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Abstract

In this paper, we demonstrate that various cryptographic constructions — including ones for broadcast,
attribute-based, and hierarchical identity-based encryption — can rely for security on only the static sub-
group hiding assumption when instantiated in composite-order bilinear groups, as opposed to the dynamic
q-type assumptions on which their security previously was based. This specific goal is accomplished by
more generally extending the recent Déjà Q framework (Chase and Meiklejohn, Eurocrypt 2014) in two
main directions. First, by teasing out common properties of existing reductions, we expand the q-type
assumptions that can be covered by the framework; i.e., we demonstrate broader classes of assumptions
that can be reduced to subgroup hiding. Second, while the original framework applied only to asymmetric
composite-order bilinear groups, we provide a reduction to subgroup hiding that works in symmetric (as
well as asymmetric) composite-order groups. As a bonus, our new reduction achieves a tightness of log(q)
rather than q.

1 Introduction

In cryptography, the provable security paradigm crucially relies on the existence of hard mathematical prob-
lems. To prove the security of a candidate cryptographic construction, one must demonstrate that any
adversary that can break its security can be used to construct another adversary that can break the underly-
ing mathematical problem; if the problem is assumed to be hard, then it logically follows that the construction
is secure.

To be confident in the security of a construction, we must therefore also be confident in the underlying
assumption; i.e., the assumption that the given mathematical problem is hard. Cryptographic assumptions
come in many forms, and confidence in them can be gained through various means: one can perform cryptanal-
ysis on the problem and attempt to break it, prove its security in the generic group model [40], or generalize
multiple assumptions using a construct like the uber-assumption [12, 16] to provide general lower bounds on
security.

As a field, cryptography has in the past decade become increasingly tolerant of assumptions that are new,
not particularly well understood, and in some cases even “hard to untangle from the constructions which
utilize them” [26]. While there are of course good reasons for doing so (e.g., driving the state of the art
forward), and it is demonstrably impossible to reduce every construction to a simple assumption like DDH,
the growth in the volume and complexity of new assumptions nevertheless provides an opportunity to revisit
this landscape of assumptions and attempt to simplify and systematize it where possible.

Our specific focus in this paper is the class of q-type assumptions, in which the assumption is not static,
but rather can grow dynamically; e.g., the decisional q-wBDHI (weak Bilinear Diffie-Hellman Inversion) as-

sumption [12] says that given (g, gc, gb, gb
2

, . . . , gb
q

), it should be hard to distinguish e(g, g)b
q+1c from random.

These assumptions are closely tied to the schemes that rely on them for security, as the value q is often equal
to the number of oracle calls that can be made in a reduction; e.g., in identity-based encryption (IBE), a
distinct value from the assumption is used within the reduction to respond to each of q key extraction queries.
Moreover, q-type assumptions become stronger as q grows, and the time to recover the discrete logarithm
scales inversely with q [22].
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In a recent paper [18], Chase and Meiklejohn demonstrated the potential to move away from q-type
assumptions by demonstrating that certain types of q-type assumptions (under the umbrella of the uber-
assumption) were implied by the static subgroup hiding assumption [14] in asymmetric composite-order
groups. Specifically, they demonstrated a reduction — with looseness q— to the subgroup hiding assumption
from all q-type assumptions that either (1) gave out functions on only one side of the pairing and asked the
adversary to distinguish elements in the source group or (2) gave out functions on both sides of the pairing
and asked the adversary to compute an element in the source group. Following Wee [44], we dub their set of
techniques and results the “Déjà Q framework.”

1.1 Our contributions

In this paper, we seek to expand the applicability of the Déjà Q framework to encompass wider classes
of assumptions and to apply to settings that are used more commonly in cryptographic constructions. In
particular, we provide the following three main contributions:

Broader classes of assumptions. In terms of specific schemes and assumptions, the original Déjà Q frame-
work implied that the Dodis-Yampolskiy PRF [23] and the q-SDH assumption [11] could be reduced to
subgroup hiding. To broaden not only the class of assumptions but also the concrete applicability of the
framework, we capture computational and decisional uber-assumptions in the target group, including
commonly used q-type assumptions such as q-BDHE [12] and q-wBDHI. We also demonstrate techniques
for translating concrete schemes — in particular, the BGW broadcast encryption scheme [13], the BBG
hierarchical identity-based encryption scheme [12], the Waters attribute-based encryption scheme [41],
and the ACF identity-based key encapsulation mechanism [1] — that rely on the symmetric versions of
these assumptions for security into asymmetric composite-order bilinear groups, where they can then
be reduced to subgroup hiding.

Tighter reductions. We provide a new reduction from both computational and decisional uber-assumptions
in the target group to subgroup hiding. Our new reduction requires adding at least one additional prime
to the factorization of N , but it achieves logarithmic — rather than linear — tightness. These results can
then be applied to any scheme based on these assumptions, including the ones mentioned above, which
directly gives a tightly (or almost tightly, depending on ones preferred terminology) secure instantiation,
albeit in a somewhat inefficient setting.

Symmetric and asymmetric groups. The original Déjà Q framework could operate only in asymmetric
composite-order bilinear groups (or composite-order groups where no pairing existed), of which only
one construction is known [15, 37]. Our new proof works in both symmetric and asymmetric settings,
thus allowing us to consider the more “usual” instantiations of composite-order bilinear groups.

1.2 Our techniques

In terms of the techniques we use, our proof in Section 3 that computational and decisional uber-assumptions
in the target group can be reduced to subgroup hiding is closely based on the proof in the original Déjà
Q framework for computational uber-assumptions in the source group. To achieve this, we observe that
reductions frequently treat group generators in separate ways; i.e., separate sets of generators are used to
answer separate types of queries, and the reduction crucially relies on this separation to ensure that the
adversary can’t test the relationships between different objects as they (separately) incorporate additional
randomness or otherwise shift in value. By explicitly acknowledging this usage in our statement of the uber-
assumption, we can treat the separate generators in different ways in our reductions and thus extend the
results to the target group. To further demonstrate how to securely move symmetric constructions into the
asymmetric setting, where they can then be covered by these results, we rely on a recent set of techniques
due to Abe et al. [4] for doing automated symmetric-to-asymmetric translations.

Next, in Section 4, we consider a modified version of this proof strategy, where in each game hop we double
the amount of randomness included in the assumption. To do this, we require three subgroups instead of
two, meaning we can write G = G1 × G2 × G3. As in the original Déjà Q framework, we start by shifting
the variables used in the q-type assumption from G1 into G2 and G3, which following the usual dual-system
technique we can argue goes unnoticed by subgroup hiding [14]. We then change the variables in G2 and G3

to take on entirely new values, which again following the dual-system technique we can argue goes unnoticed
by parameter hiding [29]. Now, however, instead of continuing to shift the same variables from G1 into G2

and change them one by one, we shift the new variables from G3 into G2, so that G2 has effectively doubled
the number of new variables it contains. By repeating this process of shifting all the variables from G2 into
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G3, changing them, and shifting them back, we achieve the same outcome as the original framework of having
` sets of variables in G2, but using log2(`) game transitions instead of `.

While one additional subgroup suffices to achieve this tighter reduction in asymmetric bilinear groups, our
reduction relies on the use of subgroup generators that would break subgroup hiding in symmetric groups.
To address this, our new reduction brings in certain aspects of the more traditional application of the dual-
system technique to constructions (rather than assumptions) [32, 31, 29, 10, 20], and in particular a recent
result due to Wee [44] that used an adaption of the Déjà Q framework to reduce both an IBE scheme and
a broadcast encryption scheme to subgroup hiding. We thus demonstrate that by folding in random values
from a fourth subgroup, we can sufficiently “mask” the subgroups to push through the same reduction in
symmetric groups. Thus, while our results in Section 3 apply to versions of concrete constructions translated
into the asymmetric setting (but otherwise unmodified), our results in Section 4 provide tighter reductions for
the (original) symmetric versions in which additional randomness is incorporated when instantiated in groups
with two additional subgroups, or for asymmetric versions with an additional subgroup (but no additional
randomness).

1.3 Related work

Our work closely builds on the Déjà Q framework due to Chase and Meiklejohn [18]. In order to go beyond the
original set of contributions, we draw on certain aspects of the dual-system technique [42, 32, 31], the notion
of parameter hiding [29, 30], and the general notion of subgroup hiding [9]. For our results in the symmetric
setting, we draw on ideas in a recent work by Wee [44], who extended the original Déjà Q framework but
focused specifically on constructions for broadcast encryption and IBE.

The search for tight reductions goes back to the paper of Bellare and Rogaway [8], and the results are
extensive. To compare with the results most similar to ours, we focus on results for pairing-based primitives,
where much related work has provided (almost) tight reductions for various primitives, including identity-
based encryption [21, 3, 10, 28, 35], inner product encryption [38], authenticated key exchange [7], and
quasi-adaptive non-interactive zero-knowledge proofs [36, 24]. Each of these results focuses on a specific
construction, and employs a specific set of techniques to achieve tight security. (One exception is a paper by
Attrapadung, Hanoaka, and Yamada [6] that gives an abstraction from which several different IBE variants
can be constructed. This work, however, is still focused on IBE and on a particular construction approach.)
By presenting our results at the level of assumptions, we can instead prove tight security for an entire class of
constructions; i.e., constructions that are instantiated in appropriate groups and have been previously proved
secure under an appropriate class of q-type assumptions. To the best of our knowledge, we are thus the first
to use the dual-system technique to provide a tightly secure reduction in a more general setting. Finally,
we note that while much of the previous work has focused on reductions whose running time is linear in the
security parameter, our reduction is linear in log(q), which in practice may be a much smaller number.

2 Definitions and Notation

2.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S| denotes its size and x
$←− S

denotes sampling a member uniformly from S and assigning it to x. λ ∈ N denotes the security parameter
and 1λ denotes its unary representation. [n] denotes the set {1, . . . , n}.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands for “polynomial-time.” By
y ← A(x1, . . . , xn;R) we denote running algorithm A on inputs x1, . . . , xn and random coins R and assigning

its output to y. By y
$←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for coins R sampled uniformly at

random. By [A(x1, . . . , xn)] we denote the set of values that have positive probability of being output by A
on inputs x1, . . . , xn. Adversaries are algorithms.

We use games in definitions of security and in proofs. A game G has a main procedure whose output is
the output of the game. Pr[G] denotes the probability that this output is true.

2.2 Basic bilinear groups

A bilinear group is a tuple G = (N,G,H,GT , e), where N is either prime or composite, |G| = |H| = kN
and |GT | = `N for k, ` ∈ N, all elements of G, H, and GT are of order at most N , and e : G × H → GT
is a bilinear map: it is efficiently computable, satisfies e(Ax, By) = e(A,B)xy for all A ∈ G, B ∈ H, and
x, y ∈ Z/NZ (bilinearity), and if e(A,B) = 1 for all B ∈ H then A = 1 and vice versa if this holds for all
A ∈ G (non-degeneracy). We use BilinearGen to denote the algorithm by which bilinear groups are generated.
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When G and H are cyclic, the description of the group may include their respective generators g and h. If
the groups can be decomposed as G = G1 ×G2 and H = H1 ×H2, the description of the group may include
information about these subgroups and their generators; additionally, the number of cyclic subgroups may be
provided as an argument n to BilinearGen.

2.3 Subgroup hiding and parameter hiding

We highlight two structural properties of bilinear groups — subgroup hiding and parameter hiding — that are
essential to the Déjà Q framework, using adapted versions of the definitions given by Chase and Meikle-
john [18].

Assumption 2.1 (Subgroup hiding). For n ∈ N and a bilinear group generation algorithm BilinearGen(·, ·),
define Advsgh

A (λ) = 2Pr[SGHA
µ (λ)]− 1, where SGHA

µ (λ) is defined as follows:

main SGHA
µ (λ)

b
$←− {0, 1}; (N,G,H,GT , e, µ)

$←− BilinearGen(1λ, n)

if (b = 0) then w
$←− G

if (b = 1) then w
$←− G1

b′
$←− A(N,G,H,GT , e, µ, w)

return (b′ = b)

Then subgroup hiding holds in G1 with auxiliary information µ if for all PT adversaries A there exists a
negligible function ν(·) such that Advsgh

A (λ) < ν(λ).

Subgroup hiding is defined analogously for G2, G1,T , and G2,T (where G1,T and G2,T are cyclic subgroups
of GT ), and the auxiliary information µ is designed to capture additional subgroup generators that may also
be given out (with the observation that revealing certain subgroup generators might allow one to trivially
distinguish subgroups when using a canceling pairing, so one must be careful with what µ contains). If we
switch between different subgroups rather than one subgroup and the full group — e.g., between G2 and G23,
as we do in Section 4 — then we say subgroup hiding holds between the subgroups.

To elaborate on the point about µ, subgroup hiding can be trivially broken if the adversary has knowledge
of certain generators; e.g., if an adversary is given a value w and asked to determine if it is in G or G1,
knowledge of the generator h2 allows it to check if e(w, h2) = 1 and trivially break subgroup hiding. To avoid
this, the many variants of subgroup hiding used in the literature often specify which subgroup elements the
adversary can see [25, 34, 33, 27, 17, 39], and the rules about which generators can be given out have been
codified in the general subgroup decision assumption due to Bellare, Waters, and Yilek [9]. The variants of
subgroup hiding that we use in Sections 3 and 4 are specific instantations of this general assumption.

Definition 2.2 (Extended parameter hiding). For m,n ∈ N and a bilinear group (N,G,H,GT , e, µ) ∈
[BilinearGen(1λ, n)], we say extended parameter hiding holds with respect to a family of functions F , auxiliary

information aux, and a pair of subgroups (Gi1 , Gi2) if for all gi1 ∈ Gi1 and gi2 ∈ Gi2 , the distribution {gf(~x)i1

g
f(~x)
i2

, a(~x)}f∈F,a∈aux is identical to {gf(~x)i1
g
f(~x′)
i2

, a(~x)}f∈F,a∈aux for ~x, ~x′
$←− (Z/NZ)m.

Chase and Meiklejohn proved [18, Lemma 5.2] that their original definition of extended parameter hiding
(which used n = 2) holds in composite-order bilinear groups with respect to all polynomial functions and the
version of aux that we require in Section 3. In Section 4, however, we consider a group with n > 2 subgroups
and we want parameter hiding to hold across subgroups beyond G1 and G2. We thus prove that parameter
hiding still holds in this setting as long as the orders of Gi1 and Gi2 have no primes in common and the
auxiliary information is not in Gi2 .

Lemma 2.3. For all m,n ∈ N, bilinear groups (N,G,H,GT , e) ∈ [BilinearGen(1λ, n)] where N = p1 · . . . · pn,
(i1, i2) such that 1 ≤ i1, i2 ≤ n, and for the class F of all polynomials f(·) over Z/NZ, if gcd(pi1 , pi2) = 1 and

if for all a ∈ aux, a(·) ∈ A such that gcd(|A|, pi2) = 1, then the distribution over {gf(~x)i1
g
f(~x)
i2

, a(~x)}f∈F,a∈aux

is identical to the distribution over {gf(~x)i1
g
f(~x′)
i2

, a(~x)}f∈F,a∈aux for ~x, ~x′1
$←− (Z/NZ)m.

Proof. For any polynomial f(·), one can compute g
f(~x)
i1

knowing just the value of xj mod pi1 for all j, 1 ≤
j ≤ m, and can similarly compute g

f(~x)
i2

knowing just the value of xj mod pi2 for all j, 1 ≤ j ≤ m. If
gcd(pi1 , pi2) = 1 and the functions in aux reveal no information about xj mod pi2 , then by the Chinese
Remainder theorem the values of xj mod pi2 are independent of all the other values, so this is identical to
using an independent x′j for the gi2 values.
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3 Uber-assumptions in the target group

In this section, we consider how to capture new classes of assumptions within the Déjà Q framework [18]. In
particular, we first prove in Section 3.1 that decisional and computational uber-assumptions in the target group
are implied — through the repeated application of subgroup hiding and parameter hiding — by assumptions
with significant amounts of randomness folded into particular subgroups. (The framework previously covered
only computational assumptions in the source group, which are implied by computational assumptions in the
target group, or “one-sided” decisional assumptions in the source group; i.e., assumptions where meaningful
functions could be given out on only one side of the pairing.)

Next, in Section 3.2, we show that the computational variant of the transitioned uber-assumption is so
weak that it holds by a statistical argument; thus, the computational uber-assumption can be implied solely
by subgroup hiding. By relying on an additional mild subgroup hiding assumption in the target, we can
show the same results for decisional variants as well; i.e., we can show that the decisional uber-assumption is
implied by three variants of subgroup hiding.

Finally, in Section 3.3, we observe that many examples of uber-assumptions (including widely used q-type
assumptions) have been used only in symmetric bilinear groups to date, making it difficult to cover them
directly with our analysis. (In Section 4, we do provide ways to cover the symmetric setting, but this requires
an extra prime in the order of the group.) We thus demonstrate how to convert popular symmetric assumptions
into asymmetric variants using techniques due to Abe et al. [4]. All of our converted symmetric schemes —
e.g., the BGW broadcast encryption scheme [13] and the Waters attribute-based encryption scheme [41] —
rely for security on q-type decisional uber-assumptions of the appropriate form, so our results demonstrate
the security of these schemes when instantiated in groups where subgroup hiding holds.

3.1 Reducing asymmetric assumptions to weaker variants

In the uber-assumption [18, Assumption 4.1], the adversary is given three sets of values with respect to a
set of c variables ~x: a generator g ∈ G raised to a set of functions R(~x), a generator h ∈ H raised to a set
of functions S(~x), and the value e(g, h) raised to a set of functions T (~x) (where gR(~x) is used as shorthand
for {gρi(~x)}ri=1 for R = 〈ρ1(~x), . . . , ρr(~x)〉, and similarly for S and T ). The adversary is then asked to either
compute e(g, h)f(~x) (in the computational assumption in the target group) or distinguish it from random.

This definition captures a broad range of q-type assumptions, but in some cases it may be instructive to
explicitly identify the qualities of the assumption that are used in the reduction. In particular, constructions
that use the dual-system technique must add noise into group elements in such a way that valuable informa-
tion is hidden but one can nevertheless continue to correctly perform operations (e.g., decryption) without
noticing the added noise. This is often accomplished by using two separate generators that are primarily
used for separate operations — e.g., in the case of identity-based encryption, one generator is used to create
the parameters and the other to form the challenge ciphertext — and this separation is acknowledged in the
assumption. For example, the (symmetric) q-BDHE assumption [12] says that given (g, gs, {gai}i∈[2q],i6=q+1),

it should be hard to distinguish e(g, g)a
q+1s from random.

We thus modify slightly the original definition of the uber-assumption to (1) make explicit the role of

two generators h and ĥ, the former of which we move into a subgroup to provide the necessary correctness
and the latter of which we keep in the full group to provide the necessary hiding guarantee, and (2) combine
computational and decisional assumptions into the same definition so we can cover them both in our main
theorem.

Assumption 3.1 (Uber-assumption). For an adversary A, let Advcomp-uberA (λ) = Pr[comp-UBERA
c,R,S,T,f (λ)]

and Advdec-uberA (λ) = 2Pr[dec-UBERA
c,R,S,T,f (λ) − 1, where type-UBERA

c,R,S,T,f (λ) is defined as follows for
type ∈ {comp, dec}:
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main type-UBERA
c,R,S,T,f (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g

$←− G, h, ĥ
$←− H

x1, . . . , xc
$←− Z/NZ

inputs← (N,G,H,GT , e, g, ĥ, g
R(~x), hS(~x), e(g, h)T (~x))

chal← e(g, ĥ)f(~x)

return type-play(λ, inputs, chal)

comp-play(λ, inputs, chal)

y
$←− A(1λ, inputs)

return (y = chal)

dec-play(λ, inputs, chal)

b
$←− {0, 1}

if (b = 0) then y
$←− GT

if (b = 1) then y ← chal

b′
$←− A(1λ, inputs, y)

return (b′ = b)

Then the uber-assumption in the target group holds if for all PT algorithms A there exists a negligible function
ν(·) such that Advuber

A (λ) < ν(λ).

We now proceed to prove a theorem analogous to the one in the original Déjà Q framework [19, Theorem
4.8], but which treats these different bases in H in different ways. For ease of exposition, we make explicit

the original assumption used in this proof, which (with our additional generator ĥ added) is as follows:

Assumption 3.2. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)], ` ∈ N, and classes of
functions R, S, T , and f (as defined in the uber-assumption in Assumption 3.1), given

inputs = (G, g1g
∑`

i=1
ri

2 , ĥ, {gρk(~x)1 g

∑`

i=1
riρk(~xi)

2 }rk=1, h
S(~x)
1 , e(g1, h1)T (~x))

for g1
$←− G1, g2

$←− G2\{1}, ĥ
$←− H, h1

$←− H1\{1}, and r1, . . . , r`,
$←− Z/NZ, ~x, ~x1, . . . , ~x`

$←− (Z/NZ)c, no PT

adversary has more than negligible advantage when playing type-play(λ, inputs, e(g1, ĥ)f(~x)e(g2, ĥ)
∑`

i=1
rif(~xi)).

Theorem 3.3. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)], consider the uber-assumption
in the target group parameterized by (c,R, S, T, f). Then this is implied by Assumption 3.2 if

1. subgroup hiding holds in G1 with µ = {g2, h1};
2. subgroup hiding holds in H1 with µ = {g1}; and

3. extended parameter hiding holds with respect to F = R ∪ {f} and aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1.

In particular, for ` ∈ N we have that

Advuber
A (λ) ≤ Advsgh

B0
(λ) + Advsgh

C0
(λ) + `Advsgh

Bi
(λ) + Adv3.2

A (λ).

A proof of this theorem can be found in Appendix A. Intuitively, the outline is similar to that of the
original proof: to start, all elements in G are first shifted into G1, and elements using h as the base are shifted
into H1. Elements using ĥ remain in the full group H (this is our main point of divergence from the original
Déjà Q proof). We argue that both of these changes go unnoticed by subgroup hiding. Then, the elements in
G1 are added into G2, which we again argue goes unnoticed by subgroup hiding. The elements in G2 are then
switched to use a new set of variables ~x1, which we argue is identical by parameter hiding. Now, we repeat
this process of adding the original elements from G1 into G2 and switching them to a new set of variables,
until — after ` transitions — we end up with ` sets of variables in G2.

3.2 Reducing asymmetric assumptions to subgroup hiding

We now deal separately with the case of computational and decisional assumptions, as decisional assumptions
require an extra assumption on the indistinguishability of random elements in G2,T and random elements in
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GT (we use Gi,T to denote the ith subgroup of GT ). For both, however, we first recall two relevant components
from the Déjà Q framework: the matrix V defined as

V =



1 ρ1(~x1) ρ2(~x1) · · · ρq(~x1) f(~x1)
1 ρ1(~x2) ρ2(~x2) · · · ρq(~x2) f(~x2)

...
...

. . . ...
.... . .

1 ρ1(~x`) ρ2(~x`) · · · ρq(~x`) f(~x`)

 (1)

and a lemma that relates the linear independence of the polynomials with the invertibility of V as follows:

Lemma 3.4. [18] For all λ ∈ N, if the functions in R∪{f} are linearly independent and of maximum degree
poly(λ), ` = q+2 for q = poly(λ), and N = p1 · . . . ·pn for n = poly(λ) distinct primes p1, . . . , pn ∈ Ω(2poly(λ)),
then with all but negligible probability the matrix V is invertible.

We also make explicit the argument used in the Déjà Q framework concerning the multiplication of this
matrix with a random vector.

Lemma 3.5. If V is invertible, then the distribution over ~r ·V for r1, . . . , rq+2
$←− Z/NZ is uniformly random.

Proof. Define ~y ← ~r · V , and consider the set of all vectors of length q + 2 over Z/NZ. Since ~r and ~y are
both members of this set, multiplication by V maps the set to itself; as V is furthermore invertible, it is a
permutation over this set. Thus, sampling ~r uniformly at random and multiplying by V yields a vector ~y that
is also distributed uniformly at random.

3.2.1 Computational assumptions.

For computational assumptions, we can now argue directly that, by transitioning to Assumption 3.2, we reach
an assumption so weak that it holds by a statistical argument. Thus, the computational uber-assumption
reduces directly to subgroup hiding.

Proposition 3.6. For a bilinear group G of order N , the computational uber-assumption parameterized by
(c,R, S, T, f) holds in the target group if

1. subgroup hiding holds in G1 with µ = {g2, h1};
2. subgroup hiding holds in H1 with µ = {g1};
3. extended parameter hiding holds with respect to F = R ∪ f and aux = {hσ(·)1 }∀σ∈S∪T for all h1 ∈ H1;

4. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

5. the polynomials in R ∪ f are linearly independent and have maximum degree poly(λ).

Proof. By requirements (1)-(3), Theorem 3.3 tells us that the original assumption is implied by the computa-
tional variant of Assumption 3.2. We make the problem strictly easier if we assume that g1 and ~x are public,

in which case g
R(~x)
1 , h

S(~x)
1 , and e(g1, h1)T (~x) provide no additional information, and A can compute the G1,T

component of chal directly.

We thus consider a problem where A is given g

∑
ri

2 and {g
∑q+2

i=1
riρk(~xi)

2 }rk=0 and we must argue that it

is hard for it to compute e(g2, ĥ)
∑q+2

i=1
rif(~xi). If we let ` = q + 2, requirements (4)-(5) and Lemma 3.4 imply

that V is invertible with all but negligible probability, and Lemma 3.5 then tells us that the distribution over
~y ← ~r ·V is uniformly random. As A is given values in G2 raised to the first q+ 1 entries of ~y and is asked to
compute e(g2, ĥ) raised to the last, it is thus given uniformly random values and asked to compute something
uniformly random, which it has at most negligible probability in doing.

3.2.2 Decisional assumptions.

Finally, to enable an argument about the decisional assumption in the target, we introduce the following
assumption:

Assumption 3.7. For ` ∈ N and a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)], consider the

inputs given to A in Assumption 3.2. Given the same set of inputs, it is difficult to distinguish e(g1, ĥ)f(~x)

e(g2, ĥ)
∑`

i=1
rif(~xi) from e(g1, ĥ)f(~x) ·R for R

$←− G2,T .

We now prove the following lemma:
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main GA
3.2(λ) / GA

0 (λ) / GA
1 (λ)

if (b = 0) then chal
$←− GT // GA

3.2(λ)

if (b = 0) then R
$←− GT ; chal← e(g1, ĥ)f(~x) ·R // GA

0 (λ)

if (b = 0) then R
$←− G2,T ; chal← e(g1, ĥ)f(~x) ·R // GA

1 (λ)

Figure 1: Games for the proof of Lemma 3.8. Each game introduces the boxed code on its corresponding line.

Lemma 3.8. If subgroup hiding holds in G2,T with µ = {g1, g2, h1}, then Assumption 3.2 is implied by
Assumption 3.7.

Proof. Let A be a PT adversary playing game GA
3.2(λ), and let Adv3.7

A (λ) denote its advantage in the game
specified in Assumption 3.7. We build a PT adversary B such that

Adv3.2
A (λ) ≤ Advsgh

B (λ) + Adv3.7
A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B such that

Pr[GA
3.2(λ)]− Pr[GA

0 (λ)] = 0 (2)

Pr[GA
0 (λ)]− Pr[GA

1 (λ)] ≤ Advsgh
B (λ) (3)

Pr[GA
1 (λ)] = Adv3.7

A (λ). (4)

We then have that

Adv3.2
A (λ) = Pr[GA

3.2(λ)]

= (Pr[GA
3.2(λ)]− Pr[GA

0 (λ)]) + (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ Advsgh
B (λ) + Adv3.7

A (λ).

Equation 2: GA
3.2(λ) to GA

0 (λ)

This follows trivially, as the values chal ·A and chal are identically distributed for chal
$←− GT and A ∈ G1,T .

Equation 3: GA
0 (λ) to GA

1 (λ)
B behaves as follows:

B(1λ, N,G,H,GT , e, g1, g2, h1, w)

b
$←− {0, 1}

~x, ~x1, . . . , ~x`
$←− (Z/NZ)c, r1, . . . , r`

$←− Z/NZ

vk ← g
ρk(~x)
1 g

∑`

j=1
rjρk(~xj)

2 ∀k ∈ [r] (Here we define ρ0 = 1.)

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

if (b = 0) then chal← e(g1, ĥ)f(~x) · w

if (b = 1) then chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑`

j=1
rjf(~xj)

b′
$←− A(1λ, inputs, chal)

return (b′ = b)

If w
$←− GT , then this is identical to GA

0 (λ). If w
$←− G2,T , then this is identical to GA

1 (λ).

Proposition 3.9. For a bilinear group G of order N , the decisional uber-assumption parameterized by (c,R, S,
T, f) holds in the target group if

1. subgroup hiding holds in G1 with µ = {g2, h1};
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Scheme Assumption
Elements in public key

symmetric asymmetric

BGW [13] q-BDHE 2q +A 4q +A
BBG [12] q-wBDHI q + 4 2q + 7
Waters [41] q-BDHE 3 + U 5 + 2U
ACF [1] q-wBDHI 2 + 2q 3 + 2q

Table 1: Examples of schemes whose reductions are compatible with the desired conversion from symmetric to asym-
metric assumptions, along with the assumptions they rely on and the numbers of group elements in both the symmetric
and asymmetric variants of the public key. The value A refers to the number of parallel instances of the system being
run in the BGW scheme, and the value U refers to the maximum number of system attributes in Waters’ scheme.

2. subgroup hiding holds in H1 with µ = {g1};
3. subgroup hiding holds in G2,T with µ = {g1, g2, h1};
4. extended parameter hiding holds with respect to F = R ∪ f and aux = {hσ(·)1 }∀σ∈S∪T for all h1 ∈ H1;

5. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

6. the polynomials in R ∪ f are linearly independent and have maximum degree poly(λ).

Proof. By requirements (1)-(4), Theorem 3.3 and Lemma 3.8 tell us that the original assumption is implied
by Assumption 3.7. We make the problem strictly easier if we assume that g1 and ~x is public, in which case

g
R(~x)
1 , h

S(~x)
1 , and e(g1, h1)T (~x) provide no additional information, and A can compute the G1,T component of

chal directly (which is the same in either case).

We thus consider a problem where A is given g

∑
ri

2 and {g
∑q+2

i=1
riρk(~xi)

2 }rk=0 and we must argue that it

is hard for it to distinguish e(g2, ĥ)
∑q+2

i=1
rif(~xi) from random. If we let ` = q + 2, requirements (5)-(6) and

Lemmas 3.4 and 3.5 imply that the distribution over ~y ← ~r · V is uniformly random with all but negligible
probability. As A is given values in G2 raised to the first q + 1 entries of ~y and is asked to distinguish
e(g2, ĥ) raised to the last from random, it is thus given uniformly random values and asked to distinguish two
uniformly random things, which it has at most negligible advantage in doing.

3.3 Converting symmetric uber-assumptions

As mentioned earlier, most schemes that rely on q-type assumptions do so in the symmetric setting, whereas
our analysis above works only in the asymmetric setting. To nevertheless capture these useful examples of
q-type assumptions, we use the technique of Abe et al. [4] to convert the assumptions from the symmetric to
the asymmetric setting so that they can be covered by our analysis.

To perform this conversion, we must of course do so in a way that respects the underlying reduction; i.e.,
we must ensure that the asymmetric variant of the scheme can still be proved secure under the asymmetric
variant of the assumption. The main technique for doing this revolves around the idea of dependency graphs
that reflect the usage of all values in the source groups and how they interact with each other and with
the pairing. Thus, all of the dependencies in both the scheme and its security reduction are represented in
a directed graph Γ, with pairings represented by two nodes (one for each side of the pairing). To find an
asymmetric variant that respects these dependencies, one must search for a valid split of Γ into Γ0 and Γ1;
this is defined as a split in which

• No nodes or edges are lost; i.e., merging Γ0 and Γ1 recovers Γ,

• For every pair of pairing nodes, if one node is in Γ0, the other node is exclusively in Γ1, and

• For every node X in each split graph, the ancestor subgraph of X in Γ is included in the same graph.

For more details on this technique and the process of automating it, we refer to the original paper of
Abe et al. or to a paper by Akinyele et al. [5] that proposes a tool, AutoGroup+, that improves on the tool
developed by Abe et al. and applies the technique to additional schemes.

To demonstrate the coverage of our analysis, we have identified four influential schemes that rely on
symmetric uber-assumptions and demonstrated their conversion to asymmetric variants that fit into the class
of uber-assumptions our analysis can cover. These are:

• The general construction of the Boneh-Gentry-Waters broadcast encryption scheme [13], based on the
q-BDHE assumption;
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• the Boneh-Boyen-Goh hierarchical identity-based encryption scheme with constant-sized ciphertexts [12],
based on the q-wBDHI assumption;

• the version of Waters’ attribute-based encryption scheme [41] that uses the q-BDHE assumption (as
opposed to the more efficient construction that uses the q-parallel BDHE assumption [43], which we
cannot cover); and

• the Abdalla-Catalano-Fiore identity-based key encapsulation mechanism [1], based on the q-wBDHI
assumption.

These schemes are given in Table 1, along with the assumptions they rely on for security, and the number
of elements in both the symmetric and the asymmetric variants of the public key. As an example of our
analysis, we include in Figure 2 the dependency graph for the Boneh-Boyen-Goh HIBE. In the graph, the
shape of the node indicates which side of the split each element goes on: triangle nodes are in G, inverted
triangle nodes are in H, and diamond nodes are replicated across G and H. Pairing equations are denoted by
pn[i], where n ∈ N indicates a particular usages of the pairing and i ∈ {0, 1} indicates the side of the pairing
in which the element is used. The nodes with an i included represent multiple (related) values; e.g., the node

yi represents {gαi}i.

g

yi

g3 hi

g1

B

gc

g2

a1

C

a0

bi

p0[0]

p2[0]

p1[1]

mskp0[1]

p1[0]

p2[1]

Figure 2: Dependency graph for the BBG HIBE scheme [12]. The public key consists of g, g1, g2, g3, and hi, the
master secret key is denoted msk, and the secret keys consist of a0, a1, and bi. Encryption uses the pairing p0 and
produces B and C, and decryption uses the pairings p1 and p2. In the reduction, yi and gc are derived from the
q-wBDHI assumption.

The original q-wBDHI assumption states that given (g, gc, gα, gα
2

, . . . , gα
q

), it should be hard to distinguish

e(g, g)α
q+1c from random. Looking at the graph in Figure 2, in which these quantities are represented by yi

and gc, we see that the yi nodes must be replicated across G and H but gc can remain in only one source group.
Writing hc as ĥ, the asymmetric q-wBDHI assumption thus states that given (g, h, ĥ, gα, hα, . . . , gα

q

, hα
q

), it

should be hard to distinguish e(g, ĥ)α
q+1

from random. This same converted version of the assumption also
works for the Abdalla-Catalano-Fiore IB-KEM (whose dependency graph is included in Appendix C).

A similar analysis works for the schemes that rely on the q-BDHE assumption (whose dependency graphs

are also included in Appendix C), which states that given (g, gc, {gαi}i∈[2q],i6=q+1), it should be hard to

distinguish e(g, g)α
q+1c from random. Here we find that the asymmetric variant states that — again, rewriting

hc as ĥ— given (g, h, ĥ, {gαi

, hα
i}i∈[2q],i6=q+1, it should be hard to distinguish e(g, ĥ)α

q+1

from random.
As each of the converted assumptions fits the set of requirements for the uber-assumption needed for

Proposition 3.9, we thus obtain as a corollary that, when instantiated in asymmetric composite-order bilinear
groups, the security of each of these schemes can rely solely on (three variants of) the subgroup hiding
assumption.
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4 Tighter Reductions in (A)symmetric Groups

The results in the previous section already demonstrate a broader application of the Déjà Q framework, but
two fundamental restrictions remain: it can be applied directly to assumptions only in asymmetric composite-
order bilinear groups, and it introduces a looseness of q into the reduction. In this section, we address both
of these restrictions. In particular, we show that by adding more primes into the factorization of N , we can
achieve a tighter reduction — one with log(q) looseness instead of q— in symmetric composite-order bilinear
groups.

Our inspiration for the conversion to symmetric groups comes from Wee [44], who applied the Déjà Q
framework at the level of constructions rather than assumptions, and thus was able to make use of two key
features of traditional dual-system reductions: fresh randomness across queries and a third subgroup used to
hide additional information. To maintain the most generality, we continue in Section 4.1 to work at the level
of assumptions, but we nevertheless attempt to capture these additional features by using a variant of the
uber-assumption in which extra randomness is added into components in G. We then define an assumption
with significant randomness added into various subgroups in G (analogous to Assumption 3.2). Finally, we
diverge completely from [44] and prove that — in only a logarithmic number of game hops — this assumption
implies these additionally randomized computational and decisional uber-assumptions in the target group.

Next, in Section 4.2, we show — in a manner almost completely analogous to that in Section 3.2 — that the
computational variant of the transitioned uber-assumption is so weak that it holds by a statistical argument;
thus the computational randomized uber-assumption is implied by two variants of subgroup hiding. In the
case of the decisional uber-assumption, we transition to an assumption analogous to Assumption 3.7 and show
that it is implied by three variants of subgroup hiding.

Finally, in Section 4.3, we briefly discuss the implications of our results for the concrete schemes presented
in Section 3.3. Although our discussion here is not as formal as our symmetric-to-asymmetric conversions, we
nevertheless suggest ways to transform existing schemes to provide them with tight reductions to subgroup
hiding.

4.1 Reducing randomized assumptions to weaker variants

We begin by formalizing the randomized uber-assumption as follows:

Assumption 4.1 (Randomized uber-assumption). For an adversary A, we define its computational advantage

to be Advcomp-r-uberA (λ) = Pr[comp-RandUBERA
c,R,S,T,f (λ)] and its decisional advantage to be Advdec-r-uberA (λ) =

2Pr[dec-RandUBERA
c,R,S,T,f (λ)]− 1, where for type ∈ {comp, dec}, type-RandUBERA

c,R,S,T,f (λ) is defined as
follows (with the omitted end games comp-play and dec-play the same as in Definition 3.1):

main type-RandUBERA
c,R,S,T,f (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 4); g

$←− G, g4
$←− G4, h123, ĥ

$←− H123

x1, . . . , xc, χ1, . . . , χr
$←− Z/NZ

inputs← (N,G,H,GT , e, g, g4, ĥ, g
R(~x)g~χ4 , h

S(~x)
123 , e(g, h123)T (~x))

chal← e(g, ĥ)f(~x)

return type-play(λ, inputs, chal)

The the randomized uber-assumption in the target group holds if for PT algorithms A there exists a negligible
function ν(·) such that Advr-uber

A (λ) < ν(λ).

The main difference from the regular uber-assumption is the additional randomness in G4 (hence the

name), and the fact that h and ĥ are now sampled from the subgroup H123 rather than the full group H.
As discussed further in Section 4.3, this latter change is needed to balance out the former, as the canceling
property of the pairing means that we can still obtain meaningful values in GT (i.e., values without added
randomness) by pairing an element with a random G4 component with an element in H123. To maintain full
generality, we also continue to write G and H separately, but in a symmetric pairing they would be the same
group.

Assumption 4.2. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)], ` ∈ N, and classes of
functions R, S, T , and f (as defined in the uber-assumption in Assumption 4.1), given

inputs = (G, g1g
∑`

i=1
ri

2 gχ4 , g4, ĥ, {g
ρk(~x)
1 g

∑`

i=1
riρk(~xi)

2 gχk

4 }rk=1, h
S(~x)
1 , e(g1, h1)T (~x)),
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for g1
$←− G1, g2

$←− G2\{1}, g4
$←− G4, h1

$←− H1\{1}, ĥ
$←− H123; ~x, . . . , ~x`

$←− (Z/NZ)c, r1, . . . , r`, χ, χ1, . . . , χr
$←− Z/NZ, there is no PT adversary that has better than negligible advantage when playing type-play(λ, inputs,

e(g1, ĥ)f(~x)e(g2, ĥ)
∑`

i=1
rif(~xi)).

In addition to the extra subgroups, our new reduction also makes use of a different class of functions
for extended parameter hiding. In particular, our old proof added variables into G2 one at a time, which
allowed us to fold in a freshly random coefficient rj in this step. As we now add many variables at a time,
however, the extra randomness added by the subgroup hiding transition is not sufficient, so we instead use
parameter hiding to argue that the randomness can be “freshened up” in the new subgroup instead. In the
main parameter hiding step, we thus want to transition the quantity

∑
j rjρk(~xj) to

∑
j r
′
jρk(~x′j), which we

accomplish using the set of functions defined as

F =

{
p′(y1, ~y1, . . . , ym, ~ym) =

m∑
i=1

ymp(~ym)

}
p∈R∪{f}

. (5)

Theorem 4.3. For a bilinear group (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)], consider the randomized uber-
assumption parameterized by (c,R, S, T, f). Then this is implied by Assumption 4.2 if

1. subgroup hiding holds between H1 and H123 with µ = {g4, h123};
2. subgroup hiding holds between G24 and G34 with µ = {g1, g24, g4, h1, h123};
3. extended parameter hiding holds with respect to R∪{f}, aux = {gρ(·)3 , h

σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3

and h1 ∈ H1, and subgroups (G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and
subgroups (G1, G3); and

5. extended parameter hiding holds with respect to the F defined in Equation 5, aux = ∅, and subgroups
(G2, G3).

In particular, we have that

Advr-uber
A (λ) ≤ Advsgh

C0
(λ) + Advsgh

C1
(λ) + log2(`)(Advsgh

Bi
(λ) + Advsgh

Bi+1
(λ)) + Adv4.2

A (λ).

Our two subgroup hiding variants are valid instantiations of the general subgroup decision assumption [9]
discussed in Section 2. Similarly, we proved in Lemma 2.3 that in composite-order groups extended parameter
hiding holds for all polynomials and the aux and subgroups that we use here, so the three variants all hold
and are listed separately solely for insight into the reduction.

A proof of this theorem can be found in Appendix B. To start, all elements using h as the base are
shifted into the H1 subgroup, but elements using ĥ or in G remain unchanged. Using the first two variants of
parameter hiding, we now switch the variables in G2 to ~x′ and in G3 to ~x′′, and — using subgroup hiding —
fold the ~x′′ elements into G2. At this point we now have the original variables ~x in G1, two new sets of
variables in G2, nothing in G3, and random values in G4.

Our reduction now proceeds by exploiting this “semi-functional” subgroup G3 and the masking effect
provided by the randomness in G4. First, a shadow copy of all of the variables in G2 is added to G3, which we
argue goes unnoticed by subgroup hiding. Second, the variables in G3 are changed to a new set of variables,
which is identical by the third variant of parameter hiding. Finally, we fold all of the new variables back into
G2, which we again argue goes unnoticed by subgroup hiding. By working with all of the variables at once —
as opposed to the one-at-a-time approach of the original Déjà Q framework — we double the number of new
variables in the G2 subgroup after each iteration, so after only log2(`) transitions we end up with ` sets of
variables in the G2 subgroup.

As described, we move new variables from G3 to G2 while using the generator g2 to compute the existing
variables in the G2 subgroup. In symmetric groups with a canceling pairing, however, one could use knowledge
of this generator to violate subgroup hiding by checking if e(g2, w) = 1. The G4 subgroup is thus needed
to mask this transition, so in symmetric groups we transition from G34 to G24 instead, and argue that the
randomness in G4 “absorbs” the variables that are added there. In an asymmetric setting, however, knowledge
of g2 does not provide the ability to distinguish G2 and G3, so the masking effect of G4 is unnecessary and the
same reduction goes through without it. We thus state the simplified version of Theorem 4.3 for asymmetric
groups as the following corollary:

Corollary 4.4. For an asymmetric bilinear group (N,G,H,GT , e) ∈ [BilinearGen(1λ, 3)], consider the uber-
assumption parameterized by (c,R, S, T, f). Then this is implied by a version of Assumption 3.2 (using
BilinearGen(1λ, 3)) if
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1. subgroup hiding holds between H and H1 with µ = { };
2. subgroup hiding holds between G2 and G3 with µ = {g1, g2, h1};
3. extended parameter hiding holds with respect to R∪{f}, aux = {gρ(·)3 , h

σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3

and h1 ∈ H1, and subgroups (G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and
subgroups (G1, G3); and

5. extended parameter hiding holds with respect to the F defined in Equation 5, aux = ∅, and subgroups
(G2, G3).

In particular, we have that

Advuber
A (λ) ≤ Advsgh

C0
(λ) + Advsgh

C1
(λ) + log2(`)(Advsgh

Bi
(λ) + Advsgh

Bi+1
(λ)) + Adv3.2

A (λ).

Thus, under the conditions in Propositions 3.6 and 3.9, we get tight reductions in the asymmetric setting
with N = p1p2p3.

For the rest of this section we will focus on the symmetric setting.

4.2 Reducing randomized assumptions to subgroup hiding

As in Section 3, we now treat computational and decisional assumptions separately.

4.2.1 Computational assumptions.

Our argument that the computational randomized uber-assumption holds is nearly identical to our previous
argument that the (regular) computational uber-assumption holds.

Proposition 4.5. For a bilinear group G of order N , the computational uber-assumption parameterized by
(c,R, S, T, f) holds in the target group if

1. subgroup hiding holds between H1 and H123 with µ = {g4, h123};
2. subgroup hiding holds between G34 and G24 with µ = {g1, g24, g4, h1, h123};
3. extended parameter hiding holds with respect to R∪{f}, aux = {gρ(·)3 , h

σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3

and h1 ∈ H1, and subgroups (G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and
subgroups (G1, G3);

5. extended parameter hiding holds with respect to the F defined in Equation 5, aux = ∅, and subgroups
(G2, G3);

6. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

7. the polynomials in R ∪ f are linearly independent and have maximum degree poly(λ).

Proof. By requirements (1)-(5), Theorem 4.3 tells us that the computational uber-assumption is implied by
the computational variant of Assumption 4.2. We make the problem strictly easier if we assume that g1,

g4, ~x, and ~χ are public, in which case g
R(~x)
1 , g~χ4 , h

S(~x)
1 and e(g1, h1)T (~x) provide no additional information.

In this case A can also compute the G1,T component of chal directly, so we need only to argue that it is

hard for it to compute e(g2, ĥ)
∑q+2

i=1
rif(~xi). The rest of the argument can thus proceed as in the proof of

Proposition 3.6.

4.2.2 Decisional assumptions.

To enable an argument about the decisional assumption in the target group, we introduce an assumption
analogous to Assumption 3.7.

Assumption 4.6. For a bilinear group (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)], ` ∈ N, consider the val-

ues given to A in Assumption 4.2. Given the same set of values, it is difficult to distinguish e(g1, ĥ1)f(~x)

e(g2, ĥ2)
∑`

i=1
rif(~xi) from e(g1, ĥ1)f(~x) ·R for R

$←− G2,T .

We now prove the following lemma:

Lemma 4.7. If subgroup hiding holds in G2,T with µ = {g1, g2, g4, h1, h123}, then Assumption 4.2 is implied
by Assumption 4.6.
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Proof. Let A be a PT adversary playing game GA
4.2(λ), and let Adv4.2

A (λ) denote its advantage in the game
specified in Assumption 4.2. We build a PT adversary B such that

Adv4.2
A (λ) ≤ Advsgh

B (λ) + Adv4.6
A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B such that

Pr[GA
4.2(λ)]− Pr[GA

4.6(λ)] ≤ Advsgh
B (λ) (6)

We then have that

Adv4.2
A (λ) ≤ Advsgh

B (λ) + Adv4.2
A (λ).

Equation 6: GA
4.2(λ) to GA

4.6(λ)
B behaves as follows (again assuming ρ0 = 1):

B(1λ, N,G,H,GT , e, g1, g2, g4, h1, w)

b
$←− {0, 1}

~x, ~x1, . . . , ~x`
$←− (Z/NZ)c, r1, . . . , r`, χ1, . . . , χr

$←− Z/NZ

vk ← g
ρk(~x)
1 g

∑`

j=1
rjρk(~xj)

2 gχk

4 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

if (b = 0) then chal← e(g1, ĥ)f(~x) · w

if (b = 1) then chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑`

j=1
rjf(~xj)

b′
$←− A(1λ, inputs, chal)

return (b′ = b)

If w
$←− GT , then this is identical to GA

4.2(λ). If w
$←− G2,T , then this is identical to GA

4.6(λ).

Proposition 4.8. For a bilinear group G of order N , the decisional uber-assumption parameterized by (c,R, S,
T, f) holds in the target group if

1. subgroup hiding holds between H123 and H1 with µ = {g4, h123};
2. subgroup hiding holds between G24 and G34 with µ = {g1, g24, g4, h1, h123};
3. subgroup hiding holds in G2,T with µ = {g1, g2, g4, h1, h123};
4. extended parameter hiding holds with respect to R∪{f}, aux = {gρ(·)3 , h

σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3

and h1 ∈ H1, and subgroups (G1, G2);

5. extended parameter hiding holds with respect to R ∪ {f}, aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and
subgroups (G1, G3);

6. extended parameter hiding holds with respect to the F defined in Equation 5, aux = ∅, and subgroups
(G2, G3);

7. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

8. the polynomials in R ∪ f are linearly independent and have maximum degree poly(λ).

Proof. By requirements (1)-(6), Theorem 4.3 and Lemma 4.7 tell us that the original assumption is implied by
Assumption 4.2. We make the problem strictly easier if we assume that g1, g4, ~x, and ~χ are public, in which

case g
R(~x)
1 , g~χ4 , h

S(~x)
1 and e(g1, h1)T (~x) provide no additional information. In this case A can also compute the

G1,T component of chal directly (which is the same in either case), so we need only to argue that it is hard

for it to distinguish e(g2, ĥ)
∑q+2

i=1
rif(~xi) from random. The rest of the argument can thus proceed as in the

proof of Proposition 3.9.

4.3 Application to existing schemes

In Section 3.3, we demonstrated how to convert schemes that rely on symmetric version of the uber-assumption
to work in asymmetric groups and thus be covered by our overall results in Section 3. Here, we briefly
demonstrate how to convert schemes to be covered by our results in this section as well.
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Suppose we have a scheme and corresponding reduction that work in asymmetric groups and performs only
group operations, pairings, and equality tests between group elements. We can then modify both the scheme
and reduction as follows: instead of sampling elements from H we sample them from H123; when we multiply
any elements in G we also include a freshly random element in G4; and when we compare two elements g and
g′ in G for equality, rather than return (g = g′) we return (e(g, h123) = e(g′, h123)). In particular, this last
alteration — combined with the fact that e(g4, h123) = 1 and an asymmetric scheme only ever pairs elements
of G with elements of H — allows us to preserve the functionality of the original scheme despite the fact that
additional randomness is added into the G4 subgroup.

If the original assumption relied on for security is a case of the uber-assumption (Definition 3.1), then
the resulting assumption is a case of the randomized uber-assumption (Definition 4.1). Thus, the concrete
schemes presented in Section 3.3 can be instantiated either in asymmetric groups of order N = p1p2p3
under the asymmetric variants of their original (symmetric) assumptions, or in symmetric groups of order
N = p1p2p3p4 under the randomized variants. In either case, the results of Theorem 4.3 and Corollary 4.4
imply a tight reduction to the appropriate variants of the subgroup hiding assumption.
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[19] M. Chase and S. Meiklejohn. Déjà Q: Using dual systems to revisit q-type assumptions. Cryptology ePrint Archive, Report
2014/570, 2014. http://eprint.iacr.org/2014/570.

[20] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings. In E. Oswald
and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624, Sofia, Bulgaria, Apr. 26–30,
2015. Springer, Heidelberg, Germany.

[21] J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435–460, Santa Barbara, CA, USA, Aug. 18–22, 2013. Springer,
Heidelberg, Germany.

[22] J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 1–11, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[23] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In S. Vaudenay, editor, PKC 2005,
volume 3386 of LNCS, pages 416–431, Les Diablerets, Switzerland, Jan. 23–26, 2005. Springer, Heidelberg, Germany.

[24] R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly cca-secure encryption without pairings. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages 1–27, 2016.

[25] M. Gerbush, A. B. Lewko, A. O’Neill, and B. Waters. Dual form signatures: An approach for proving security from static
assumptions. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 25–42, Beijing, China,
Dec. 2–6, 2012. Springer, Heidelberg, Germany.

[26] S. Goldwasser and Y. T. Kalai. Cryptographic assumptions: A position paper. In E. Kushilevitz and T. Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 505–522, Tel Aviv, Israel, Jan. 10–13, 2016. Springer, Heidelberg,
Germany.

[27] B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from general assumptions and
efficient selective opening chosen ciphertext security. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073
of LNCS, pages 70–88, Seoul, South Korea, Dec. 4–8, 2011. Springer, Heidelberg, Germany.

[28] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 590–607, Santa Barbara, CA, USA, Aug. 19–23, 2012. Springer, Heidelberg,
Germany.

[29] A. B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 318–335, Cambridge, UK, Apr. 15–19, 2012.
Springer, Heidelberg, Germany.

[30] A. B. Lewko and S. Meiklejohn. A profitable sub-prime loan: Obtaining the advantages of composite order in prime-
order bilinear groups. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 377–398, Gaithersburg, MD, USA,
Mar. 30 – Apr. 1, 2015. Springer, Heidelberg, Germany.

[31] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 62–91, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[32] A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In
D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 455–479, Zurich, Switzerland, Feb. 9–11, 2010. Springer,
Heidelberg, Germany.

[33] A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In K. G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 568–588, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[34] A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 547–567, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[35] B. Libert, M. Joye, M. Yung, and T. Peters. Concise multi-challenge CCA-secure encryption and signatures with almost
tight security. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 1–21, Kaoshiung,
Taiwan, R.O.C., Dec. 7–11, 2014. Springer, Heidelberg, Germany.

[36] B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans - tightly secure constant-size simulation-sound
QA-NIZK proofs and applications. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,
pages 681–707, Auckland, New Zealand, Nov. 30 – Dec. 3, 2015. Springer, Heidelberg, Germany.

[37] S. Meiklejohn and H. Shacham. New trapdoor projection maps for composite-order bilinear groups. Cryptology ePrint
Archive, Report 2013/657, 2013. http://eprint.iacr.org/2013/657.

[38] T. Okamoto and K. Takashima. Efficient (hierarchical) inner-product encryption tightly reduced from the decisional linear
assumption. IEICE Transactions, 96-A(1):42–52, 2013.

[39] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and C. Dwork, editors, 40th
ACM STOC, pages 187–196, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

[40] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, EUROCRYPT’97, volume 1233
of LNCS, pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany.

16

http://eprint.iacr.org/2014/570
http://eprint.iacr.org/2013/657


main type-UBERA
c,R,S,T,f (λ) / GA

0 (λ) / GA
1 (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2)

g
$←− G, g1

$←− G1, g2
$←− G2 \ {1} // GA

0 (λ)

h, ĥ
$←− H, h1

$←− H1, ĥ
$←− H // GA

1 (λ)

x1, . . . , xc
$←− Z/NZ

vk ← gρk(~x), vk ← g
ρk(~x)
1 ∀k ∈ [r] // GA

0 (λ)

yk ← hσk(~x), yk ← h
σk(~x)
1 ∀k ∈ [s] // GA

1 (λ)

zk ← e(g, h)τk(~x), zk ← e(g1, h)τk(~x) ∀k ∈ [t] // GA
0 (λ)

zk ← e(g1, h)τk(~x), zk ← e(g1, h1)τk(~x) ∀k ∈ [t] // GA
1 (λ)

inputs← (N,G,H,GT , e, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g, ĥ)f(~x), chal← e(g1, ĥ)f(~x) // GA
0 (λ)

return type-play(λ, inputs, chal)

Figure 3: Games for the proof of Theorem 3.3 (Equations 7 and 8). Each game uses the boxed code on its corresponding
line.
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A A Proof of Theorem 3.3

Proof. Let A be a PT adversary playing game type-UBERA
c,R,S,T,f (λ), and let Adv3.2

A (λ) denote its advantage
in Assumption 3.2. We provide PT adversaries B0 and C0 and a family of PT adversaries Bi such that

Advuber
c,R,S,T,f,A(λ) ≤ Advsgh

B0
(λ) + Advsgh

C0
(λ) + `Advsgh

Bi
(λ) + Adv3.2

A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B0, C0, and Bi for all i, 1 ≤ i ≤ `, such
that

Pr[type-UBERA
c,R,S,T,f (λ)− Pr[GA

0 (λ)] ≤ Advsgh
B0

(λ) (G1; µ = { }) (7)

Pr[GA
0 (λ)− Pr[GA

1 (λ)] ≤ Advsgh
C0

(λ) (H1; µ = {g1}) (8)

Pr[GA
i (λ)]− Pr[GA

i,1(λ)] ≤ Advsgh
Bi

(λ) (G1; µ = {g2, h1}) (9)

Pr[GA
i,1(λ)]− Pr[GA

i+1(λ)] = 0 (10)

Pr[GA
` (λ)] = Adv3.2

A (λ). (11)
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main GA
i (λ) / GA

i,1(λ) / GA
i+1(λ)

~x, ~x1, . . . , ~xi, r1, . . . , ri , xi+1,1, . . . , xi+1,c, ri+1
$←− Z/NZ

vk ← g
ρk(~x)
1 g

∑i

j=1
rjρk(~xj)

2 ∀k ∈ [r] // GA
i (λ)

vk ← g
ρk(~x)
1 g

ri+1ρk(~x)+
∑i

j=1
rjρk(~xj)

2 ∀k ∈ [r] // GA
i,1(λ)

vk ← g
ρk(~x)
1 g

∑i+1

j=1
rjρk(~xj)

2 ∀k ∈ [r] // GA
i+1(λ)

chal← e(g1, ĥ)f(~x)e(g2, h)

∑i

j=1
rjf(~xj)

// GA
i (λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)
ri+1f(~x)+

∑i

j=1
rjf(~xj)

// GA
i,1(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑i+1

j=1
rjf(~xj)

// GA
i+1(λ)

Figure 4: Games for the proof of Theorem 3.3 (Equations 9 and 10). Each game uses the boxed code on its corre-
sponding line.

We then have that

Advuber
c,R,S,T,f,A(λ) = Pr[type-UBERA

c,R,S,T,f (λ)]

= (Pr[type-UBERA
c,R,S,T,f (λ)]− Pr[GA

0 (λ)]) + (Pr[GA
0 (λ)]− Pr[GA

1 (λ)])

+

(∑̀
i=1

((Pr[GA
i (λ)]− Pr[GA

i,1(λ)]) + (Pr[GA
i,1(λ)]− Pr[GA

i+1(λ)]))

)
+ Pr[GA

` (λ)]

≤ Advsgh
B0

(λ) + Advsgh
C0

(λ) + `Advsgh
Bi

(λ) + Adv3.2
A (λ).

We also for simplicity let ρ0 = 1, so R = 〈ρ0, . . . , ρq〉.

Equation 7: type-UBERA
c,R,S,T,f (λ) to GA

0 (λ)

B0 behaves as follows:

B0(1λ, N,G,H,GT , e, w)

x1, . . . , xc
$←− Z/NZ;h, ĥ

$←− H
vk ← wρk(~x) ∀k ∈ [r]
yk ← hσk(~x) ∀k ∈ [s]
zk ← e(w, h)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(w, ĥ)f(~x)

return type-play(λ, inputs, chal)

If w
$←− G then this is identical to type-UBERA

c,R,S,T,f (λ). If instead w
$←− G1 then this is identical to GA

0 (λ).

Equation 8: GA
0 (λ) to GA

1 (λ)
C0 behaves as follows:
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C0(1λ, N,G,H,GT , e, g1, w)

x1, . . . , xc
$←− Z/NZ; ĥ

$←− H
vk ← g

ρk(~x)
1 ∀k ∈ [r]

yk ← wσk(~x) ∀k ∈ [s]
zk ← e(g1, w)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g1, ĥ)f(~x)

return type-play(λ, inputs, chal)

If w
$←− H then this is identical to GA

0 (λ). If instead w
$←− H1 then this is identical to GA

1 (λ).

Equation 9: GA
i (λ) to GA

i,1(λ)

Bi behaves as follows:

Bi(1λ, N,G,H,GT , e, g2, h1, w)

x1, . . . , xc, x1,1, . . . , x1,c, . . . , xi+1,1, . . . , xi+1,c
$←− Z/NZ; ĥ

$←− H

vk ← wρk(~x)g

∑i

j=1
rjρk(~xj)

2 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(w, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(w, ĥ)f(~x)e(g2, ĥ)

∑i

j=1
rjf(~xj)

return type-play(λ, inputs, chal)

If w = g1
$←− G1, then

vk ← g
ρk(~x)
1 g

∑i

j=1
rjρk(~xj)

2 ,

zk ← e(g1, h1)τk(~x), and

chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑i

j=1
rjf(~xj),

which are identical to the values in GA
i (λ). If instead w

$←− G, then w = g1g
ri+1

2 for uniformly distributed
g1 ∈ G1 and ri+1 ∈ Z/NZ, and

vk ← g
ρk(~x)
1 g

ri+1ρk(~x)+
∑i

j=1
rjρk(~xj)

2 ,

zk ← e(g1, h1)τk(~x), and

chal← e(g1, ĥ)f(~x)e(g2, ĥ)
ri+1f(~x)+

∑i

j=1
rjf(~xj),

which are identical to the values in GA
i,1(λ).

Equation 10: GA
i,1(λ) to GA

i+1(λ).

The value g

∑i

j=1
rjρk(~xj)

2 is independent from ~x and ~xi+1, as is the corresponding value using f(·). By ex-

tended parameter hiding with respect to R∪{f} and {hσ(·)1 }σ∈S∪T (which allows one to compute the necessary

components in H and GT ), the distributions over g
ρk(~x)
1 g

ri+1ρk(~x)
2 and g

ρk(~x)
1 g

ri+1ρk(~xi+1)
2 are identical for all

k ∈ [r], as are the corresponding values using f(·).

Equation 11.
This follows by definition, as the R, S, T , and f values have now changed to the form specified in Assump-
tion 3.2.

B A Proof of Theorem 4.3

Proof. Let A be a PT adversary playing game type-RandUBERA
c,R,S,T,f (λ), and let Adv4.2

A (λ) denote its
advantage in Assumption 4.2. We provide PT adversaries C0 and C1, and a family of PT adversaries Bi and
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main type-RandUBERA
c,R,S,T,f (λ) / GA

0,1(λ) / GA
0,2(λ) / GA

1 (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 4)

g
$←− G, g1

$←− G1, g2
$←− G2 \ {1}, g3

$←− G3 \ {1} , g4
$←− G4 // GA

0,1(λ)

h, ĥ
$←− H123, h1

$←− H1 \ {1} // GA
0,1(λ)

x1, . . . , xc, χ1, . . . , χr
$←− Z/NZ

vk ← gρk(~x)gχk

4 ∀k ∈ [r] // type-RandUBERA
c,R,S,T,f (λ)

vk ← g
ρk(~x)
123 gχk

4 ∀k ∈ [r] // GA
0,1(λ)

vk ← g
ρk(~x)
1 g

ρk(~x
′)

2 g
ρ(~x′′)
3 gχk

4 ∀k ∈ [r] // GA
0,2(λ)

vk ← g
ρk(~x)
1 g

ρk(~x
′)+r′′ρ(~x′′)

2 gχk

4 ∀k ∈ [r] // GA
1 (λ)

yk ← hσk(~x), yk ← h
σk(~x)
1 ∀k ∈ [s] // GA

0,1(λ)

zk ← e(g, h)τk(~x), zk ← e(g1, h1)τk(~x) ∀k ∈ [t] // GA
0,1(λ)

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g, ĥ)f(~x) // type-RandUBERA
c,R,S,T,f (λ)

chal← e(g123, ĥ)f(~x) // GA
0,1(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)f(~x
′)e(g3, ĥ)f(~x

′′) // GA
0,2(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)f(~x
′)+r′′f(~x′′) // GA

1 (λ)

return type-play(λ, inputs, chal)

Figure 5: Games for the proof of Theorem 4.3 (Equations 12-14). For the terms in G, each game uses the boxed
code on its corresponding line, and for the terms in H and GT the boxed game introduces the boxed code on its
corresponding line.

main GA
i (λ) / GA

i,1(λ) / GA
i,2(λ) / GA

i+1(λ)

~x, ~x1, . . . , ~x2i , ~x2i+1, . . . , ~x2i+1
$←− (Z/NZ)c, r1, . . . , r2i , r2i+1, . . . r2i+1

$←− Z/NZ

vk ← g
ρk(~x)
1 g

sumi[ρk]
2 gχk

4 ∀k ∈ [r] // GA
i (λ)

vk ← g
ρk(~x)
1 (g2g3)sumi[ρk]gχk

4 ∀k ∈ [r] // GA
i,1(λ)

vk ← g
ρk(~x)
1 g

sumi[ρk]
2 g

∑2i+1

j=2i+1
rjρk(~xj)

3 gχk

4 ∀k ∈ [r] // GA
i,2(λ)

vk ← g
ρk(~x)
1 g

sumi+1[ρk]
2 gχk

4 ∀k ∈ [r] // GA
i+1(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)sumi[f ] // GA
i (λ)

chal← e(g1, ĥ)f(~x)e(g2g3, ĥ)sumi[f ] // GA
i,1(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)sumi[f ]e(g3, ĥ)

∑2i+1

j=2i+1
rjf(~xj)

// GA
i,2(λ)

chal← e(g1, ĥ)f(~x)e(g2, ĥ)sumi+1[f ] // GA
i+1(λ)

Figure 6: Games for the proof of Theorem 4.3 (Equations 15-17), using sumi[ρk] =
∑2i

j=1
rjρk(~xj). Each game uses

the boxed code on its corresponding line.
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Bi+1 such that

Advuber
c,R,S,T,f,A(λ) ≤Advsgh

C0
(λ) + Advsgh

C1
(λ) + Adv4.2

A (λ)

+ log2(`)
(
Advsgh

Bi
(λ) + Advsgh

Bi+1
(λ)
)

for all λ ∈ N, from which the theorem follows. To do this, we build C0 and C1, and Bi and Bi+1 for all i,
1 ≤ i ≤ `, such that

Pr[type-RandUBERA
c,R,S,T,f (λ)]− Pr[GA

0,1(λ)] ≤ Advsgh
C0

(λ) (12)

(H1, H123;µ = {g4, h123})
Pr[GA

0,1(λ)− Pr[GA
0,2(λ)] = 0 (13)

Pr[GA
0,2(λ)]− Pr[GA

1 (λ)] ≤ Advsgh
C1

(λ) (14)

(G24, G34;µ = {g1, g24, g4, h1, h123})

Pr[GA
i (λ)]− Pr[GA

i,1(λ)] ≤ Advsgh
Bi

(λ) (15)

(G24, G34;µ = {g1, g24, g4, h1, h123})
Pr[GA

i,1(λ)]− Pr[GA
i,2(λ)] = 0 (16)

Pr[GA
i,2(λ)]− Pr[GA

i+1(λ)] ≤ Advsgh
Bi+1

(λ) (17)

(G24, G34;µ = {g1, g24, g4, h1, h123})

We then have that

Advuber
c,R,S,T,f,A(λ) = Pr[type-RandUBERA

c,R,S,T,f (λ)]

= (Pr[type-RandUBERA
c,R,S,T,f (λ)]− Pr[GA

0,1(λ)])

+ (Pr[GA
0,1(λ)]− Pr[GA

0,2(λ)]) + (Pr[GA
0,2(λ)]− Pr[GA

1 (λ)])

+

( log2(`)∑
i=1

((Pr[GA
i (λ)]− Pr[GA

i,1(λ)]) + (Pr[GA
i,1(λ)]− Pr[GA

i,2(λ)])

+ (Pr[GA
i,2(λ)]− Pr[GA

i+1(λ)])

)
+ Pr[GA

`+1(λ)]

≤ Advsgh
C0

(λ) + Advsgh
C1

(λ) + log2(`)(Advsgh
Bi

(λ) + Advsgh
Bi+1

(λ))

+ Adv4.2
A (λ).

To ease exposition, we use sumi[φ] to denote sumi[φ] =
∑2i

j=1 rjφ(~xj), and use ĥ as auxiliary input rather
than h123.

Equation 12: type-UBERA
c,R,S,T,f (λ) to GA

0,1(λ)

C0 behaves as follows (in attacking the first variant of subgroup hiding in Theorem 4.3, in which we transition
from H123 to H1 using µ = {g4, h123}):

C0(1λ, N,G,H,GT , e, g4, ĥ, w)

x1, . . . , xc, χ1, . . . , χr
$←− Z/NZ, g $←− G

vk ← gρk(~x)g4
χk ∀k ∈ [r]

yk ← wσk(~x) ∀k ∈ [s]
zk ← e(g, w)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g, ĥ)f(~x)

return type-play(λ, inputs, chal)

If w
$←− H123 this is identical to type-RandUBERA

c,R,S,T,f (λ), and if instead w
$←− H1 this is identical to GA

0,1(λ).
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Equation 13: GA
0,1(λ) to GA

0,2(λ).

By extended parameter hiding with respect to R∪{f}, and aux = {hσ(·)1 , g
ρ(·)
3 }ρ∈R∪{f},σ∈S∪T , and subgroups

(G1, G2), the distributions over g
ρk(~x)
1 g

ρk(~x)
2 g

ρk(~x)
3 and g

ρk(~x)
1 g

ρk(~x
′)

2 g
ρk(~x)
3 for all k ∈ [r] are identical, and

this similarly holds if we also consider the corresponding values using f(·). The extra h1 values allow us to

compute the necessary values in H and GT (and ĥ is independent of all of these values, as it depends only on
the description of H).

Similarly, by extended parameter hiding for R ∪ {f}, aux = {hσ(·)1 }σ∈S∪T , and subgroups (G1, G3), the

distributions over g
ρk(~x)
1 g

ρk(~x
′)

2 g
ρk(~x)
3 and g1

ρk(~x)g2
ρk(~x

′)g3
ρk(~x

′′) for all k ∈ [r] are identical, and this similarly

holds if we consider the corresponding values using f(·). (The g
ρk(~x

′)
2 values are independent of ~x and ~x′′, so

they can be sampled independently.) Again, the extra h1 values allow us to compute the necessary values in
H and GT .

Equation 14: GA
0,2(λ) to GA

1 (λ)

C1 behaves as follows (in attacking the second variant of subgroup hiding in Theorem 4.3, in which we

transition from G24 to G34 using µ = {g1, g24, g4, h1, ĥ}):

C1(1λ, N,G,H,GT , e, g1, g24, g4, h1, ĥ, w)

x1, x
′
1, x
′′
1 , . . . , xc, x

′
c, x
′′
c , χ1, . . . , χr

$←− Z/NZ
vk ← g

ρk(~x)
1 (g24)ρk(~x

′)wρk(~x
′′)gχk

4 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g1, ĥ)f(~x)e(g24, ĥ)f(~x
′)e(w, ĥ)f(~x

′′)

return type-play(λ, inputs, chal)

If w
$←− G34 then this is distributed identically to GA

0,2(λ). If instead w
$←− G24 then this is distributed identi-

cally to GA
1 (λ). (Note that in both games the extra g4 values in the vk can be absorbed into χk and the extra

g4 values in chal cancel out when paired with ĥ.)

Equation 15: GA
i (λ) to GA

i,1(λ)

Bi behaves as follows (in attacking the second variant of subgroup hiding in Theorem 4.3, in which we

transition from G24 to G34 using µ = {g1, g24, g4, h1, ĥ}):

Bi(1λ, N,G,H,GT , e, g1, g24, g4, h1, ĥ, w)

~x, ~x1, . . . , ~x2i
$←− (Z/NZ)c, r1, . . . r2i , χ1, . . . , χr

$←− Z/NZ
vk ← g

ρk(~x)
1 (g24w)sumi[ρk]gχk

4 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g1, ĥ)f(~x)e(g24w, ĥ)sumi[f ]

return type-play(λ, inputs, chal)

If w
$←− G24, then w = gχ

∗

2 gχ
′

4 for uniformly distributed χ∗, χ′ ∈ Z/NZ, and

vk ← g
ρk(~x)
1 (g2g

χ∗

2 g4g
χ′

4 )sumi[ρk]gχk

4 = g
ρk(~x)
1 g

χ∗∗sumi[ρk]
2 g

χ′k
4 and

chal← e(g1, ĥ)f(~x)e(g2g
χ∗

2 g4g
χ′

4 , ĥ)sumi[f ] = e(g1, ĥ)f(~x)e(gχ
∗∗

2 , ĥ)sumi[f ],

which are identical to the values in GA
i (λ). If instead w

$←− G34, then w = g3g
χ′

4 for uniformly distributed
g3 ∈ G3 and χ′ ∈ Z/NZ, and

vk ← g
ρk(~x)
1 (g2g

χ∗

3 g4g
χ′

4 )sumi[ρk]gχk

4 = g
ρk(~x)
1 (g2g3)sumi[ρk]g

χ′k
4 and

chal← e(g1, ĥ)f(~x)e(g2g3g4g
χ′

4 , ĥ)sumi[f ] = e(g1, ĥ)f(~x)e(g2g3, ĥ)sumi[f ],

which are identical to the values in GA
i,1(λ).
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Equation 16: GA
i,1(λ) to GA

i,2(λ).

Here we use extended parameter hiding with respect to the function class defined in Equation 5, aux = ∅, and

subgroups (G2, G3). The g
ρk(~x)
1 components and the yk and zk values all concern only ~x, which is independent

of all the ~xj , ~x
′
j and rj , r

′
j variables. Thus, extended parameter hiding tells us that the distributions over

vk ← g
ρk(~x)
1 g

sumi[ρk]
2 g

∑2i

i=1
rjρk(~x)

3 gχk

4 ,

chal← e(g1, ĥ)f(~x)e(g2, ĥ)sumi[f ]e(g3, ĥ)

∑2i

j=1
rjf(~xj)

and

vk ← g
ρk(~x)
1 g

sumi[ρk]
2 g

∑2i

i=1
r′jρk(~x

′)

3 gχk

4 ,

chal← e(g1, ĥ)f(~xj)e(g2, ĥ)sumi[f ]e(g3, ĥ)

∑2i

j=1
r′jf(~x

′
j)

are identical. Thus if we define r2i+j = r′j and ~x2i+j = ~x′j for j ∈ {1 . . . 2i} we have that GA
i,1(λ) and GA

i,2(λ)
are identically distributed.

Equation 17: GA
i,2(λ) to GA

i+1(λ).

Bi+1 behaves as follows (in attacking the second variant of subgroup hiding in Theorem 4.3, in which we

transition from G34 to G24 using µ = {g1, g24, g4, h1, ĥ}):

Bi+1(1λ, N,G,H,GT , e, g1, g24, g4, h1, ĥ, w)

~x, ~x1, . . . , ~xi+1
$←− (Z/NZ)c, r1, . . . ri+1, χ1, . . . , χr

$←− Z/NZ

vk ← g
ρk(~x)
1 (g24)sumi[ρk]w

∑2i+1

j=2i+1
rjρk(~xj)gχk

4 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

chal← e(g1, ĥ)f(~x)e(g24, ĥ)sumi[f ]e(w, ĥ)

∑2i+1

j=2i+1
rjf(~xj)

return type-play(λ, inputs, chal)

If w
$←− G3G4 then w = g3g

χ′

4 for uniformly distributed g3 ∈ G3 and χ′ ∈ Z/NZ, and

vk ← g
ρk(~x)
1 (g24)sumi[ρk](g3g

χ′

4 )

∑2i+1

j=2i+1
rjρk(~xj)gχk

4

= g
ρk(~x)
1 g

sumi[ρk]
2 g

∑2i+1

j=2i+1
rjρk(~xj)

3 g
χ′k
4 and

chal← e(g1, ĥ)f(~x)e(g24, ĥ)sumi[f ]e(g3g
χ′

4 , ĥ)

∑2i+1

j=2i
rjf(~xj)

= e(g1, ĥ)f(~x)e(g2, ĥ)sumi[f ]e(g3, ĥ)

∑2i+1

j=2i
rjf(~xj),

which are identical to the values in GA
i,2(λ). If instead w

$←− G2G4 then w = gχ
∗

2 gχ
′

4 for uniformly distributed
χ∗, χ′ ∈ Z/NZ, and

vk ← g
ρk(~x)
1 (g24)sumi[ρk](gχ

∗

2 gχ
′

4 )

∑2i+1

j=2i+1
rjρk(~xj)gχk

4

= g
ρk(~x)
1 g

sumi[ρk]
2 g

∑2i+1

j=2i+1
χ∗rjρk(~xj)

2 g
χ′k
4

= g
ρk(~x)
1 g

sumi+1[ρk]
2 g

χ′k
4 and

chal← e(g1, ĥ)f(~x)e(g24, ĥ)sumi[f ]e(gχ
∗

2 gχ
′

4 , ĥ)

∑2i+1

j=2i+1
rjf(~xj)

= e(g1, ĥ)f(~x)e(g2, ĥ)sumi[f ]e(g2, ĥ)

∑2i+1

j=2i
χ∗rjf(~xj)

= e(g1, ĥ)f(~x)e(g2, ĥ)sumi+1[f ],

which are identical to the values in GA
i+1(λ). (To see this, note that we can absorb the χ∗ into each of the rj ’s

for j > 2i.)
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C Dependency Graphs from Section 3.3

In this section, we include the rest of the dependency graphs for the converted schemes in Table 1. As a
reminder from Section 3.3 (in which we included the graph for the Boneh-Boyen-Goh HIBE), the shape of the
node indicates which side of the split each element goes on: triangle nodes are in G, inverted triangle nodes
are in H, and diamond nodes are replicated across G and H. Pairing equations are denoted by pn[i], where
n ∈ N indicates a particular usage of the pairing and i ∈ {0, 1} indicates the side of the pairing in which the
element is used. The nodes with an i included represent multiple (related) values; e.g., the node gi represents

{gαi}i.

g

gi p0[0] gc

C0vidi p1[0]

p2[0] Ci

p0[1]

p2[1]

p1[1]

Figure 7: Dependency graph for the BGW broadcast encryption scheme [13]. The public key consists of g, gi and vi,
and the secret key of di. Encryption uses the pairing p0 and produces C0 and Ci, and decryption uses the pairings p1
and p2. In the reduction, gi are derived from the q-BDHE assumption.

g

Bi g1 gc

Cgij

p1[0]

hi

skID

p0[0]

p4[0]p2[0] p3[0]

p4[1]

p0[1] p1[1] p2[1] p3[1]

Figure 8: Dependency graph for the ACF IB-KEM [2]. The master public key consists of g, gij, and g1. Secret key
derivation uses hi as the auxiliary information and skID as the secret key for identity ID. The pairing p0 and the
ciphertext C are used in the encapsulation process, decapsulation uses the pairings p1, p2, and p3, and the key is
calculated from the encapsulation using p4. In the reduction, Bi and gc are derived from the q-wBDHI assumption.
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g

ga gi

hi

msk

L C'

gc p0[1] p1[0]

K

Ci Kx

p5[0]p5[1] p0[0] p1[1]

p2[1] p3[1]

p4[1]

p2[0] p4[0]

p3[0]

Figure 9: Dependency graph for the Waters ABE scheme [41]. The public key consists of g, ga, and hi, and is computed
using the pairing p0. msk denotes the master secret key and the secret key consists of K, Kx, and L. Encryption uses
the pairing p1 and produces C′ and Ci, and decryption uses the pairings p2, p3, and p4. In the reduction, gi and gc
are derived from the q-BDHE assumption, and the pairing p5 is used to simulate the pairing p0.
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