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Abstract

Heckerman (1993) defined causal indepen-
dence in terms of a set of temporal condi-
tional independence statements. These state-
ments formalized certain types of causal in-
teraction where (1) the effect is independent
of the order that causes are introduced and
(2) the impact of a single cause on the ef-
fect does not depend on what other causes
have previously been applied. In this paper,
we introduce an equivalent atemporal char-
acterization of causal independence based on
a functional representation of the relation-
ship between causes and the effect. In this
representation, the interaction between caus-
es and effect can be written as a nested de-
composition of functions. Causal indepen-
dence can be exploited by representing this
decomposition in the belief network, result-
ing in representations that are more efficient
for inference than general causal models. We
present empirical results showing the benefit-
s of a causal-independence representation for
belief-network inference.

1 Introduction

Belief networks are often used as a modeling tool when
there is uncertainty in the interaction between a set of
causes and effects. A typical interaction between sev-
eral causes and a single effect can be modeled with
the belief network shown in Figure 1. In the figure,
the variable e represents an effect and the variables
c1, . . . , cn represent n causes of that effect. For bina-
ry discrete variables, this representation requires 2n

independent parameters to be specified. Consequent-
ly, the representation imposes intractable demands on
both knowledge acquisition and inference.

In response to the intractability of knowledge acqui-
sition, prototypical interactions such as the noisy-or
model [?,?] have been developed. These models allow
one to specify n parameters to generate the condition-
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Figure 1: A belief network for multiple causes and a
single effect.

al probability table for a variable e as shown in Figure
1. Because the full table is used to characterize the
relationship in the belief network, however, inference
remains intractable.

Last year at this conference, Heckerman defined
causal independence in terms of temporal conditional-
independence constraints on a set of variables [?].
These statements formalized certain types of causal
interaction where (1) the effect is independent of the
order that causes are introduced, and (2) the impact
of a single cause on the effect does not depend on what
other causes have previously been applied. The pre-
vious paper demonstrated how this definition general-
izes the notion of a noisy-or and noisy-adder model,
and indicated how a belief network representation of
causal independence can be used to increase the speed
of inference.

In this paper, we transform the previous temporal def-
inition into an equivalent atemporal representation. In
doing so, we find that causal independence is a special
case of a generalization of the noisy-or developed by
Srinivas (1993). It also allows us to define several class-
es of interaction models in terms of expressiveness and
efficiency. Finally, we present some empirical results
regarding the storage and inference savings associated
with application of causal independence to real-world
networks.

2 Temporal Definition of Causal
Independence

In the temporal definition of causal independence, we
associate a set of variables indexed by time with each
cause and with the effect. We use cjt to denote the
variable associated with cause cj at time t, and et to
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Figure 2: A temporal belief-network representation of
causal independence.

denote the variable associated with the effect at time t.
For all times t and t0, we require the variables cjt and
cjt0 to have the same set of (possibly infinite) states.

Under these conditions, we say that c1, . . . , cn are
causally independent with respect to e if the set of
conditional-independent assertions
∀t < t0, cj (et0 ⊥ c1t, . . . , cj−1,t, cj+1,t, . . . , cnt |

et, cjt, cjt0 , ckt = ckt0 for k 6= j)
(1)

hold, where (X ⊥ Y |Z) denotes the conditional-
independence assertion “the sets of variables X and
Y are independent, given Z.” Note that Assertion 1
is somewhat unusual, in that independence is con-
ditioned, in part, on the knowledge that the states
of variables are equal, but otherwise undetermined
(ckt = ckt0 for k 6= j). Assertion 1 states that if cause
cj makes a transition from one state to another be-
tween t and t0, and if no other cause makes a tran-
sition during this time interval, then the probability
distribution over the effect at time t0 depends only on
the state of the effect at time t and on the transition
made by cj ; the distribution does not depend on the
other causation variables. Note that time is treated as
an ordinal quantity in this definition and there is no
need to have a continuous or discrete-interval model
of time.

We can derive a belief-network representation of causal
independence from this definition. First, for each
cause, designate some state of its associated variables
to be distinguished. For most real-world models, this
state will be the one that has no bearing on the effect—
that is, the “off” state—but we do not require this as-
sociation. Second, let σ be an ordering of the variables
{c1, . . . , cn}—we use cσi to denote the ith variable in
the ordering. Construct a belief network consisting
of nodes cσ1, . . . , cσn, and e0, eσ1 . . . , eσn, as shown in
Figure 2. In this belief network, node e0 represents the
effect when all causes take on their distinguished state.
Node cσ1 represents the state of cause cσ1 after it has
made a transition from its distinguished state (a tran-
sition may be the trivial transition, wherein the cause
maintains its distinguished state). Node eσ1 represents
the effect after only cσ1 has made the transition. In
general, node cσi represents the state of cause cσi after
it has made a (possibly trivial) transition from its dis-
tinguished state. Node eσi represents the effect after
causes cσ1, . . . , cσi have made their transitions. In par-
ticular, node eσn represents the effect after all causes
have made transitions. Thus, node eσn corresponds to
node e in Figure 1.

The conditional independencies represented in the be-
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Figure 3: Two representations of causal independence
that are equivalent to the representation in Figure 2.

lief network of Figure 2 follow from the definition of
causal independence. Conversely, given n! belief net-
works of the form in Figure 2—one network for each
possible ordering of the n variables in the domain—we
obtain the temporal definition of causal independence.

In terms of the number of parameter assessment for
models of discrete-valued variables, causal indepen-
dence yields a significant economy. As noted previous-
ly, the general multiple–cause interaction illustrated
in Figure 1 requires 2n separate assessments for bina-
ry variables: one parameter for each combination of
the states of the parents. In contrast, the causal in-
dependence interaction illustrated in Figure 2 requires
only 4n + 1 assessments: four parameters for each n-
ode eσi plus a single parameter for e0. In Section 5
we discuss additional issues related to assessment of
causal independence models.

3 An Atemporal Representation of
Causal Independence

In this section, we transform the temporal definition
into an atemporal form. The transformation is based
on the observation that we can represent the belief
network in Figure 2 as the belief network shown in
Figure 3a. The double ovals represent deterministic
nodes—nodes whose values are a deterministic func-
tion of their parents. Each node ≤σi is a dummy n-
ode that encodes the uncertainty in the relationship-
s among eσi and its parents as described in Druzdel
and Simon (1993) or, alternatively, Heckerman and
Shachter (1994). We can think of the node ≤σi as rep-
resenting the causal mechanism that mediates the in-
teraction between the parents of eσi and eσi itself [?],
although we do not require this interpretation here.
The definition presented in this section is atemporal
in that it relies only on specification of a functional
decomposition of the interaction, with no explicit rep-
resentation of time.

Let variable e0σi represent e when all cj 6= cσi take
on their distinguished variables. So, for example,
e0σ1 = eσ1. As we show in the following theorem, it
turns out that if the relationships in Figure 3a are true
for all orderings σ, then the relationships in Figure 3b
are also true for all orderings, provided e0 is certain
(i.e., a constant). Note that if e0 is not a constant,
we can introduce a dummy cause xl that is always in-
stantiated to a nondistinguished value. In this case,
we can express the uncertainty in e0 as uncertainty in
e0σl, leaving e0 a constant in the mathematical formal-



ism. Henrion (1987) calls xl a base or leak cause for
e. The following theorem establishes the existence of
a set of functions fσi and gσi that satisfy the temporal
definition of causal independence when expressed in a
diagram such as Figure 3b.

Theorem 1 If e0 is a constant, then a set of variables
{c1, . . . , cn} are causally independent with respect to
effect e if and only if for all orderings σ, there exists
function gσ1 such that

eσ1 ≡ e0σ1 = gσ1(cσ1, ≤σ1) (2)

and, for i = 2, . . . , n, there exist functions fσi and gσi

such that
eσi = fσi(e0σi, eσ,i−1) (3)

e0σi = gσi(ci, ≤σi) (4)

Proof: The ⇐ portion of the theorem follows directly
by reading the conditional independence statements
associated with causal independence directly from the
belief networks associated with each ordering σ.

We prove ⇒ by induction on n, the number of caus-
es. When n = 1, the theorem follows directly from
the transformation described in Figure 3a. For the
induction step, let us suppose that {c1, . . . , cn+1} are
causally independent with respect to effect e. Let σ be
the ordering where cσi = ci, i = 1, . . . , n+1. Applying
the theorem to the first n causes, we obtain the belief
network in Figure 4a. In particular, we have

e = eσ,n+1 = hσ(cn+1, eσn, ≤n+1) (5)

for some deterministic function hσ. Now, let ρ be
the ordering where cρ1 = cn+1 and cρ,i+1 = ci, i =
1, . . . , n. From the assumption of causal independence,
we obtain the belief network in Figure 4b. Specifically,
we get

eρ1 = e0n+1 = gρ1(cn+1, ≤n+1) (6)
Also, collapsing the functions between eρ1 = e0n+1 and
eρ,n+1 in Figure 4b, we obtain

e = eρ,n+1 = hρ(e0n+1, c1, . . . , cn, ≤1, . . . , ≤n) (7)

for some deterministic function hρ. Combining Equa-
tions 5 and 7, we get

e = hσ(cn+1, eσn, ≤n+1)
= hρ(e0n+1, c1, . . . , cn, ≤1, . . . , ≤n) (8)

All variables ci and ≤i, i = 1, . . . , n + 1, however, are
logically independent (they are also probabilistically
independent, but we do not need this fact). There-
fore, e0n+1 must summarize the effects of cn+1 and
≤n+1 in the determination of e, and—similarly—eσn

must summarize the effects of c1, . . . , cn, ≤1, . . . , ≤n in
the determination of e. Consequently, there must exist
some deterministic function h such that

e = eσ,n+1 = eρ,n+1 = h(e0n+1, eσn) (9)
Identifying h in Equation 9 with fσ,n+1 and gρ1 in
Equation 6 with gσ,n+1, we obtain Equations 2 through
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Figure 4: Two belief networks for the proof of Theo-
rem 1.
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Figure 5: A belief network representation of a gener-
alized noisy-or model .

3. Repeating this argument for every initial ordering
σ, we complete the induction step. ✷

An immediate consequence of Theorem 1 is that we
can write e as a nested set of two-argument functions
for any ordering σ:

e = fσn

°
e0σn, fσ,n−1

°
e0σ,n−1, . . . fσ2 (e0σ2, e

0
σ1)

¢¢
(10)

Collapsing these nested functions into a single function
f , we obtain

e = f(e0σ1, . . . , e
0
σn)

We say that Equation 10 is a nested decomposition for
f . In this formulation the sequence of functions that
decompose the overall relationship between e and the
e0σi depends on the ordering chosen, and each function
fσi may be different. If functions fσn, i = 2, . . . , n are
equal to some function f∗ for all σ, however, it follows
that the function f∗ is both commutative and associa-
tive. We find that causal independence relations that
are useful in practice have this property, such as the
noisy-or and noisy-adder models described in Hecker-
man (1993).

From our discussion, we see that causal independence
is a special case of Srinivas’ generalization of the noisy-
or model. Srinivas’ model is equivalent to the be-
lief network in Figure 5 where the function f is ar-
bitrary. In particular, causal independence includes
the assumption that f has a nested decomposition for
any ordering of the causes. Indeed, there are many
functions f that are not admitted by Heckerman’s def-
inition. For example, suppose e is binary. Although
both Srinivas’ model and causal independence admit
a function f that is true if and only if e0σi is true for
exactly one value of i, only Srinivas’ model permits
the function f that is true if and only if e0σi is true for
exactly two values of i, because this function f is not
decomposable.

Causal independence also imposes restrictions on the
probability distributions for e0σi given cσi and on the
individual functions fσi. In particular, given the def-
initions of e0 (a constant) and e0σi, it follows that
e0σi = e0 when cσi takes on its distinguished value.
That is,

p(e0σi = e0|cσi = ∗) = 1.0



where ∗ is the distinguished value for cσi. Further-
more, suppose all variables preceding cσi take on their
distinguished value. Then, e0σi = eσi. In this situ-
ation, however, eσ,i−1 = e0, by definition of eσ,i−1.
Therefore, from Equation 3, it follows that

eσi = fσi(eσi, e0)

That is, e0 is the identity element of each function
fσi. Thus, for the binary discrete case, the atemporal
version of causal independence requires assessment of
only n parameters corresponding to p(e0σi = e0|cσi 6=
∗) for a network with all binary variables, as well as
the individual functions fσi.

It is worth noting that linear models are a special case
of causal independence. In a Gaussian linear model we
have

e = a +
nX

i=1

bici + ε

where a and the bi are constants and ε has a normal
distribution with mean zero and variance v (written
N(0, v)). We can express this in terms of the atempo-
ral model by letting

e0 = a

gi(ci, ≤i) = bici, i = 1, . . . , n
gn+1(cn+1, ≤n+1) = ≤n+1

≤n+1 ∼ N(0, v)

and by identifying each function fσi with +.

4 Classes of Causal Interaction

Several types of causal interaction have been proposed
in the literature and in this paper. These various class-
es of causal interaction appear in the following list,
ordered from the more general to more specific.

1. General multiple cause interaction: Causal
interactions modeled with a belief network as
shown in Figure 1.

2. Independence of causal inputs: Described by
Srinivas (1993), and can be modeled in the belief
network shown in Figure 5. There is no restriction
of the form of f .

3. Singly decomposable causal independence
interaction: There exists some ordering σ and
set of functions fσi, such that Equation 10 holds,
as illustrated in Figure 3b.

4. Fully decomposable causal independence
interaction: Equation 10 and Figure 3b holds
for any ordering σ.

5. Fully decomposable causal independence
with equal functions: The previous class
with the added condition that functions fσn, i =
2, . . . , n are equal to some function f∗ for all σ,
such as or or +. This class includes the noisy-or
model.

6. Linear Gaussian Models: A special case of
class 5 with continuous-valued causes and effects
with a single Gaussian noisy input representing
the variance, deterministic contributions for the
other causes, and a single function f∗ as +.

5 Causal Independence and
Assessment

A major motivation for these prototypical interaction
models has been to ease the task of knowledge acquisi-
tion for networks where nodes may have many parents.
Any formalism at least as specific as that described in
class 2 will have economy of knowledge acquisition,
since we obtain an exponential savings in parameter
assessments. Each more specific class requires even
fewer assessments. The appropriateness of each class
depends on the particular application. For example, a
digital circuit with multiple inputs and a single out-
put can be modeled with a function f as illustrated in
Figure 5, but the function f may not be fully or singly
decomposable.

Within the class of causal independent models one has
a choice of using the temporal or the atemporal defini-
tion of causal independence for assessment. The pre-
ferred definition depends on the expert and the domain
being modeled. For example, in an application involv-
ing the effect of drugs on white blood cell counts, the
temporal version of causal independence was a more
natural method for interacting with the expert [?]. On
the other hand, in a number of hardware troubleshoot-
ing applications [?], the atemporal version of causal in-
dependence (class 5) has been most effective. In these
cases, one is typically modeling a device that will fail
if any one of it’s components fail, leading naturally to
a fully decomposable or functional model. In general,
we find that both definitions are useful in dealing with
experts and we can switch between one and the other
as needed.

6 Causal Independence and Inference

Each more specific class is associated with no worse
and usually increased inference-algorithm efficiency.
For example, if the function f is decomposable in some
ordering—that is as described in class 3—then we can
obtain an exponential savings in storage when com-
pared to classes 1 or 2. The effect of the decompo-
sition is to reduce the number of predecessors of the
effect node. In addition, if the interactions in a model
are causally independent, as in class 4, 5 or 6, then
we can rearrange the belief network expression of the
decomposition to improve inference further.

As an example of rearranging the belief network, con-
sider the multiply-connected belief network in Fig-
ure 6a. If we transform the belief network using the
ordering (c1, c2, c3), we obtain the belief network in
Figure 6b. In contrast, if we transform the belief net-
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Figure 6: (a) A multiply connected belief network.
(b,c) Two equivalent transformations of the belief net-
work in (a). The network in (c) has a smaller undi-
rected cycle than (b).

work using the ordering (c2, c3, c1), then we obtain
the belief network in Figure 6c. Inference using exact
belief-network algorithms (e.g., junction-tree propaga-
tion [?] or arc reversal [?]) may be less efficient in the
belief network of Figure 6b than in the belief network
of Figure 6c, because there is a larger cycle in the for-
mer network. A larger cycle is not necessarily worse
for inference in all algorithms, and the desirability of
different topologies depends on the specific inference
technique being used.

In the following sections, we quantify savings associat-
ed with causal independence due to (1) reducing the
size of the predecessor sets and hence clique sizes and
(2) rearranging network topologies.

6.1 Clique Size Reduction

Although it is clear that there is an exponential sav-
ings in storage when using causal independence for a
single node, it is less clear what the savings in inference
time will be for more general belief networks. Here, we
compare state space sizes for networks that use class 1
and class 2 representations of cause-and-effect versus
the same models converted to models in class 3 or bet-
ter. Table 1 shows the size of the maximum clique and
the sum of the clique sizes for each network. These fig-
ures are proportional to the runtime of clustering style
algorithms on belief networks [?].

The BN2 network analyzed in Table 1 is a hypothetical
network consisting of ten causes and four effects. Each
effect has four causes, and two of the causes are com-
mon causes of each effect. With binary nodes, this case
shows no savings using causal independence, due to the
small state spaces and the small number of parents. In
the BN2(5) network, each node was assumed to have
5 outcomes. Here, we obtain a factor of ten savings
using causal independence. The Multi-Connected net-
work is an 32 node medical belief network, where most
nodes have 2 or 3 states. There is one node in the stan-
dard version of the net that has 11 parents. This node
and its parents form the largest clique with size 8192
under the standard formulation. Using a class 3 mod-
el, the largest clique size becomes 1536; and we obtain
a factor of 3 savings in total clique size. The Singly
Connected network represents a 27 node hardware di-
agnosis problem. The network has very few cycles and
mostly binary nodes; and there are at most three par-
ents for any causal node. In this case, the additional
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Figure 7: The frequency distribution of clique sizes for
the BN2(5) network under different orderings.

nodes created in the decomposition result in cliques
that were slightly larger than those obtained with the
original network. Overall, these results indicate that
use of causal independence can have substantial ben-
efits in real-world modeling tasks, especially when a
node has many parents and when causes and effects
have many outcomes.

In each of these cases, we used a default ordering for
the expansion of the causal independent effect nodes
to determine state space size. In the next section, we
examine what gains can be expected from searching for
the best orderings for expansion, taking into account
the overall topology of the graph.

6.2 Evaluating Alternate Orderings

Our original hypothesis was that the different order-
ings of the causal independence expansions of effect
nodes could have a large effect on inference. The pri-
mary effect of different orderings is to change the size
of undirected loops in the original belief network, as
illustrated in Figure 6. Under the presumption that
large loops are worse than short loops for inference (as
has been reported previously), we believed that expan-
sion ordering could have a large effect on clique size
and hence inference. It has become apparent, howev-
er, that loop size is not a critical determinant, at least
for clustering-style algorithms.

In order to characterize the potential savings, we sam-
pled the BN2 style network for different orderings. The
distribution of clique sizes for a series of random or-
derings of causal independence expansions is shown
in Figure 7. Note that potential gains are relative-
ly modest: The cliques with the smallest size is only
slightly smaller than average. We have developed a
search algorithm that combines the process of clipping
the diagram with choosing the order of expansion of
the causal independence nodes. This algorithm uses
heuristics during clique formation to guide the search
for good expansions. On the basis of the empirical da-
ta, it is likely that a naive ordering will do almost as
well.

7 Conclusions

In this paper we have developed an atemporal charac-
terization of causal independence. The characteriza-
tion is based on a functional representation of the in-
teraction between causes and effects that can be writ-
ten as a nested decomposition of functions. We have
shown that when causal independence holds, we easi-



Classes 1 and 2 Class 3
Belief Network Largest Clique Sum of Cliques Largest Clique Sum of Cliques
BN2(binary) 32 128 8 160

BN2(5) 3125 12500 125 1250
Multi-Connected 8192 15068 1536 4966
Singly Connected 32 176 32 196

Table 1: Clique sizes as a function of network and causal-interaction model.

ly can covert this decomposition into a belief network
that yields efficiency gains in model assessment, stor-
age, and inference.
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