
A De�nition and Graphical Representation for CausalityDavid HeckermanMicrosoft Research, Bldg 9S/1Redmond WA 98052-6399heckerma@microsoft.com Ross ShachterDepartment of Engineering-Economic SystemsStanford, CA 94305-4025shachter@camis.stanford.eduAbstractWe present a precise de�nition of cause ande�ect in terms of a fundamental notion calledunresponsiveness. Our de�nition is based onSavage's (1954) formulation of decision the-ory and departs from the traditional view ofcausation in that our causal assertions aremade relative to a set of decisions. An im-portant consequence of this departure is thatwe can reason about cause locally, not re-quiring a causal explanation for every depen-dency. Such local reasoning can be bene�cialbecause it may not be necessary to determinewhether a particular dependency is causal tomake a decision. Also in this paper, we ex-amine the graphical encoding of causal rela-tionships. We show that in
uence diagramsin canonical form are an accurate and e�-cient representation of causal relationships.In addition, we establish a correspondencebetween canonical form and Pearl's causaltheory.Keywords: causality, causal model, causaltheory, causal networks, in
uence diagrams,canonical form, counterfactual reasoning1 IntroductionMost traditional models of uncertainty, includingMarkov networks (Lauritzen, 1982) and Bayesian net-works (Pearl, 1988) have focused on the associationalrelationship among variables as captured by condi-tional independence and dependence. Associationalknowledge, however, is not su�cient when we want tomake decisions under uncertainty. For example, al-though we know that smoking and lung cancer areprobabilistically dependent, we cannot conclude fromthis knowledge that we will decrease our chances ofgetting lung cancer if we stop smoking. In general, to

make rational decisions, we need to be able to predictthe e�ects of our actions.Recent work by Arti�cial Intelligence researchers,statisticians, and philosophers|for example, Pearland Verma (1991), Druzdzel and Simon (1993), andSpirtes et al. (1993)|have emphasized the impor-tance of identifying causal relationships for purposesof modeling the e�ects of intervention. They argue,for example, that if we believe that smoking causeslung cancer, then we believe that our choice whetherto continue or quit smoking can a�ect whether we getlung cancer. In contrast, if we believe that smokingdoes not cause lung cancer, our choice will not a�ectwhether we get lung cancer, and the observed corre-lation between smoking and lung cancer could be ex-plained perhaps by a common cause of both (e.g., agenetic predisposition toward cancer and the desire tosmoke), which we are unable to control.This recent work has led to signi�cant breakthroughsin causal reasoning. For example, Pearl and Verma(1991) and Spirtes et al. (1993) have shown how causalknowledge represented graphically can be used to pre-dict the e�ects of interventions and how observationaldata can be used to suggest causal relationships, andPearl (1995) has shown how, given a qualitative causalstructure, the quantitative e�ects of intervention maybe estimated from observational data alone in somesituations.In this paper, we o�er three improvements to the cur-rent work in causal reasoning. First, the current ap-proaches either take causality as a primitive notion, orprovide only a fuzzy, intuitive de�nition of cause ande�ect. For example, in the introduction of their bookon causation, Spirtes et al. (1993, p. 42) write:We understand causation to be a relation be-tween particular events: something happensand causes something else to happen. Eachcause is a particular event and each e�ect is aparticular event. An event A can have morethan one cause, none of which alone su�ce toproduce A. An event A can also be overde-



termined: it can have more than one set ofcauses that su�ce for A to occur. We as-sume that causation is transitive, irre
exive,and antisymmetric.In this paper, we o�er a de�nition of causation in termsof a more fundamental relation that we call unrespon-siveness. Our de�nition is precise, and can be usedas an assessment aid when someone is having troubledetermining whether or not a relationship is causal.Also, our de�nition can help people accurately com-municate their beliefs about causal relationships. Inaddition, the de�nition facilitates the development oftechniques for learning causal relationships from data(Heckerman, this proceedings).Second, the current approaches require all relation-ships to be causal. That is, for any two probabilisti-cally dependent events or variables x and y in a givendomain, these methods require a user to assert eitherthat x causes y, y causes x, or they are linked bya chain of causal relationships, such as when x andy share a common cause, or x and y are commoncauses of an observed variable. For example, Pearl andVerma's (1991) causal model is a directed acyclic graph(DAG), wherein every node corresponds to a variableand every arc from nodes x to y corresponds to theassertion that x is a direct cause of y. When using acausal model to represent a domain, a causal explana-tions must hold for every dependency in the domain.Our de�nition of causation is local in that it does notrequire all relationships to be causal. This propertycan be advantageous when making decisions. Namely,given a particular decision problem, there may be noneed to assign a causal explanation to all dependenciesin the domain in order to determine a rational courseof action. Consequently, our de�nition may enable adecision maker to reason more e�ciently.Third, we describe a special condition on an in
uencediagram known as canonical form and show how itcan be used to represent causal relationships more ef-�ciently than existing representations.Our approach is consistent with several current meth-ods for reasoning about causality, including Pearl'scausal theory (Pearl and Verma, 1991; Pearl, 1995)and causal networks of Spirtes et al. (1993). In ad-dition, our approach is consistent with the philosophyof decision analysis as described by Savage (1954) andre�ned by Howard (1990). Thus, our discussions hereo�er a means by which the two disciplines may beginto communicate and contribute to each other's work.This paper is a sequel to that presented at last year'sconference (Heckerman and Shachter, 1994). Here, weclarify and generalize many of the concepts in the pre-vious paper, including those of unresponsiveness (for-merly discussed in terms of �xed sets), mapping vari-able, cause, set decision, and canonical form.

2 UnresponsivenessIn this section, we introduce the notions of unrespon-siveness and limited unresponsiveness, fundamental re-lations underlying causation.Important to our discussion are several distinctionsfrom classical decision theory as described by Savage(1954). In particular, we distinguish between alterna-tives (what Savage called \acts"), realizations (whatSavage called \consequences"), and possible states ofthe world.1 Savage describes and illustrates these con-cepts as follows:To say that a decision is to be made isto say that one or more [alternatives] is tobe chosen, or decided on. In deciding on an[alternative], account must be taken of thepossible states of the world, and also of the[realizations] implicit in each [alternative] foreach possible state of the world. A [realiza-tion] is anything that may happen to the per-son.Consider an example. Your wife has justbroken �ve good eggs into a bowl when youcome in and volunteer to �nish making theomelet. A sixth egg, which for some rea-son must either be used for the omelet orwasted altogether, lies unbroken beside thebowl. You must decide what to do with thisunbroken egg. Perhaps it is not too great anoversimpli�cation to say that you must de-cide among three [alternatives] only, namely,to break it into the bowl containing the other�ve, to break it into a saucer for inspection,or to throw it away without inspection. De-pending on the state of the egg, each of thesethree [alternatives] will have some [realiza-tion] of concern to you, say that indicated byTable 1.For purposes of our discussion, there are two pointsto emphasize from Savage's exposition. First, it is im-portant to distinguish between that which we can con-trol directly|namely, alternatives|and that whichwe can control only indirectly through choosing analternative|namely, realizations. Second, once wechoose an alternative, the realization that occurs is log-ically determined by the state of the world. Of course,this realization can be (and usually is) uncertain, be-cause the state of the world is uncertain.1We use the term \alternative" in place of \act", be-cause the former is more commonly used today. We usethe term \realization" in place of \consequence" becauseit avoids the connotation that we should necessarily careabout a realization. That is, we often want to model re-alizations, even though we don't directly care about them.In using di�erent terms for these concepts, however, we donot intend to change their meanings.



Table 1: An example illustrating alternatives, possible states of the world, and realizations. (Taken from Savage[1954].) state of the alternativeworld break into bowl break into saucer throw awaygood six-egg omelet six-egg omelet and a �ve-egg omelet and onesaucer to wash good egg destroyedbad no omelet and �ve good �ve-egg omelet and a �ve-egg omeleteggs destroyed saucer to washTable 2: The four possible states of the world for adecision to continue or quit smoking.state of the alternativeworld continue quit1 cancer no cancer2 no cancer no cancer3 cancer cancer4 no cancer cancerIn the omelet story, the possible states of the worldreadily come to mind given the description of the prob-lem. Furthermore, we can observe the state the world(i.e., the condition of the egg). In many if not mostsituations, however, the state of the world is unob-servable; and we can only bring the possible statesto mind by thinking about the alternatives and re-alizations. For example, suppose we have a decisionto continue smoking or quit, and we model the real-izations of getting cancer or not. These alternativesand realizations bring to mind four possible states ofthe world, as shown in Table 2. These possible stateshave no familiar names; and we simply label them withnumbers. The actual state of the world is not observ-able, because, if we decide to quit, we won't know forsure what would have happened had we continued, andvice-versa. Nonetheless, given the alternatives and re-alizations in this problem, these states of the worldare well de�ned.2 Also, note that, as illustrated bythis example, there can be more possible states of theworld than either realizations or alternatives. In gen-eral, if we have a decision problem with r realizationsand a alternatives, then we can distinguish as many asra possible states of the world.In practice, it is often cumbersome if not impossibleto reason about a monolithic set of alternatives, possi-ble states of the world, or realizations. Consequently,we typically describe each of these items in terms ofa set of variables. We call the variables describing aset of realizations chance variables. For example, inthe omelet story, we can describe the realizations interms of three variables: (1) number of eggs in the2Howard (1990) discusses in detail what it means forpossible states of the world to be well de�ned.

omelet?3 (o), having instances \zero," \�ve," and\six," (2) number of good eggs destroyed? (g), hav-ing instances \zero," \one," and \�ve," and (3) saucerto wash? (s), having instances \no" and \yes." Thatis, every realization corresponds to an assignment ofan instance to each chance variable.We call the variables describing a set of alternatives de-cision variables (or decisions, for short). For example,suppose we have a set of alternatives about how we aregoing to dress for work. In this case, we can describeour alternatives in terms of the decision variables (say)shirt (\plain" or \striped"), pants (\jeans" or \cor-duroy"), and shoes (\tennis shoes" or \loafers"). Inthis example and in general, every alternative corre-sponds to an assignment of an instance to each deci-sion variable.The description of possible states of the world in termsof component variables is a bit more complicated, andis not needed for our explication of unresponsivenessand limited unresponsiveness. We defer discussion ofthis issue to Section 4.1.As a matter of notation, we use D to denote the setof decisions that describe the alternatives for a deci-sion problem, and lower-case letters (e.g., d; e; f) todenote individual decisions in the set D. Also, we useU to denote the set of chance variables that describethe realizations, and lower-case letters (e.g., x; y; z) todenote individual chance variables in U . In addition,we use the variable S to denote the state of the world(the instances of S correspond to the possible statesof the world).4 Thus, any given decision problem|ordomain, as we sometimes call it|is described by thevariables U , D, and S.5With this introduction, we can discuss the concept oflimited unresponsiveness. To illustrate this concept,consider the following decision problem adapted fromRubin (1978). Suppose we are a physician who has todecide whether or not to recommend a treatment to a3To emphasize the distinction between chance and de-cision variables, we put a question mark at the end of thenames of chance variables.4We use an uppercase \S" to denote this single variable,because later we decompose S into a set of variables.5Sometimes, for simplicity, we leave S implicit in thespeci�cation of a decision problem.



patient. Given our recommendation, the patient mayor may not actually accept the treatment, and mayor may not be cured as a result. Here, we use a sin-gle decision variable recommendation (r) to representour alternatives (i.e., D = frg), and two chance vari-ables taken? (t) and cured? (c) to represent whetheror not the patient actually accepts the treatment andwhether or not the patient is cured, respectively (i.e.,U = ft; cg).The possible states of the world for this problem areshown in Table 3. For example, consider the �rst rowin the table. Here, the patient will accept the treat-ment if and only if we recommend it, and will be curedif and only if he takes the treatment. We describe thisstate by saying that the patient is a \complier" and is\helped" by the treatment. We discuss the descriptionof these states in more detail in Section 4.1.As indicated in the table, we have asserted that thelast four states of the world are impossible (i.e., havea probability of zero). These last four states share theproperty that t takes on the same instance for bothalternatives, whereas c does not. Thus, this decisionproblem satis�es the following property: in all of thestates of the world that are possible, if t is the samefor the two alternatives, then c is also the same. Wesay that c is unresponsive to r in states limited by t.In general, suppose we have a decision problem de-scribed by variables U , D, and S. Let X be a subset ofU , and Y be a subset of U [D. We say that X is unre-sponsive to D in states limited by Y if we believe that,for all possible states of the world, if Y assumes thesame instance for any two alternatives then X mustalso assume the same instance for those alternatives.To be more formal, let X[S;D] be the instance that Xassumes (with certainty) given the state of the worldS and the alternative D. For example, in the omeletstory, if S is the state of the world where the egg isgood, and D is the alternative \throw away," theno[S;D] (the number of eggs in the omelet) assumes theinstance \�ve." Then, we have the following de�nition.De�nition 1 (Limited (Un)responsiveness)Given a decision problem described by chance variablesU , decision variables D, and state of the world S, andvariable sets X � U and Y � D [ U , X is said tobe unresponsive to D in states limited by Y , denotedX 6 -Y D, if we believe that 8 S 2 S; D1 2 D; D2 2D, Y [S;D1] = Y [S;D2] =) X[S;D1] = X[S;D2]X is said to be responsive to D in states limited byY , denoted X  -Y D, if it is not the case that X isunresponsive to D in states limited by Y . That is, ifwe believe that 9 S 2 S; D1 2 D; D2 2 D such thatY [S;D1] = Y [S;D2] and X[S;D1] 6= X[S;D2]

When X is (un)responsive to D in states limited byY = ;, we simply say that X is (un)responsive to D.The notion of unresponsiveness is signi�cantly simplerthan that of limited unresponsiveness. In particular,when Y = ;, the equalities on the left-hand-side ofthe implications in De�nition 1 are trivially satis�ed.Thus, X is unresponsive to D if we believe that, forall possible states of the world and all alternatives, Xassumes the same instance; and X is responsive to D,if there is some possible state of the world where Xdi�ers for two di�erent alternatives.As examples of responsive variables, consider theomelet story. Let S denote the state where the egg isgood, and D1 and D2 denote the alternatives \breakinto bowl" and \throw away," respectively. Then, forthe variable o (number of eggs in omelet?), we haveo[S;D1] =\six" and o[S;D2] =\�ve". Consequently,o is responsive to D. In a similar manner, we can con-clude that g (number of good eggs destroyed?), and s(saucer to wash?) are each responsive to D as well.Note that, if an chance variable x is responsive to D,then|to some degree|it is under the control of thedecision maker. Consequently, the decision maker cannot observe x prior to choosing an alternative for D.For example, in the omelet story, we can not observeany of the responsive variables o, g, or s before choos-ing an alternative.As an example of an unresponsive variable, suppose weadd S (the state of the world) as a variable to U . (E.g.,in the omelet story, we can take U to be fS; o; g; sg.)By Savage's de�nition of S, it must be unresponsiveto D. Note that adding S to U creates no new statesof the world.The notions of unresponsiveness and limited unrespon-siveness are closely related to concepts in counterfac-tual reasoning (e.g., as described by Lewis (1979)). Inparticular, when we determine whether or not a set ofchance variables X is unresponsive to decisions D, weessentially answer the query \Will the outcome of Xbe the same no matter how we choose D?" Further-more, when we determine whether or not X is unre-sponsive to D in states limited by Y , we answer thequery \Will the outcome of X be the same no matterhow we choose D, if Y will not change as a result of ourchoice?" Queries of this form are of examples counter-factual queries. One of the fundamental assumptionsof our work presented here is that these queries are eas-ily answered. In our experience, we have found thatdecision makers are indeed comfortable answering suchrestricted counterfactual queries.The concepts of responsiveness and probabilistic inde-pendence are related, as illustrated by the followingtheorem.Theorem 1 If a set of chance variables X is unre-sponsive to a set of decision variables D, then X is



Table 3: A decision about recommending a medical treatment.r (recommendation)S (state of the world) take don't taket (taken?) c (cured?) t (taken?) c (cured?)1: complier, helped yes yes no no2: complier, hurt yes no no yes3: complier, always cured yes yes no yes4: complier, never cured yes no no no5: de�er, helped no no yes yes6: de�er, hurt no yes yes no7: de�er, always cured no yes yes yes8: de�er, never cured no no yes no9: always taker, cured yes yes yes yes10: always taker, not cured yes no yes no11: never taker, not cured no no no no12: never taker, cured no yes no yes13: (impossible) yes yes yes no14: (impossible) yes no yes yes15: (impossible) no no no yes16: (impossible) no yes no noprobabilistically independent of D.Proof: By de�nition of unresponsiveness, X assumesthe same instance for all alternatives in any possiblestate of the world. Consequently, we can learn aboutX by observing S, but not by observing D. 2Nonetheless, the two concepts are not identical. Inparticular, the converse of Theorem 1 does not hold.For example, let us consider the simple decision ofwhether to bet heads or tails on the outcome of a coin
ip. Assume that the coin is fair (i.e., the probabilitiesof heads and tails are both 1/2) and that the personwho 
ips the coin does not know our bet. Here, thepossible outcomes of the coin toss correspond to thepossible states of the world. Further, let decision vari-able b denote our bet, and chance variable w describethe possible realizations that we win or not. In this sit-uation, w is responsive to b, because for both possiblestates of the world, w will be di�erent for the di�erentbets. Nonetheless, the probability of w is 1/2, whetherwe bet heads or tails. That is, w and b are probabilis-tically independent.Limited unresponsiveness and conditional indepen-dence are less closely related than are their unqual-i�ed counterparts. Namely, limited unresponsivenessdoes not imply conditional independence. For exam-ple, in the medical-treatment story, c (cured?) is un-responsive to r (recommendation) in states limited byt (taken?), but it is reasonable for us to believe that cand r are not independent given t, perhaps becausethere is some gene that|partially or completely|determines how a person reacts to both recommen-dations and treatment.

We can derive several interesting properties of limitedunresponsiveness from its de�nition.1. X 6 -Y D () 8x 2 X;x 6 -Y D2. X 6 -W D ()X [W 6 -W D3. X 6 -D D4. X 6 -Y D =) X 6 -Y[Z D5. X 6 -Y[Z D and Y 6 -Z D =) X 6 -Z D6. X  -Z D and W 6 -Z D =) X  -W[Z Dwhere D is the set of decision variables in the domain,X and W are arbitrary sets of chance variables in U ,and Y and Z are arbitrary sets of variables in U [D.The proofs of these properties are straightforward. Forexample, consider property 5. Given X 6 -Y[Z D, wehave 8 S 2 S; D1 2 D; D2 2 D,Y [S;D1] = Y [S;D2] and Z[S;D1] = Z[S;D2]=) X[S;D1] = X[S;D2]Given Y 6 -Z D, we have 8 S 2 S; D1 2 D; D2 2 D,Z[S;D1] = Z[S;D2] =) Y [S;D1] = Y [S;D2]Consequently, we obtain 8 S 2 S; D1 2 D; D2 2 D,Z[S;D1] = Z[S;D2] =) X[S;D1] = X[S;D2]That is, X 6 -Z D.Other properties follow from these. For example, it istrue trivially that ; 6 -Y D. Consequently, by Prop-erty 2, we know that Y 6 -Y D. As another example,



a special case of Property 4 is that whenever X is un-responsive to D, then X will be unresponsive to D instates limited by any Z. Also, Properties 4 and 5 implythat limited unresponsiveness is transitive: X 6 -Y Dand Y 6 -Z D imply X 6 -Z D.In closing this section, we note that the de�nition oflimited unresponsiveness can be generalized in severalways. In one generalization, we can de�ne what itmeans for X � U to be unresponsive to D in states ofthe world limited by an instance of Y . Namely, we saythatX is unresponsive toD in states limited by Y = Yif, for all possible states of the world S, and for any twoalternatives D1 and D2, Y [S;D1] = Y [S;D2] = Yimplies X[S;D1] = X[S;D2]. Furthermore, we canimagine generalizations where the possible states ofthe world are limited by subsets of instances of Y , notjust a single instance of Y .In a second generalization, we can de�ne what it meansfor a set of chance variables to be unresponsive to asubset of all of the decisions. In particular, given adomain described by U and D, we say that X � Uis unresponsive to D0 � D in worlds limited by Y ifX 6 -Y[(DnD0) D.Finally, we can have combinations of these two gen-eralizations. Nonetheless, except for a brief mentionof each generalization, we do not pursue them in theremainder of the paper for the sake of simplicity.3 De�nition of CauseArmed with the primitive notion of limited unrespon-siveness, we can now formalize our de�nition of cause.De�nition 2 (Causes with Respect to Decisions)Given a decision problem described by U and D, and avariable x 2 U , the variables C � D[U nfxg are saidto be causes for x with respect to D if C is a minimalset of variables such that x 6 -C D.In our framework, decision variables cannot be caused,because they are under the control of the decisionmaker. Consequently, we de�ne causes for chance vari-ables only. The de�nition says that if we can �nd setof variables Y such that, for all possible states of theworld, x can be di�erent for di�erent alternatives onlywhen Y is di�erent, then Y must contain a set of causesfor x. Our de�nition of cause departs from traditionalusage of the term in that we consider causal relation-ships relative to a set of decisions. Nonetheless, we �ndthis departure has an important advantage, which wediscuss shortly.As an example of our de�nition, consider the decisionto continue or quit smoking, described by the deci-sion variable s (smoke) and the chance variable l (lungcancer?). If we believe that s and l are probabilisti-cally dependent, then, by Theorem 1, it must be that

l  - s. Furthermore, by Property 3, we know thatl 6 -s s. Consequently, by De�nition 2, we have that sis a cause of l with respect to s.Several consequences of De�nition 2 are worth men-tioning. First, although cause is irre
exive by de�ni-tion, it is not always asymmetric. For example, in ourstory about the coin toss, consider another variable mthat represents whether or not the outcome of the cointoss matches our bet b. In the story as we have toldit, m is a deterministic function of w (win?), and viceversa. Consequently, we have w 6 -m b and m 6 -w b;and so m is a cause of w and w is cause of m with re-spect to b. Note that any hint of uncertainty destroysthis symmetry. For example, if there is a possibilitythat the person tossing the coin will cheat (so that wemay lose even if we match), then we can conclude thatm is a cause of w, but not vice versa.Second, cause is transitive for single variables. In par-ticular, if x is a cause for y and y is a cause for z withrespect to D, then z  -D and (by the transitivity ofunresponsiveness) z 6 -x D. Consequently, x is a causefor z with respect to D. Note that transitivity doesnot necessarily hold for causes containing sets of vari-ables, because the minimality condition in De�nition 2may not be satis�ed.Third, C = ; is a set of causes for x with respect to Dif and only if x is unresponsive to D.Finally, we have the following theorem, which followsfrom De�nition 2 and several of the properties of lim-ited unresponsiveness given in Section 2.Theorem 2 Given any x 2 U , if C is a set of causesfor x with respect to D, and w 2 C \ U , then w mustbe responsive to D.Proof: For any chance variable w 2 C, let C0 = C nfwg. By the minimality condition in our de�nition,we have x -C0 D (1)Suppose that w 6 - D. Then, by Property 4, we havew 6 -C0 D (2)Applying Equations 1 and 2 to Property 6, we havethat x  -C D, which contradicts that C is a set ofcauses for x with respect to D. 2Let us consider another example of our de�nition thatillustrates an advantage of de�ning cause with respectto the set of decisions. In the medical-treatment story,we have that c (cured?) is responsive to r (recommen-dation), because (among other reasons) in the �rst rowin Table 3, the patient is cured if and only if we rec-ommend the treatment. Furthermore, as we discussedin the previous section, c is unresponsive to r in stateslimited by t (taken?). Consequently, we have that t isa cause of c with respect to r.



Now, let us extend this example by imagining thatthere is some gene that a�ects how a person reacts toboth our recommendation and to therapy. In this situ-ation, it is reasonable for us to assert that the variableg (genotype?) is unresponsive to r. Thus, by Theo-rem 2, g cannot be among the causes for any othervariable. Someday, however, it may be possible touse retroviral therapy to alter one's genetic makeup.Given an additional decision variable v (retroviral ther-apy), it is reasonable for us to assert that t is responsiveto D = fr; vg in states limited by r, but unresponsiveto D in states limited by fr; gg. In this case, we canconclude that fr; gg is a cause for t with respect to D.In addition, we can conclude that ft; gg is a cause forc with respect to D.Thus, an advantage of de�ning cause with respect tothe set of decisions is that we do not have to attacha causal explanation to dependencies between a vari-able x and other variables, when we can do nothingto change x. In our example, g, t, and c are prob-abilistically dependent. Nonetheless, if we cannot doanything to a�ect genotype, then there is little pointin determining whether or not genotype causes treat-ment and cure; and it is precisely in this case thatour de�nition says it is OK to ignore such questions ofcause.Of course, we sometimes want to be able to assert theexistence or nonexistence of causal dependencies out-side of a real decision setting. Our de�nition does notpreclude the ability to make such assertions. Namely,there is no reason to require that the decisions D beimplementable in practice or at all. If we want to thinkabout whether or not the patient's genotype is a causefor his cure, then we can imagine the retroviral-therapydecision that a�ects genotype regardless of the avail-ability of the therapy. As another example, if we wantto discuss the possibility that gender causes breast can-cer, then we can imagine a decision that changes one'sgender.Finally, we can generalize our de�nition of what itmeans for a set of variables to cause x to a de�ni-tion of what it means for a set of instances to causex. Namely, we say that instance C of variables C isa cause for x =2 C with respect to D if C is a minimalset of variables such that x is unresponsive to D instates limited by C = C. That is, the instance C ofC is a cause for x with respect to D if we replace ourde�nition of cause with the weaker requirement thatx be unresponsive to D in states limited by C = C.Again, for the sake of simplicity, we do not pursue thisgeneralization in the remainder of the paper.4 Graphical Representation of CauseGiven the known bene�ts of the Bayesian network forrepresenting conditional independence, we would like a

graphical representation of cause and e�ect. The rep-resentation we describe is a special case of an in
uencediagram. An in
uence diagram for a decision prob-lem described by U and D is a model for that prob-lem having a structural component and a probabilisticcomponent. The structure of an in
uence diagram isa directed acyclic graph containing (square) decisionand (oval) chance nodes corresponding to decision andchance variables, respectively, as well as informationand relevance arcs. Information arcs, which point todecision nodes, represent what is known at the timedecisions are made. Relevance arcs, which point tochance nodes, represent (by their absence) assertionsof conditional independence. Namely, for some order-ing of the variables, each variable x is probabilisticallyindependent of all preceding variables given the par-ents of x. Associated with each chance node x in anin
uence diagram are probability distributions that,when combined with the assertions of conditional in-dependence encoded in the structural component, de-termine the joint probability distribution for U givenD. A special kind of chance node is the determin-istic node (depicted as a double oval). A node x isa deterministic node if its corresponding variable is adeterministic function of its parents. Also, an in
u-ence diagrammay contain a single distinguished node,called a utility node that encodes the decision maker'sutility for each state of the node's parents. A utilitynode is a deterministic function of its predecessors andcan have no children. Finally, for an in
uence diagramto be well formed, its decisions must be totally orderedby the in
uence-diagram structure. (For more details,see Howard [1981].)In this paper, we concern ourselves neither with the or-dering of decision nodes nor the observation of chancevariables before making decisions. Therefore, we haveno need for information arcs. In addition, althoughour new concepts apply to models that include a util-ity node, we do not examine such models, as we canillustrate these concepts with models containing onlychance, deterministic, and decision variables. An in-
uence diagram (without information arcs or a utilitynode) for the medical-treatment problem is shown inFigure 1a.In Heckerman and Shachter (1994), we showed that anordinary in
uence diagram is an inadequate represen-tation of causal dependence. In this section, we dis-cuss a particular kind of an in
uence diagram, knownas an in
uence diagram in canonical form, that canaccurately represent causal relationships.4.1 Mapping Variables and CausalMechanismsBefore we can describe canonical form, we need to in-troduce the concept of a mapping variable. To under-stand the concept of a mapping variable, let us reexam-



Table 4: The mapping variable t(r).instance of t(r) r =take r =don't take1: complier t =yes t =no2: de�er t =no t =yes3: always taker t =yes t =yes4: never taker t =no t =noine Savage's basic formulation of a decision problem.Recall that the chance variables U are a deterministicfunction of the decision variables D and the state ofthe world S. In e�ect, each possible state of the worldde�nes a mapping from the decisions D to the chancevariables U . Thus, S represents all possible mappingsfrom D to U . We can characterize S as a mappingvariable for U as a function of D, and use the sugges-tive notation U (D) to denote this mapping variable.In general, given a domain described by U , D, and S,a set of decision variables Y � D, and a set of chancevariablesX � U , the mapping variableX(Y ) is a vari-able that represents the possible mappings from Y toX. Rubin (1978) and Howard (1990) de�ne conceptssimilar to the mapping variable.As an example, consider the medical-treatment story.The mapping variable t(r) represents the possiblemappings from the decision variable r (recommenda-tion) to the chance variable t (taken?). In this exam-ple, the instances of t(r), shown in Table 4, have a nat-ural interpretation. In particular, the instance wherethe patient accepts treatment if and only if we recom-mend it represents a patient who \complies" with ourrecommendation; the instance where the patient ac-cepts treatment if and only if we recommend againstit represents a patient who \de�es" our recommenda-tion; and so on.An important property concerning mapping variablesis that, given variables X;Y; and X(Y ), we can alwayswrite X as a deterministic function of Y and X(Y ).For example, t is a deterministic function of r and t(r);and, more generally, U is a deterministic function ofD and U (D) � S.In the discussions that follow, it is important to extendthe de�nition of a mapping variable to include chancevariables as arguments. Doing so allows us to decom-pose the monolithic mapping variable U (D) � S for adomain into a set of variables. For example, considerthe medical-treatment story. Given this extensionof the mapping-variable de�nition, we can de�ne themapping variable c(t) with instances \helped," \hurt,"\always cured," and \never cured." Together, themapping variables t(r) and c(t) describe the possiblestates of the world U (D) � S. (E.g., t(r) =\complier"and c(t) =\helped" corresponds to state 1 in Ta-ble 3.) As we shall see, this decomposition facilitatesthe graphical representation of causal relationships.

The extension of the mapping-variable de�nition toinclude chance variables as arguments is a bit tricky.For example, when the patient is an \always taker",it is impossible to distinguish between the instances\helped" and \always cured" of c(t), because for bothrecommendations, the patient will accept the treat-ment. In this sense, the variable c(t) is not well de-�ned.We can overcome this problem by imagining a decisionthat allows us to directly set t to any of its instances,regardless of the recommendation decision. The keyidea in setting this variable directly is that we force tto take on a particular instance without changing theinstances of any other variables except those that aremandated by the known causal relationships in the do-main. For example, assuming the treatment is a drugand that there is no placebo e�ect, we can directly set tto \taken" by injecting the patient with the drug with-out his knowledge. In contrast, although we can sett to \taken" by physically forcing the patient to takethe drug, this operation may not qualify as a settingof the variable if the patient's conditioned is worsenedby the use of force itself.Pearl and Verma (1991) and Spirtes et al. (1993) dis-cuss the notion of directly setting or manipulating avariable, taking this concept to be primitive. Here,we formally de�ne the notion in terms of limited un-responsiveness.De�nition 3 (Set Decision) Given a domain de-scribed by U , D, and S, consider a set of decisionvariables outside D, denoted Û , that contains one de-cision variable x̂ for every x 2 U , where x̂ has alter-natives \set x to k" for each possible instance k of xand \do nothing." Let U 0 = U , D0 = D[ Û , and S0 bean augmentation of the original domain in the sensethat, (1) when each x̂ 2 Û is set to \do nothing", therealizations in the augmented domain (as a functionof S0 and D0) are the same as those in the originaldomain, and (2) when x̂ =\set x to k," then x as-sumes the state k. Then, Û is said to be a collectionof set decision variables for U with respect to U , D,and S if, for all Y � U and Z � U [D, x 6 -Z D inthe original domain if and only if x 6 -Z[Y D [ Ŷ 6 inthe augmented domain, where Ŷ are the set decisionscorresponding to the variables in Y .For example, in the medical-treatment story, we havethat c 6 -t r. Thus, in the augmented domain, wemust have c 6 -t fr; t̂g for t̂ to be a set decision fort. It is likely that a decision to secretly inject thepatient satis�es this condition (again, provided there isno placebo e�ect), whereas it is unlikely that a decision6In writing this expression, we are using the second gen-eralization of the de�nition of limited unresponsiveness dis-cussed in Section 2. In particular, this expression is equiv-alent to the statement x 6 -Z[Y[(ÛnŶ ) D0.



to use physical force does. Note that, in general, setdecisions need only be hypothesized. They need notbe implementable in practice.De�nition 4 (Setting a Variable) Given a deci-sion variable d, we set that variable by choosing oneof its alternatives. Given a chance variable x, we setthat variable by choosing one of the alternatives of x̂other than \do nothing."We can now give the general de�ntion of a mappingvariable.De�nition 5 (Mapping Variable)Given chance variables X and variables Y , the map-ping variable X(Y ) is the chance variable that repre-sents all possible mappings from Y to X as we set Yto each of its possible instances.7There are several important points to be made aboutmapping variables as we have now de�ned them. First,as in the more speci�c case, X is always a deterministicfunction of Y and X(Y ).Second, additional probability assessments typicallyare required when introducing a mapping variable intoa probabilistic model. For example, two independentassessments are needed to quantify the relationship be-tween r and t in the medical-treatment story; whereasthree independent assessments are required for thenode t(r). In general, many additional assessmentsare required. If X has b instances and Y has a in-stances, then X(Y ) has as many as ba instances. Inreal-world domains, however, reasonable assertions ofindependence decrease the number of required assess-ments. In some cases, no additional assessments arenecessary (see, e.g., Heckerman et al. 1994).Third, although we may not be able to observe a map-ping variable directly, we may be able to learn some-thing about it. For example, we can model the decisionto continue or quit smoking using the decision vari-able s (smoke), the chance variable l (lung cancer?),and the mapping variable l(s). Although we cannotobserve l(s), we can imagine a test that measures thesusceptibility of someone's lung tissue to lung cancerin the presence of tobacco smoke. Given the result ofsuch a test, we can update our probability distributionover l(s).Fourth, we have the following theorem and corollaries.Theorem 3 (Mapping Variable) Given a decisionproblem described by U and D, variables X � U , and7There are some technical details involved with the def-inition of a mapping variable when particular instancesof Y are not possible or not possible for particular in-stances of D. Although all of the results given here aretrue in general, we omit these special cases for simplicityin presentation.

variable setsW , Y , and Z that are all subsets of U[D,X(W ) 6 -Z[Y D if and only if X(W [ Y ) 6 -Z D.Proof: X(W [ Y ) represents all possible mappingsfrom W [ Y to X. By the de�nition of a mappingvariable,X(W [Y ) 6 -Z D if and only ifX(W ) 6 -Z[YD[ŶU , where YU = Y \U is the set of chance variablesin Y . Likewise, by the de�nition of a set decision,X(W ) 6 -Z[Y D[ ŶU if and only if X(W ) 6 -Z[Y D.2Corollary 4 (Mapping Variable) Given a deci-sion problem described by U and D, variables X � U ,and Y � U [D, X 6 -Y D if and only if X(Y ) 6 - D.For example, in the medical treatment story, we havec 6 -t r and c(t) 6 - r. Roughly speaking, Corollary 4says that X is unresponsive to D in states limited byY if and only if the way X depends on Y does notdepend on D. This equivalence provides us with analternative set of conditions for cause.Corollary 5 (Cause) Given a decision problem de-scribed by U and D, and a chance variable x 2 U , thevariables C � D [ U n fxg are causes for x with re-spect to D if C is a minimal set of variables such thatx(C) 6 - D.We can think of x(C)|where C are causes for x|as acausal mechanism that relates C and x. For example,suppose chance variables i and o represent the volt-age input and output, respectively, of an inverter in alogic circuit. Given a decision d to which i responds,we can assert that fig is a cause for o. In this exam-ple, the mapping variable o(i), represents the mappingfrom the inverter's inputs to its outputs. That is, thismapping variable represents the state of the inverteritself.De�nition 6 (Causal Mechanism) Given a deci-sion problem described by U and D and a chance vari-able x 2 U that is responsive to D, a causal mech-anism for x with respect to D is a mapping variablex(C) where C are causes for x with respect to D.Thus, we have the following consequence of Corol-lary 4.Corollary 6 (Causal Mechanism) If x(C) is acausal mechanism for x with respect to D, then x(C)is unresponsive to D.4.2 Canonical Form In
uence DiagramsWe can now de�ne what it means for an in
uence di-agram to be in canonical form.De�nition 7 (Canonical Form) An in
uence dia-gram for a decision problem described by U and D issaid to be in canonical form if (1) all chance nodes that
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uence diagram for the medical-treatment story. (b) A corresponding in
uence dia-gram in canonical form.are responsive to D are descendants of one or more de-cision nodes and (2) all chance nodes that are descen-dants of one or more decision nodes are deterministicnodes.An immediate consequence of this de�nition is thatany chance node that is not a descendant of decisionnode must be unresponsive to D.We can construct an in
uence diagram in canonicalform for a given problem by including in the in
uencediagram a causal mechanism for every variable that isresponsive to the decisions. In doing so, we can makeevery responsive variable a deterministic function ofa set of its causes and the unresponsive causal mech-anism. For example, consider the medical-treatmentstory as depicted in the in
uence diagram of Figure 1a.The variables t and c are responsive to r, but their cor-responding nodes are not deterministic. Consequently,this in
uence diagram is not in canonical form. Toconstruct a canonical form in
uence diagram, we in-troduce the mapping variables t(r) and c(t), as shownin Figure 1b. The responsive variables are now deter-ministic; and the mapping variables are unresponsiveto the decision. This example illustrates an importantpoint: Causal mechanismsmay be probabilistically de-pendent. We return to this issue in Section 4.3.In general, we can construct an in
uence diagram incanonical form for the decision problem U and D asfollows.Algorithm 1 (Canonical Form)1. Add a node to the diagram corresponding to eachvariable in U [D2. Order the variables x1; : : : ; xn in U so that thevariables unresponsive to D come �rst

3. For each variable xi 2 U that is unresponsive toD,(a) Add a causal-mechanism chance node xi(Ci)to the diagram,where Ci � D [ fx1; : : : ; xi�1g(b) Make xi a deterministic node with parents Ciand xi(Ci)4. Assess dependencies among the variables that areunresponsive to DThis algorithm is well de�ned. In particular, it is al-ways possible to �nd a Ci satisfying the condition instep 3a, because xi 6 -D D by Property 3.Also, the structure of the of the constructed in
uencediagram is valid. Namely, by Corollary 6, all causalmechanisms added in step 3 are unresponsive to D.Thus, suppose we identify the relevance arcs and de-terministic nodes by using a variable ordering wherethe nodes in D are followed by the unresponsive nodes(including the causal mechanisms), which are in turnfollowed by the responsive nodes in the order speci�edat step 2. Then, (1) we would add no arcs from D tothe unresponsive nodes by Theorem 1 (and the algo-rithm adds none); (2) we would add arcs among theunresponsive nodes as described in step 4; and (3) forevery responsive variable xi, we would make xi a de-terministic node (as described in step 3b) by de�nitionof a mapping variable.Furthermore, the structure that results from Algo-rithm 1 will be in canonical form. In particular, be-cause there are no arcs from D to the unresponsivenodes, only responsive variables can be descendants ofD. In addition, by Theorem 2, we know that everyresponsive node is a descendant of D, and (by con-struction) a deterministic node.To illustrate the algorithm, consider the medical-treatment story as depicted by the in
uence diagramin Figure 2a where the variable g (genotype?) is rep-resented explicitly. To construct an in
uence diagramin canonical form for this problem, we �rst add thevariables fr; g; t; cg to the diagram and choose the or-dering (g; t; c). Both t and c are responsive toD = frg,and have causes r and t, respectively. Consequently,we add causal mechanisms t(r) and c(t) to the newdiagram, and make t a deterministic function of r andt(r) and c a deterministic function of t and c(t). Fi-nally, we assess the dependencies among the unrespon-sive variables fg; t(r); c(t)g, adding arcs from g to t(r)and c(t) under the assumption that the causal mech-anisms are conditionally independent given g. Theresulting canonical form in
uence diagram is shown inFigure 2b.From our construction, it follows that every responsivevariable xi has at least one set of causes explicitly en-coded in the diagram (Ci). That is, a canonical form
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uence diagram constructed as in Algorithm 1 ac-curately represents a set of causes for every variablehaving a nonempty set of causes. In this sense, we�nd canonical form to be an adequate representationof cause.Canonical form is a generalization of Howard Canon-ical Form, which was developed by Howard (1990) tofacilitate the computation of value of information.4.3 Pearl's Causal TheoryThere is a close relationship between the canoni-cal form in
uence diagram and Pearl's causal theory(Pearl and Verma, 1991; Pearl, 1995). In fact, as wenow demonstrate, a causal theory is a special case ofcanonical form.8Pearl takes causation to be a primitive notion, and de-�nes a causal model for variables U to be a directedacyclic graph where each node corresponds to a vari-able in U and each nonroot node is caused by its par-ents. Each variable in his analysis plays a dual roleof chance and decision variable. In particular, a vari-able may be observed or directly set to a particularinstance. As mentioned, Pearl takes the concept ofdirectly setting a variable to be a primitive.Given a causal model for U , Pearl goes on to de�nea causal theory for U . Here, we express his de�nitionin the language of in
uence diagrams. Let M(U ) bea causal model for U . Let Pa(x) denote the parentsof x inM(U ), which by de�nition are causes for x. Acausal theory for U based on M(U ), which we denoteT (U ), is an in
uence diagram described as follows.For each variable xi 2 U , i = 1; : : : ; n, T (U ) containsa corresponding chance variable xi, a set decision x̂i for8We note that Pearl's causal theory and the pseudo-indeterministic system of Spirtes et al. (1993) are verysimilar, and many of the remarks in this section apply tothe latter representation as well.

xi, and a chance variable �i, which Pearl calls a distur-bance variable. Furthermore, in the in
uence diagramT (U ), only the chance nodes xi have parents. In par-ticular, each xi is a deterministic function of Pa(xi),x̂i, and �i, where (1) if x̂i = k then xi = k, and (2)if x̂i =\do nothing" then x = fi[Pa(xi); �i] for somedeterministic function fi. Note that, in a causal the-ory, disturbance variables are mutually independentby de�nition.Now, in our framework, suppose we have a set ofchance variables U and a corresponding collection ofset decisions Û for U with respect to U . In addi-tion, suppose that, for all xi, Pa(xi) [ fx̂ig is a setof causes for xi with respect to Û . When we con-struct an in
uence diagram in canonical form as de-scribed in Algorithm 1 using an ordering consistentwith the causal modelM(U ), we can obtain an in
u-ence diagram where each variable xi is a determinis-tic function of x̂i, Pa(xi), and the causal mechanismxi(Pa(xi); x̂i). Given the de�nition of a set decision,we can simplify each such relationship by writing xi asa deterministic function of x̂i, Pa(xi), and the variablexi(Pa(xi)), where xi(Pa(xi)) represents the possiblemappings fromPa(xi) to xi when x̂i is set to \do noth-ing." If we identify each mapping variable xi(Pa(xi))with Pearl's disturbance variable �i, then we obtain anin
uence diagram identical to the causal theory T (U ),with the exception that the mapping variables in thisin
uence diagram may be dependent.9The fact that disturbance variables must be indepen-dent in a causal theory does not necessarily limit theexpressiveness of a causal theory. Such dependenciesoften disappear when hidden common causes are in-troduced. Furthermore, the assumption that causalmechanisms are independent has the convenient con-sequence that the a causal model for U can be inter-preted as a Bayesian network in the traditional sense(Spirtes et al., 1993; Pearl, 1995). That is, if variablesX and Y are d-separated by Z in the causal model,then X and Y are conditionally independent given Zaccording to the causal theory.Nonetheless, the fact that we can use canonical form torepresent causes locally|that is, we represent causesonly when they are relevant to the decisions at hand|makes canonical form a more e�cient representationthan the causal theory. For example, to representthe relationships in Figure 2b using a causal theory,we would introduce causal-mechanism variables t(r; g)and c(t; g). Assuming r; g; t and c are binary variables,9At �rst glance, there appears to be another di�erencebetween the two representations. Namely, the disturbancevariables in T (U) are assumed to be merely independentof the set decisions Û ; whereas, in the canonical form in
u-ence diagram, the mapping variables are also unresponsiveto the set decisions. A careful reading of Pearl's work, how-ever, suggests that the disturbance variables must in factbe unresponsive to the set decisions.



both mapping variables in the causal theory wouldhave 16 instances. In contrast, both mapping variablesin Figure 2b have only four instances. Consequently,the nodes g, t(r; g) and c(t; g) in the causal-theory rep-resentation require 31 probabilities in total, whereasthe nodes g, c(s), and v(d) in the canonical-form rep-resentation require only 13 probabilities in total.5 Conclusions and Future WorkWe have presented a precise de�nition of cause ande�ect in terms of the more fundamental notion of un-responsiveness. Our de�nition departs from the tradi-tional view of causation in that our causal assertionsare made relative to a set of decisions. As a conse-quence, our de�nition allows for models where onlysome dependencies have a causal explanation. We haveshown how these properties can make the represen-tation and manipulation of causal relationships moree�cient.In addition, we have examined the graphical encod-ing of causation. We have shown how the ordinaryin
uence diagram is inadequate as a graphical repre-sentation of cause, but that the canonical form in
u-ence diagram is always an accurate language for causaldependence. Also, we have described the relationshipbetween Pearl's causal theory and canonical form in-
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