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Abstract
Learning programs is a timely and interesting
challenge. In Programming by Example (PBE),
a system attempts to infer a program from in-
put and output examples alone, by searching for
a composition of some set of base functions.
We show how machine learning can be used to
speed up this seemingly hopeless search prob-
lem, by learning weights that relate textual fea-
tures describing the provided input-output ex-
amples to plausible sub-components of a pro-
gram. This generic learning framework lets us
address problems beyond the scope of earlier
PBE systems. Experiments on a prototype im-
plementation show that learning improves search
and ranking on a variety of text processing tasks
found on help forums.

1. Introduction
An interesting challenge is that of learning programs, a
problem with very different characteristics to the more
well-studied goal of learning real-valued functions (regres-
sion). Our practical motivation is Programming by Exam-
ple (PBE) (Lieberman, 2001; Cypher et al., 1993), where
an end user provides a machine with examples of a task
she wishes to perform, and the machine infers a program to
accomplish this. The study of PBE is timely; the latest ver-
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sion of Microsoft Excel ships with “Flash Fill,” a PBE algo-
rithm for simple string manipulation in spreadsheets, such
as splitting and concatenating strings (Gulwani, 2011). We
are interested in using learning for PBE to enable richer
classes of programs such as, for example, text-processing
tasks that might normally be accomplished in a program-
ming language such as PERL or AWK.

Learning programs poses two key challenges. First, users
give very few examples per task. Hence, one must impose
a strong bias, learned across multiple tasks. In particu-
lar, say for task t the user provides nt examples of pairs
of strings (x̄

(t)
1 , ȳ

(t)
1 ), . . . , (x̄

(t)
nt , ȳ

(t)
nt ) that demonstrate the

task (in our application we will generally take nt = 1).
There are infinitely many consistent functions f such that
f(x̄

(t)
i ) = ȳ

(t)
i . Hence, one requires a good ranking over

such f , learned across the multiple tasks. Simply choosing
the shortest consistent program can be improved upon us-
ing learning. For one, the shortest program mapping x̄ to ȳ
may very well be the trivial constant function f(x) = ȳ.

Second, and perhaps even more pressing, is searching over
arbitrary compositions of functions for consistent candidate
functions. In many cases, finding any (nontrivial) consis-
tent function can be a challenge, let alone the “best” under
some ranking. For any sufficiently rich set of functions,
this search problem defies current search techniques, such
as convex optimization, dynamic programming, or those
used in Flash Fill. This is because program representations
are wildly unstable – a small change to a program can com-
pletely change the output. Hence, local heuristics that rely
on progress in terms of some metric such as edit distance,
will be trapped in local minima.
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We introduce a learning-based framework to address both
the search and ranking problems. Of particular interest,
machine learning speeds up search (inference). This is un-
like earlier work on string processing using PBE, which
restricted the types of programs that could be searched
through so that efficient search would be possible using so-
called version space algebras (Lau et al., 2000). It is also
unlike work in structured learning that uses dynamic pro-
gramming for efficient search. Instead, the types of pro-
grams we can handle are more general than earlier sys-
tems such as SMARTedit (Lau et al., 2000), LAPIS (Miller,
2002), Flash Fill (Gulwani, 2011), and others (Nix, 1985;
Witten & Mo, 1993). In addition, our approach is more
extensible and broadly applicable than earlier approaches,
though it is not as efficient as the version space algebras
previously used.

How can one improve on brute force search for combining
functions from a general library? In general, it seems im-
possible to speed up search if all one can tell is whether a
program correctly maps example x̄ to ȳ. The key idea in
our approach is to augment the library with certain telling
textual features on example pairs. These features suggest
which functions are more likely to be involved in the pro-
gram. As a simple example beyond the scope of earlier
PBE systems, consider sorting a list of names by last name.
Specifically, say the user gives just one example pair: x̄
consists of a list of four or five names, one per line, where
each line is in the form FirstName LastName, and ȳ is the
same list sorted by last name. One feature of (x̄, ȳ) is that
the lines are permutations of one another, which is a clue
that the sorting function may be useful in the desired pro-
gram. No such clue is perfectly reliable. However, we
learn reliability weights of these clues, which dramatically
speeds up search and inference. In more complex exam-
ples, such as that in Figure 1, which as a program tree has
10 elements, clues dramatically speed up search.

The contributions of this work are:

• Proposing a framework for learning general programs
that speeds up search (inference) and is also used
for ranking. Previous work addressed ranking (Liang
et al., 2010) and used restricted classes of programs
that could be efficiently searched but not extended.

• Proposing the use of features relating input and output
examples in PBE. Previous work did not use example
features – Liang et al. (2010) use features of the target
programs in the training set.

• Advancing the state of the art in PBE by introducing
a general, extensible framework, that can be applied
to tasks beyond the scope of earlier systems (as dis-
cussed shortly). Indeed, while the learning compo-
nent is discussed in the context of text processing, the
approach could possibly be adapted for different do-

mains.
• Demonstrating the effectiveness of this approach with

experiments on a prototype system.

To clarify matters, we step through a concrete example of
our system’s operation.

1.1. Example of our system’s operation

Imagine a user has a long list of names with some re-
peated entries (say, the Oscar winners for Best Actor), and
would like to create a list of the unique names, each anno-
tated with their number of occurrences. Following the PBE
paradigm, in our system, the user illustrates the operation
by providing an example, which is an input-output pair of
strings. Figure 1 shows one possible such pair, which uses
a subset of the full list (in particular, the winners from ’91–
’95) the user possesses.

Anthony
Hopkins
Al Pacino
Tom Hanks
Tom Hanks
Nicolas Cage

→

Anthony Hopkins
(1)
Al Pacino (1)
Tom Hanks (2)
Nicolas Cage (1)

Figure 1. Input-output example for the desired task.

One way to perform the above transformation is to first
generate an intermediate list where each element of the
input list is appended with its occurrence count – which
would look like [ "Anthony Hopkins (1)", "Al

Pacino (1)", "Tom Hanks (2)", "Tom Hanks

(2)", "Nicolas Cage (1)"] – and then remove
duplicates. The corresponding program f(·) may be
expressed as the composition

f(x) = dedup(concatLists(x, “ ”,

concatLists(“(”, count(x, x), “)”))).
(1)

The argument x here represents the list of input lines that
the user wishes to process, which may be much larger than
the input provided in the example. We assume here a base
language comprising (among others) a function dedup that
removes duplicates from a list, concatLists that concate-
nates lists of strings elementwise, implicitly expanding sin-
gleton arguments, and count that finds the number of oc-
currences of the elements of one list in another.

While conceptually simple, this example is out of scope for
existing text processing PBE systems. Most systems sup-
port a restricted, pre-defined set of functions that do not
include natural tasks like removing duplicates; for exam-
ple (Gulwani, 2011) only supports functions that operate
on a line-by-line basis. These systems perform inference
with search routines that are hand-coded for their supported
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Table 1. Example of grammar rules generated for task in Figure 1.
Production Probability Production Probability
P→join(LIST,DELIM) 1 CAT→LIST 0.7
LIST→split(x,DELIM) 0.3 CAT→DELIM 0.3
LIST→concatList(CAT,CAT,CAT) 0.1 DELIM→"\n" 0.5
LIST→concatList("(",CAT,")") 0.2 DELIM→" " 0.3
LIST→dedup(LIST) 0.2 DELIM→"(" 0.1
LIST→count(LIST,LIST) 0.2 DELIM→")" 0.1

functionality, and are thus not easily extensible. (Even if
an exception could be made for specific examples like the
one above, there are countless other text processing appli-
cations we would like to solve.)

Notice that certain textual features can help bias our search
by providing clues about which functions may be relevant:
in particular, (a) there are duplicate lines in the input but
not output, suggesting that dedup may be useful, (b) there
are parentheses in the output but not input, suggesting the
function concatLists("(",L,")") for some list L, (c)
there are numbers on each line of the output but none in the
input, suggesting that count may be useful, and (d) there
are many more spaces in the output than the input, suggest-
ing that " " may be useful. Our claim is that by learning
weights that tell us the reliability of these clues – for ex-
ample, how confident can we be that duplicates in the input
but not the output suggests dedup – we can significantly
speed up the inference process over brute force search.

In more detail, a clue is a function that generates rules in a
probabilistic context free grammar based on features of the
provided example. Unfortunately, dynamic programming
common in structured learning approaches with PCFGs
(Rush et al., 2011) does not apply here – it would be rel-
evant if we were given a program and wanted to parse it.
Instead we generate programs according to the PCFG and
then evaluate them directly.

Each rule corresponds to a function1 (possibly with bound
arguments) or constant in the underlying programming lan-
guage. The rule probabilities are computed from weights
on the clues that generate them, which in turn are learned
from a training corpus of input-output examples. To learn
f(·), we now search through derivations of this grammar
in order of decreasing probability. Table 1 illustrates what
the grammar may look like for the above example. Note
that the grammar rules and probabilities are example spe-
cific; we do not include a rule such as DELIM→ "$", say,
because there is no instance of "$" in the input or output.
Further, compositions of rules may also be generated, such
as concatList("(",LIST,")").

Table 1 is of course a condensed view of the actual gram-

1When we describe clues as suggesting functions, we implic-
itly mean the corresponding grammar rule.

mar our prototype system generates, which is based on a
large library of about 100 features and clues. With the
full grammar, a naı̈ve brute force search over compositions
takes 30 seconds to find the right solution to the example
of Figure 1, whereas with learning the search terminates in
just 0.5 seconds.

1.2. Comparison to previous learning systems

Most previous PBE systems for text processing handle a
relatively small subset of natural text processing tasks. This
is in order to admit efficient representation and search over
consistent programs, e.g. using a version space (Lau et al.,
2003), thus sidestepping the issue of searching for pro-
grams using general classes of functions. To our knowl-
edge, every system designed for a library of arbitrary func-
tions searches for appropriate compositions of functions ei-
ther by brute force search, or a similarly intractable op-
eration such as invoking a SAT/SMT solver (Jha et al.,
2010), or by using A*-style goal-directed heuristics (Gul-
wani et al., 2011). (Gulwani, 2012) presents a survey of
such techniques.2 Our learning approach based on textual
features is thus more general and flexible than previous ap-
proaches.

Having said this, our goal in this paper is not to compete
with existing PBE systems in terms of functionality. In-
stead, we wish to show that the fundamental PBE inference
problem may be attacked by learning with textual features.
This idea could in fact be applied in conjunction with prior
systems. A specific feature of the data, such as the input
and output having the same number of lines, may be a clue
that a function corresponding to a system like Flash Fill
(Gulwani, 2011) will be useful.

2. Formalism of our approach
We begin a formal discussion of our approach by defining
the learning problem in PBE.

2One could consider employing heuristic search techniques
such as Genetic Programming. However, this requires picking
a metric that captures meaningful search progress. This is diffi-
cult, since functions like sorting cause drastic changes on an input.
Thus, standard metrics like edit distance may not be appropriate.
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2.1. Programming by example (PBE)

Let S denote the set of strings. Suppose the user has some
text processing operation in mind, in the form of some tar-
get function or program f ∈ SS , from the set of functions
that map strings to strings. For example, in Figure 1, f
could be the function in Equation 1. To describe this pro-
gram to a PBE system, at inference (or execution) time, the
user provides a system input z := (x, x̄, ȳ) ∈ S3, where
x represents the data to be processed, and (x̄, ȳ) is an ex-
ample input-output pair that represents the string transfor-
mation the user wishes to perform, so that ȳ = f(x̄). In
the example of the previous section, (x̄, ȳ) is the pair of
strings represented in Figure 1, and x is the list of all Oscar
winners. While a typical choice for x̄ is some prefix of x,
this is not required in general3. Our goal is to recover f(·)
based on (x̄, ȳ).

Our goal is complicated by the fact that while the user has
one particular f ∈ SS in mind, there may be another func-
tion g that also explains (x̄, ȳ). For example, the constant
function g(·) = ȳ will always explain the example transfor-
mation, but will almost always not be the function the user
has in mind. Let F(z) ⊆ SS be the set of consistent func-
tions for a given system input, so that for each f ∈ F(z),
ȳ = f(x̄). We would like to find a way of ranking the ele-
ments in F(z) based on some notion of “plausibility”. For
example, in Figure 1, one consistent function may involve
removing the 4th line of the input. But this is intuitively a
less likely explanation than removing duplicates.

We look to learn such a ranking based on training data.
We do so by defining a probability model Pr[f |z; θ] over
programs, parameterized by some θ. Given θ, at inference
time on input z, we pick the most likely program under
Pr[f |z; θ] which is also consistent with z. We do so by
invoking a search function σθ,τ : S3 → SS that depends
on θ and an upper bound τ on search time. This produces
our conjectured program f̂ = σθ,τ (z) computing a string-
to-string transformation, or a trivial failure function ⊥ if
the search fails in the allotted time.

The θ parameters are learned at training time, where
the system is given a corpus of T training quadruples,
{(z(t), y(t))}Tt=1, with z(t) = (x(t), x̄(t), ȳ(t)) ∈ S3 rep-
resenting the actual data and the example input-output pair,
and y(t) ∈ S the correct output on x(t). We also as-
sume each training example z(t) is annotated with a “cor-
rect” program f (t) ∈ SS such that f (t)(x̄(t)) = ȳ(t) and
f (t)(x) = y. (In Section 3.1, we describe a workaround
when such annotations are not available.) From these ex-
amples, the system chooses the parameters θ that maximize

3This is more general than the setup of e.g. (Gulwani, 2011),
which assumes x̄ and ȳ have the same number of lines, each of
which is treated as a separate example.

the likelihood Pr[f (1), . . . , f (T )|z(1), . . . , z(T ); θ].

Note that each quadruple (z(t), y(t)) represents a different
task; for example, one may represent the Oscar winners ex-
ample of the previous section, another an email processing
task, and so on. Put another way, for t1 6= t2, it is often
the case that f (t1) 6= f (t2). Ostensibly then, we have a sin-
gle example from which to estimate the value of Pr[f |z] for
some fixed f ! However, we note that while f (t1) 6= f (t2), it
is often the case that these functions share common subrou-
tines. For example, many functions may involve splitting
the input based on the “\n” character. This tells us that,
all else being equal, we should favour splitting on newline
characters “\n” over splitting on "z", say. Our learning
procedure exploits the shared structure amongst each of the
T tasks to more reliably estimate Pr[f |z; θ].

We now describe how we model the conditional distribu-
tion Pr[f |z; θ] using a probabilistic context-free grammar.

2.2. PCFGs for programs

We maintain a probability distribution over programs with
a Probabilistic Context-Free Grammar (PCFG) G, as dis-
cussed in (Liang et al., 2010). The grammar is defined by a
set of non-terminal symbols V , terminal symbols Σ (which
may include strings s ∈ S and also other program-specific
objects such as lists or functions), and rules R. Each rule
r ∈ R has an associated probability Pr[r|z; θ] of being
generated given the system input z, where θ represents the
unobserved parameters of the grammar. WLOG, each rule
r is also associated with a function fr : ΣNArgs(r) → Σ,
where NArgs(r) denotes the number of arguments in the
RHS of rule r. A program4 is a derivation of the start sym-
bol Vstart. The probability of any program f(·) is the prob-
ability of its constituent rulesRf (counting repetitions):

Pr[f |z; θ] = Pr[Rf |z; θ]

=
∏
r∈Rf

Pr[r|z; θ]. (2)

We now describe how the distribution Pr[r|z; θ] is parame-
terized using clues.

2.3. Features and clues for learning

The learning process exploits the following simple fact: the
chance of a rule being part of an explanation for a string
pair (x̄, ȳ) depends greatly on certain characteristics in the
structure of x̄ and ȳ. For example, one interesting binary
feature is whether or not every line of ȳ is a substring

4Two programs from different derivations may compute ex-
actly the same function f : S → S. However, determining
whether two programs compute the same function is undecidable
in general. Hence, we abuse notation and consider these to be
different functions.
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of x̄. If true, it may suggest that the select field
rule should receive higher probability in the PCFG, and
hence will be combined with other rules more often in
the search. Another binary feature indicates whether or
not “Massachusetts” occurs repeatedly as a substring in
ȳ but not in x̄. This suggests that a rule generating the
string “Massachusetts” may be useful. Conceptually, given
a training corpus, we would like to learn the relationship
between such features and the successful rules. However,
there are an infinitude of such binary features as well as
rules (e.g. a feature and rule corresponding to every possi-
ble constant string), but of course limited data and compu-
tational resources. So, we need a mechanism to estimate
the relationship between the two entities.

We connect features with rules via clues. A clue is a func-
tion c : S3 → 2R that states, for each system input z,
which subset of rules in R (the infinite set of grammar
rules), may be relevant. This set of rules will be based on
certain features of z, meaning that we search over compo-
sitions of instance-specific rules5. For example, one clue
might return {E → select field(E, Delim, Int)} if each
line of ȳ is a substring of x̄, and ∅ otherwise. Another
clue might recognize the input string is a permutation of the
output string, and generate rules {E → sort(E, COMP), E →
reverseSort(E, COMP), COMP → alphaComp, . . .}, i.e., rules
for sorting as well as introducing a nonterminal along with
corresponding rules for various comparison functions. A
single clue can suggest a multitude of rules for different
z’s (e.g. E → s for every substring s in the input), and
“common” functions (e.g. concatenation of strings) may be
suggested by multiple clues.

We now describe our probability model that is based on the
clues formalism.

2.4. Probability model

Suppose the system has n clues c1, c2, . . . , cn. For each
clue ci, we keep an associated parameter θi ∈ R. LetRz =
∪ni=1ci(z) be the set of instance-specific rules (wrt z) in
the grammar. While the set of all rules R will be infinite
in general, we assume there are a finite number of clues
suggesting a finite number of rules, so thatRz is finite. For
each rule r /∈ Rz , we take Pr[r|z] = 0, i.e. a rule that
is not suggested by any clue is disregarded. For each rule
r ∈ Rz , we use the probability model

Pr[r | z; θ] =
1

ZLHS(r)
exp

 ∑
i:r∈ci(z)

θi

 . (3)

5As long as the functions generated by our clues library in-
clude a Turing-complete subset, the class of functions being
searched amongst is always the Turing-computable functions,
though having a good bias is probably more useful than being
Turing complete.

where LHS(r) ∈ V denotes the nonterminal appearing ap-
pearing on the left hand side of rule r, and for each nonter-
minal V ∈ V , the normalizer ZV is

ZV =
∑

r∈Rz :LHS(r)=V

exp

 ∑
i:r∈ci(z)

θi

 .

This is a log-linear model for the probabilities, where each
clue has a weight eθi , which is intuitively its reliability6,
and the probability of each rule is proportional to the prod-
uct of the weights generating that rule. An alternative
model would be to make the probabilities be the (normal-
ized) sums of corresponding weights, but we favor products
for two reasons. First, as described shortly, maximizing the
log-likelihood is a convex optimization problem in θ for
products, but not for sums. Second, this formalism allows
clues to have positive, neutral, or even negative influence
on the likelihood of a rule, based upon the sign of θi.

Our framework overcomes difficulties faced by classical
approaches for this problem. Consider for example K-
class logistic regression, which for input x ∈ Rd and label
y ∈ {0, 1}K such that 1T y = 1 models

Pr[y | x;w] =
1

Zx
exp

(
wTφ(x, y)

)
for φ(x, y) = x⊗ y. In our problem, assumingR is count-
able we can represent r by the bitvector er ∈ {0, 1}|R|,
and z by a bitvector fz ∈ {0, 1}F indicating which of F
features it possesses (e.g. whether it has numbers, or not).
Using the representation φ(r, z) = er ⊗ fz would require
the estimation of |R| ·F parameters, i.e. a parameter mea-
suring the relationship between every pair of rule and fea-
ture. This means that we would for example end up learn-
ing separate parameters for all constant strings that occur in
a training set. This is not scalable, and also does not exploit
the fact that all else being equal, we expect the probabili-
ties for two constant strings to be similar. By contrast, the
model of Equation 3 is

Pr[r | z; θ] =
1

ZLHS(r)
exp

(
θTφ(z, r)

)
,

where φ(r, z) ∈ Rn is such that φ(z, r)i = 1[r ∈ ci(z)].
If R is enumerable, this may further be thought of as
φ(z, r) = C(z) · er, where C(z) ∈ {0, 1}n×|R| is a binary
matrix whose (i, r)th element indicates whether the clue i
suggests rule r on input z. The key is that C(z) is sparse,
as each clue suggests only a small subset of all rules. This
injects prior knowledge to the problem: a human looking at

6With these weights, if a clue is too lax in how it suggests
rules – for example, suggesting a date to string operation
every time there is a number in the input – its suggestions will be
discounted.
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the example of Figure 1 would not think of performing date
operations as part of the transformation, and so we encode
this fact in our clues. Further, we can keep a single (data-
dependent) clue that suggests every constant string that ap-
pears in the input or output, which encodes our belief that
the probabilities for these rules are tied together.

3. System training and usage
We are now ready to describe in full the operation of the
training and inference phases.

3.1. Training phase: learning θ

At training time, we wish to learn the parameter θ that char-
acterizes the conditional probability of a program given the
input, Pr[f |z; θ]. Recall that we assume each training ex-
ample z(t) is also annotated with the “correct” program f (t)

that explains both the example and actual data pairs. In
this case, we choose θ so as to minimize the negative log-
likelihood of the data, plus a regularization term:

θ = argmin
θ′∈Rn

− log Pr[f (t)|z(t); θ′] + λΩ(θ′),

where Pr[f (t)|z(t); θ] is defined by equations (2) and (3),
the regularizer Ω(θ) is the `2 norm 1

2 ||θ||
2
2, and λ > 0 is

the regularization strength which may be chosen by cross-
validation. If f (t) consists of rules r(t)1 , r

(t)
2 , . . . , r

(t)

k(t)
(pos-

sibly with repetition), then

log Pr[f (t)|z(t); θ] =

k=k(t)∑
k=1

log
(
Z
LHS(r

(t)
k )

)
−

∑
i:r

(t)
k ∈ci(z(t))

θi

The convexity of the objective follows from the convexity
of the regularizer and the log-sum-exp function. The pa-
rameters θ are optimized by gradient descent.

The assumption that every training example has the anno-
tated “correct” program may be unrealistic, as annotation
requires human effort. However, we may attempt to dis-
cover the correct annotations automatically by bootstrap-
ping: the reason is that the transformation by definition
must explain both (x(t), y(t)) and (x̄(t), ȳ(t)). We start
with a uniform parameter estimate θ(0) = 0. In iteration
j = 1, 2, 3, . . ., we select f (j,t) to be the most likely pro-
gram, based on θ(j−1), consistent with the system data. (If
no program is found within the timeout, the example is
ignored.) Then, parameters θ(j) are learned, as described
above. This is run until convergence.

3.2. Inference phase: evaluating on new input

At inference time, we are given system input z = (x, x̄, ȳ),
n clues c1, c2, . . . , cn, and parameters θ ∈ Rn learned from
the training phase. We are also given a timeout τ . The goal

is to infer the most likely program f̂ that explains the data
under a certain PCFG. This is done as follows:

(i) We evaluate each clue7 on the system input z. The
underlying PCFG Gz consists of the union of all sug-
gested rules,Rz =

⋃n
i=1 ci(z).

(ii) Probabilities are assigned to these rules via Equation
3, using the learned parameters θ.

(iii) We enumerate over Gz in order of decreasing proba-
bility, and return the first discovered f̂ that explains
the (x̄, ȳ) string transformation, or ⊥ if we exceed the
timeout.

To find the most likely consistent program, we enumerate
all programs of probability at least η > 0, for any given η.
We begin with a large η, gradually decreasing it and testing
all programs until we find one which outputs ȳ on x̄ (or we
exceed the timeout τ ). (If more than one consistent pro-
gram is found, we just select the most likely one.) Due to
the exponentially increasing nature of the number of pro-
grams, this approach imposes a negligible overhead due to
redundancy – the vast majority of programs are executed
just once.

To compute all programs of probability at least η, a dy-
namic program first computes the maximal probability of
a full trace from each nonterminal. Given these values, it
is simple to compute the maximal probability completion
of any partial trace. We then iterate over each nonterminal
expansion, checking whether applying it can lead to any
programs above the threshold; if so, we recurse.

4. Results on prototype system
To test the efficacy of our framework, we report results
on a prototype web app implemented using client-side
JavaScript and executed in a web browser on an Intel Core
i7 920 processor. Our goal with the experiments is not to
claim that our prototype is “better” than existing systems
in terms of functionality or richness. (Testing such a claim
would anyhow be difficult since all existing PBE text pro-
cessing systems that we are aware of are proprietary.) In-
stead, our aim is to test whether learning weights using tex-
tual features – which has not been studied in any prior sys-
tem, to our knowledge – can speed up inference. Nonethe-
less, we attempt to construct a reasonably functional sys-
tem so that our results can be indicative of what we might
expect to see in a real-world text processing system.

4.1. Details of base functions and clues

As discussed in Section 2.2, we associated the rules in
our PCFG with a set of base functions. In total we cre-

7Since a clue c is just a function that outputs a list of rules,
evaluating c(z) amounts to a single function call.
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Table 2. Examples of clues and examples used in our prototype.
(a) Sample of clues used. LIST denotes a list-, E a string-
nonterminal in the grammar.

Feature Suggested rule(s)
Substring s appears in output
but not input?

E → “s”, LIST → {E}

Duplicates in input but not
output?

LIST → dedup(LIST)

Numbers on each input line
but not output line?

LIST → count(LIST)

(b) Sample of test-cases used to evaluate the system.
Input Output
Adam Ant\n1 Ray
Rd.\nMA\n90113

90113

28/6/2010 June the 28th 2010
612 Australia case 612: return

Australia;

ated around 100 functions, such as dedup, concatLists,
and count, as described in Section 1.1. For clues to
connect these functions to features of the examples, we
had one set of base clues that suggested functions we be-
lieved to be common, regardless of the system input z (e.g.
string concatenation). Other clues were designed to sup-
port common formats that we expected, such as dates, tab-
ular and delimited data. Table 2(a) gives a sample of some
of the clues in our system, in the form of grammar rules
that certain textual features are connected to; in total we
had approximately 100 clues. The full list of functions
and clues is available at http://cseweb.ucsd.edu/
˜akmenon/pbe.

4.2. Training set for learning

To evaluate the system, we compiled a set of 280 exam-
ples with both an example pair (x̄, ȳ) and evaluation pair
(x, y) specified. These examples were partly hand-crafted,
based on various common usage scenarios the authors have
encountered, and partly based on examples used in (Gul-
wani, 2011). The latter examples were derived from man-
ual crawling of Microsoft Excel help forums, and distilling
common text processing questions that arise on these fo-
rums. Table 2(b) gives a sample of some of the scenarios
we tested the system on. To encourage future research on
this problem, our suite of training examples is available at
http://cseweb.ucsd.edu/˜akmenon/pbe/.

All examples are expressible as (possibly deep) composi-
tions of our base functions; the median depth of compo-
sition on most examples is 4. Like any classical learning
model, we assume these are iid samples from the distribu-
tion of interest, namely over “natural’ text processing ex-
amples. It is hard to justify this independence assumption
in our case, but we are not aware of a good solution to this
problem in general; even examples collected from a user
study, say, will tend to be biased in some way.

4.3. Does learning help?

The learning procedure aims to allow us to find the correct
program in the shortest amount of time. We compare this
method to a baseline, hoping to see quantifiable improve-

ments in performance.

Baseline. Our baseline is to search through the grammar
in order of increasing program size, attempting to find the
shortest grammar derivation that explains the transforma-
tion. The grammar does use clues to winnow down the set
of relevant rules, but does not use learned weights: we let
θi = 0 for all i, i.e. all rules that are suggested by a clue
have the same constant probability. This method’s perfor-
mance lets us measure the impact of learning. Note that
pure brute force search would not even use clues to nar-
row down the set of feasible grammar rules, and so would
perform strictly worse. Such a method is infeasible for the
tasks we consider, because some of them involve e.g. con-
stant strings, which cannot be enumerated.

Measuring performance. To assess a method, we look
at its accuracy, as measured by the fraction of correctly
discovered programs, and efficiency, as measured by the
time required for inference. As every target program in
the training set is expressible as a composition of our base
functions, there are two ways in which we might fail to
infer the correct program: (a) the program is not discov-
erable within the timeout set for the search, or (b) another
program (one which also explains the example transforma-
tion) is wrongly given a higher probability. We call errors
of type (a) timeout errors, and errors of type (b) ranking
errors. Larger timeouts lead to fewer timeout errors.

Evaluation scheme. To ensure that the system is capable
of making useful predictions on new data, we report the test
error after creating 10 random 80–20 splits of the training
set. For each split, we compare the various methods as the
inference timeout τ varies from {1/16, 1/8, . . . , 16} sec-
onds. For the learning method, we performed 3 bootstrap
iterations (see Section 3.1) with a timeout of 8 seconds to
get annotations for each training example.

Results. Figures 2(a) and 2(b) plot the timeout and rank-
ing error rates respectively. As expected, for both methods,
most errors arise due to timeout when the τ is small. To
achieve the same timeout error rate, learning saves about
two orders of magnitude in τ compared to the baseline.
Learning also achieves lower mean ranking error, but this

http://cseweb.ucsd.edu/~akmenon/pbe
http://cseweb.ucsd.edu/~akmenon/pbe
http://cseweb.ucsd.edu/~akmenon/pbe/
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(a) Timeout errors.
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(b) Ranking errors.
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(c) Mean speedup due to learning.
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(d) Scatterplot of prediction times.
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(e) Learnt program depths, τ = 16s. “N/A”
denotes that no program found.

Figure 2. Comparison of baseline versus learning approach.

difference is not as pronounced as for timeout errors. This
is not surprising, because the baseline generally finds few
candidates in the first place (recall that the ranking error is
only measured on examples that do not timeout); by con-
trast, the learning method opens the space of plausible can-
didates, but introduces a risk of some of them being incor-
rect.

Figure 2(c) shows the relative speedup due to learning as τ
varies. We see that learning manages to cut down the pre-
diction time by a factor of almost 40 over the baseline with
τ = 16 seconds. (The system would be even faster if im-
plemented in a low-level programming language such as C
instead of Javascript.) The trend of the curve suggests there
are examples that the baseline is unable to discover with 16
seconds, but learning discovers with far fewer. Figure 2(d)
is a scatterplot of the times taken for both methods with
τ = 16 over all 10 train-test splits, confirms this: in the
majority of cases, learning finds a solution in much less
time than the baseline, and solves many examples the base-
line fails on within a fraction of a second. (In some cases,
learning slightly increases inference time. Here, the test ex-
ample involves functions insufficiently represented in the
training set.)

Finally, Figure 2(e) compares the depths of programs (i.e.
number of constituent grammar rules) discovered by learn-
ing and the baseline over all 10 train-test splits, with an

inference timeout of τ = 16 seconds. As expected, the
learning procedure discovers many more programs that in-
volve deep (depth ≥ 4) compositions of rules, since the
rules that are relevant are given higher probability.

5. Conclusion and future work
We propose a PBE system for repetitive text processing
based on exploiting certain clues in the input data. We
show how one can learn the utility of clues, which relate
textual features to rules in a context free grammar. This al-
lows us to speed up the search process, and obtain a mean-
ingful ranking over programs. Experiments on a prototype
system show that learning with clues brings significant sav-
ings over naı̈ve brute force search. As future work, it would
be interesting to learn correlations between rules and clues
that did not suggest them, although this would necessitate
enforcing some strong parameter sparsity. It would also
be interesting to incorporate ideas like adaptor grammars
(Johnson et al., 2006) and learning program structure as
in (Liang et al., 2010). Finally, (Gulwani, 2012; Gulwani
et al., 2012) describe several useful (and surprising) ap-
plication domains for PBE, and it would be interesting to
consider applying the techniques proposed in this paper to
speed up the involved search processes and/or improve the
ranking schemes.
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