm ‖J‖1 of a matrix J ∈ Rq×q to
be
∑
i,j∈[q] |Jij |.

Proposition 5.12. Let q ∈ N, a ∈ 4q, and h ∈ Rq, and let J ∈ Rq×q be a
symmetric matrix. If U and W are arbitrary graphons, then

(5.10) |Ea(U, J)− Ea(W,J)| ≤ ‖J‖1δ�(W,U).

Proof. Since the left side of this bound does not change if we replace U by Uφ for
some measure preserving bijection φ : [0, 1]→ [0, 1], it is enough to prove it in terms
of ‖W − U‖� instead of δ�(W,U). Let ρ ∈ FPq. Using (5.9) we obtain

(5.11)

∣∣Eρ(U, J, h)− Eρ(W,J, h)
∣∣ =

∣∣∣ ∑
i,j∈[q]

(βij(U/ρ)− βij(W/ρ))Jij

∣∣∣
≤ ‖J‖1‖U −W‖�,

as desired. �

5.5. Proof of (iii)⇒(i) in Theorem 5.3. By the bound (5.10), convergence in
metric implies convergence of the microcanonical ground state energies. To prove
the converse, we will establish the following proposition, one of the main results of
this section.

Theorem 5.13. Let W and U be two graphons. If

(5.12) Ea(U, J) = Ea(W,J)

for all q ∈ N, every symmetric matrix J ∈ Rq×q, and all a of the form

(5.13) aq = (1/q, . . . , 1/q),

then δ�(W,U) = 0.

This theorem proves the implication (iii)⇒(i) in Theorem 5.3, as well as the
fact that convergence of Ea(Wn, J) is sufficient for convergence in metric (see
Remark 5.4(iii)). Indeed, for the second of these assertions, assume first that the
ground state energies Ea(Wn, J) converge for all q ∈ N, all a of the form (5.13), and
all J , while Wn does not converge in the cut metric. Since (Wn)n≥0 is assumed
to be uniformly upper regular, we may use Theorem 5.2 to find two subsequences
W ′n and W ′′n of Wn that converge to two graphons W and U in the cut distance
δ�, while δ�(W,U) > 0. But convergence in the cut distance implies convergence
of the ground state energies by (5.10), which means that U and W have identical
ground state energies, a contradiction. The proof of (iii)⇒(i) in Theorem 5.3 is

similar, since convergence of W ′n to W in metric implies that Ŝq(W ′n)→ Ŝq(W ) in
the Hausdorff distance, which in turn can easily be seen to give convergence of the
quantities in (iii) to Ea(W,J) (the proof is the same as that of Theorem 3.3), and
similarly for the convergence along the subsequence W ′′n to Ea(U, J).

To prove Theorem 5.13, we will work with the quasi-inner product

C(W,Y ) = sup
φ

E[WY φ],
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where the supremum is taken over all measure preserving bijections φ : [0, 1]→ [0, 1]
and the expectation E[·] is with respect to the Lebesgue measure on [0, 1]2, i.e.,

E[WY φ] =

∫
[0,1]2

W (x, y)Y φ(x, y) dx dy =

∫
[0,1]2

W (x, y)Y (φ(x), φ(y)) dx dy.

This quantity was defined in [8], where it was assumed that both W and Y are in
L∞. But the definition makes sense in our more general context, where we will
assume that W is an arbitrary graphon and Y is bounded.

Lemma 5.14. Let W and U be two graphons such that (5.12) holds for all q ∈ N
and all a of the form (5.13). Then

(5.14) C(W,Y ) = C(U, Y )

for all bounded graphons Y .

Proof. If Y = WH for a weighted graph H on q nodes, where H has edge weights
J ∈ Rq×q and vertex weights a of the form (5.13), then

−Ea(W,J) = C(W,WH),

and the claim follows directly from the assumption (5.12). For general Y , we use
Lemma 5.6 to approximate Y by step functions. More explicitly, let Pn be as in
Lemma 5.6, and let Yn = YPn . Then Yn → Y in L1, and ‖Yn‖∞ ≤ ‖Y ‖∞. Hence∣∣∣E[W Y φn ]− E[W Y φ]

∣∣∣ ≤ 2‖Y ‖∞|‖W1|W |≥K‖1 + ‖W1|W |≤K‖∞‖Y φ − Y φn ‖1
≤ 2‖Y ‖∞|‖W1|W |≥K‖1 +K‖Y − Yn‖1.

The right side can be made as small as desired by first choosing K large enough
and then n large enough. Observing that the resulting convergence is uniform in
φ, this implies that C(W,Yn)→ C(W,Y ) and similarly for C(U, Yn). From this, the
claim follows. �

Lemma 5.15. Let W and U be two graphons such that (5.14) holds for all bounded

graphons Y . Consider the real valued random variables Ŵ = W (x, y) and Û =
U(x, y) where x, y are chosen independently uniformly at random from [0, 1]. Then

Ŵ and Û have the same distribution.

To prove this lemma, we will use some notions and results from the theory of
monotone rearrangement.

5.5.1. Monotone rearrangements and proof of Lemma 5.15. Throughout this section,
we identify graphons W with the real-valued random variables W (x, y) obtained
by choosing x, y independently uniformly at random from [0, 1]; if W is such a
random variable, we use E[W ] to denote its expectation. For s ∈ R we use {W > s}
to denote the event that W > s, namely {W > s} = {(x, y) : W (x, y) > s}, and
Pr[W > s] to denote the probability of this event.

For a graphon W , we define the monotone rearrangement as the function

W ∗(x1, x2) = sup{t ∈ R : Pr[W > t] > ‖x‖2∞},
where ‖x‖∞ = max{x1, x2}. Then W ∗(x1, x2) is a weakly decreasing function of
‖x‖∞, and it has the same distribution as W ; i.e.,

Pr[W > t] = Pr[W ∗ > t].
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To see why, note that

Pr[W ∗ > t0] = Pr[sup{t ∈ R : Pr[W > t] > ‖x‖2∞} > t0]

= Pr[there exists t > t0 such that Pr[W > t] > ‖x‖2∞]

= Pr[Pr[W > t0] > ‖x‖2∞]

= Pr
[
x1 <

√
Pr[W > t0] and x2 <

√
Pr[W > t0]

]
= Pr[W > t0],

where the third line follows from the fact that t 7→ Pr[W > t] is right-continuous.
Define two graphons W and U to be aligned if their level sets are nested, in the

sense that for all s, t ∈ R, either {W > s} ⊆ {U > t} or {U > s} ⊆ {W > s}. It is
easy to see that for any two graphons U , W , the monotone rearrangements U∗ and
W ∗ are aligned.

Let W be an L1 graphon, and let Y be a bounded graphon. Then we have the
rearrangement inequality

E[W Y ] ≤ E[W ∗ Y ∗].

See Appendix A for a proof. The proof also tells us that

E[W Y ] = E[W ∗ Y ∗]

if Y and W are aligned. Before delving into the proof of Lemma 5.15 we observe
that

(5.15) E[WY ] ≤ C(W,Y ) ≤ E[W ∗Y ∗].

The first inequality follows immediately from the definition of C(W,Y ), and the
second follows from the definition and the fact that Y and Y φ have the same
distribution, which in turn implies that Y ∗ = (Y φ)∗.

Proof of Lemma 5.15. Define topλ(W ) ⊆ [0, 1]2 in such a way that the Lebesgue
measure of topλ(W ) is λ, and W (u, v) ≤ inf(x,y)∈topλ(W )W (x, y) whenever (u, v) /∈
topλ(W ). Explicitly, let M = sup{s ∈ R : Pr[W > s] ≥ λ}. If Pr{W = M} = 0,
then we have that Pr{W > M} = Pr{W ≥ M} = λ, and we define topλ(W ) =
{W > M}. Otherwise, Pr{W > M} ≤ λ ≤ Pr{W ≥ M}, in which case we
chose topλ(W ) in such a way that {W > M} ⊆ topλ(W ) ⊆ {W ≥ M} and
µ[topλ(W )] = λ, where µ denotes the Lebesgue measure on [0, 1]2. In either case, we
have M = inf(x,y)∈topλ(W )W (x, y) and W (u, v) ≤M whenever (u, v) /∈ topλ(W ).

It is easy to see that W and the indicator function 1topλ(W ) are aligned, implying

that E
[
W1topλ(W )

]
= E

[
W ∗1topλ(W )∗

]
. Consider now the L1 graphon Y =

1topλ(W ). With the help of (5.15) and the fact that E[WY ] = E[W ∗Y ∗] we have

E[WY ] = C(W,Y ) = C(U, Y ) ≤ E[U∗Y ∗].

Let Ỹ = 1topλ(U). Then Y and Ỹ have the same distribution, implying that Ỹ ∗ = Y ∗.

On the other hand, Ỹ and U are aligned, implying that E[UỸ ] = E[U∗Ỹ ∗]. Putting
everything together, we conclude that

E[WY ] ≤ E[UỸ ].

In a similar way, we show that E[UỸ ] ≤ E[WY ]. We thus have shown that for all
λ ∈ [0, 1],

E[W1topλ(W )] = E[U1topλ(U)].
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This in turn implies that W and U have the same distribution. �

5.5.2. Proof of Theorem 5.13. Theorem 5.13 follows immediately from Lemma 5.14
and the following proposition. We remark that when W is bounded, or even in L2,
the proof of the proposition is much easier as one can consider C(W,W ) = E[W 2].
This does not work when W is only assumed to be in L1. The proof begins by
transforming W into a bounded graphon. In what follows, we use the metric

δp(U,W ) = inf
φ
‖U −Wφ‖p,

where the infimum is over all measure-preserving bijections φ : [0, 1] → [0, 1]. It
clearly satisfies δ�(U,W ) ≤ δ1(U,W ).

Proposition 5.16. If U and W are graphons such that C(U, Y ) = C(W,Y ) for all
L∞ graphons Y , then δ1(U,W ) = 0.

Proof. We know that U and W have the same distribution. Let W̃ = arctanW and

Ũ = arctanU (note that W̃ and Ũ are both bounded). Since both arctanx and
x− arctanx are increasing in x, for every measure preserving bijection σ : [0, 1]→
[0, 1] the rearrangement inequality implies that

E[(W − W̃ )W̃ ] ≥ E[(U − Ũ)σW̃ ]

and

E[W̃ 2] ≥ E[ŨσW̃ ].

Thus

(5.16) E[WW̃ ]− E[UσW̃ ] ≥ E[W̃ 2]− E[ŨσW̃ ] ≥ 0,

By assumption we have C(U, W̃ ) = C(W, W̃ ), which must equal E[WW̃ ] by the
rearrangement inequality. Taking the infimum over all σ in (5.16) and using the

facts from the previous sentence yields C(W̃ , W̃ ) = C(Ũ , W̃ ). A similar argument

shows that C(Ũ , Ũ) = C(Ũ , W̃ ). Therefore

δ2(Ũ , W̃ )2 = inf
σ

E[(Ũσ − W̃ )2] = E[Ũ2] + E[W̃ 2]− 2 sup
σ

E[ŨσW̃ ]

= C(Ũ , Ũ) + C(W̃ , W̃ )− 2C(Ũ , W̃ ) = 0.

Since δ1(Ũ , W̃ ) ≤ δ2(Ũ , W̃ ), we must have δ1(Ũ , W̃ ) = 0 as well.
Finally we need to deduce that δ1(U,W ) = 0. Let K > 0. From the mean value

theorem, we know that

|x− y| ≤ (1 +K2) |arctanx− arctan y|
whenever x, y ∈ [−K,K]. It follows that for every σ,

‖(Uσ −W )1|Uσ|≤K,|W |≤K‖1 ≤ (1 +K2)‖Ũσ − W̃‖1.

The left side differs from ‖Uσ −W‖1 by at most 4
∥∥U1|U |>K

∥∥
1

(here we use the
triangle inequality, and the fact that U and W have the same distribution, so that∥∥W1|Uσ|>K

∥∥
1
≤
∥∥U1|U |>K

∥∥
1

and
∥∥Uσ1|W |>K

∥∥
1
≤
∥∥U1|U |>K

∥∥
1

by the rearrange-

ment inequality). Thus

‖Uσ −W‖1 ≤ (1 +K2)‖Ũσ − W̃‖1 + 4
∥∥U1|U |>K

∥∥
1
.

Taking the infimum over σ and using δ1(Ũ , W̃ ) = 0, we find that δ1(U,W ) ≤
4
∥∥U1|U |>K

∥∥. Since K can be made arbitrarily large, δ1(U,W ) = 0. �
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5.6. Proof of (i)⇒(iv)⇒(iii) in Theorem 5.3. The following result gives the
implication (i)⇒(iv) in Theorem 5.3 as well as the statement that Fa(Wn, J)
converges whenever Wn converges in metric.

Proposition 5.17. Let q ∈ N, a ∈ 4q, ε > 0, and h ∈ Rq, and let J ∈ Rq×q be a
symmetric matrix. For any two graphons U and W ,∣∣∣Fa(U, J)−Fa(W,J)

∣∣∣ ≤ ‖J‖1δ�(U,W )

and ∣∣∣Fa,ε(U, J)−Fa,ε(W,J)
∣∣∣ ≤ ‖J‖1δ�(U,W ).

Proof. Since the left sides of the above bounds do not change if we replace U by
Uφ for a measure preserving bijection φ : [0, 1] → [0, 1], it is enough to prove the
lemma with a bound in terms of ‖U −W‖� instead of δ�(U,W ). The result then
follows immediately from (5.11) and the definitions (2.18) and (5.3). �

Next we show that convergence of Fa(Wn, J) for all J implies convergence
of Ea(Wn, J). Together with our results from the last section, this shows that
convergence of Fa(Wn, J) for all q ∈ N, a ∈ 4q, and symmetric J ∈ Rq×q is
sufficient for metric convergence, which concludes the proof of Remark 5.4(ii).

Lemma 5.18. Let q ∈ N, a ∈ 4q, and c > 0, let J ∈ Rq×q be symmetric, and let
U and W be two graphons. Then∣∣Ea(W,J)− Ea(U, J)

∣∣ ≤ 1

c

∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣+

2 log q

c
.

Proof. Using the fact that Ent(ρ) ≤ log q, we get by (2.17) and (2.18)∣∣Ea(W,J)−Fa(W,J)
∣∣ ≤ log q,

for all J , and similarly for U . Hence∣∣Ea(W,J)− Ea(U, J)
∣∣ =

1

c

∣∣Ea(W, cJ)− Ea(U, cJ)
∣∣

≤ 1

c

(∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣+ 2 log q

)
,

which proves the claim. �

Proof of (iv)⇒(iii) in Theorem 5.3. As in the proof above, one sees that

1

c
Fa,ε(Wn, cJ)− log q

c
≤ Ea,ε(Wn, J) ≤ 1

c
Fa,ε(Wn, cJ) +

log q

c
.

But this clearly shows that (iv)⇒(iii) in Theorem 5.3. �

5.7. Quantitative bounds on distance between fractional quotients. In
this section, we prove a quantitative bound on the distance between two different
quotients of the same graphon, which will be used in the next section.

We define the L1 distance in FPq to be

(5.17) d1(ρ, ρ′) =
∑
i∈[q]

∫ 1

0

|ρi(x)− ρ′i(x)| dx;

note that d1(ρ, ρ′) ≤ 2. We also need the definition of K-bounded tails from (5.2).
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Lemma 5.19. Let q ∈ N, and let W be a graphon with K-bounded tails for some
function K : (0,∞) → (0,∞). Then there exists a weakly increasing function
εK : [0, 2]→ [0,∞) such that εK(x)→ 0 as x→ 0 and

d1(W/ρ,W/ρ′) ≤ εK(d1(ρ, ρ′))

for all ρ, ρ′ ∈ FPq. For a,b ∈ 4q,

(5.18) dHf
1

(
Ŝa(W ), Ŝb(W )

)
≤ εK(‖a− b‖1),

where ‖a− b‖1 =
∑
i |ai − bi|.

Proof. Fix ε > 0. Clearly∑
i

|αi(ρ)− αi(ρ′)| ≤
∑
i

∫ 1

0

|ρi(x)− ρ′i(x)| dx = d1(ρ, ρ′).

On the other hand, using the fact that
∑
i ρi(x) =

∑
j ρ
′
i(x) = 1 for all x ∈ [0, 1],

we have∑
i,j

∣∣∣βij(W/ρ)− βij(W/ρ′)
∣∣∣ =

∑
i,j

∣∣∣∫
[0,1]2

W (x, y)
(
ρi(x)ρj(y)− ρ′i(x)ρ′j(y)

)
dx dy

∣∣∣
≤
∫

[0,1]2
|W (x, y)|

∑
i,j

∣∣∣ρi(x)ρj(y)− ρi(x)ρ′j(y)
∣∣∣ dx dy

+

∫
[0,1]2

|W (x, y)|
∑
i,j

∣∣∣ρi(x)ρ′j(y)− ρ′i(x)ρ′j(y)
∣∣∣ dx dy

= 2

∫
[0,1]2

|W (x, y)|
∑
i

∣∣∣ρi(x)− ρ′i(x)
∣∣∣ dx dy

≤ 2

∫
[0,1]2

K(ε/8)
∑
i

∣∣∣ρi(x)− ρ′i(x)
∣∣∣ dx dy

+ 4

∫
[0,1]2

|W (x, y)|1|W (x,y)|≥K(ε/8) dx dy

≤ 2K(ε/8)d1(ρ, ρ′) + ε/2,

showing that
d1(W/ρ,W/ρ′) ≤ (1 + 2K(ε/8))d1(ρ, ρ′) + ε/2,

which is at most ε provided that d1(ρ, ρ′) ≤ ε/(2 + 4K(ε/8)). Since ε > 0 was
arbitrary, this immediately implies the existence of the desired function εK .

The claim (5.18) follows from noting that for any a,b ∈ 4q and ρ ∈ FPq with
α(ρ) = a, we can find a ρ′ ∈ FPq with α(ρ′) = b such that d1(ρ, ρ′) = ‖a− b‖1. (In
fact, we can choose ρ′ so that ρi ≤ ρ′i if and only if ai ≤ bi.) �

The above lemma can be used to show that Ea(W,J) is continuous in a. The
continuity of Fa(W,J) then follows from noting that Ent(ρ) is uniformly continuous
in ρ ∈ FPq with respect to d1 (as −x log x is continuous on [0, 1]). More explicitly,
we have the following lemma.

Lemma 5.20. Let q ∈ N. Then the function Ent : FPq → [0, log q] with ρ 7→ Ent(ρ)
is uniformly continuous in the metric d1 defined in (5.17). Explicitly,

|Ent(ρ)− Ent(ρ′)| ≤ qf̃
(1

q
d1(ρ, ρ′)

)
,
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where f̃(x) = x(1− log x).

Proof. Because the function f(x) = −x log x is concave, for each t > 0 the function
x 7→ f(x)− f(x+ t) is weakly increasing. It follows from this and f(0) = f(1) = 0
that for any x, y ∈ [0, 1],

|f(x)− f(y)| ≤ max{|f(0)− f(|x− y|)|, |f(1− |x− y|)− f(1)|}
= max{f(|x− y|), f(1− |x− y|)}
≤ f(|x− y|) + f(1− |x− y|)
≤ f(|x− y|) + |x− y|

= f̃(|x− y|),

where the last inequality holds because f(1 − t) ≤ t for all t ∈ [0, 1]. Since

d1(ρ, ρ′) =
∑
i

∫
[0,1]
|ρi(x)− ρ′i(x)| dx and f̃ is concave, we have

1

q

∣∣∣Ent(ρ)− Ent(ρ′)
∣∣∣ =

1

q

∣∣∣ q∑
i=1

∫ 1

0

(
f(ρi(x))− f(ρ′i(x))

)
dx
∣∣∣

≤ 1

q

q∑
i=1

∫ 1

0

f̃(|ρi(x)− ρ′i(x)|) dx

≤ f̃
(1

q
d1(ρ, ρ′)

)
.

Because f̃ is continuous at 0, this completes the proof. �

6. Convergent sequences of uniformly upper regular graphs

In this section we prove Theorem 2.15. Theorem 2.10 will follow from this theorem
and Theorem 2.17, which we prove in Section 7.

6.1. Preliminaries. We start by stating some of the results from [3], which will
allow us to replace uniformly upper regular sequences of weighted graphs by sequences
of weighted graphs with K-bounded tails. To state them, we will use the cut distance
between two weighted graphs G, G′ with identical node sets V (G) = V (G′) = V
and identical node weights αx = αx(G) = αx(G′), defined as

(6.1) d�(G,G′) = max
S,T⊆V

∣∣∣ ∑
(x,y)∈S×T

αxαy
α2
G

(
βxy(G)− βxy(G′)

)∣∣∣.
Note that this distance is equal to ‖WG −WG′‖�, where WG and WG′ are the
step functions defined in (2.2) and ‖ · ‖� is the cut norm defined in (2.1). Indeed,
for W = WG, the supremum in (2.1) can easily be shown to be a maximum that is
attained for sets S and T which are both unions of the intervals Ii.

We will also use the notion of an equipartition of the vertex set V (G) of a weighted
graph G, defined by requiring that the weights of the parts of the partition differ from
an equal distribution by at most αmax(G). Explicitly, a partition P = (V1, . . . , Vk)
of V (G) is called an equipartition if |αVi − 1

kαG| ≤ αmax(G) for all i ∈ [k]. The
following version of the weak regularity lemma was proved in [3].

Theorem 6.1 (Theorem C.12 in [3]). Let K : (0,∞)→ (0,∞) and 0 < ε < 1. Then
there exist constants N = N(K, ε) and η0 = η0(K, ε) such that the following holds
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for all η ≤ η0: for every (K, η)-upper regular graph G and each natural number
k ≥ N , there exists a equipartition P = (V1, . . . , Vk) of V (G) into k parts, such that

d�(G,GP) ≤ ε‖G‖1.

As a consequence, given a K-upper regular sequence of weighted graphs Gn with
no dominant nodes, we can find a sequence of equipartitions Pn of V (Gn) into kn
classes such that the sequence of weighted graphs6 Ĝn = 1

‖Gn‖1 (Gn)Pn satisfies

(6.2) d�

( 1

‖Gn‖1
Gn, Ĝn

)
→ 0, kn

αmax(Gn)

αGn
→ 0, ‖Ĝn‖1 ≤ 1

and

(6.3) W Ĝn has K-bounded tails.

We call a sequence (Ĝn)n≥0 with these properties a regularized version of (Gn)n≥0,
and Pn a regularizing partition for Gn.

To see that all these conditions can be simultaneously achieved, let ηn → 0 be
such that Gn is (K, ηn)-upper regular. Assume that εn goes to zero slowly enough
that ηn ≤ η0(K, εn) and ηnN(K, εn)→ 0 in Theorem 6.1. Choosing kn = N(K, εn),
the theorem then gives a sequence of equipartitions Pn of V (Gn) into kn classes
such that (6.2) holds. The weight of each class of Pn is bounded from below by
αGn/kn−αmax(Gn), which is asymptotically greater than ηnαGn because ηnkn → 0
and knαmax(Gn)/αGn → 0. Thus, the bound (2.21) holds for P = Pn, establishing
that ∑

x,y∈V (Gn)

αx(Gn)αy(Gn)

α2
Gn

|βxy(Ĝn)|1|βxy(Ĝn)|≥K(ε) ≤ ε

for all ε > 0. In other words, W Ĝn has K-bounded tails.

6.2. Comparing sequence of graphs to sequences of graphons. In this sec-
tion we prove three lemmas, which are the main technical lemmas used to reduce
many statements in Section 2 to those in Section 5. We define

Ŝa,ε(W ) = {(α, β) ∈ Ŝq(W ) : ‖α− a‖∞ ≤ ε}.

Lemma 6.2. Let G be a weighted graph, let P be an equipartition of V (G) into
k classes such that G = GP , and let q ∈ N. Then there exist two maps φ 7→ ρφ
and ρ → ρ̄ from the set of configurations φ : V (G) → [q] into the set of fractional
partitions FPq and from FPq to FPq, respectively, such that the following hold:

(i) WG/ρ = WG/ρ̄ for all ρ ∈ FPq.
(ii) ‖G‖1(G/φ) = WG/ρφ for all φ : V (G)→ [q].
(iii) For each ρ ∈ FPq there exists a φ : V (G)→ FPq such that

(6.4) d1(ρφ, ρ̄) ≤ qk
αmax(G)

αG
.

Proof. Let P = (V1, . . . , Vk), and assume that the vertices in G are ordered in
such a way that V1 = {1, 2, . . . , |V1|}, V2 = {|V1| + 1, . . . , |V1| + |V2|}, etc. Let
xµ = αVµ(G)/αG for µ ∈ [k], and let I1, . . . , Ik ⊆ [0, 1] be consecutive intervals of
length x1, . . . , xk.

6If ‖Gn‖1 = 0, we choose Ĝn to have edge weights 0.
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For ρ ∈ FPq define ρ̄ by averaging ρ over the intervals Iµ, i.e., ρ̄i(x) = 1
xµ

∫
Iµ
ρi(y) dy

if x ∈ Iµ. Since WG is constant on sets of the form Iµ × Iν for µ, ν ∈ [k], we clearly
have WG/ρ = WG/ρ̄, proving (i).

Next, given φ : V (G)→ [q], let ρφ be the fractional q-partition defined by

(6.5) (ρφ)i(x) =
1

αVµ(G)

∑
u∈Vµ(G)

αu(G)1φ(u)=i when x ∈ Iµ.

Using the fact that βuv(G) is constant on sets of the form Vµ × Vν , it is then easy
to check that ‖G‖1G/φ = WG/ρφ, proving (ii).

To prove (iii), consider ρ ∈ FPq, and let αµ,i =
∫
Iµ
ρi(x) dx. We then decompose

Vµ into q sets Vµ,i such that

|αµ,i − αVµ,i(G)/αG| ≤
αmax(G)

αG

for all i and µ. Setting φ = i on
⋃
µ Vµ,i, we then get a map φ : V (G) → [q] such

that (6.4) holds. �

Lemma 6.3. Let q ∈ N and let (Gn)n≥0 be a uniformly upper regular sequence of

weighted graphs. If Ĝn is a regularized version of Gn, then

(6.6) dHf
1

(
Sq(Gn), Ŝq(W Ĝn)

)
→ 0.

Proof of Lemma 6.3. We start by showing that

(6.7) d1(Gn/φ, ‖Ĝn‖1(Ĝn/φ)) ≤ q2d�

(
1

‖Gn‖1
Gn, Ĝn

)
whenever Ĝn is a regularized version of Gn. Indeed, from the definition of the cut
distance (6.1) it is easy to see that d1(G/φ,G′/φ) ≤ q2d�( 1

‖G‖1G,
1

‖G′‖1G
′) whenever

G and G′ have identical node sets and node weights and for any φ : V (G) → [q].
More generally, for any λ ≥ 0, we have d1(G/φ, λ(G′/φ)) ≤ q2d�( 1

‖G‖1G,
λ

‖G′‖1G
′).

Setting λn = ‖Ĝn‖1 proves (6.7).
Next we observe that by Lemma 6.2(ii),

(6.8) ‖Ĝn‖1Sq(Ĝn) ⊆ Ŝq(W Ĝn).

On the other hand, given W Ĝn/ρ ∈ Ŝq(W Ĝn), we may use Lemma 6.2 and

Lemma 5.19 to find a quotient Ĝn/φ ∈ Sq(Ĝn) such that

(6.9)

d1

(
W Ĝn/ρ, ‖Ĝn‖1Ĝn/φ

)
= d1(W Ĝn/ρ̄,W Ĝn/ρφ)

≤ εK
(
qkn

αmax(Gn)

αGn

)
,

where kn is the number of classes in the regularizing partition corresponding to Ĝn
and K is the function from (6.3).

Taking into account the second bound in (6.2), the bound (6.9) together with
(6.8) implies that

dHf
1

(
‖Ĝn‖1Sq(Ĝn), Ŝq

(
W Ĝn

))
→ 0,
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while (6.7) and the fact that d�( 1
‖Gn‖1Gn, Ĝn)→ 0 show that

dHf
1 (Sq(Gn), ‖Ĝn‖1Sq(Ĝn))→ 0.

Together, these two bounds imply (6.6). �

6.3. Proof of (i)⇒(ii) and (ii)⇒(iii) in Theorem 2.10. Recall that by Theo-
rem 2.14, convergence in metric implies uniform upper regularity. As a consequence,

(i)⇒(ii) follows immediately from Lemma 6.3. Indeed, δ�

(
1

‖Gn‖1W
Gn ,W

)
→ 0

by (6.2), which implies that δ�(W Ĝn ,W )→ 0. We then use the bound (6.6) from
Lemma 6.3 in conjunction with (5.8) from Lemma 5.11 to conclude that

dHf
1

(
Sq(Gn), Ŝq(W )

)
→ 0,

completing the proof of (i)⇒(ii) in Theorem 2.10.
The implication (ii)⇒(iii) follows with the help of Theorem 3.3, the closedness of

Ŝq(W ), and the representation (5.7).

6.4. Proof of the equivalence (i)⇔(ii)⇔(iii) in Theorem 2.15. Recall that by
Theorem 2.13, for a uniformly upper regular sequence convergence in metric implies
convergence in metric to some graphon W , so the above proof of the implication
(i)⇒(ii) for Theorem 2.10 also proves it for Theorem 2.15. The implication (ii)⇒(iii)
follows from Theorem 3.3.

It remains to show (iii)⇒(i); i.e., under the assumption of uniform upper regularity,
convergence of the microcanonical ground state energies implies convergence in
metric. Assume for the sake of contradiction that Gn does not converge in metric.
By Theorem 2.13 this implies that there are two subsequences G′n and G′′n and two
graphons U and W such that G′n → U and G′′n →W in metric while δ�(U,W ) > 0.
By the already proved (i)⇒(iii) in Theorem 2.10, the microcanonical ground state
energies of G′n and G′′n converge to those of U and W , and by our assumption that
Gn has convergent ground state energies, this implies that U and W have identical
ground state energies, contradicting Theorem 5.13.

6.5. Convergence in metric implies LD convergence. Our main result in this
section is the following theorem, which by (5.6) proves the implication (i)⇒(iv) in
Theorem 2.10 and hence also Theorem 2.15.

Theorem 6.4. Let q ∈ N and let (Gn)n≥0 be a uniformly upper regular sequence
of weighted graphs such that Gn converges to a graphon W in metric and Gn has
vertex weights one. Then the limit (2.16) exists with

Iq((α, β)) = log q − lim
ε→0

sup
ρ∈FPq

d1(W/ρ,(α,β))≤ε

Ent(ρ).

Proof. To prove the theorem, we will need to calculate probabilities of the form
Pq,G

[
d1((α, β), G/φ) ≤ ε

]
for graphs G that are near to W in the normalized cut

distance. Assume for the moment that G is well approximated by a weighted
graph whose edge weights are constant over large blocks. More precisely, assume
that there exists an equipartition P = (V1, . . . , Vk) such that G and GP are close
in the cut norm. Under such a condition, the quotients of G are close to those

of GP , provided they are suitably normalized. More precisely, if we define Ĝ to

be the normalized weighted graph Ĝ = 1
‖G‖1 (G)P , the quotients of G are close
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to those of Ĝ multiplied by ‖G‖1 (see (6.7)). Consider thus the probabilities

Pq,G
[
d1((α, β), ‖G‖1(Ĝ/φ)) ≤ ε

]
.

Since the edge weights of Ĝ are constant on sets of the form Vµ × Vν , we have

that Ĝ/φ = Ĝ/φ′ if for all i ∈ [q] and all µ ∈ [k], the number of vertices in Vµ that
are mapped to i ∈ [q] is the same in φ and φ′. Denote this number by ki,µ = ki,µ(φ).
The number of configurations φ : V (G)→ [q] with given ki,µ is

(6.10) N({ki,µ}) =

k∏
µ=1

nµ!

k1,µ! . . . kq,µ!
,

where nµ = |Vµ|. Approximating k! as (k/e)k (we analyze the error term below),
we have

N({ki,µ}) ≈ exp
(
−

k∑
µ=1

q∑
i=1

−ki,µ log
(ki,µ
nµ

))
= e|V (G)| Ent(ρφ),

where ρφ is the fractional partition defined in (6.5). Observing that the number
of choices for {kµ,i} is polynomial in |V (G)|, and hence will not contribute to Iq

(again we bound the error later), and noting further that ‖Ĝ‖1(Ĝ/φ) = W Ĝ/ρφ by

Lemma 6.2, we then approximate Pq,G
[
d1((α, β), ‖G‖1(Ĝ/φ)) ≤ ε

]
by

q−|V (G)| max
φ : V (G)→[q]

d1((α,β),W Ĝ/ρφ)≤ε

e|V (G)| Ent(ρφ).

Taking into account that (again by Lemma 6.2) any fractional quotient W Ĝ/ρ can

be well approximated by a quotient of the form W Ĝ/ρφ, we obtain the theorem.
The formal proof proceeds as follows. Let K : (0,∞) → (0,∞) and (ηn)n≥0

be such that limn→∞ ηn = 0 and Gn is (K, ηn)-upper regular. Fix ε > 0. By
Theorem 6.1 and Definition 2.12, there are constants k ∈ N and n0 <∞ such that
for each n ≥ n0 there exists an equipartition P = Pn = (V1, . . . , Vk) of V (Gn) into
k parts such that

q2d�

(
Gn, (Gn)P

)
≤ ε

2
‖Gn‖1

and W Ĝn with Ĝn = 1
‖Gn‖1 (Gn)P has K-bounded tails.

Let G = Gn and Ĝ = Ĝn. By the bound (6.7),

d1(G/φ, ‖Ĝ‖1(Ĝ/φ)) ≤ q2d�

(
1

‖G‖1
G, Ĝ

)
≤ ε

2
,

implying that

Pq,G
[
d1((α, β), ‖Ĝ‖1(Ĝ/φ)) ≤ ε/2

]
≤ Pq,G

[
d1((α, β), G/φ) ≤ ε

]
≤ Pq,G

[
d1((α, β), ‖Ĝ‖1(Ĝ/φ)) ≤ 3ε/2

]
.

Given a configuration φ : V (G)→ [q], let ki,µ(φ) be the number of vertices v ∈ Vµ
such that φ(v) = i, and let N({ki,µ}) be the number of maps φ leading to the same
ki,µ; see (6.10) above. Bounding the number of choices for {kµ,i} by |V (G)|qk and
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observing that ‖Ĝ‖1(Ĝ/φ) = W Ĝ/ρφ, we then bound

max
φ:d1((α,β),W Ĝ/ρφ)≤ε/2

N({ki,µ(φ)}) ≤ q|V (G)|Pq,G
[
d1((α, β), G/φ) ≤ ε

]
≤ |V (G)|qk max

φ:d1((α,β),W Ĝ/ρφ)≤3ε/2
N({ki,µ(φ)}).

Since (k/e)k ≤ k! ≤ ek(k/e)k,( 1

e|V (G)|

)kq
eEnt(ρφ)|V (G)| ≤ N({ki,µ}) ≤ (e|V (G)|)keEnt(ρφ)|V (G)|,

implying

q|V (G)|Pq,G
[
d1((α, β), G/φ) ≤ ε

]
≤ (e|V (G)|)k(q+1) max

φ : V (G)→[q]

d1((α,β),W Ĝ/ρφ)≤3ε/2

e|V (G)| Ent(ρφ)

≤ (e|V (G)|)k(q+1) sup
ρ∈FPq

d1((α,β),W Ĝ/ρ)≤3ε/2

e|V (G)| Ent(ρ)

and

q|V (G)|Pq,G
[
d1((α, β), G/φ) ≤ ε

]
≥ (e|V (G)|)−kq max

φ : V (G)→[q]

d1((α,β),W Ĝ/ρφ)≤ε/2

e|V (G)| Ent(ρφ).

Next we use Lemma 6.2 to approximate an arbitrary fractional partition ρ ∈ FPq by
a fractional partition of the form ρφ, with a error of qk/|V (G)| in the d1 distance.
With the help of Lemmas 5.19 and 5.20, we can ensure that for n (and hence

|V (G)| = |V (Gn)|) large enough, the resulting errors in d1((α, β),W Ĝ/ρ) and Ent(ρ)
are bounded by ε/4 and ε, respectively, leading to the lower bound

q|V (G)|Pq,G
[
d1((α, β), G/φ) ≤ ε

]
≥ (e|V (G)|)−kq sup

ρ∈FPq
d1((α,β),W Ĝ/ρ)≤ε/4

e|V (G)|(Ent(ρ)−ε).

To conclude the proof, we note that if Gn →W in metric, then δ�(W Ĝn ,W )→ 0.
Taking into account Lemma 5.19 and the fact that the entropy Ent(ρ) is invariant
under measure preserving transformations, we get that for n sufficiently large

(e|V (Gn)|)−kq sup
ρ∈FPq

d1((α,β),W/ρ)≤ε/8

e|V (Gn)|(Ent(ρ)−ε)

≤ q|V (Gn)|Pq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
≤ (e|V (G)|)k(q+1) sup

ρ∈FPq
d1((α,β),W/ρ)≤2ε

e|V (G)| Ent(ρ).
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As a consequence

− log q − ε+ sup
ρ∈FPq

d1((α,β),W/ρ)≤ε/8

Ent(ρ) ≤ lim inf
n→∞

logPq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
|V (Gn)|

≤ lim sup
n→∞

logPq,Gn
[
d1((α, β), Gn/φ) ≤ ε

]
|V (Gn)|

≤ − log q + sup
ρ∈FPq

d1((α,β),W/ρ)≤2ε

Ent(ρ).

Sending ε→ 0 completes the proof. �

6.6. Completion of the proofs of Theorems 2.15 and 2.10. To complete the
proof of Theorem 2.15, we still need to show for graphs with node weights one,
statements (iv) and (v) are equivalent to the other statements of the theorem. We
will also have to establish the limit expressions given in Theorem 2.10.

By Theorem 6.4, we know the implication (i)⇒(iv) in Theorem 2.15, and we
also know that the rate function is given by (2.19), as claimed in Theorem 2.10(iv).
Finally, by Theorem 2.9(ii), in Theorem 2.15 statement (iv) implies statement
(v), and by Lemma 3.2(iii), this in turn implies statement (iii) of Theorem 2.15,
completing the proof of Theorem 2.15.

Theorem 2.17, which we prove in the next section, is nearly enough to deduce
Theorem 2.10 from Theorem 2.15. The only missing piece is the explicit limit
expressions stated in Theorem 2.10 for how limiting quotients, ground state energies,
free energies, and large deviations rate function depend on W . So far, we have
dealt with all of them except for the microcanonical free energies. Since we already
have shown that convergence in metric for graphs with node weights one implies
LD convergence with rate function given by (2.19), this follows from the following
lemma.

Lemma 6.5. Let W be a graphon, and let (Gn)n≥0 be a sequence of weighted graphs.
If (Gn)n≥0 is LD convergent with rate function Iq = Iq(·,W ) as defined in (2.19),
then the microcanonical free energies of (Gn)n≥0 converge to those of W , as defined
in (2.18).

Proof. By Theorem 2.9(ii), the assumption implies convergence of the microcanonical
free energies, with the limiting free energies given by

Fa(J) = inf
(α,β)∈Ŝa

(
−〈β, J〉+ Iq((α, β),W )

)
− log q.

= inf
(α,β)∈Ŝa

inf
ρ∈FPq

W/ρ=(α,β)

(
−〈β, J〉 − Ent(ρ)

)
= inf

ρ∈FPq
α(ρ)=a

(
−〈β(W/ρ), J〉 − Ent(ρ)

)
= Fa(W,J),

as desired. �

7. Inferring uniform upper regularity

In this section we prove Theorem 2.17. We have already proved a number of
implications between the four conditions in the theorem statement. Specifically, from
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Lemma 6.5 we know that (iv) implies (iii). From Lemma 3.2(iii) (and the analogous
assertion that Ea(W,J) = limλ→∞ λ−1Fa(λJ) with an essentially identical proof)
we know that (iii) implies (i). From Theorem 3.3 we deduce that (ii) implies (i).
Thus, it remains to show that (i) implies that (Gn)n≥0 is uniformly upper regular,
which is the statement of the following proposition.

Proposition 7.1. Let (Gn)n≥0 be a sequence of weighted graphs with no dominant
nodes and W a graphon. If the microcanonical ground state energies of Gn converge
to those of W , then (Gn)n≥0 is uniformly upper regular.

In order to prove this proposition, we introduce a notion of equipartition upper
regularity, where instead of considering all partitions of the vertex set with no
part having weight smaller than ηαG, we consider all equipartitions into q parts.
Following the definition, we prove a lemma which says that the two notions of upper
regularity are qualitatively equivalent.

Definition 7.2. Let K : (0,∞)→ (0,∞) be any function and let q ∈ N. A weighted
graph G is (K, q)-equipartition upper regular if αmax(G) ≤ αG/(2q) and for every
ε > 0 and equipartition P of V (G) into q parts,∑

i,j∈[q]

|βij(G/P)|1|βij(G/P)|≥K(ε)αi(G/P)αj(G/P) ≤ ε.

Equipartitions are defined in Section 6.1. We use βij(G/P) and βij(G/φ) as
synonyms (see (2.5) for the definition), where the function φ : V (G)→ [q] defines
the partition P as the preimages of the points in [q], but recall from (2.20) that
βij(GP) is normalized differently from βij(G/P).

Using (2.4), (2.5), (2.20), and (2.21), it is clear that if G is (K, η)-upper reg-
ular, then it is (K, q)-equipartition upper regular for q ≤ 1/(2η), since in every
equipartition of V (G) into q parts, the weight of each part is at least

αG/q − αmax(G) ≥ αG/q − ηαG ≥ ηαG.
Conversely, we also have the following.

Lemma 7.3. Let K ′ : (0,∞)→ (0,∞) be any function, and let

K(ε) = max{4ε−1K ′(ε/4), 16ε−2}.
Let η > 0 and q0 = η−2. If a weighted graph G is (K ′, q′)-equipartition upper regular
for some q′ ≥ q0, then G is (K, η)-upper regular.

Proof. By scaling the vertex weights, we may assume without loss of generality that
αG = 1. Let P = (V1, . . . , Vq) be a partition of V (G) into q classes, where αVi ≥ η
for each i ∈ [q], and let ε > 0. Define

S := {(i, j) ∈ [q]× [q] : |βij(G/P)| ≥ K(ε)αi(G/P)αj(G/P)}.
We need to prove that

(7.1)
∑

(i,j)∈S

|βij(G/P)| ≤ ε.

Since αi(G/P) ≥ η for all i ∈ [q] and
∑
i,j∈[q] |βij(G/P)| ≤ 1, we have

(7.2) η2|S| ≤
∑

(i,j)∈S

αi(G/P)αj(G/P) ≤ 1

K(ε)

∑
(i,j)∈S

|βij(G/P)| ≤ 1

K(ε)
.
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Thus if η2K(ε) > 1, then S = ∅ and (7.1) trivially holds. So assume from now on
that η2K(ε) ≤ 1. Since K(ε) ≥ 16ε−2 by assumption, we have

(7.3) ε ≥ 4η.

For each x ∈ V (G), define the (weighted) degree of x to be

degx(G) =
∑

y∈V (G)

αy(G) |βxy(G)| .

We construct an equipartition P ′ of V (G) as follows. For each i ∈ [q], we partition
Vi into subsets Vi,0, Vi,1, . . . , Vi,ki such that

αVi,k(G) ∈
[ 1

q′
− αmax(G),

1

q′
+ αmax(G)

]
for 1 ≤ k ≤ ki,

αVi,0(G) < 1/q′, and the vertices in Vi,0 all have the lowest degree present in Vi. We
will do this in such a way that for all i = 1 . . . , q and all j = 1, . . . , ki,

1

q′

(
i−1∑
i′=1

ki′ + j

)
≤

i−1∑
i′=1

ki′∑
j′=1

αVi′,j′ (G) +

j∑
j′=1

αVi,j′ (G) ≤
1

q′

(
i−1∑
i′=1

ki′ + j

)
+αmax(G).

For example, we can do this greedily by sorting all the vertices in Vi according to
their degrees and then placing them into Vi,j for j = 1, 2, . . . in decreasing order
by degree until the lower bound in the above inequality is satisfied. Since the last
vertex added contributed at most αmax(G) to the sum, we are guaranteed to have
the upper bound as well. When the total weight left in Vi is too small to fill another
Vi,j , we are necessarily left with a remainder Vi,0 that has weight less than 1/q′ and
contains only vertices with the lowest degree from Vi.

Next, consider the remainder sets V1,0, . . . , Vq,0, whose union we denote by V0.
By construction, either V0 is empty, in which case we do nothing, or αV0 lies between
k0/q

′ − αmax(G) and k0/q
′, where k0 = q′ −

∑
i≥1 ki. Proceeding again greedily

(this time ignoring the degrees), we decompose V0 into k0 sets V0,1, . . . , V0,k0 with
weights between 1/q′ − αmax(G) and 1/q′ + αmax(G). The sets Vi,j with 0 ≤ i ≤ q
and j ≥ 1 then form an equipartition P ′ of V (G) into q′ sets.

Define S′ to be the set of pairs (u, v) ∈ [q′]×[q′] for which we can find an (i, j) ∈ S
such that u is the label of a subclass of Vi and v is the label of a subclass of Vj . In
other words, S′ refines the set S from [q]× [q] to [q′]× [q′], except that it does not
necessarily contain pairs (u, v) for which u or v is in V0 (since the remainder sets
used to form V0 do not necessarily come from a single part of P). Thus, we have∑
(i,j)∈S

|βij(G/P)| ≤
∑

(u,v)∈S′
|βuv(G/P ′)|+

1

‖G‖1

∑
x,y∈V (G)

x∈V0 or y∈V0

αx(G)αy(G)|βxy(G)|

≤
∑

(u,v)∈S′
|βuv(G/P ′)|+

2

‖G‖1

∑
x∈V0

αx(G) degx(G).(7.4)

It remains to prove that (7.4) is at most ε.
We begin with the second term. For each i, since the vertices in Vi,0 are among

the lowest degree vertices of Vi, αVi,0(G) < 1/q′, and αVi(G) ≥ η, we have∑
x∈Vi,0

αx(G) degx(G) ≤
αVi,0(G)

αVi(G)

∑
x∈Vi

αx(G) degx(G) ≤ 1

q′η

∑
x∈Vi

αx(G) degx(G).
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Summing over i ∈ [q] and using
∑
x∈V (G) αx(G) degx(G) = ‖G‖1, we see that the

second term in (7.4) is at most

2

q′η
≤ 2

q0η
= 2η ≤ ε

2

by (7.3).
To bound the first term in (7.4), we decompose the sum into a sum of those

terms for which |βu,v(G/P ′)| is larger than K ′(ε/4)αu(G/P ′)αv(G/P ′) and a sum
of those for which it is at most this large. Since G is (K ′, q′)-equipartition upper
regular, we can bound the first sum by ε/4, while the second is clearly bounded by
the sum of K ′(ε/4)αu(G/P ′)αv(G/P ′) over (u, v) ∈ S′. Taking into account that
K ′(ε/4) ≤ ε

4K(ε), this proves that

∑
(u,v)∈S′

|βuv(G/P ′)| ≤
ε

4
+
εK(ε)

4

∑
(u,v)∈S′

αu(G/P ′)αv(G/P ′).

Since ∑
(u,v)∈S′

αu(G/P ′)αv(G/P ′) ≤
∑

(i,j)∈S

αi(G/P)αj(G/P) ≤ 1

K(ε)

by (7.2), we have shown that the first term in (7.4) is bounded by ε/2, which
completes our proof. �

Proof of Proposition 7.1. To show that (Gn)n≥0 is uniformly upper regular by
Lemma 7.3, it suffices to show that there is some K : (0,∞) → (0,∞) and some
sequence of integers qn →∞ such that Gn is (K, qn)-equipartition upper regular.

Equivalently, this amounts to showing that we can find some qn → ∞ so that
αmax(Gn)/αGn ≤ 1/(2qn) and for every ε > 0, there is some real K > 0 so that for
sufficiently large7 n, we have

(7.5) max
φ : V (Gn)→[qn]

equipartition

∑
i,j∈[qn]

|βij(Gn/φ)|1|βij(Gn/φ)|≥Kαi(Gn/φ)αj(Gn/φ) ≤ ε.

For any weighted graphG with αmax(G)/αG ≤ 1/(2q) and equipartition φ : V (G)→
[q], we have ∑

i,j∈[q]

|βij(G/φ)|1|βij(G/φ)|≥Kαi(G/φ)αj(G/φ) = −Eφ(G, J)

by the definition (2.9) of Eφ(G, J), where J ∈ {−1, 0, 1}q×q is given by

Jij = sign(βij(G/φ))1|βij(G/φ)|≥Kαi(G/φ)αj(G/φ).

7This is equivalent to the same claim for all n since we can increase K to account for the first
finitely many values of n.
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Using αi(G/φ) ≥ 1/q − αmax(G)/αG ≥ 1/(2q), we obtain∑
i,j∈[q]

|Jij | =
∑
i,j∈[q]

1|βij(G/φ)|≥Kαi(G/φ)αj(G/φ)

≤
∑
i,j∈[q]

|βij(G/φ)|
Kαi(G/φ)αj(G/φ)

≤ 4q2

K

∑
i,j∈[q]

|βij(G/φ)| ≤ 4q2

K
.

It follows from the definition (2.12) of Ea,ε(G, J) that

left side of (7.5) ≤ max
φ : V (Gn)→[qn]

equipartition

max
J∈{−1,0,1}qn×qn

symmetric∑
i,j |Jij |≤4q2n/K

(−Eφ(Gn, J))

= max
J∈{−1,0,1}qn×qn

symmetric∑
i,j |Jij |≤4q2n/K

(−Eqn,αmax(Gn)/αGn
(Gn, J))(7.6)

(here qn = (1/qn, . . . , 1/qn) ∈ 4qn , and we also write q = (1/q, . . . , 1/q) ∈ 4q
below).

Since the microcanonical ground state energies of Gn converge to those of W , we
know that for every q ∈ N, we can find ε0(q) > 0 and n0(q) so that

−Eq,ε(Gn, J) ≤ −Eq(W,J) + 1/q

for all 0 < ε < ε0(q), all n > n0(q), and every symmetric matrix J ∈ {−1, 0, 1}q×q
(as there are only finitely many such J for each q). Set εn = αmax(Gn)/αGn , so that
εn → 0 because there are no dominant nodes. It follows that we can find a slowly
growing sequence qn → ∞ so that (for sufficiently large n) we have εn < ε0(qn),
n > n0(qn), and qnεn ≤ 1/2, from which it follows that

−Eqn,εn(Gn, J) ≤ −Eqn(W,J) + 1/qn

for all symmetric matrices J ∈ {−1, 0, 1}qn×qn . Hence for sufficiently large n

(7.6) ≤ max
J∈{−1,0,1}qn×qn

symmetric∑
i,j |Jij |≤4q2n/K

(
− Eqn(W,J) + 1/qn)

≤ sup
S⊆[0,1]2

λ(S)≤4/K

∫
S

|W (x, y)| dx dy + 1/qn.

We can choose K large enough that the first term in the final bound above is at
most ε/2. Since qn →∞, the second term is also at most ε/2 for sufficiently large
n. This proves (7.5), showing that (Gn)n≥0 is uniformly upper regular. �

Appendix A. Proof of the rearrangement inequality

In this appendix, we prove that

E[W U ] ≤ E[W ∗ U∗].

when W is an Lp graphon and U is an Lp
′

graphon with 1
p + 1

p′ = 1, with equality

holding whenever U and W are aligned.
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If W,U ≥ 0, the proof of the rearrangement inequality is standard, and can, e.g.,
be deduced from the following level-set representations

U(x, y) =

∫ ∞
0

dt1[U(x, y) > t] and W (x, y) =

∫ ∞
0

ds1[U(x, y) > s].

Indeed, with the help of this representation, we get

E[W U ] = E
[∫ ∞

0

ds1[W > s]

∫ ∞
0

dt1[U > t]
]

=

∫ ∞
0

ds

∫ ∞
0

dt Pr
[
W > s and U > t]

]
≤
∫ ∞

0

ds

∫ ∞
0

dt min
{

Pr[W > s],Pr[U > t]
}

=

∫ ∞
0

ds

∫ ∞
0

dt min
{

Pr[W ∗ > s],Pr[U∗ > t]
}
,

where in the last step we used that U and U∗ as well as W and W ∗ have the same
distribution. Since the U∗ and W ∗ have nested level sets, the expression in the last
line is equal to ∫ ∞

0

ds

∫ ∞
0

dt Pr
[
W ∗ > s and U∗ > t

]
= E

[∫ ∞
0

ds1[W ∗ > s]

∫ ∞
0

dt1[U∗ > t]
]

= E[W ∗ U∗].

If W and U are aligned themselves, the only inequality in the above proof becomes
an equality, showing that E[W U ] = E[W ∗ U∗] if W and U are aligned.

If W and U are bounded below, say by W ≥ −M and U ≥ −M for some M <∞,
then we just use that E[W ∗ U∗]−E[W U ] = E[(W+M)∗ (U+M)∗]−E[(W+M) (U+
M)], which follows from linearity of expectations and the fact that E[W ] = E[W ∗]
and E[U ] = E[U∗]. Finally, to control the tails as M →∞, we bound∣∣∣E[WU ]− E

[
W1[W ≥ −M ]U1[U ≥ −M ]

]∣∣∣
≤ E

[
|WU |1[|U | ≥M ]

]
+ E

[
|WU |1[|W | ≥M ]

]
≤ ‖W‖p

∥∥∥U1[|U | ≥M ]
∥∥∥
p′

+ ‖U |‖p′
∥∥∥W1[|W | ≥M ]

∥∥∥
p
.

Now the right side goes to zero as M → ∞ by our assumption that W ∈ Lp and
U ∈ Lp′ .
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