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Abstract

We consider a temperature driven first-order phase transition de-

scribing the coexistence of q ordered low-temperature phases and one

disordered high-temperature phase at the infinite volume transition

temperature T0. Analysing the exponential corrections to the usual

heuristic formula of the periodic partition function in a box of volume

V, Zper =
∑
m exp(−βfmV ), where β = 1/kBT and fm is the (meta-

stable) free energy of the phase m, we propose several definitions of

a finite volume transition temperature T0(V ) which involve only ex-

ponential corrections with respect to T0. We test our propositions in

the d = 2 Potts model for q = 5, 8 and 10 by means of Monte Carlo

simulations, using the single cluster update procedure.
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In the idealized infinite volume limit, first-order phase transitions are

characterized by discontinuities in the first derivative of the free energy, i.

e. , by discontinuities of an order parameter like the internal energy or the

magnetization. As a consequence, the specific heat or the susceptibility show

δ-function singularities at the transition. In a finite volume V , however, the

singularities are smoothed out and the derivative of the order parameter has

a finite peak near the infinite volume transition point.

If the volume is cubic or nearly cubic, the width of the peak is proportional

to 1/V , and the maximum of this peak is shifted by an amount O(V −α) with

respect to the actual infinite volume transition, where α > 0 depends on the

model and the type of boundary conditions in consideration [1]-[6].

Another definition of a finite volume transition point involves the Binder

parameter [7], BV = 1 − 〈E4〉V /3〈E2〉2V , where 〈·〉V denotes expectations

in the volume V and E is the energy. In the infinite volume limit, B has a

discrete minimum Bmin < 2/3 at the transition point, while B = 2/3 away

from the transition. In a finite volume the location of the minimum is again

shifted by an amount proportional to V −α if the volume is approximately

cubic [8]. For models describing the coexistence of finitely many phases at

the transition point [9], these shifts are typically of the order O(V −1) if one

consideres periodic boundary conditions. Finite-size scaling using different

volumes may improve the error, but it always is proportional O(V −α) for

some α <∞. But a precise knowledge of the transition point is often desir-

able since many quantities of physical interest are just defined at the a priory

unknown) transition point. It therefore seems desirable to find definitions of

a finite volume transition point which involve no power-law corrections at

all.
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In fact, such a definition has already been given in ref. [10] and [11],

see also ref. [12]. It starts from the observation that the periodic partition

function of a model describing the coexistence of q + 1 phases is given by

Zper(V, β) =

( q∑
m=0

e−βfm(β)V

)(
1 +O

(
V e−L/L0

))
, (1)

where L0 <∞ is a constant, L is the diameter of V , and fm(β) is some sort

of meta-stable free energy of the phase m. It is equal to the free energy f(β)

if m is stable and strictly larger than f(β) if m is unstable. As a consequence

N(β) := lim
V→∞

Zper(V, β)eβf(β)V (2)

is equal to the number of stable phases at the inverse temperature β [13].

Since N(β) has a discrete maximum at the transition point, it seems natural

to define a finite volume transition point βV/V as the point where a suitable

finite-size approximation to N(β), say

N(V1, V2, β) =

[
Zper(V1, β)α

Zper(V2, β)

] 1
α−1

(3)

is maximal. Here α = V2/V1. Due to the bound (1) (and similar bounds

for derivatives, see ref. [10] and [11] for details) this definition leads only to

exponentially small shifts with respect to the infinite volume transition point.

The theoretical methods of ref. [10] and [11] do not allow, however, to

calculate the constants in the above asymptotic bound (1). It is therefore not

clear a priory if the above criterion is of any practical use in the numerical

determination of the transition point [14]. The goal of this paper is to test

the above criterion in the two-dimensional q states Potts model [15], which

shows a (temperature driven) first-order transition for q > 4. We will also

discuss other definitions of finite-size transition points which involve only

exponentially small systematic corrections.
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For the convenience of the reader we start with a heuristic deriva-

tion of the bound (1) in the context of a temperature driven transition

describing the coexistence of q ordered low-temperature and one disor-

dered high-temperature phase at the infinite volume transition temperature

T0 = 1/kBβ0, assuming that all string tensions are non zero and that all

phases have a finite correlation length at T0.

A typical configuration contributing to Zper then consists of regions

Vm, m = 0, . . . , q, corresponding to small perturbations of the disordered

(m = 0) or ordered phases (m = 1, . . . q), and ”domain walls” separating

these regions. We distinguish two types of configurations: those with do-

main walls which wind around the torus (the corresponding sum will be

denoted by Ztunnel(V, β)), and those which do not contain such domain walls.

The sum over the second type of configurations may then be written as a

sum of q + 1 terms Zm(V, β), each describing a gas of excitations immersed

in the m’th phase, and

Zper(V, β) = Ztunnel(V, β) +
q∑

m=0

Zm(V, β). (4)

Assuming that domain walls W of size |W | are suppressed like e−c|W |

(which is plausible as long as all string tensions are non zero) one may bound

Ztunnel by e−βf(β)VO(V e−cL), where L is the diameter of V and the preexpo-

nential factor V in the above bound counts for the different possibilities to

locate a domain wall in V .

In order to define fm(β) we follow an idea originally appearing in ref. [16]

and introduce truncated partition functions Z trunc
m (V, β) where all configura-

tions containing domain walls with diameter larger than the size, L(m)
c (β), of

a critical droplett in the corresponding droplett model are supressed. Since
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L(m)
c (β) = ∞ if m is stable, while L(m)

c (β) ∼ |β − β0|−1 if m is unstable,

the corresponding free energies, fm(β), are equal to f(β) if m is stable and

strictly larger than f(β) if m is unstable.

Let us now assume that |β − β0| is so small that the diameter L of

V is smaller than L(m)
c (β) for all phases m (in the context considered

here, where |β − β0| ≤ O(V −1) � L−1 this is no restriction at all, since

Lc(β) ∼ |β − β0|−1). Then all phases of the model behave as if they

were stable (in the sense that large domain walls are suppressed), and

Zm(V, β) = Z trunc
m (V, β). Since Zm is defined on a torus, and since a torus

has neither corners, nor edges or boundaries, logZm(V, β) contains no surface

corrections and | logZm(V, β)+βfm(β)V |may be bounded by O
(
V e−L/L

(m)
)
,

where L(m) is of the order of the correlation length of the phase m. Com-

bining this bound with the above bound for Ztunnel we get (1), provided

|β−β0|L < 1 (actually, the bound (1) remains true for |β−β0|L > 1 as well,

see ref. [10] for details).

At this point we want to stress that the bound (1) is only a bound

and does not imply that the exponential corrections do actually behave like

V e−L/L0 . As an illustration we consider the leading configurations contribut-

ing to Ztunnel in d = 2. They consist of two parallel domain walls in one

of the coordinate directions, both closed by periodicity. If we neglect the

interaction between them, each of them should behave like a closed random

walk, leading to an effective weight
(
L× L−1/2e−cL

)2
∼ Le−2cL, where the

factor L counts for the translation invariance perpendicular to the chosen

coordinate direction.

Unfortunately, the numerical determination of βV/V requires simulations

on two different lattices. We therefore looked for another definition of a
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finite-size transition point which requires data from one lattice only. It is

based on the fact that the partition function of a statistical system may be

written as

Z =
∑

configurations

e−βE =
∑
E

N(E)e−βE, (5)

where N(E) is the number of configurations with the energy E. In practice,

by recording energy histograms, one measures the closely related probability

distribution Pβ(E) = Z−1N(E)e−βE, which, around a first-order transition,

has the typical double-peak form displayed for three characteristic tempera-

tures in fig. 1. At the infinite volume transition point all free energies fm(β)

are equal, so that

q∑
m=1

Zm(V, β) = qZ0(V, β), (6)

apart from exponentially small corrections. A natural definition of a finite

volume transition point βW is thus the point where the ratio of the total

weight of the ordered phases to the weight of the disordered phase approaches

q,

R(V, β) ≡
∑
E<E0

Pβ(E)/
∑
E≥E0

Pβ(E) ≡ Wo/Wd
β=βW= q. (7)

Here E0 is defined as the energy at the minimum between the two peaks

at the temperature where both peaks of Pβ(E) have equal height. Clearly,

also other definitions of E0 would be reasonable as well, as for example the

internal energy at the temperature where the specific heat is maximal. Since

it is expected that the relativ height of the minimum between the two peaks

decreases like e−2cLd−1
as L→∞, all these definitions do in fact only differ by

exponentially small errors. It is therefore a matter of practical convenience
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to choose E0. Note that in (7) we have assumed that the number of ordered

phases, q, is known by general arguments. If this is not the case, one may

use the crossing points βW/W satisfying R
(
V1, βW/W

)
= R

(
V2, βW/W

)
as

estimates for β0. This, of course, requires again the simulation on two lattices.

Clearly, all these considerations apply to field driven first-order transitions

as well. The point βV/V , e. g. should then be replaced by the position hV/V

of the maximum of the ratio (3) as a function of the field h. And instead of

energy histograms one should use magnetization histograms.

We have tested our propositions by Monte Carlo simulations of the two-

dimensional q-state Potts model with q = 5, 8, and 10 [15] on square lattices

with the periodic boundary condition. The Potts models for q > 4 are exactly

known [17, 15] to show a temperature driven first-order phase transition at

β0 = log
(
1 +
√
q
)
. To update the spin configurations we have used the

cluster algorithm [18] in its single-cluster variant [19] which is very successful

in reducing critical slowing down near continuous phase transitions. At the

first-order transitions considered here, however, the overall gain in CPU time

as compared to the standard Metropolis algorithm turned out to be only quite

modest [20].

For each q and lattice size, we have first performed one relatively short

simulation at some β̂ near the transition point [21] and recorded the energy

histogram Pβ̂(E). Using the relation

Pβ(E) = e−(β−β̂)EPβ̂(E)/
∑
E

e−(β−β̂)EPβ̂(E) (8)

this allows in principle to calculate the energy distribution and hence ex-

pectation values at any inverse temperature β [22]. In practice statistical

errors limit the actual range of β to |β − β̂|E = O(1), but this is still wide
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enough to get an estimate of the specific-heat maximum, βCmax, and the

Binder-parameter minimum, βBmin. We have then performed three rather

long simulations at β0, βCmax, and βBmin, and recorded again the energy his-

tograms. Their typical shapes can be inspected in Fig. 1 for the case q = 8

and V = 57×57. For non-trivial models with unknown β0 one can use eq. (7)

to get a first rough estimate of the transition point from the short run. The

run-time trun of the long simulations is of the order (3− 5)× 106, where trun

is defined (in units comparable to Metropolis sweeps) as (〈C〉/V )× number

of cluster steps, with 〈C〉 denoting the average cluster size. Finally, basically

applying eq. (8), we have combined the three histograms at fixed q and V

to a single, optimized histogram [23], which was then used for all further

analyses.

In Fig. 2 (a) - (c) we plot the positions of the specific-heat maximum

and Binder-parameter minimum for q = 5, 8, and 10 and various lattice

sizes. Also shown are the infinite volume transition points and the leading

1/V corrections, which are both exactly known for 2D Potts models. In non-

trivial models the infinite volume transition point would have to be estimated

from linear extrapolations in 1/V . As can be seen in Fig. 2, in particular

for weak first-order phase transitions (small q) this can be quite misleading.

Note that the next correction term ∝ (1/V )2 is extremely small (at least

for 2D Potts models) and does not improve the agreement with the data.

Rather, it even goes in the wrong direction. In view of our earlier discussion

of exponential corrections this is not surprising at all. In fact, allowing also

terms ∝ e−L/L0 besides the 1/V corrections, and performing fits to the data,

we find the interpolating dashed curves in Fig. 2.

Knowing the (optimized) probability distributions Pβ(E), also the posi-
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tions βV/V of the maxima of N (V1, V2, β) in eq. (3) are readily determined.

We have chosen V1 and V2 to ensure that α = V2/V1 is roughly constant

(≈ 1.6). As is demonstrated in Fig. 2, the resulting points βV/V approach β0

quite rapidly from below, thus confirming the theoretical expectations.

Our second criterion in eq. (7) is only little more laborious to implement.

First, using relation (8) we vary the temperature until both peaks have equal

height and determine the energy E0 at the minimum between them. A good

starting point for this procedure is βCmax (see Fig. 1). Using again (8), we

finally adjust β untilR(V, βW ) = q. In Fig. 2 we see that the transition points

βW are even closer to β0 then the corresponding points βV/V . Notice that

on the larger lattices, in order to disentangle the small systematic deviations

of the order |βW − β0| ≈ 10−4 from statistical errors, we would need much

higher statistics.

In summary, we have proposed and successfully tested two simple crite-

rions for locating first-order transition points in Monte Carlo simulations on

finite periodic lattices that have only exponentially small corrections with

respect to the infinite volume limit.
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Figure Headings

Fig. 1 The typical double-peak form of the probability distribution

Pβ(E) at (a) β0, (b) βCmax, and (c) βBmin.

Fig. 2 The finite volume transition points βV/V (4) and βW (2),

resulting from the new criterions proposed in this note. For comparison, we

also show βCmax (•) and βBmin (◦). The solid straight lines are the exactly

known 1/V corrections corresponding to • and ◦, and the dashed, almost

interpolating curves show exponential fits to the data. The long dashed

horizontal lines indicate the exact transition point β0.
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